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Abstract

Many mission-critical systems today have stringent timing requirements. Especially for cyber-
physical systems (CPS) that directly interact with real-world entities, violating correct timing
may cause accidents, damage or endanger life, property or the environment. To ensure the
timely execution of time-sensitive software, a suitable system architecture is essential. This
paper proposes a novel conceptual system architecture based on well-established technologies,
including transition systems, process algebras, Petri Nets and time-triggered communications
(TTC). This architecture for time-sensitive software execution is described as a conceptual
model backed by an extensive list of references and opens up several additional research topics.
This paper focuses on the conceptual level and defers implementation issues to further research
and subsequent publications.

Time in computing

Time is a fascinating concept. Much has been thought and written about the physics of time
(e.g., Muller, 2016), the philosophy of time (e.g., Power, 2021), the measurement of time
(e.g., Struthers, 2024) and the history of time (e.g., Hawking, 2015). In computing, time has
precise meanings (Furia et al., 2012; Buttazzo, 2023), such as:

(1) The time elapsed between an event and the completion of the correct response (Latency);
(2) The maximum time guaranteed for a program to execute (Worst-case execution time,

WCET);
(3) The maximum time allowed for the execution of a process or a function (Before a time-

out);
(4) The maximum time for a process to wait for an event, a response or a message

(Synchronization);
(5) The time interval between measurement values received from a sensor (Input sampling

rate);
(6) The time interval between outputs to an actuator (Output sampling rate);
(7) The trigger times to start a process (Either absolute from Coordinated Universal Time

(UCT) or relative to another event or process);
(8) Relative timing: Before, not before, after (For events, messages, actions, process start and

so on);
(9) : : : and other timing requirements or timing relationships.

Timing is a serious specification responsibility. In cyber-physical systems (CPSs), strict
adherence to correct timing requirements is a decisive safety property. Therefore, time-sensitive
software is crucial for safety-critical CPSs!

State of the art

The work on reference architectures for CPSs (e.g., Nakagawa and Antonino, 2024) is not new.
Several such architectures have been proposed and are well documented, for example, generic
architectures, such as: CPS 5 Components Architecture (Ahmadi et al., 2021), 8C architecture
(Sony, 2020), NIST Framework for CPSs (Griffor et al., 2017; NIST, 2017). Or domain-specific
architectures, such as: AUTOSAR (https://www.autosar.org/; Rajeev et al., 2012), Integrated
Modular Avionics (IMA Architecture, Gaska et al., 2015). Some architecture-centric standards,
such as ISO 26262 (see, e.g., Debouk, 2019) and IEC 61499 (see, e.g., Thramboulidis, 2010;
Yoong et al., 2013, 2016), are highly useful. However, these works treat timing as a quality
attribute (= measurable or testable characteristics of a system, such as availability, reliability,
usability or scalability) and not as a correctness property of the system (= formal requirement
that defines and assures the system’s expected behavior), (Lee and Woodcock, 2023).

A different approach to handling time is the use of temporal logic. Many types of temporal
logic systems exist (e.g., 16 of them are explained in Bellini et al., 2000). Temporal logic extends
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classical logic by defining temporal operators, allowing engineers
to model and reason about the behavior of systems over time.
Using temporal logic is a powerful methodology in software
engineering, applicable to the specification, verification and design
of programs, algorithms and databases (e.g., Bolc and Szalas, 1995;
Furia et al., 2012; Kröger and Merz, 2008). Temporal logic
expresses timing well, but cannot define and express the system
architecture (Structure, relationships, attributes).

A different, generic, layered architecture has been proposed by
Ungureanu and Sander (2017). Their proposal utilizes different
constructs, including the tagged signal model, the functional
programming paradigm and algorithmic skeletons. An additional
framework is developed by Abdellatif et al. (2010) and Buckl et al.
(2010), focusing on timing and safety.

The progress of this paper is a conceptual architecture with
explicit, formalized, verifiable timing at all levels of the architecture
and all steps of the lifecycle of the CPS:

Elevating timing from a quality attribute (= measurable or
testable characteristics of a system, such as availability, reliability,
usability or scalability) to a correctness property of the system
(= formal requirement that defines and assures the system’s
expected behavior);

Proposing a layered architecture that respects the proven, well-
documented architecture principles, such as layering, partitioning,
modularization, loose coupling, separation of concerns and so on.
(Furrer, 2019, 2022);

Combines accepted constructs for timing definition, verifica-
tion and implementation (Process algebra, transition systems, Petri
Nets, TTCs.

Introduction and context

The context for time-sensitive software is shown in Figure 1. It
consists of 6 elements:

The functional processes: These processes specify the function-
ality of the system. Note that the term is mainly used for business
processes, but technical functionality is also represented as a
(functional) process. The symbol τ represents the timing require-
ments of the process. Note that complete and correct error- and
exception-handling is an indispensable and integral part of the
processes (e.g., Öztemür, 2015);

The components (programs) implementing the functionality;
The execution platforms (processors, memory, communi-

cations, databases and so on): Note that most of today’s CPSs
are distributed systems, that is, they have more than one
execution platform. Such systems are referred to as systems-of-
systems. The different execution platforms communicate with
each other – they are linked by one or several communication
channels;

The interprocess-communication: The processes exchange infor-
mation and flow control (such as synchronization, checkpoints);

Mechanism for the process orchestration. Start, stop or
interrupt processes, for example, following an event, a message,
a timing or a schedule;

The connection to the real world: Sensors to read information,
and actuators to control the physical world.

Layered architecture proposal

Context: All development and evolution mechanisms for time-
sensitive software – from specification to operation – must have the
proper constructs for correctly handling time. Unfortunately, most of
today’s methodologies and tools lack a consistent and verifiable
handling of time – and are thus only of limited use for developing
and verifying time-sensitive software.

Figure 2 is an attempt at a conceptual end-to-end architecture
for time-sensitive software. Please note that this first sketch is a
conceptual proposal and leaves open points for future research.

Figure 1. Context for time-sensitive software.
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Figure 2 proposes six architecture layers, each one with formal
constructs to handle time explicitly:

The specification, modeling and verification layer (Top layer):
For this layer, a process algebra is used. Process algebra is a formal
calculus for specifying, modeling and verifying transition processes
(DeNicola, 2011; Aldini et al., 2009; Fokkink, 1999; Chao, 2015).
Some process algebras include the formal constructs for timing
(e.g., Baeten and Middelburg, 2001, 2002; Wang, 2002;
Wolf, 2002);

The system architecture layer: Describes the parts (= compo-
nents), their composition (= structure) and their relationships
(= interactions). As a compositionmodel, “Petri Nets forModeling
of Large Discrete Systems” (Davidrajuh, 2021) is utilized;

The software architecture layer: As the component model
providing the functionality, “Petri Modules” and “Inter-modular
connectors” (IMC) (Davidrajuh, 2021) are selected. The Petri
modules are enriched with timing constructs (Popova-Zeugmann,
2016; Liu, 2022);

The execution infrastructure layer: All software runs on the
execution infrastructure layer. This layer encompasses all hard-
ware, software systems and communication elements. Again, an
execution infrastructure that is time-aware, that is, can provide
execution timing guarantees, must be provided. The infrastructure
of choice is the “Time-Triggered Communications” (TTC)
(Obermaisser, 2012; Kopetz and Steiner, 2022; Kopetz and
Bauer, 2003; Maier et al., 2002; Rushby, 2005; Buttazzo, 2023);

In addition, two transformation layers are required.
Transformation Layer A translates the verified specification model
into the Petri Net specifications. Note that the system architecture
(Petri Net structure) is designed before the transformation A.
Transformation layer B maps the timed functionality of the Petri
Nets to the TTA schedule, that is, to the execution infrastructure.

Concurrency and latency

The two most challenging topics in implementing time-critical
CPS are concurrency (e.g., Gorrieri and Versari, 2015) and latency
(e.g., Kopetz and Steiner, 2022). In a modern CPS, many
applications share common resources, such as CPUs, memory,

external storage and communications channels, that is, parallel
access to shared resources (Figure 3). This concurrency may result
in one application or process influencing the timing of another
application or process, sometimes adversarially, such that timing
requirements may be violated, such as response times prolongated!
If concurrency is not handled correctly, non-determinism can
occur – delivering different results from a program run because of
interference by concurrency (Gorrieri and Versari, 2015).

The second topic is latency (Figure 3): In a classical architecture
implementation, there are many sources of latency: Operating
system functions, scheduling, communications delays, shared
memory access retardation, queuing and so on. Some of these
delays may be unpredictable and can behave statistically. For
dependable time-sensitive software, concurrency and latency must
be identified, quantified and adequately managed. The proposed
architecture in Figure 2 is designed to strongly support this
objective.

Process algebra

Context: For the specification, verification and modeling of the
time-aware functional processes in the system (Top level layer of
Figure 2), the methodology of Process Algebras with Time is
chosen (e.g., Baeten and Middelburg, 2001, 2002; Wang, 2002).
Process algebras are formalisms for specifying interactions
(synchronization, flow control, semaphores and so on) between
concurrent processes. Modern process algebras evolved from the
idea of formalizing communicating processes. The seminal
contribution is the paper “A Calculus of Communicating
Systems (CSS)” (Milner, 1980). In the following years, several
new Process Algebras were developed (e.g., Baeten, 2005; Bergstra
and Klop, 1984; Hoare, 1985). The early process algebras had no
explicit and formal notion of timing. Timing was introduced later
(e.g., Nicollin and Sifakis, 1991). Today, process algebras with fully
formalized timing exist (e.g., Baeten and Middelburg, 2001, 2002;
Wang, 2002). A process algebra defines a set of operators for the
interaction of concurrent processes. A process algebra with time
has additional operators for formally handling time.

https://www.researchgate.net/figure/Simple-architecture-of-time-triggered-shared-clock-scheduler_fig1_308611848

Execution Infrastructure:
Time-Triggered Communication (TTC)

Software Architecture:
Timed Modular Petri Nets

Transformation Layer B

System Architecture:
Composition Model

Transformation Layer A

Specification, Modeling & Verification:
Process Algebra with Timing

Figure 2. Layered architecture proposal.
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Many process algebras with rich literature are in use today
(e.g., Aceto, 2003). So far, no favorite, widely accepted and used
process algebra exists. Process algebras are selected for the task at
hand. For the widespread use of process algebras in industry,
standardization by an industry body would be highly beneficial.
A first attempt is the ISO standardization of a process algebra
for communication protocols (Bolognesi and Brinksma, 1968;
ISO, 2001).

Transition processes

Context: Process algebras require modeling the functionality of
processes as transition systems (e.g., Demri et al., 2016; Gorrieri
and Versari, 2015).

Transition systems have states. An action triggers the transition
from one state to another. States and actions include explicit timing
requirements in their specifications (Figure 4a, the symbol
represents the timing). The theory of state machines is well-
known and provides sufficient formality (e.g., Börger and
Stärk, 2013).

Figure 4b shows the example of a vending machine that is
often used as a (much simplified) transition system. It has five
states: Q1 (= «Waiting for coin»), Q2 (= «Waiting selection»),
Q3 (= «Coffee»), Q4 (= «Tea») and Q5 (= «Error»). The
transitions are represented by arrows, including time-out after
coin insertion and pressing both buttons simultaneously.

Timed Petri modules and inter-modular connectors

Context: Several realizations of the Petri Net idea exist. The one best
suited for this architecture has been developed by Reggie Davidrajuh
(https://www.davidrajuh.net/reggie/). It is applicable to large
discrete systems and allows arbitrary system structures.

The functionality and quality properties of the system are
implemented using “Timed Petri Modules” (Popova-Zeugmann,
2016; Wang, 1998) and “Inter-Modular Connectors” (Davidrajuh,
2021, Figure 5).

The Timed Petri Modules feature all the constructs and
properties of Petri Modules with time (e.g., Girault and Valk,
2010). They implement the functionality and data. The inter-
connections of the Petri Modules specified by the process algebra
are implemented by the IMC. These two building blocks give the
architecture designer a high level of flexibility and allow any
structure (not only hierarchical) to be defined.

The process algebra does not specify the system architecture.
The distribution of functionality to the individual Petri
Modules (Partitioning, cohesion and coherence and so on), the
coupling of the Petri Modules by the IMC (Interfaces, loose
coupling and so on) must be designed by a specialized system/
software architect. Fortunately, proven, well-documented archi-
tecture principles and patterns (Figure 6) are available to
construct a dependable, maintainable and evolvable architecture
(e.g., Murer et al., 2014; Furrer, 2019, 2022, Transformation
Layer A below).

Transformation Layer A

Context: While the four functional layers in Figure 6 use well-
known, well-documented and proven technologies (Such as
transition processes, process algebras, timed Petri Nets, the IMC
composition model and TTCs, the two transformation layers are
new concepts. The transformation layer A maps a timed transition
system onto a timed Modular Petri Net. Although some literature
exists on this specific topic (e.g., Badouel et al., 2015; Devillers et al.,
2022; Best et al., 2024; Cortadella et al., 1995; Goltz, 1990), this

Figure 3. Concurrency and latency in a computing system.
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transformation layer becomes a research topic – especially
concerning timing implementation.

The transformation layer A has two transformation paths
(Figure 7):

Transformation Path 1 (Architecture, Figure 7):
The structural organization of the modular Petri Nets is of the

highest importance, that is, strict adherence to proven architectural
principles, such as modularization, correct partitioning (respecting
cohesion and coherence), loose coupling and separation of
concerns (e.g., Furrer, 2019; Platzer, 2018). This design of the
adequate structure is independent of the formal specification of the
system and must be carried out by very experienced software
architects. Transformation path A requires a strong architecture
governance in the IT organization (e.g., Murer et al., 2014;

Bell, 2023). Once the Petri Modules/IMC structural architecture
has been defined, the states and transitions that are to be
encapsulated by each Petri Module are selected (Figure 7). Once all
states, transitions and quality properties are transferred from the
timed transition system to the timed Petri Module system, the duty
of transformation path 1 is completed. Today, transformation Path
1 is state-of-the-art in methodology and architecture knowledge.

Transformation Path 2 (Timing, Figure 7):
Timed transition systems (e.g., Furia et al., 2012, chapters 7.3 &

7.4; Henzinger et al., 1991; Hale et al., 1994) and timed Petri Nets
have different formal notations for time representation (e.g., Furia
et al., 2012, chapter 8; Wang, 1998; Penczek and Pólrola, 2006).
These different notations have differing expressiveness, and
suitable notations must be selected for this application.

Petri Modules Inter-Modular
Connectors

Inter-Modular
Connectors

Input Port Output Port

Input Port
Transition

Output Port
Transition

Local
Transition

Inter-Modular
Transition

Figure 5. Timed Petri modules and inter-modular connectors.
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Start
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Q1

Q2
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Dispense
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Q3 Q4

Coffee Tea

Q5

Error

Time-out Time-out

(b)

Functional Process

Result
State
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Figure 4. Transition systems.
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The transformation path 2 transcribes the transition system
timing information to the Petri Net timing information (e.g., Best
et al., 1998), including all constraints. Promising initial work has
been done on such transformations (e.g., Khomenko et al., 2022;
Huang et al., 2012), but more consolidating research is needed for
this transformation path, focused on the proposed architecture.

Transformation Layer B

Context: The responsibility of the transformation layer B is to
select one or more Petri Modules and use them to form a task

(Figure 8). This includes correctly transforming not only the
functionality and data, but also the timing and the quality
properties.

The transformation layer B has two transformation paths
(Figure 8):

Transformation path 3 (Architecture):
Transformation path 3 selects one or several coherent Petri

Modules, allocates them to specific tasks and uses the IMCs to
define the relationships from task to task and from task to the
environment. While the adequate architecture (structure, relation-
ships) has already been defined by transformation path 1, the
transfer of functionality/data/relationships/quality attributes from

PM PM

PM PMPM
PM

PM

IM
C

IM
C

IMCIM
C

PM

PM

PMPM

IM
C

IM
C

IM
C

Transformation
Layer A

•
•• •••

Figure 7. Elements of the Transformation Layer A.

Execution Infrastructure:
Time-Triggered Communication (TTC)

Software Architecture:
Timed Modular Petri Nets

Transformation Layer B 

System Architecture:
Composition Model

Transformation Layer A 

Specification, Modeling & Verification:
Process Algebra with Timing

System
Timing

Requirements

ap
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ap
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ap
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ap
ap
p

Architecture
Principles
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Patterns

Figure 6. Software architecture.
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the Petri Module system to the task universe by the transformation
path 3 must at least preserve – preferably improve – the quality of
the software architecture. This means, again, strict adherence to
proven architectural principles and patterns, such as modulariza-
tion, correct partitioning (respecting cohesion and coherence),
loose coupling and separation of concerns and so on. (e.g., Furrer,
2019; Richards and Ford, 2025; Martin, 2017; Cervantes, 2024;
Khononov, 2025; Fettke and Reisig, 2022). Once all Petri Modules/
IMC are transferred to the task structure, the duty of trans-
formation path 3 is completed. Today, transformation Path 3 is
state-of-the-art in terms of both methodology and architecture
knowledge.

Transformation path 4 (Timing):
Transformation path 4 transfers the timing specifications from

the Petri Net module system to the task universe, that is, to the
implementation level. Timing in Petri Nets is introduced
associated with places, transitions or both. Some work has been
done on software implementations of timed Petri Nets (e.g.,
Girault and Valk, 2010, Chapters 20 & 21; Ferscha, 1994; Barad,
2016; Moreno and Salcedo, 2006; Andrezejwski, 2001). However,
neither approach is sufficient for the application to the trans-
formation path 4. Therefore, transformation Path 4 needs more
research, specifically directed to the proposed architecture.

: : : and one feedback path (Timing adjustments): Timing
Feedback:

The applications prescribe the timing requirements for the
system (Processes in Figure 1). At the moment of timing
specification, there is no guarantee that their successful imple-
mentation will be feasible (e.g., Klemm and Cownie, 2021;
Philippou and Sokolsky, 2007). The following obstacles may
appear:

• Some tasks may have an unexpectedly large WCET;
• The task system is not schedulable (TTA);

• The physical communications channel’s transmission times
negatively impact timing;

• The system does not provide sufficient resources to handle
concurrency and latency;

• Correct error and fault handling require more resources than
expected; and so on.

If the timing cannot be implemented in the real CPS, three
resorts are possible:

I. Weaken the initial timing requirements (if the applications/
processes allow it);

II. Try to modify the architecture (Structure, relationships);
III. Provide more implementation resources.

Once the complete system of timed Petri Net modules has been
transferred into tasks and their relationships and the feasibility of
the implementation has been assured, the mission of trans-
formation layer B is complete.

Time-Triggered Protocol (TTP) – Time-Triggered
Architecture (TTA)

The time-triggered architecture (TTA) defines a fault-tolerant
execution platform for large, distributed, embedded real-time
systems in mission- and safety-critical cyber-physical applications,
such as avionics (e.g., Fuhrmann et al., 2006). It is based on the
time-triggeredmodel of computation (Kopetz, 1998; Kopetz, 2017)
and introduces the paradigm of TTCs (e.g., Kopetz and Bauer,
2003; Obermaisser, 2012; Kopetz and Steiner, 2022; Maier et al.,
2002; Rushby, 2005; Buttazzo, 2023). The basic concepts of TTA
are shown in Figure 10. Note that the TTC is a paradigm for
electronic information exchange (as opposed to the event-triggered
communications), TTP is the implementation and the TTA

Figure 8. Elements of the Transformation Layer B.
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includes in addition system components, such as scheduler,
redundant communication channel, global time synchronization
and so on (Figure 10).

The Figure 10 introduces the following elements (From lowest
to highest):

(1) A redundant communication bus that allows the exchange
of messages. Initially, Time Division Multiple Access

(TDMA)-scheme was used in the TTP. Later – forced by
industry standardization – TTP was implemented on top of
more communication schemes, such as Control Area
Network (CAN) (Führer et al., 2000), Ethernet (Kopetz
et al., 2005) and FlexRay (Shaw and Jackman, 2008);

(2) TTP, managing the exchange of messages between the N
nodes in the network, are implemented on top of the two
communication channels, providing the necessary

Figure 10. Time-triggered architecture.

Figure 9. Transformation layers and runtime system.
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redundancy for safe operation. TTP provides fault-tolerant
message transport with a fixed schedule at known times and
minimal jitter by employing a TDMA (= Time-Division
Multiple Access) strategy;

(3) A protocol to establish a global, synchronized time in all the
nodes. TTA provides system-wide, fault-tolerant and
distributed clock synchronization, establishing a global
time base without relying on a central time server.

(4) The runtime systems in each node, that is, a set of tasks
governed by a scheduler.

(5) Several algorithms for system functions (Obermaisser, 2012,
Chapter 4):
a. Clock synchronization,
b. Startup and Restart,
c. Diagnostic Services,
d. Error Detection and Fault Isolation,
e. Configuration Service,
f. Schedule Generation and Schedulability Analysis

(6) The interfaces for the interaction of the tasks with the
physical world (Sensors, Actuators).

The TTP is a deterministic, verifiable, well-analyzed message
exchange scheme for fault-tolerant, distributed systems (e.g.,
Rushby, 2002). Therefore, it forms a predictable foundation for the
execution platform in Figure 6.

Worst-Case Execution Time (WCET)

Each program (= a piece of code) has a worst-case execution time
(WCET, e.g., Lokuciejewski, 2011). TheWCET of a program is the
maximum amount of time the program could take to execute on a
specific execution platform, that is, the longest path through the
program. Unfortunately, theWCET determination corresponds to
the halting problem and is therefore not generally solvable.
Estimation methods, such as simulation and code analysis (e.g.,
Franke, 2016; Ferdinand and Heckmann, 2004), must be used to
obtain valuable results. For time-sensitive software, the WCET of
each program/module/task must be determined with sufficient
accuracy (e.g., Wolf, 2002).

Runtime system and task scheduling

The resulting runtime system is shown in Figure 9. It consists of a
set of tasks, system- and communications software, a computing
platform (today often a cached, multicore CPU), the TTC bus and a
task scheduler. The scheduler orchestrates the sequence of
execution of the tasks in the distributed nodes of the system.

Except for the scheduling, all elements of the conceptual
architecture in Figure 6 have been chosen due to the predictability
and verifiability of their correct timing behavior. Scheduling,
preemption and resource sharing may cause timing uncertainties
and must be analyzed and implemented very carefully. A rich
literature related to building, verifying and operating predictable,
hard real-time computing platforms exists (e.g., Buttazzo, 2023;
Gliwa, 2022; Obermaisser, 2012 [Chapter 15]; Ayman et al., 2009;
Antolak et al., 2023). There is no space to handle this topic, only to
raise awareness.

CPSs need global time, that is, a system-wide, precise and
synchronized common physical time scale in all elements of the
CPS (Shrivastava et al., 2016; Broman et al., 2013; Rajeev et al.,
2012). In the conceptual architecture of Figure 2, the TTA provides
the global clock (Figure 10; Obermaisser, 2012, Chapter 4).

Mixed-criticality systems

Many CPSs are “mixed-criticality systems,” that is, they contain
time-sensitive processes/parts and non-time-sensitive proc-
esses/parts. The system design must be based on solid
partitioning and loose, monitored coupling between the two
criticality regions.

Timing verification

The final truth of timing correctness lies in the runtime system
(Lowest layer in Figure 6). Only if the runtime system strictly
adheres to all timing specifications in all operating conditions can
it be qualified as safe. The strong formalism and model-checking
capabilities of the 3 top layers in Figure 6 ensure high confidence in
the system timing conformance with the specifications because of
the formal verification. Process algebras, transition systems and
Petri Nets allow the verification of their timing properties (e.g.,
Becker, 2020; Willemse, 2003; Camargo, 1998; Corradini et al.,
1999; Philippou and Sokolsky, 2007; Penczek and Pólrola, 2006;
Wolf, 2002).

Timing verification on the lowest layer in Figure 6 (Runtime
system) requires measurements, tracing, statistics, analysis and
assessment (e.g., Rohr, 2015; Becker, 2020). Runtime verification,
especially for the timing, is a challenging task but sufficiently
researched (e.g., Colombo and Pace, 2022).

Real-Time Calculus (RTC)

A promising development for formalizing the timing behavior and
formal verification of the runtime system is the RTC (e.g., Guan,
2018; Thiele et al., 2000; Two Examples in: Chokshi and Bhaduri,
2010; Bazzal et al., 2020). The key concept in RTC is the Greedy
Processing Component (GPC, Figure 11). The GPC accepts input
events, launches the appropriate processing and outputs the
processed event stream. The event streams are formalized by
arrival curves based on the number of events arriving at an interval
(one for the lower bound, the other for the upper bound).
The resources consumed to process the input events are also
formalized by service curves based on the amount of resources
consumed in an interval Δ, one for the lower bound, the other for
the upper bound.

For the arrival and service curves, operators are defined to build
compositions of GPCs and thus describe systems of arbitrary
complexity. The benefits of the RTC include the formalism for
determining bounds for execution, communication, queues and
buffer sizes. Additionally, the schedulability of multitasking
software systems can be determined using RTC.

Runtime monitoring

As a last defense against timing violations, runtimemonitoring can
be used. Whereas runtime verification aims to check specific
parameters of the program execution, such as the execution times
of a set of tasks, runtime monitoring supervises the system in order
to detect anomalous or dangerous behavior. If anomalous behavior
is detected, the system may automatically take protective actions,
thus trying to avoid safety accidents or security incidents. Machine
learning algorithms are often used for anomaly detection. (e.g.,
Furrer, 2023).

Research Directions: Cyber-Physical Systems 9

Downloaded from https://www.cambridge.org/core. 04 Oct 2025 at 18:27:43, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Results

Strict adherence to timing requirements is a crucial precondition
for the safety of CPSs. Therefore, the software controlling the CPS
becomes time-sensitive. The conceptual system architecture is the
foundation for the assurance of timing requirements in a CPS.
Only an adequate system architecture allows the formal
specification, verification, modeling and implementation of timing
requirements on all levels and for all process steps.

This paper proposes a novel timing-aware architecture
composed of well-known technologies: process algebra for
modeling transition processes, Petri Nets for implementation
and TTCs as the execution platform. The timing-aware 4-layer
architecture is presented as a conceptual 4-layer model. From this
model, many research topics follow.

Open questions and future work

• Develop a complete and consistent metamodel to ensure the
conceptual integrity of all layers in Figure 2 (e.g., Gonzalez-
Perez and Henderson-Sellers, 2008)

• Choose and agree on a semantic and notation for a suitably
timed process algebra. Codify it as an industry standard;

• Choose and agree on a semantic and notation for timed
transition systems. Propose it as an industry standard;

• Choose and agree on a semantic and notation for a timed
Petri Nets (Preferably based on Davidrajuh, 2021). Propose it
as an industry standard;

• Develop, discuss and document a modeling methodology for
systems based on Figure 6 (Metamodel, notation, semantics,
graphical representation and so on);

• Define a methodology, principles and metrics for the
transformation layer A;

• Define a methodology, principles and metrics for the
transformation layer B;

• Integrate the formalism of RTC into the architecture of
Figure 6;

• Investigate the applicability of the (possibly extended)
conceptual architecture of Figure 2 to continuous and hybrid
CPSs (e.g., David et al. and Alla, 2010; Gu and Dong, 2005;
Bera et al., 2014);

• Demonstrate the capability of the conceptual architecture
(Figure 2) for closed-loop CPS (e.g., Pasandideh et al., 2022;
Núñez-Alvarez et al., 2023);

• Does the conceptual architecture (Figure 2) have the
capability to generate the most efficient solution regarding
resources? (Rodriguez et al., 2013; Jarabo, 2024; Shi et al.,
2023); How?

• Is adding more resources until timing constraints can be
satisfied always feasible?

Conclusions

For mission-critical CPSs, the correct specification, implementa-
tion and execution of complete timing specifications is a
correctness property rather than a quality attribute. To answer
this challenge, the underlying system architecture must provide
formal, verifiable and complete timing constructs on all levels. This
paper proposes a novel, four-layer architecture with sufficient
formalism based on established technologies to handle and verify
timing in a CPS.
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