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Gamero-Castaño and colleagues have reported that a large number of calculated shapes
for electrified cone jets collapse into a nearly universal geometry when scaled with a
characteristic length RG previously introduced by Gañán-Calvo et al. (J. Aerosol Sci.,
vol. 25, 1994, pp. 1121–1142). The theoretical reasons for that unexpected success were,
however, unclear. Recently, Pérez-Lorenzo & Fernández de la Mora (J. Fluid Mech.,
vol. 931, 2022, A4) have noted that a slightly different length scale L j is suggested by
the asymptotic jet structure inferred by Gañán-Calvo (Phys. Rev. Lett., vol. 79, 1997,
pp. 217–220) from energy conservation and the hypothesis that the asymptotic electric
field is that given by Taylor’s static model. This article aims to identify which of these
two scales best collapses calculated cone-jet structures, and whether there is an alternative
superior one. The characteristic lengths are tested against a large set of numerical solutions
of a cone-jet model. The effectiveness of each scaling is determined through analyses
based on the standard deviation of the numerical solutions. Despite the slight difference
between RG and L j , this analysis clearly identifies L j as the most accurate scaling for
all cone-jet parameters tested. Differentiating between both scales would not have been
possible with experimental measurements, but requires the use of high-fidelity numerical
solutions. Surprisingly, the success of L j is not limited to the jet region, but extends
to the cone and the neck. These findings provide a slightly superior scaling enjoying a
considerably firmer theoretical basis.
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1. Introduction
There have been numerous attempts at determining the various length scales governing
electrified liquid cone jets. Initial efforts were directed at the characteristic radius in the
neck region, where the Taylor cone begins to evolve into a jet. A first hypothesis defining
an inertial radius Ri was that the capillary pressure ∼γ /Ri would become comparable
with the dynamic pressure ∼ρQ2/Ri

4, resulting in

Ri ∝
(

ρQ2

γ

)1/3

, (1.1)

where Q is the flow rate of liquid, ρ its density and γ the surface tension at the liquid–gas
interface (Turnbull 1989; Fernández de la Mora et al. 1990). The approximate agreement
initially obtained with a few observations was nevertheless incomplete in view of the
known strong dependence of the jet radius on the electrical conductivity K of the liquid.
Fernández de la Mora & Loscertales (1994) studied systematically this dependence. This
was done primarily through measurements not of the jet radius, but of the emitted current
I , which they showed was well approximated by

I = f (ε) (γ K Q)1/2 , (1.2)

where f (ε) is a function of the dielectric constant ε of the liquid. Their attempt to
rationalise this strikingly simple scaling led them to a model where the increasing
electrical resistance of the cone and the increasing liquid velocity as the neck region
was approached would eventually disrupt Taylor’s hypothesis of an equipotential meniscus
(Taylor 1964). This approach also defined the following characteristic electrical relaxation
radius Rr :

Rr =
(

ε0 Q

K

)1/3

, (1.3)

with a dependence on ε that is ignored for present purposes; ε0 is the vacuum permittivity.
Fernández de la Mora & Loscertales (1994) reasoned that the jet radius would scale
with Rr , and included a few experimental observations suggesting that this was not
unreasonable. This point was more systematically supported by various later sets of
measurements of the size of the drops produced by the breakup of the jet (Rosell-Llompart
& Fernández de la Mora 1994; Chen & Pui 1997; Gañán-Calvo et al. 1997). The ratio
between these two early length scales introduced a dimensionless flow rate quantity
(Gañán-Calvo et al. 1993; Fernández de la Mora & Loscertales 1994),

ΠQ = ρK Q

γ ε0
=

(
Ri

Rr

)3

, (1.4)

which has been widely used subsequently. Quantity ΠQ will play a role in the present
discussion because most of the various other characteristic lengths that have been proposed
can be written as the product of a flow-rate-independent length, lo = (ε0

2γ /ρK 2)1/3, times
ΠQ raised to a certain power a.

Gañán-Calvo and collaborators, postulating that the surface charge is in electrostatic
equilibrium everywhere in the cone jet, deduced the following expression for the current
(Gañán-Calvo et al. 1993):

I ∼= 2.47(γ K Q)1/2, (1.5)
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introduced a third characteristic length for the radius of the jet (Gañán-Calvo et al.
1994):

RG =
(

ε0ρQ3

Kγ

)1/6

, (1.6)

and a different characteristic length for the axial extent of the transition region:

ZG =
(

ρ2K Q3

ε0γ 2

)1/3

, (1.7)

based on several simplified balances (Gañán-Calvo 2004; Gañán-Calvo et al. 2018).
It is important to note that the argument leading to the radial scale (1.6) requires the
existence of the axial scale (1.7), because it postulates an approximation for the current
determined by Taylor’s potential (Taylor 1964), I ∼ K R2 Et ∼ K R2[γ /(ε0L)]1/2, and the
characteristic radius R and axial length L must have the RG and ZG scalings, respectively,
in order for the current to follow (1.5).

It initially seemed difficult to establish which of these characteristic lengths would best
fit existing experiments. The power a is often a small number, while the dimensionless
flow rate at which stable cone jets can be formed spans a limited range. The difficulty
was further compounded by the fact that some of the measured lengths relate to different
parts of the jet, and by the difficulty in measuring submicrometric features with the
accuracy needed to resolve the small differences in the length scales: the neck region
is perhaps better characterised by Rr , while the radius of the jet in the breakup region is
possibly better represented by the measured droplet radius (which furthermore exhibits a
distribution that must be reconciled with the radius of the jet). Since the radius of the jet is
many times smaller than its length, and is continually shrinking as it is accelerated by the
electric field, it is conceivable that different length scales will best describe the various
pieces of the cone jet. This issue will nevertheless be later seen to be less serious than
it might initially appear because the asymptotic jet shape involves a rather slow variation
with the axial position x , as R ∝ x−1/8 (Gañán-Calvo 1997).

A breakthrough in the effort to identify the optimal characteristic length for the cone
jet was enabled by a series of studies by Gamero-Castaño and colleagues. First, Gamero-
Castaño & Hruby (2001) invented a vacuum method allowing the measurement of the jet
radius at its breakup point. This study showed that the scale RG fitted well all measured
drop radii, and fitted them much better than the scale Rr . In a later extension, focused on
the dissipation of energy in cone jets (Gamero-Castaño 2010), it was shown that both the
radial and axial lengths scale well with a single characteristic length, RG . In fact, when
the positions of the surface of cone jets obtained numerically were scaled with RG , all
profiles approximately collapsed into a single universal shape over a wide range of flow
rates, electrical conductivities, dielectric constants and viscosities (Gamero-Castaño &
Magnani 2019). Most relevant in this latter study was the fact that these many cone jets did
approximately collapse into a single shape, not just at the neck or at a certain downstream
point, but through the whole cone, the jet and the transition region. The new numerical
evidence was accordingly far stronger than that previously available from drop diameter
measurements. The debate about the correct characteristic length hence appeared to be
clearly settled experimentally and computationally in favour of RG .

Nevertheless, the theoretical basis for the successful RG scale is not wholly persuasive
for several reasons. In the first place, it is now apparent that the same radial and axial
length scales apply in the transition and jet regions, while the justifications provided by
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Gañán-Calvo and collaborators (Gañán-Calvo 2004; Gañán-Calvo et al. 2018) required
different scales for the jet radius (1.6) and length (1.7). Second, the energy balance used
by Gañán-Calvo et al. (2018) to obtain the RG scale may be simplified (the work done by
the electric field is balanced against the increase in kinetic energy of the liquid), because
it neglects dissipation which is more significant than the increase in kinetic energy in a
long section of the transition region (see Gamero-Castaño & Magnani 2019). Third, the
R ∝ Q1/2 dependence found by Gamero-Castaño (2010), and therefore the support for
RG , was based on the remarkable Q-independence of experimental retarding potential
curves of electrosprayed droplets. However, these retarding potential curves have a finite
spread, which introduces uncertainty in the derivation from the curve of a single voltage
value connected to the physics of the jet. This uncertainty would invalidate the strict
Q-independence of the retarding potential curve and make it difficult to distinguish
between length scales with very similar Q dependencies, i.e. similar values of the
exponent a.

1.1. Asymptotic jet structure and its length scale L j

We have noted that the variation of the radius of the jet between its neck and breakup
region is not unduly large. This important point may be ascertained because of the
following considerations first put together by Gañán-Calvo (1997) to obtain an analytic
description of the jet shape far downstream. The neck region is associated with a certain
dissipation where electrical energy is turned into heat due to the finite conductivity of the
medium. This dissipative region, however, ends soon, once the conductive current through
the bulk of the liquid dies out and the dominant charge-carrying mechanism, convection
of the surface charge, is non-dissipative. Thereafter, the following energy conservation
equation applies approximately:

ρQ3

2π2 R4 + IΦ = constant, (1.8)

where mass conservation relates the fluid velocity u to the flow rate via Q = π R2u.
Gañán-Calvo then assumes that, to first-order approximation, the potential along the jet
surface is given by Taylor’s potential (Taylor 1964):

Φ(x) = −φT

(
γ x

ε0

)1/2

, (1.9)

where φT is a constant of order unity, given by Taylor’s theory of the electrohydrostatic
cone. In this picture the origin of the potential is at x = 0, where the kinetic energy is also
zero, which nullifies the constant in (1.8). Combining (1.8) and (1.9), one finds

R4x1/2 = ρQ3

2π2 IφT

(
ε0

γ

)1/2

. (1.10)

One consequence of (1.10) already noted is that the radius decreases rather slowly, as
R ∝ x−1/8, such that even a very long jet changes modestly its radius. Two additional
implications of (1.10) were first noted by Pérez-Lorenzo & Fernández de la Mora (2022).
The first is that (1.10) implies a characteristic jet length L j :

L j
9/2 = ρQ3

2π2 IφT

(
ε0

γ

)1/2

, (1.11)

in terms of which the asymptotic jet shape is universal. In choosing this scale we have
assumed that the axial and radial length scales coincide. This is not necessarily true in the
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jet region. However, if one seeks (perhaps unjustifiably) a characteristic length that will
collapse both the jet and the cone, there is no room for two scales because the cone angle
is fixed in Taylor’s electrostatic model. The second consequence of (1.10) noted by Pérez-
Lorenzo & Fernández de la Mora (2022) is that the jet length scale defined in (1.11) is
hardly distinguishable from RG . For concreteness, and using (1.2) to express the current,

L j

RG
�

ΠQ
1/18

(2πφT )2/9 . (1.12)

The small power of ΠQ relating these two length scales would appear to make it rather
difficult to distinguish between them.

The goal of this article is to determine the appropriateness of several length scales for
collapsing the surfaces of cone jets, namely L j , RG and Rr used in both the radial and
axial directions, and the combined RG−ZG . The surfaces are numerical solutions of a
first-principles model computed over a broad range of operational conditions. We find that
both RG and L j are close to the optimum length scale, and that the latter performs better.
Irrespective of the slightly different fitting merits of these two almost identical scales,
the simple rationalisation of the new length scale L j obtained from (1.8)–(1.10) provides
now a readily understandable theoretical explanation for why both do such a good job
in collapsing the calculated electrified meniscus shapes, at least in the far-downstream
region.

2. Cone-jet model and analysis methodology
The cone jet is modelled using the leaky-dielectric formulation (Melcher & Taylor 1969;
Saville 1997). A detailed description can be found in Gamero-Castaño & Magnani (2019)
and Magnani & Gamero-Castaño (2024). The model is axisymmetric and steady state,
and restricted to isothermal conditions in the present study. It solves for the velocity and
pressure fields in the liquid, the position of the free surface R(x), the surface charge and
the electric potential inside the cone jet and surrounding vacuum. An important feature of
the model is the use of Taylor’s potential as far-field boundary condition, which yields
a solution that is independent of the geometry of the emitter and ground electrodes.
Experimentally, this corresponds to a cone jet in which the length and diameter of the jet
are orders of magnitude smaller than any geometric dimension such as the diameter of the
emitter or the distance between the emitter and ground electrode. The origin of coordinates
for the Taylor potential (1.9) also fixes the origin of coordinates of the cone-jet model;
because of this, the numerical solution is not invariant to an axial translation. The solution
is a parametric function of three dimensionless numbers, namely the dimensionless flow
rate ΠQ , the dielectric constant ε and the electrohydrodynamic Reynolds number

Re =
(

ε0ργ 2

Kμ3

)1/3

, (2.1)

Reynolds number henceforth. Terms ΠQ , Re and ε are the only dimensionless numbers
appearing in the isothermal model equations, and therefore the position of the surface is
given by

R̃ = f
(
x̃; ΠQ, Re, ε

)
, (2.2)

where we use a tilde to signify a dimensionless variable (dimensional variables are
uncapped throughout the article). There are different criteria for defining a characteristic
length scale. Here, we adopt the expectation that there exist radial and axial scale functions
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of the dimensionless flow rate, Reynolds number and dielectric constant, Lr (ΠQ, Re, ε)

and Lx (ΠQ, Re, ε), such that

R

Lr
= f

(
x

Lx

)
. (2.3)

The reduction of (2.2) into (2.3) is not generally possible, but the findings of Gamero-
Castaño (2010) and Gamero-Castaño & Magnani (2019) indicate that this collapsing of
the surfaces into a single function is approximately valid in cone jets. For simplicity we
restrict Lr (ΠQ, Re, ε) and Lx (ΠQ, Re, ε) to power laws. The analysis is simplified by
defining a general characteristic length, LC , from which the different scales proposed in
the literature can be obtained as special cases. Length LC is a combination of powers of
the various relevant liquid properties and the flow rate:

LC = Qaμ−bεcρdγ e K f ε0
g, (2.4)

where μ stands for the viscosity. Length LC can be recast as the product of the flow-rate-
independent length lo times powers of the dimensionless flow rate, the Reynolds number
and the dielectric constant:

LC =
(

ε0
2γ

ρK 2

)1/3 (
ρK Q

ε0γ

)a (
ε0ργ 2

Kμ3

)b/3

εc = loΠQ
a Rebεc. (2.5)

The characteristic lengths discussed in § 1 omit dependencies on the Reynolds number and
the dielectric constant, b = 0 and c = 0, and are defined by the following values of a:

(i) a = 1/3 → Rr ,
(ii) a = 1/2 → RG ,

(iii) a = 5/9 → L j ,
(iv) a = 1 → ZG .

Alternative length scales can be studied by varying the values of a, b and c.
We evaluate the appropriateness of a length scale by quantifying how effectively it

collapses all R(x) solutions into a single function. We use a normalised standard deviation
to measure this:

sn(y) = 1
y

√√√√ 1
N

N∑
i=1

|yi − y|2, (2.6)

where y is the variable being studied, N the number of samples and y the mean value of
the variable. Furthermore, the performance of a length scale over an axial interval [xa, xb]
is quantified by averaging the standard deviation:

sn(y) = 1
xb − xa

∫ xb

xa

sn(y(x))dx . (2.7)

The simulations include the following ionic liquids: 1-ethyl-3-methylimidazolium
bis((trifluoromethyl)sulphonyl)imide, 1-butyl-3-methylimidazolium tricyanomethane,
1-ethyl-3-methylimidazolium trifluoroacetate, ethylammonium nitrate, 1-decyl-3-
methylimidazolium bis(trifluoromethylsulphonyl)amide and 2-hydroxyethylammonium
lactate (see table 1). The physical properties of the ionic liquids are obtained from the
Ionic Liquid Database (Kazakov et al. 2022). We have calculated 146 solutions covering
wide ranges of the dimensionless flow rate, 10 �ΠQ � 5500, the Reynolds number,
0.0033 � Re � 0.747, and the dielectric constant, 12.7 � ε � 85.6. All solutions are
1018 A5-6
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Name CAS no. Solutions ΠQ Re ε

1-Butyl-3-methylimidazolium
tricyanomethanide

878027-73-7 22 10–1000 0.0093 12.7

1-Decyl-3-methylimidazolium
bis(trifluoromethylsulphonyl)amide

433337-23-6 3 100–1000 0.0033 14.9

1-Ethyl-3-methylimidazolium
bis(trifluoromethylsulphonyl)amide

174899-82-2 47 10–4000 0.0075–0.747 13.1

1-Ethyl-3-methylimidazolium
trifluoroacetate

174899-65-1 28 10–5000 0.0085 14.6

2-Hydroxyethylammonium lactate 68815-69-0 17 50–4000 0.0053 85.6
Ethylammonium nitrate 22113-86-6 29 10–5500 0.0061 27.1

Table 1. Numerical solutions used in the analysis: liquids considered, number of solutions for each liquid and
ranges of ΠQ , Re and ε investigated.

isothermal, calculated at 21 ◦C. For a description of thermal effects in cone jets we refer
the reader to Gamero-Castaño (2019) and Magnani & Gamero-Castaño (2024).

3. Analysis of the characteristic lengths
Figure 1 shows the current as a function of the dimensionless flow rate for all cone jets
simulated. The current is made dimensionless with the scale Io = √

ε0γ 2/ρ, to facilitate
comparison with the traditional scaling law I/Io ∝ ΠQ

1/2, equation (1.2) (Gañán-Calvo
et al. 1993; Fernández de la Mora & Loscertales 1994). At flow rates ΠQ � 250, the
data are well fitted by I/Io = 2.45ΠQ

1/2 + 0.895, in excellent agreement with expression
(1.5) found analytically by Gañán-Calvo et al. (1993) and with the best fit reported by
Gañán-Calvo et al. (2018), I/Io = 2.5ΠQ

1/2, for experimental data including 54 different
electrolytes. The data with higher flow rates are also well approximated by a square-
root law with a slightly lower coefficient. The values for the cone jets with the highest
dielectric constant (ε = 85.6) and with highest Reynolds number (Re = 0.747) suggest
that the current increases with Re and decreases with ε, although these dependencies are
weak compared with the dependence on ΠQ . Two more features are worth mentioning.
First, although the larger dimensionless flow rates may seem high, they are typical
in cone jets of ionic liquids. For example, Gamero-Castaño & Cisquella-Serra (2021)
report measurements of EMI-Im cone jets in the range 612 �ΠQ � 3630; furthermore,
Caballero-Pérez & Gamero-Castaño (2025) have demonstrated EMI-Im flow rates as
low as ΠQ ∼ 10. Second, these numerical solutions provide a more accurate tool for
probing the physics than experiments, not only because many features of cone jets are
not accessible by the latter, but also because of the fidelity of the numerical solution.
For example, figure 1 shows that, under isothermal operation, I/Io is nearly a single-
valued function of ΠQ that follows well a power law (a square root with a negligible
constant term). This result is rarely reproduced with this precision in experimental data.
For example, figure 7 in Gañán-Calvo et al. (2018) summarising experimental data for 54
different electrolytes shows that although the data generally fall near I/Io = 2.5ΠQ

1/2,
the measurements for a given liquid are better fitted by power laws with exponents slightly
different from 1/2, with coefficients different from 2.5 and potentially having a constant
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Figure 1. Total current emitted by the electrospray, plotted as a function of ΠQ .

term. This is to be expected since there are a number of issues that make it difficult to
obtain experimental data with the fidelity achievable in a numerical simulation.

Figure 2 illustrates the definition of the characteristic length as the scale needed to col-
lapse disparate cone-jet surfaces into a narrow band. Throughout the article and unless oth-
erwise noted, the origin of the axial coordinate in the figures is the origin of the axial co-
ordinate in the numerical solution or, equivalently, the origin of coordinates for the Taylor
potential. Figure 2(a,b) shows the position of the surface for most cone jets simulated.
Because of the wide ranges of dimensionless flow rates, dielectric constants and Reynolds
numbers investigated, the radii span several orders of magnitude. For example, the radius
at which the bulk conduction and surface current coincide, that is, the radius of the current
crossover, varies between 2.87 nm and 2.42 µm across the simulations. However, when
normalising the radial and axial coordinates with appropriate length scales, for example L j
in figure 2(c), the various profiles collapse within a narrow band. The appropriateness of
L j is surprising because while the solution is a function of three dimensionless numbers,
only one, ΠQ , is included in L j ; furthermore, there is no indication in the model that
both coordinates must have the same scale. These two features are likely preventing a
full collapse of the profiles into a single function. Figure 2(d) shows that the combined
RG−ZG scales do not collapse the cone-jet profiles as well as the single L j scale.

Figure 3(a) shows the normalised standard deviation of the radius of the cone jet, (2.6),
as a function of the axial coordinate for four scalings: Rr , RG and L j employed in both
the radial and axial directions, and the combined RG−ZG scales. We have normalised the
axial coordinate with the average position where the surface current Is is 90 % of the total
1018 A5-8
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Figure 2. (a,b) Dimensional cone-jet profiles; (c) cone-jet profiles scaled with L j ; (d) cone-jet profiles scaled
with RG and ZG . The scaled profiles include the radius and axial positions (and their standard deviations) for
several values of the surface current Is and the maximum of R̃′′(x̃).
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Figure 3. (a) Normalised standard deviation of the radius of the cone jet, R̃(x̃), for four different length
scale combinations: ar = ax = 1/3; ar = ax = 1/2; ar = ax = 5/9; and ar = 1/2, ax = 1. (b) Average standard
deviation of the cone-jet radius in 0 � x̃ � 2L90, and maximum value of the normalised standard deviation, as
a function of the length-scale power a.
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current, L90. This is important for a direct comparison between the scales, as increasing
the value of the power a in (2.5) compresses the curves horizontally. Using RG and L j
in both directions collapse the profiles well, although L j is superior almost everywhere
in the jet, especially far downstream where conduction current is negligible. The RG−ZG
combination collapses the profiles significantly worse everywhere along the cone jet. The
reduction of the cone-jet profiles by the L j scale is significant: the maximum disagreement
is 0.444 at x̃/L90 = 0.327, for a range of radii spanning over three orders of magnitude,
between 11.1 nm and 14.3 µm, at this axial position. Figure 3(b) measures the quality of the
scale loΠQ

a when used for both the radial and axial coordinates, as a function of the power
a. We do this by averaging the normalised standard deviation of the radius in the interval
0 � x̃ � 2L90. We also plot the maximum value of the normalised standard deviation of
the radius within this interval. Value a = 0.548 minimises the average standard deviation,
while a = 0.529 minimises the maximum standard deviation. Both optimums are close to
the value a = 5/9 for the L j scale, with the minimum of the average standard deviation
being closest. These two minima provide the optimal values for a in the transition region
(where the maximum of Sn(R̃) is located) and all along the jet (which dictates the value
of sn(R̃)). Value a = 5/9 for the L j scale is very close to both optimum values.

The Taylor potential is a boundary condition for the model, and therefore the numerical
solution is not invariant to an axial translation. Because of this and how the characteristic
length is defined, (2.3), an axial translation should not be used in an attempt to improve
the collapse of the profiles. Furthermore, a translation preferentially reduces the average
standard deviation of profiles normalised with a poor scale, and therefore reduces the
sensitivity of the analysis for determining the optimum scaling. This is illustrated in
figures 4 and 5. Figures 4 plots the normalised standard deviation of the profiles, scaled
with RG and L j in both directions and the combined RG−ZG scales, for three translation
cases: zero translation (solid lines); when the position of the maximum of R̃′′(x̃) is
subtracted from the axial coordinate of each profile (dashed lines, x̃R′′ label); and when
subtracting the position of the current crossover point (dash-dotted lines, x̃50 label). For a
better comparison in the plot, after computing each normalised standard deviation curve
we add the average value of the translation to the axial coordinate to realign the curves.
While the standard deviation of the profiles normalised with the RG and L j scales is barely
affected by the x̃R′′ translation and modestly changes with the x̃50 translation, the standard
deviation of the profiles normalised with the combined RG−ZG scales improves greatly
with either translation (although the collapsing of the profiles still remains worse than
when employing the RG or L j scales in both directions). Figure 5 shows cone-jet profiles
with filled circles indicating the position of the maximum of R̃′′(x̃). When the profiles are
normalised with the L j scale in both directions, an axial translation aligning the profiles
to the intrinsic position of the maximum of R̃′′(x̃) does not improve the collapse of the
profiles because they are already close to each other without the need of a translation.
On the other hand, the large separation between the profiles when they are scaled with
RG−ZG greatly improves when the translation enforces the alignment of the positions
of the R̃′′(x̃) maxima, i.e. when the translation enforces the profiles to be similar around
this intrinsic point. This apparent improvement is helped by the very slow and monotonic
decrease of the radius with the axial position, which makes the normalised standard
deviation of the profiles small in the far-downstream region, regardless of a translation.
Note also that instead of using a translation that aligns the profiles at an intrinsic point
(for example the position of the maximum of R̃′′(x̃) or the position of a given value of the
Is/I ratio), a more arbitrary translation could have been used, for example one specific
to each profile in such a way that the average standard deviation for a given scaling is
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Figure 4. Normalised standard deviation of the cone-jet profiles for several scalings and axial translations.
Here x̃R′′ designates translation by the axial position of the maximum of R̃′′(x̃), while x̃50 corresponds to a
translation by the position of the current crossover point.

minimised. This translation choice would make it even more difficult to determine the
optimum scaling, since almost any scaling could be used to produce an apparent good
collapse of the profiles. A corollary of this observation is that it will be difficult to do this
scaling analysis with images of experimental cone jets, because the analysis will likely
rely on an ad hoc criterion for fixing the origin of coordinates of each profile.

Figure 6 shows the average standard deviation of the cone-jet radius, computed in the
interval 0 � x̃ � 2L90, as a function of the powers ar and ax of the length scale in the
radial and axial directions, respectively. We continue neglecting a dependence of the length
scales on the Reynolds number and the dielectric constant. Value ar = 0.568 combined
with ax = 0.529, marked in the plot by a red circle, produces the optimum scaling with
an average standard deviation sn(R̃) = 0.163. Among the reported length scales L j , with
ar = ax = 5/9 and sn(R̃) = 0.168, is closest to the optimum. This scaling is significantly
better than the combined RG−ZG for the radial and axial directions, which has an average
standard deviation sn(R̃) = 1.44. The scaling RG used in both directions is also close to
the optimum, sn(R̃) = 0.240, while sn(R̃) = 0.762 for Rr , ar = ax = 1/3. An important
feature of this plot is that the optimum value nearly fulfils the constraint

ar = −1
8

ax + 5
8

(3.1)

imposed by (1.10). This further supports the reasoning leading to the L j length scale.
Figure 7 shows the average standard deviation for scalings that depend on the

dimensionless flow rate and the Reynolds number, and on the dimensionless flow rate
and the dielectric constant. In both cases the same characteristic length is used in both the
radial and axial directions. The optimum scaling decreases with the Reynolds number,
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Figure 5. Cone-jet profiles with the position of the maximum of R̃′′(x̃) marked by a filled circle: (a) profiles
scaled with L j in both directions; (b) profiles scaled with the combined RG−ZG scales; (c) profiles with axial
translation xR′′ scaled with L j ; (d) profiles with axial translation xR′′ scaled with RG−ZG .
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Figure 6. Average standard deviation of the cone-jet radius in 0 � x̃ � 2L90, as a function of the length-scale
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1018 A5-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
52

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10529


Journal of Fluid Mechanics

1.0

0.9

0.7

0.8

0.4

0.3

0.2

0.6

5 2.5

2.0

1.5

1.0

0.5

4

2

1

3

0.5

1.0

0.9

0.7

0.8

0.4

0.3

0.2

0.6

0.5

–0.4 –0.2 0 0.2 0.4 0.6

b
–0.50 –0.25 0 0.25 0.50

c

0.23
0.31

0.40

0.54

0.71

0.94

1.24

1.24

1.64

2.17

2.87

2
.8

7

3.79

3
.7

9

5
.0

1

0.19
0.24 0.30 0.37

0.45
0.56

0.70
0.86

1.07

1.07

1.32

1.32

1.64

1.64

2.03

2.51

aa

(a) (b)

Rr Rr

RG RG

Lj Lj

s n
(R̃

)

Figure 7. Average standard deviation of the cone-jet radius in 0 � x̃ � 2L90, as a function of the powers in the
scaling (a) Lr = Lx = loΠQ

a Reb, combined effects of the dimensionless flow rate and Reynolds number; and
(b) Lr = Lx = loΠQ

aεc, combined effects of the dimensionless flow rate and dielectric constant.

a = 0.552 and b = −0.022, and increases with the dielectric constant, a = 0.548 and
c = 0.033, but these dependencies are weak. In both cases L j nearly coincides with the
optimum dependency on the dimensionless flow rate.

Due to the monotonic decrease of the cone-jet radius along the axial coordinate, defining
a characteristic length in a manner different from (2.3), such as using the radius at a
particular point, is problematic. One possibility is to specify the characteristic radius at
a particular value of the ratio between the surface current and the total current, Is/I ,
since this variable is an intrinsic coordinate for the cone jet ranging from 0 to 1 as x
goes from −∞ to ∞. Figure 8 illustrates the problem with this approach. We plot the
radii, normalised with lo, at Is/I = 0.05, 0.15, 0.50, 0.85 and 0.95 as a function of the
dimensionless flow rate. The data are well fitted by power laws, except for a few radii
associated with the largest Reynolds number and lowest flow rates hinting at a weaker
dependency on Re. However, the exponents of the fittings vary significantly, between
0.393 for Is/I = 0.05 and 0.487 for Is/I = 0.95. The radial length scale resulting from
this definition is not unique, and it would be arbitrary to choose a particular Is/I value.

Figures 1 and 7(b) suggest a weak dependence of the current and the characteristic
length on the dielectric constant, although more detailed analysis (e.g. computing states
at constant dimensionless flow rate and Reynolds number while varying the dielectric
constant) would be needed to quantify it. Gañán-Calvo and collaborators (Gañán-Calvo
et al. 1993, 1994; Gañán-Calvo 2004; Gañán-Calvo et al. 2018) have proposed that
the surface charge σ is in electrostatic quasi-equilibrium, σ ∼= ε0 Eo

n or equivalently
εEi

n/Eo
n � 1, everywhere along the cone jet, which would indeed make the solution

quasi-independent of the dielectric constant (Eo
n and Ei

n are the normal components of
the electric field in the outer and inner sides of the surface, respectively). However, the
surface charge in our solutions can be substantially smaller than its equilibrium value,
and therefore a weak dependence on the dielectric constant is likely. This can be seen in
the profiles of the ratio σ/(ε0 Eo

n) in figure 9(a) for several numerical solutions. Although
the surface charge is in quasi-equilibrium sufficiently upstream and downstream from the
origin, its value is significantly smaller than ε0 Eo

n near the current crossover point, x = x50,
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Figure 8. Radius of the cone jet at different values of the ratio between the surface and total currents, Is/I =
0.05, 0.15, 0.5, 0.85 and 0.95, plotted as a function of the dimensionless flow rate.

the divergence increasing at decreasing dimensionless flow rate. Figure 9(b) shows the
minimum value of the ratio σ/(ε0 Eo

n) for all cases considered in this study. It is worth
noting that the maximum separation from equilibrium increases with both ε/(πΠQ

1/2)

and the Reynolds number. Gamero-Castaño & Magnani (2019) identify ε/(πΠQ
1/2)
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Figure 9. (a) Ratio between the surface charge and its equilibrium value for the several cone jets; (b)
maximum value of the ratio σ/(ε0 Eo

n ) for all simulations.

with the ratio between the electric relaxation time and the flow residence time,
te/t f 	 ε/(πΠQ

1/2). Gañán-Calvo and collaborators propose that te/t f � 1 is always
fulfilled in cone jets, since this guarantees zero volumetric charge density in the bulk and
leads to a surface charge in equilibrium. Although te/t f � 1 is a sufficient condition for
the volumetric charge density to be zero, it is not a required condition. In fact, Melcher &
Taylor (1969) show that if the electric conduction is adequately represented by Ohm’s law
with a constant electrical conductivity and the fluid particle lines do not traverse upstream
regions containing a net volumetric charge density (two conditions that are fulfilled in
typical cone jets), the volumetric charge density is zero everywhere regardless of whether
te/t f � 1 is fulfilled.

4. Conclusions
We have investigated the appropriateness of various length scales for collapsing the
surfaces of cone jets. The surfaces are numerical solutions of a first-principles model
based on the leaky-dielectric assumption, computed in a broad range of operational
conditions (Magnani & Gamero-Castaño 2024). The scales L j = loΠQ

5/9 (Pérez-Lorenzo
& Fernández de la Mora 2022) and RG = loΠQ

1/2 (Gañán-Calvo et al. 2018) applied to
both the radial and axial coordinates collapse the surfaces well; however, L j is closest
to the optimum scaling Lr = loΠQ

0.568 and Lx = loΠQ
0.529 found by statistical analysis.

This is significant, because the appropriateness of L j now provides a theoretical basis
for the length scale, namely the constraint Lr

4Lx
1/2 ∝ ΠQ

5/2 between the radial and
axial scales imposed by conservation of mechanical energy in the fully developed jet
(Pérez-Lorenzo & Fernández de la Mora 2022). The optimum scaling nearly fulfils this
constraint. Differentiating between these similar scales would not have been possible
with experimental measurements, highlighting the usefulness of high-fidelity numerical
calculations in the investigation of electrosprays. Although the geometry of the cone jet is
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also a function of the Reynolds number and the dielectric constant (Gamero-Castaño &
Magnani 2019), these dependencies are weak and can be ignored in the expression for the
characteristic scale. We have examined the possibility of defining the radial scale as the jet
radius defined by a particular ratio between the surface and total currents Is/I . However,
this radial scale depends on the value of Is/I , and adopting a particular scale is therefore
arbitrary.
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