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This work combines Navier–Stokes–Korteweg dynamics and rare event techniques to
investigate the transition pathways and times of vapour bubble nucleation in metastable
liquids under homogeneous and heterogeneous conditions. The nucleation pathways
deviate from classical theory, showing that bubble volume alone is an inadequate
reaction coordinate. The nucleation mechanism is driven by long-wavelength fluctuations
with densities slightly different from the metastable liquid. We propose a new strategy
to evaluate the typical nucleation times by inferring the diffusion coefficients from
hydrodynamics. The methodology is validated against state-of-the-art nucleation theories
in homogeneous conditions, revealing non-trivial, significant effects of surface wettability
on heterogeneous nucleation. Notably, homogeneous nucleation is detected at moderate
hydrophilic wettabilities despite the presence of a wall, an effect not captured by
classical theories but consistent with atomistic simulations. Hydrophobic surfaces, instead,
anticipate the spinodal. The proposed approach is fairly general and, despite the paper
discussing results for a prototypical fluid, it can be easily extended, also in complex
geometries, to any real fluid provided the equation of state is available, paving the way
to model complex nucleation problems in real systems.
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1. Introduction
The formation of vapour bubbles in a liquid is ubiquitous in natural phenomena.
Fascinating examples are the spore release mechanism in the fern sporangium annulus
(Noblin et al. 2012; Montagna et al. 2023), the hunting tactic adopted by the snapping
shrimp (Versluis et al. 2000) and the loss of sap transport capacity due to xylem cavitation
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(Cochard 2006). Bubble nucleation is also central to several technological applications.
Cavitation damage has been a critical issue for decades (Silberrad 1912; Reuter, Deiter
& Ohl 2022; Abbondanza et al. 2023a, 2024), while boiling is now actively exploited as
an efficient mechanism of heat removal for thermal management applications (Bakir &
Meindl 2008; Fan & Duan 2020; Zhang et al. 2023; Chakraborty et al. 2024). Cavitation
and boiling are the two sides of the same coin: bubble formation is achieved equivalently
by reducing the pressure below the saturation pressure at a given temperature, psat (T ),
or by increasing the temperature above the evaporation point at a given pressure,
Tsat (p). Exceeding these threshold levels does not guarantee the bubble’s appearance.
The liquid can indeed be held in metastable equilibrium in stretched (p < psat ) or
superheated (T > Tsat ) conditions without any phase change (Debenedetti 1996; Azouzi
et al. 2013; Magaletti, Gallo & Casciola 2021). The origin of the metastability can be
traced back to a finite free energy barrier between the liquid and the vapour states that
renders the liquid–vapour phase change an activated process, where thermal fluctuations
are the activating mechanism. This means that a nucleation event always occurs in
metastable conditions after waiting a sufficiently long time. However, the time to be
awaited exponentially grows with the energy barrier, resulting in an unlikely occurrence,
a so-called rare event, except for conditions characterised by small barriers. The
thermodynamic limit of metastability is reached at spinodal conditions where the spinodal
decomposition, a barrierless phase transition mechanism, occurs. The quantitative
prediction of vapour bubble formation in liquids, and phase transition in general, is a
long-lasting problem of fluid dynamics and statistical physics, see for example (Lutsko
2017) for an enlightening nucleation résumé. The practical nucleation limit, expressed
through the cavitation pressure (Menzl et al. 2016), pcav , or the superheat at boiling onset
(Gallo et al. 2023), �Tons = Tons − Tsat , precedes the spinodal threshold. However,
determining the actual nucleation limit remains challenging. For instance, the cavitation
pressure of water has been widely debated due to significant discrepancies between
measurement techniques (Caupin & Herbert 2006), with reported values ranging from
−30 MPa to −120 MPa at ambient temperature. These discrepancies are largely attributed
to sample purity (Lohse & Prosperetti 2016) and difficulty achieving homogeneous
nucleation under laboratory conditions (Caupin & Herbert 2006). Lower measured
cavitation pressures are considered more representative, as they likely correspond to purer
samples. Specifically, since nucleation is an activated process, the cavitation pressure
is defined as the pressure at which there is a 50 % probability of observing a bubble,
given the experimental sample volume Vexp and observation time window τexp (Azouzi
et al. 2013). The same arguments apply to the superheat limit, where extremely high
measured superheats Tons ∼ 302 ◦C (Skripov 1970) stand in stark contrast to boiling
temperature measurements showing only a few degrees of superheat (Theofanous et al.
2002). Nucleation at solid surfaces introduces further complexity and an even stronger
discrepancy in data due to the difficult control in the experimental measurements of
dissolved gas content, surface roughness and chemical impurities (Frenkel 1955).

Understanding the fluid dynamics of multiphase systems – and ultimately reconciling
them with experimental observations – requires a deep grasp of nucleation and the
incipient stages of phase change (Vincent & Marmottant 2017; Gao, Wu & Wang 2021;
Yatsyshin & Kalliadasis 2021; Alamé & Mahesh 2024; Chen et al. 2025). Nucleation
is a key process in multiphase fluid dynamics, driving phase transitions such as bubble
and droplet formation. However, its highly uncertain triggering conditions limit the
predictive power of current models. Accurately capturing nucleation is therefore essential
for developing realistic, multiscale simulations that move beyond empirical assumptions
and better represent the complexity of multiphase behaviour.
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The reference theory is the classical nucleation theory (CNT) (Blander & Katz 1975),
which allows the estimation of the energy barrier, critical cluster dimension and nucleation
rate. Despite its physically grounded description of the phenomenon, the estimates for
the nucleation rates obtained from CNT differ by orders of magnitude from experiments
(Caupin & Herbert 2006; Menzl et al. 2016). More sophisticated theories like different
extensions of CNT (Lutsko & Durán-Olivencia 2015; Menzl et al. 2016), density functional
theory (DFT) (Oxtoby & Evans 1988; Talanquer & Oxtoby 1996; Lutsko 2008; Baidakov
2016; Yatsyshin & Kalliadasis 2021) and molecular dynamics (MD) simulations (Allen
et al. 2009; Diemand et al. 2014) can provide better barrier and nucleation rate estimates
to correct some of the CNT mispredictions. A common viewpoint in these approaches is
considering a multiparameter description of the nucleation process by enriching the list of
reactive coordinates with thermodynamic cluster properties (Duran-Olivencia et al. 2018).

Here, we propose a mesoscale strategy that clarifies the onset of phase transitions and
can be directly coupled one-to-one with hydrodynamic equations, bridging microscopic
physics and macroscopic fluid dynamics. By combining Navier–Stokes–Korteweg (NSK)
dynamics with rare event techniques, we offer new insights into nucleation pathways and
transition times of vapour bubbles in metastable liquids under both homogeneous and
heterogeneous conditions.

The nucleation pathways are found to be significantly different from those predicted
by CNT, demonstrating that the bubble volume is an inadequate reaction coordinate.
The nucleation mechanism arises from long-wavelength fluctuations at large radii,
with densities only slightly different from the metastable liquid. The comparison with
spherically averaged fluctuating hydrodynamic (FH) simulations of the homogeneous
nucleation process, as proposed by these authors in Gallo et al. 2020, supports this
evidence. For the liquid/vapour thermodynamics, we exploit an approximate DFT
approach, specifically, the van der Waals’ square gradient model for capillary fluids, also
known as the diffuse interface (DI) model (Anderson, McFadden & Wheeler 1998; Lutsko
2011). The string method (E et al. 2002) is used to obtain the minimum energy path
(MEP), which, in a system with simple gradient dynamics, is associated with the most
likely transition path (MLP). Once the MEP has been estimated, we developed a simplified
dynamical model that describes the thermodynamic system as a Brownian walker within
a metastable basin. This approach allows us to analyse the system’s stochastic evolution
in the presence of thermal fluctuations. Using Kramers’ theory, we then estimated the
typical transition frequencies associated with bubble formation. In this framework, the
formation of bubbles is interpreted as a rare event driven by noise-induced transitions
across an energy barrier. Furthermore, within this metastable landscape, we estimated the
effective diffusion of the bubble, which characterises how the bubble’s state fluctuates due
to stochastic forces. The effective diffusion coefficient is estimated from hydrodynamics,
providing a quantitative measure of the bubble’s mobility before it undergoes a phase
transition. The approach we propose bears some resemblance to previous proposals (Menzl
et al. 2016), but differs under several substantial respects. In our case, we extract the free
energy profile from the MEP of a more realistic model of the liquid–vapour interfacial
properties, accounting for the finite thickness of the interface and the intrinsic dependence
of surface tension on bubble size, properties which are crucial given the breakdown of the
sharp interface assumption at the scale of the nucleating embryo. Hence, the Brownian
walker evolves over the appropriate landscape. Moreover, we managed to extract the
friction coefficient from the appropriate NSK dynamics. The advantages are that the only
input parameters needed by the model are experimentally measurable physical quantities,
like planar surface tension and transport coefficients, and the model is naturally suited to
deal with heterogeneous conditions and complex geometries.
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In the present paper, the homogeneous case is also used as a validation of the proposed
approach against state-of-the-art nucleation theories (Menzl et al. 2016). Applying this
methodology to heterogeneous nucleation reveals distinct effects of surface wettability,
particularly under low energy barrier conditions. For moderately hydrophilic surfaces,
homogeneous nucleation occurs despite the presence of a wall, an effect overlooked by
classical theories but supported by atomistic simulations (Zou, Gupta & Maroo 2018;
Sullivan, Dockar & Pillai 2025) since the surface is unable to significantly reduce the
nucleation barrier compared with the bulk. In contrast, hydrophobic surfaces anticipate
the spinodal limit (Talanquer & Oxtoby 1996), triggering an earlier onset of nucleation
via spinodal-like mechanisms. These results demonstrate how surface wettability can
fundamentally influence nucleation pathways, with important implications for controlling
phase transitions in confined or engineered systems.

2. Results
The two-phase system in the isothermal condition is described here by following the DI
approach through the (Landau) free energy functional

Ω [ρ] =
∫

V

[
fb (ρ) + fc (∇ρ) − μeqρ

]
dV +

∮
∂V

fw (ρ) dS , (2.1)

where the van der Waals’ square gradient approximation is used to express the non-
local excess free energy contribution as fc = (λ/2)|∇ρ|2, while fb is the classical
Helmholtz bulk free energy density and μeq the equilibrium chemical potential, see the
Supplementary materials for additional information is available at https://doi.org/10.1017/
jfm.2025.10591. The capillary coefficient λ controls the liquid–vapour interface
properties, namely the surface tension and the interface thickness. The temperature
dependence of all the terms has been neglected for the ease of notation. Finally, the surface
contribution fw arises as a mean field approximation of the fluid–wall interactions and
accounts for the wetting properties of the surface. Its explicit expression, derived in Gallo,
Magaletti & Casciola 2021,

fw(ρ) = fw (ρV ) − cos θ

∫ ρ

ρV

√
2λ

[
wb (ρ̃) − wb (ρV )

]
dρ̃ , (2.2)

has been shown to recover the well-known Young condition for the equilibrium contact
angle, θ . In the previous expression, fw(ρV ) = γSV is the surface energy at the solid–
vapour interface, ρV is the vapour density and wb = fb − μsatρ, with μsat the chemical
potential at the saturation condition (μ = ∂ fb/∂ρ). The starting point for deriving the form
of the wall free energy is based on geometric considerations regarding the orientation
of the interface normal, aligned with the density gradient, and its contact with the solid
surface, along with the expression for surface tension from DI theory, see Gallo et al.
2021 for details. In this work, the modified Benedict–Webb–Rubin equation of state
(Johnson, Zollweg & Gubbins 1993), mimicking the behaviour of a Lennard-Jones fluid,
has been used as fb(ρ). Here fb(ρ) is rendered dimensionless using the reference energy
fbref = ε/σ 3 where σ = 3.4 × 10−10 m, ε = 1.65 × 10−21 J. The density field is non-
dimensionalised with the reference density, ρref = m/σ 3, with m = 6.63 × 10−26 kg. The
capillary coefficient is set to λ= 5.224 with its reference value λref = σ 5ε/m2 ensuring
consistency with surface tension values derived from Monte Carlo simulations (Gallo,
Magaletti & Casciola 2018; Magaletti et al. 2022).
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The minimisation of (2.1) leads to the following Euler–Lagrange equation:

δΩ

δρ
= μ − λ∇2ρ − μeq = 0 , (2.3)

expressing the chemical equilibrium in terms of a constant (generalised) chemical
potential. This equilibrium condition is supplemented with the boundary condition
∂ fw/∂ρ + λ∂ρ/∂n = 0 at the solid surface. When the prescribed equilibrium chemical
potential corresponds to a metastable condition, μspin < μeq < μsat , (2.3) has three
solutions: (i) the homogeneous liquid ρ(x) = ρL ; (ii) the homogeneous vapour ρ(x, t) =
ρV ; (iii) a two-phase solution with a bubble of a given radius surrounded by the metastable
liquid, the critical nucleus representing the transition (or critical) state, i.e. the density
configuration ρcri t (x) that must be reached to trigger the complete transition from the
metastable liquid to the more stable vapour state. Several previous studies have addressed
nucleation within frameworks similar to the one employed in the present work (Talanquer
& Oxtoby 1996; Baidakov 2016). However, these approaches have been limited to the
calculation of critical nucleus profiles and the subsequent estimation of nucleation rates,
without resolving the full transition pathway using a rare-event technique. We address
here the problem of evaluating the non-trivial solution of case (iii) by exploiting the
powerful string method (E et al. 2007; Magaletti et al. 2021), with the twofold objective
of determining both the density field of the critical nucleus and the complete MEP,
which describes the system configurations ρ(s, x) along a suitable reaction coordinate
s advancing through the transition. As detailed in Appendix B, the MEP corresponds to
the MLP for a gradient dynamics and thus provides a physically grounded description of
the liquid–vapour phase transition. This path can be visualised as a curve (the string),
parametrised with s, in the infinite configurational space of the density fields, with the
configuration of maximum energy along the MEP representing the transition state. For the
homogeneous case, the bubble radius, in each string image along the path, is extracted a
posteriori from the density field. In the spherical case, a natural radius definition is

R(s) =
∫ ∞

0
r(∂ρ(r, s)/∂r)2 dr/

∫ ∞

0
(∂ρ(r, s)/∂r)2 dr , (2.4)

which, as will be discussed below, provides a good indicator for the bubble radius
converging to the classical one used in sharp interface models. In classical theories,
the bubble radius (or its volume, equivalently) is used as the reaction coordinate to
describe the progress of the nucleation process, both in homogeneous and heterogeneous
conditions. Here CNT is often used to quantitatively depict the energy landscape of the
system in terms of the bubble size, with the energy maximum representing the barrier for
nucleation and its corresponding critical radius. In figure 1(a), the landscapes are plotted
in terms of the normalised grand potential �Ω/(kB T ) = (Ω[ρ] − Ω[ρL ])/(kB T ) as a
function of the bubble radius R. Both homogeneous and heterogeneous CNT predictions,
at non-dimensional temperature T = 1.2 (T � 1.31 being the critical temperature) and
metastability level μlev = (μeq − μsat )/(μspin − μsat ) = 0.2, are compared with those
obtained by applying the string method to the DI modelling of the two-phase system,
as previously described. For T = 1.2, we have μsat = −3.9506, μspin = −4.0491, ρLsat =
0.5669 and ρLspin = 0.4798. The heterogeneous landscape in the plot refers to the specific
case of a neutrally wetting surface (θ = 90o). Despite the low metastability level –
corresponding to a condition close to saturation – the discrepancy between the different
energy barrier predictions is apparent in both cases, with a difference of the order of 6 %, in
line with the results in Shen & Debenedetti 2001. The differences in the nucleation barrier
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Figure 1. (a) Comparison of energy landscapes for homogeneous and heterogeneous bubble nucleation
predicted by CNT (dashed lines) and DI model (solid lines). The heterogeneous case corresponds to a
neutrally wetting surface (θ = 90◦). All curves are computed at T = 1.2 and μlev = 0.2. (b) Transition path
of homogeneous nucleation projected onto the two-coordinate space {ρav, R} at T = 1.2, μlev = 0.9, Arrows
identify the phase change direction, red DI and blue CNT, respectively. Transition states from CNT and DI
models are marked with full and empty circles, respectively. Red squares indicate ρav and R during a FH
simulation. Inset: transition paths at varying metastabilities, with circles marking the corresponding transition
states. The MEPs of heterogeneous nucleation in {ρav, V } space for different surface wettabilities: (c) T = 1.2,
μlev = 0.2; (d) T = 1.2, μlev = 0.6.

are minor, and the critical radii are accurate when approaching saturation conditions.
However, discrepancies in the barrier become significantly more pronounced near the
spinodal, where CNT predicts a finite barrier, whereas it should vanish. This aspect will
be discussed in detail later in the paper. The major difference, however, is the behaviour
at low energies where the DI model predicts a non-bijective correspondence between the
radius and the energy, suggesting that the radius alone is insufficient to fully describe the
nucleation process.

New insights on the transition pathway are gained when the homogeneous nucleation
MEP is plotted using a two-coordinate system, {ρav, R}, with the average density inside
the bubble a posteriori evaluated along the string as ρav = 3/(4π R3)

∫ R
0 ρ(r)4πr2 dr ,

see figure 1(b). The DI model reveals a non-classical C-shape nucleation pathway. In line
with the findings on crystal nucleation (Lutsko 2019; Lutsko & Lam 2020), the process
starts with a spatially extended density variation of small intensity, hence characterised by
a large radius and ρav � ρL . Successively, the embryo spatially localises, and its density
variation increases. After the transition state is reached, the bubble further grows and
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expands, see the red arrows indicating the direction of the transition. The characteristic
C-shaped form of the transition pathway is not sensitive to the specific definition of
the radius and can also be observed when using the equimolar radius, as shown in the
Supplementary materials. The position of the transition state along the curve strongly
depends on the degree of metastability μlev , as shown in the inset in figure 1(b): a large
and low-density critical embryo characterises conditions close to saturation (small μlev),
in agreement with CNT; when approaching spinodal conditions the critical embryo is
instead characterised by small size and a high average density. The C-shape pathway is also
confirmed by dynamic simulations with the spherically averaged FH model proposed by
these authors in Gallo et al. 2020, see Appendix A for details. Due to thermal fluctuations,
the system explores a pseudotube in the {ρav, R} space around the zero-temperature
MEP provided by the string method. Fluctuations of the average density intensify as the
vapour embryo localises in a small region and, consequently, triggers the formation of
a low-density cluster that successively expands beyond the transition state. Please note
that fluctuations increase when reducing the average (bubble) volume (Gallo 2022). We
observe that the MEP is perfectly followed by brute force FH simulations, as demonstrated
in figure 1(b). This shows unequivocally that, among all the possible thermally induced
fluctuations (always present also in stable liquids), the relevant ones for triggering the
transition from the metastable liquid state are indeed those predicted by the MEP we
have calculated. In addition, despite the nucleation path in FH being expected to differ
from the MEP (Grafke, Grauer & Schäfer 2015; Yao & Ren 2022), the bubble nucleation
mechanism appears to be well described by free-energy calculations.

Heterogeneous nucleation follows a similar pathway (with the volume V instead of the
radius) with a small but spatially extended density variation as a precursor of the actual
bubble formation. Results at different wettabilities and degrees of metastability are plotted
in figure 1(c,d). As expected, the volume of the critical nuclei decreases as the contact
angle increases, namely, hydrophilic surfaces require a larger critical bubble to initiate
the phase transition compared with hydrophobic walls. In addition, the critical volume
decreases when the metastability level is increased.

In the case of homogeneous nucleation, figure 2(a) reports the nucleation barrier
normalised by kB T as a function of the degree of metastability. As shown, CNT captures
well the qualitative trend of the barrier with increasing metastability. However, as the
system approaches the spinodal limit, μlev → 1, CNT predicts a large limit barrier of
approximately �Ω


C N T � 18kB T , whereas the DI approach yields the expected vanishing
barrier �Ω


DI � 0. This discrepancy arises from the gradual breakdown of the sharp
interface assumption as the liquid–vapour interfacial thickness becomes comparable to
the typical bubble radius. This effect is illustrated in the inset of figure 2(a) (red curve
right-hand axis), which shows the ratio of the bubble radius to the interface thickness
l10−90, defined as the width of the region over which the density transitions from ρ10 =
0.1ρL + 0.9ρV to ρ90 = 0.9ρL + 0.1ρV (Caupin 2005). On the right-hand axis, CNT
(dashed line) and DI (solid line) radii are depicted. The DI predicts a non-monotonic
behaviour of the critical radius as the spinodal is approached, in contrast to the monotonic
trend obtained from CNT. Nevertheless, the actual values of the critical radii remain
in reasonably good agreement over the range of metastabilities considered. Figure 2(b)
shows the transition pathway for homogeneous nucleation in terms of the density profiles
ρ(r) along the reaction coordinate s of the string. Precritical profiles are shown in blue,
postcritical ones in red, and the critical (saddle-point) profile in black. Based on the
structure of these profiles, we evaluate the quantity (∂ρ/∂r)2 = ρ′(r)2, normalised by its
L2 norm, ||ρ′(r)||L2 . This normalised profile offers insight into the interfacial region and,
in the sharp interface limit, serves as an indicator of the interface location. Specifically, as
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Figure 2. (a) Normalised free-energy barrier �Ω
/kB T versus μlev . Dashed lines refer to CNT, while solid
lines refer to the DI. Inset: the left-hand axis reports R versus μlev , the right-hand axis depicts R normalised
with interface thickness l10−90 versus μlev . (b) Density profiles along the transitions, precritical and postcritical
profiles are depicted in blue and red, respectively. The critical profile is reported in black (μlev = 0.8, T = 1.20).
(c) Here (∂ρ/∂r)2 normalised with its L2 norm versus radial coordinate. The panel refers to precritical states,
while the inset refers to postcritical conditions. (d) Energy landscape as a function of the tuple (ρav, R), μlev =
0.2, T = 1.20. All cases refer to homogeneous nucleation, the reaction coordinate s increasing directions are
also indicated.

the interface thickness tends to zero, ρ′2/||ρ′(r)||2L2
→ δ(r − R), converging to the sharp

interface limit, where δ denotes the Dirac delta function. Within the DI framework, this
provides a generalised representation of the interface. This normalised gradient is reported
in figure 2(c), where the panel shows precritical profiles and the inset includes postcritical
profiles and the saddle point. As indicated by the arrow representing the direction of
the transition (increasing s), the initial profiles are broad, with maxima located at larger
distances r and only modest density variations (red curves in figure 2b), corresponding
to a slightly rarefied liquid. As the transition proceeds, the maxima shift towards smaller
radii and eventually increase in amplitude near the saddle point and beyond (blue curves
in figure 2b), consistent with the complex C-shaped transition pathway observed in the
(R, ρav) plane. To better highlight the nucleation mechanism, figure 2(d) also reports the
free energy landscape as a function of the two variables R and ρav , with the direction of
the reaction coordinate s indicated.

A further comparison with heterogeneous CNT is shown in figure 3(b) where
the ratio between the energy barriers of the heterogeneous and homogeneous cases,
�Ω∗

het/�Ω∗
hom , is reported as a function of the contact angle. The CNT again provides a

theoretical prediction, with this ratio equal to the purely geometrical function Ψ (θ) =
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Figure 3. (a) Density fields along the MEP, showing nucleation progress from (i,ii) to (vii,viii). Panels (a
iii) and (a iv) correspond to the transition states: (iii) hydrophilic case at T = 1.2, μlev = 0.5, θ = 30◦; (iv)
hydrophobic case at T = 1.2, μlev = 0.5, θ = 110◦. (b) Energy barrier ratio between heterogeneous and
homogeneous nucleation as a function of contact angle, obtained using the string method with the DI model.
Symbols indicate different levels of metastability; the solid black curve shows the CNT prediction, based solely
on the geometrical factor Ψ . (c) Mean first passage time for homogeneous nucleation versus metastability. The
solid line is the DI model prediction, while red squares refer to Corrected CNT prediction (Menzl et al. 2016),
and the blue triangle corresponds to brute force FH simulations. (d) The DI model prediction of heterogeneous
nucleation’s mean first passage time. Each curve corresponds to a different contact angle.

1/4(2 − cos(φ))(1 + cos(φ))2. The numerical results obtained with the string method
applied to the DI model show, instead, a behaviour strongly dependent also on the degree
of metastability. Close to saturation, μlev = 0.2, CNT predictions are well reproduced by
the DI model. Mesoscale properties of the critical bubble start to be effective at larger
metastability levels. When the interface thickness is comparable to the critical bubble
dimension, at μlev = 0.5 and even more apparently at μlev = 0.8, the deviation from CNT
is more pronounced. It is worth noticing that at high metastability, the hydrophobic surface
can anticipate the spinodal condition. The energy barrier at μlev = 0.8 and θ = 110◦
is actually zero, suggesting a barrierless mechanism of phase transition typical of the
spinodal decomposition. This result is consistent with the findings of Talanquer & Oxtoby
1996, where the so-called surface spinodal was identified using a different form of fluid–
solid free-energy. Moreover, on the hydrophilic side of the plot, the case at μlev = 0.8
shows a heterogeneous energy barrier independent of the contact angle up to 60◦ and
with a value slightly smaller than the homogeneous barrier. To understand this peculiar
behaviour, it is instrumental to look at the full-density fields during the transition progress,
shown in figure 3(a). The highly hydrophilic surface, even at a moderate metastability
level, induces the localisation of the density variation in a region close to the wall but
not directly in contact with it. As a consequence, the critical nuclei are almost spherical,
resembling homogeneous nucleation. This behaviour has also been observed in full three-
dimensional FH simulations (Gallo et al. 2021), in MD simulations (Nagayama, Tsuruta &
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Cheng 2006; Chen et al. 2018; Zou et al. 2018) and it could be ascribed to the mesoscale
interaction between the vapour–liquid interface and the fluid–solid layering induced by the
strong attraction of the hydrophilic surface. The configurations along the MEP show that,
after the transition state, the bubble grows at the solid surface, recovering the expected
behaviour always observed in experiments. Conversely, in the hydrophobic case, the
embryos always sit at the solid wall due to the high affinity with the vapour.

A key observable in stochastic processes such as nucleation is the mean waiting time for
forming a critical nucleus. This time scale is usually prohibitively long for direct brute-
force simulations (e.g. MD or FH), making theoretical approaches essential. Kramers’
theory provides a fundamental framework for estimating the characteristic nucleation
rate, see Hänggi et al. 1990 for a general discussion on barrier-crossing problems and
Gallo et al. 2020 for bubble nucleation application. The theory requires the free energy
profile and the diffusion coefficient of the fluctuating vapour nucleus embedded in the
liquid. Having identified the MEP, described through parameterisation with the curvilinear
abscissa s, we can conjecture the simplest dynamics for the reaction coordinate to
determine the nucleation times. Such dynamics sees the thermodynamic system as a
Brownian walker in the energy landscape Ω = Ω(s),

ds

dt
= −α

dΩ(s)

ds
+ √

2Dη(t) (2.5)

with α a friction coefficient, D = kB T α the diffusion and η(t) a white noise with zero
mean and 〈η(t)η(q)〉 = δ(t − q). The friction coefficient is estimated using the following
procedure: the critical bubble ρcri t (x, s
) is identified and perturbed along the directions
of the two stable basins, ρV and ρL . The perturbed configurations are then allowed to
evolve according to the isothermal NSK equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.6)

∂ρv

∂t
+ ∇ · (ρv ⊗ v) = −ρ∇

(
δΩ

δρ

)
+ ∇ · Σ,

where ρ is the density, v is the velocity field and Σ = η(∇v + (∇v)T ) + (ζ − 2/3η)

(∇ · v)I is the viscous stress tensor, η, ζ the two viscosity coefficients. We adopt the
viscosity expression proposed by Rowley & Painter 1997 to ensure full consistency
with the Lennard-Jones properties. By monitoring the energy variation δΩ occurring
as the system transitions between two nearby configurations ρ(x, s
) and ρ(x, s
 ± δs),
with δs = ||ρ(x, s
 ± δs) − ρ(x, s
)||L2 and the time required for this transition δt (as
measured in NSK equations), the friction α is determined as α = −(δs/δt)/(δΩ/δs).
Specifically, as detailed in Appendix B, the string is a collection of fields ρ(x, s). We
aim to estimate the friction coefficient at the saddle point. Starting from the saddle point,
defined by the field ρcri t (x) = ρ(x, s
), we introduce perturbations in the directions of
the basins of the liquid and vapour by considering the configurations just before and
after the saddle point, ρ(x, s
 ± δs). These are then evolved under the NSK equations
towards the respective basins of liquid and vapour. By measuring the time taken to
reach the subsequent configurations ρ(x, s
 ± 2δs), we obtain two values of α, namely
αr = −(δs/δtr )/(δΩr/δs) and αl = −(δs/δtl)/(δΩl/δs), corresponding to the right- and
left-hand sides of the saddle point, with δΩr = Ω(s
 + 2δs) − Ω(s
 + δs) and δΩl =
Ω(s
 − 2δs) − Ω(s
 − δs), and δtr/s the time measured from NSK numerical simulations.
We then define the effective diffusion coefficient at the saddle as α
 = (αr + αl)/2. The
parameter α has physical dimensions of energy times density squared per unit time, while s
has the dimensions of a density. This is only an estimate, as the MEP does not represent the

1019 A53-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
59

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10591


Journal of Fluid Mechanics

MLP of the NSK dynamics, given that the two systems evolve in different spaces and their
trajectories are not necessarily close (Grafke & Vanden-Eijnden 2019; Zakine & Vanden-
Eijnden 2023). However, numerical results suggest that the forecast is remarkably accurate,
as discussed subsequently. The procedure was repeated for both the homogeneous and
heterogeneous cases. After estimating the friction coefficient, the mean first passage time
τ was evaluated by using Kramers’ theory (Kramers 1940; Schulten, Schulten & Szabo
1981),

τ =
∫

BL

exp
(

−�Ω

kB T

)
ds

∫
BS P

1
D(s)

exp
(

�Ω

kB T

)
ds, (2.7)

where BL and BS P are the metastable and saddle-point basins. The two integrals can be
evaluated using the classical saddle-point approximation, after noting that the free energy
profiles’ curvatures (Ω ′′(s)) are positive and negative in the two basins, respectively. The
second integral can be expanded as∫

BS P

1
D(s)

exp
(

�Ω

kB T

)
ds ∼ exp

(
�Ω


kB T

) ∫ ∞

−∞
exp

(
−(s − s
)2

2ν2

)

× 1
D
 + D′


(s − s
) + 1/2D′′

 (s − s
)2 + . . .

d(s − s
), (2.8)

with ν2 = kB T/|Ω ′′(s
)|. Our data show that the diffusion coefficient is gently varying in
the neighbourhood of the saddle point, leading to the conclusion that, within an order one
prefactor,

τ ∼ 2π

α(s
)
√

Ω ′′(0)|Ω ′′(s
)| exp
(

�Ω


kB T

)
. (2.9)

Here τ is reported for homogeneous and heterogeneous nucleation in figures 3(c) and
3(d), respectively. Figure 3(c) shows the first passage time as a function of the metastability
parameter μlev . The time is non-dimensionalised using tr = 2.15 × 10−12 s as a reference.
The solid black line depicts our prediction, while the red squares represent the mean first
passage time evaluated with an adaptation of the nucleation theory proposed by Menzl
et al., (Menzl et al. 2016) (see below), and the blue triangle depicts the FH brute force
simulations. Kramers’ theory becomes increasingly accurate in the limit of large energy
barriers (Hänggi et al. 1990), see Gallo et al. 2020, where the agreement with brute-force
simulations emerges for energy barriers ∼ 6 − 7kB T , at a metastability level of roughly
μlev = 0.82, corresponding to a reduced density of ρL = 0.475 with T = 1.25. In the
present case, for the highest metastability level considered (μlev = 0.8), the energy barrier
(�Ω
 ∼ 10kB T ) is well in the range where Kramers’ theory is expected to be robust.
This conclusion is supported by 200 FH simulations we performed using the equations
reported in Appendix B. The resulting mean first passage for all cases is consistently in the
range of τ ∼ 106 (τF H ∼ 0.25 × 106, τDI ∼ 1.00 × 106, τcC N T ∼ 3.60 × 106) confirming
the robustness of Kramers’ theory even at moderate metastability. Obviously, also in the
heterogeneous case, the accuracy of Kramers’ theory may deteriorate for low energy
barriers. Such regimes represent only a minor portion of the results presented here, which
can, however, be directly investigated via brute-force simulations.

The Menzl et al., theory – applied by the authors to the TIP4P/2005 water
model – combines MD microscopic information (vapour embryo surface energy) with
the stochastic overdamped Rayleigh–Plesset (RP) equation to estimate the diffusion
coefficient D. It is worth noting that the procedure proposed by Menzl et al., is completely
general. It consists of correcting the CNT barrier height by either taking the surface energy
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from MD simulations or by applying a correction using the Tolman length, which is
estimated by adjusting the CNT barrier relative to MD results. The diffusion coefficient
of the nucleating bubble is estimated via the fluctuation–dissipation theorem applied
to an overdamped RP dynamics, requiring that it samples the equilibrium probability
distribution function of the radius R, P(R) ∼ exp(−�Ω(R)/kB T ). The diffusion
coefficient is then computed in closed form as DR = kB T/(16πηR). In the present case,
which deals with a Lennard-Jones fluid, the DFT barrier automatically incorporates the
curvature correction (Blokhuis & Kuipers 2006; Wilhelmsen, Bedeaux & Reguera 2015;
Rehner et al. 2019; Magaletti et al. 2021) while the diffusion coefficient for reaction
variable s is estimated using the hydrodynamic equations with the procedure mentioned
above. With this approach, we can directly compare the results of the two theories.
We found perfect agreement between the two approaches. The theoretical framework
developed by Menzl et al., is not directly applicable to heterogeneous nucleation, as
the RP equations describe bubble dynamics in an unbounded medium. In contrast, the
approach proposed here is more general, as it allows for the determination of the MEP
and the estimation of diffusion coefficients under arbitrary conditions. In figure 3(d), the
heterogeneous case is presented, highlighting how the wall chemistry plays a crucial role in
promoting nucleation by significantly reducing the characteristic transition times. It can be
observed that when the contact angle is below approximately 50◦, the time scales become
independent of wettability, approaching the homogeneous limit. This result is consistent
with our previous findings of FH for boiling (Gallo et al. 2023) and with MD simulations
(Zou et al. 2018; Sullivan et al. 2025) identifying the homogeneous nucleation as the main
transition mechanism when hydrophilic chemistries are considered.

As a final analysis, we examine the velocity fields and the dissipation function of the
vapour bubble as it evolves from the saddle point towards the two basins, corresponding to
the metastable liquid and the stable vapour. To this end, we introduce the total free energy
of the system, defined as the sum of the grand potential and the kinetic energy of the fluid

H [ρ, v] = Ω[ρ]+K [ρ, v] =
∫

V
fb (ρ) + λ

2
|∇ρ|2+1

2
ρ|v|2−μeqρ dV +

∮
∂V

fw (ρ) dS .

(2.10)
The dissipation reads

dH

dt
=

∫
V

δH

δv
· ∂v

∂t
+ δH

δρ

∂ρ

∂t
dV = −

∫
V

v ·
(

ρv · ∇v + ρ∇
(

δΩ

δρ

)
+ ∇ · Σ

)

+
((

δΩ

δρ

)
+ 1

2
|v|2

)
∇ · ρv

= −
∫

V
2η Ẽ : Ẽ + 1

3
ζ(∇ · v)2 dV −

∮
∂V

((
δΩ

δρ

)
+ 1

2
|v|2

)
ρv · ν̂dS , (2.11)

where (2.6) have been invoked and Ẽ is the deviatoric part of the symmetric part
of the velocity gradient E = sym(∇ ⊗ v). In the numerical simulations, the system
is large enough that the velocity at the boundary is always zero, so the boundary
term in the above equation vanishes and dH/dt < 0. It is worth noting that, if the
total chemical potential δΩ/δρ + 1/2|v|2 is set to zero, then H remains monotonically
decreasing in time as well. The simulations were performed in a domain of length
L = 3000 (dimensionless units), which corresponds to approximately one micron in
physical length. Since the present analysis is carried out for homogeneous nucleation, we
exploit spherical symmetry to solve (2.6) (Abbondanza et al. 2023b). We adopt the same
grid space �r , temporal integrator and integration time step �t of stochastic equations
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Figure 4. (a,c) Time evolution of the dissipation rate dH/dt (blue) and total free energy H(t) (red) computed
from the NSK dynamics during relaxation towards (a) the metastable liquid basin and (c) the stable vapour
basin. (b,d) Velocity profiles at selected time instants during the relaxation towards (b) the metastable liquid
and (d) the stable vapour state.

(see Appendix A for details). The thermodynamic conditions are T = 1.20 and μlev = 0.5.
In figure 4, the time evolutions of H(t) (red curves) and dH/dt (blue curves) are shown
during the hydrodynamic evolution of the bubble in the precritical and postcritical states,
in figures 4(a) and 4(c), respectively. Analogously, figures 4(b) and 4(d) display the
corresponding velocity fields. In both configurations, H(t) decreases monotonically over
time, with greater dissipation observed in the precritical phase, characterised by a more
abrupt change in the velocity fields. It is particularly interesting to note (figure 4b) that
the bubble initially shrinks (black curve t = 10 and blue curve t = 20), then slightly
compresses the liquid and emits a wave that propagates through the liquid with the
isotermal speed of sound velocity cT = √

∂p/∂ρ|T (purple and green curves at t = 75
and t = 100). In the postcritical phase, the bubble expands with lower velocities compared
with its precritical counterpart.

3. Conclusions
In this work, the MEPs for vapour nanobubble formation in metastable liquids are
identified, revealing significant deviations from CNT. Unlike CNT, which assumes a
single reaction coordinate (e.g. bubble size), the study shows that nucleation involves both
bubble size and average density. Nucleation is triggered by long-wavelength fluctuations
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with liquid-like density, forming a C-shaped trajectory in the {ρav, R} space. In both
homogeneous and heterogeneous cases, nucleation begins with a large, slightly rarefied
cluster that evolves into a stable vapour bubble.

The transition mechanism aligns with FHs simulations, indicating that the MEP closely
approximates the MLP under NSK dynamics. Although identifying the MLP remains a
complex task, the MEP provides a natural reaction coordinate to construct a simplified
stochastic model for estimating transition times. Using NSK dynamics and Kramers’
theory, first-passage times are calculated. For the homogeneous case, the predictions match
those of Menzl et al. 2016 without relying on molecular simulations. In the heterogeneous
case, for surfaces with φ < 50◦, nucleation follows a homogeneous-like pathway with
transition times independent of contact angle – a behaviour inconsistent with CNT but
supported by MD and FHs simulations.

A natural extension of this work involves computing the MLP of the FHs via, for
example, the minimum action method, which minimises the dynamical action rather
than the free energy Weinan, Ren & Vanden-Eijnden (2004). This approach, unlike MEP
methods, accounts for non-equilibrium dynamics and full conservation laws (Yao & Ren
2022; Zakine & Vanden-Eijnden 2023; Grafke & Vanden-Eijnden 2019; Soons, Grafke &
Dijkstra 2025), and it will be reported elsewhere. An interesting example is the stochastic
lubrication theory dynamics in film rupture rare events (Sprittles et al. 2023; Liu, Sprittles
& Grafke 2024), where the importance of conservation laws shapes rare event kinetics and
transition times.

As a final note, we stress that this procedure can be readily extended to real fluids by
employing appropriate equations of state, enabling a quantitative prediction of nucleation
in realistic systems.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10591.
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Appendix A: Fluctuating hydrodynamics simulations
The FH equations are Navier–Stokes equations augmented with stochastic fluxes, i.e. the
stress tensor and energy flux, to account for thermal fluctuations arising from the discrete
nature of matter. These fluxes are derived from a fluctuation–dissipation theorem, ensuring
that the equilibrium statistics of the stochastic system sample the Einstein–Boltzmann
distribution. The FH offers a powerful framework for quantifying the impact of thermal
fluctuations on macroscopic fluid behaviour (Chaudhri et al. 2014; Bandak et al. 2022;
Bell et al. 2022; Eyink & Jafari 2022; Barker, Bell & Garcia 2023; Eyink & Jafari 2024;
Gallo et al. 2023; Gallo & Casciola 2024). In this work, we use our proposed FH extension
to multiphase fluids (Gallo et al. 2020). This model represents a two-phase liquid–vapour
system incorporating thermal fluctuations within the framework of Landau and Lifshitz’s
FHs. The inclusion of stochastic forcing enables the spontaneous nucleation of vapour
clusters within the liquid, while the DI formulation captures the ensuing hydrodynamic
processes of growth and transport. Our focus is on a coarse-grained variant of this
model, derived by averaging the full three-dimensional equations over spherical shells.
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The resulting stochastic equations exhibit a spatial dependence solely on the radial distance
from the centre of the vapour cluster. The equations are reported as follows for the readers’
convenience:

∂ρ

∂t
= − 1

r2
∂

∂r

(
r2ρvr

)
, (A1)

ρ
Dvr

Dt
= −ρ

∂

∂r

(
δΩ

δρ

)
+ 1

r2
∂

∂r

(
r2Σv

rr

)
− 2

r
Σv

ϕϕ + 1
r2

∂

∂r
(βr ξ(r, t)) + β

r2 ξ(r, t),

(A2)
with

Σv
rr = 4

3
η

(
∂vr

∂r
− vr

r

)
, Σv

rr = 2
3
η

(
vr

r
− ∂vr

∂r

)
(A3)

and

β =
√

2kB T η

3π
, 〈ξ(r, t)ξ(r ′, t ′)〉 = δ(r − r ′)δ(t − t ′) . (A4)

These equations represent the stochastic extension of (2.6), under the assumption
ζ = 0. Numerical simulations have been conducted starting from an initial state with
homogeneous (metastable) density and zero velocity. At the boundary, we imposed a
fixed density and a vanishing normal derivative of the velocity. Employing the same
thermodynamic conditions used for the string computations and a 1000-point grid with
dimensionless spacing �r = 3. The temporal integrator used is a second-order Runge–
Kutta explicit integrator, as it is well-suited for stochastic equations (Delong et al. 2013).
The (non-dimensional) time step for integration in time was �t = 10−3.

Appendix B: The MLP for gradient systems
In this appendix, we aim to elucidate the relationship between the MLP and the MEP for
rare trajectories that identify nucleation pathways. These discussions can be found in spe-
cialised literature, e.g. in non-equilibrium statistical mechanics of gradient flows (Grafke
2019; Bouchet 2020), or in stochastic process theory (Mielke, Peletier & Renger 2014).
Here it is reported in its declination for bubble nucleation. As anticipated in the main text,
when the system is subject to a chemical potential within the metastable range, that is

μspin < μeq < μsat , (B1)

(2.3) admits three distinct steady-state solutions. These correspond to: (i) the uniform
liquid phase, characterised by a constant density ρ(x) = ρL ; (ii) the uniform vapour phase,
with ρ(x, t) = ρV ; (iii) a non-trivial two-phase configuration in which a vapour nucleus is
embedded within a metastable liquid background. This third solution represents a critical
state – the so-called critical nucleus – described by the spatially varying density profile
ρcri t (x). This configuration acts as a transition threshold: only once the system crosses
this critical barrier can it proceed from the metastable liquid to the stable vapour phase,
completing the phase transformation. If we assume that the thermodynamic system evolves
according to a stochastic gradient dynamics

∂ρ

∂t
= −M

(
δΩ

δρ

)
+ √

2εξ , (B2)

with ε = MkB T the (small) intensity of the noise, M the mobility and ξ(x, t) a space–
time with noise, i.e. 〈ξ(x, t)ξ( y, q)〉 = δ(x − y)δ(t − q). The probability of the phase
transition from the liquid state to the vapour one in a certain time window Tw, PρL→ρV , is
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the probability of observing a given path ρ(x, t) with −Tw < t < Tw with the end states
ρ(x, −Tw) = ρL and ρ(x, Tw) = ρV . The large deviation theory provides (Freidlin et al.
1998) the probability of observing the path ρ(x, t),

P[ρ] ∼ exp
(

− 1
2ε

STw [ρ]
)

, (B3)

where

STw [ρ] = 1
2

∫ Tw

−Tw

∥∥∥∥∂ρ

∂t
+ M

(
δΩ

δρ

)∥∥∥∥
2

dt , (B4)

with || · || the L2 norm. Assuming that the trajectory ρ(x, t) crosses the separatrix between
the attraction basins of the two minima ρL and ρV at t = Tc, STw [ρ] reads

STw [ρ] = 1
2

∫ Tc

−Tw

∥∥∥∥∂ρ

∂t
− M

(
δΩ

δρ

)∥∥∥∥
2

dt + 1
2

∫ Tw

Tc

∥∥∥∥∂ρ

∂t
+ M

(
δΩ

δρ

)∥∥∥∥
2

dt

+ 2M (Ω[ρ(x, Tc)] − Ω[ρ(x, −Tw])) . (B5)

The MLP ρ
(x, t) minimises the functional in (B5) in both the window time (Tw) and
density space. Concerning time, being ρL and ρV two minima of the free energy, the
minimum of STw [ρ] is achieved when Tw → ∞, STw [ρ] → S∞[ρ]. Therefore, the MLP is
given by the two (heteroclinic) orbits

∂ρ


∂t
= M

(
δΩ

δρ


)
for − ∞ < t < Tc , (B6)

∂ρ


∂t
= −M

(
δΩ

δρ


)
for Tc < t < +∞ . (B7)

Equation (B7) represents the deterministic dynamics of the spontaneous expansion of the
bubble, while (B6) is its time-reversed counterpart. The latter shows that the most likely
nucleation event consists of a forward evolution in physical time starting from ρL at t =
−∞ against the potential gradient up to the saddle point ρcri t (x). The MLP ρ
 has the
probability

P

ρL→ρV

∼ exp
(

− 1
2ε

S∞[ρ
]
)

= exp
(

−�Ω


kB T

)
, (B8)

where �Ω
 = Ω[ρcri t (x)] − �Ω[ρL ] is the free energy barrier. This result highlights
how the nucleation probability and the transition rate exponentially depend on the energy
barrier. In principle, one can calculate ρ
 by looking for the saddle point of �Ω[ρ],
e.g. with the gentlest ascent dynamics (Weinan & Zhou 2011), perturb the dynamics in
the directions of maximum descent towards the two stable basins ρL and ρV and then
follow the system’s evolution according to (B6) forward in time and the dynamics of (B7)
backwards in time, i.e. t → −t . This procedure identifies the MLP with the MEP. The
MEP is a continuum sequence of fields ρ(s, x) satisfying the condition

(
δΩ

δρ

)⊥
[ρ(s, x)] = 0 , (B9)
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Figure 5. Free-energy profiles as a function of the reaction coordinate s for T = 1.20 and μlev = 0.2. The red
and blue curves refer to heterogeneous and homogeneous cases.

with the symbol ⊥ referring to the projection of the functional derivative onto the space
perpendicular to the path(

δΩ

δρ

)⊥
[ρ(s, x)] = δΩ

δρ
− 1∥∥∥∥∂ρ(x, s)

∂s

∥∥∥∥
2
∂ρ(x, s)

∂s

∫
V

δΩ

δρ

∂ρ(x, s)

∂s
dV . (B10)

The determination of the MEP is achieved by discretising ρ(s, x) in a finite number of
fields ρs(x) (images) with s = 1 . . . N . The set of ρs forms the string. Starting from a
guess string, e.g. linear interpolation between the initial and final states, the sequence is
evolved over the pseudotime t̃ according to the steepest descent algorithm

∂ρs

∂ t̃
= μeq − μ(ρs) + λ∇2ρs . (B11)

To integrate this equation, we employ a staggered spatial scheme: spherical symmetry
is used for homogeneous nucleation, while cylindrical symmetry is adopted for
heterogeneous cases. Time integration is performed using a forward Euler scheme. After
each evolution step over a pseudotime interval �t̃ , the images are redistributed along the
string through a reparameterisation procedure that enforces equal arclength (E et al. 2007),
see also Bottacchiari et al. 2022, 2024 for application to other DI (Ginzburg–Landau)
functionals,

δs = ∥∥ρs+1(x) − ρs(x)
∥∥ = constant . (B12)

This two-step procedure is iterated up to the complete convergence of the whole string to
the MEP. Concerning the initial string, we have that s = 0 corresponds to the homogeneous
metastable liquid, which remains stationary in time. The final condition at s = 1 represents
the vapour phase at the same chemical potential as the metastable liquid. To accelerate
convergence, we initialise the string with a configuration that is qualitatively similar to
the formation of a vapour bubble. In particular, the final instance of the initial string
is chosen as a large supercritical bubble, with a radius approximately three-quarters of
the domain size, which will eventually evolve into a fully developed vapour phase. This
choice facilitates the generation of circular, rarefied regions in the liquid. At iteration 0, all
intermediate instances are obtained through linear interpolation between the initial and
final states. Upon convergence, we obtain the MEP, which we define operationally as
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the condition when the energy profile Ω(s) no longer changes during iterations. For all
simulations, the MEP has been discretised using 200 instances along the path. The bubble
free energy (Ω(s) − Ω(0))/(kB T ) as a function of the reaction coordinate s is shown in
figure 5 for both homogeneous and heterogeneous nucleation. The maxima along these
profiles correspond to the nucleation energy barriers.
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