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Abstract

Background. Cortical thickness reductions associated with chronic methamphetamine use
exhibit a non-uniform spatial distribution across brain regions. A potential neurobiological
mechanism underlying for this heterogeneous pattern may involve the structural and functional
organization of cortical connectivity networks, which could mediate the propagation of neuro-
anatomical alterations. Here, we aimed to explore how brain network architecture constrains
cortical thickness alterations and their clinical relevance.

Methods. The 3D-T1 images were acquired from 139 patients with methamphetamine use
disorder (MUD) and 119 sex- and age-matched healthy controls. We first characterized
distributed cortical thinning patterns in patients with MUD, then evaluated the relationships
between regional atrophy and (1) multimodal nodal centrality measures (structural, morpho-
logical, and functional) and (2) atrophy profiles of structural connected neighbors. Individual
network-weighted cortical abnormality maps were used to identify distinct MUD biotypes and
related to clinical features through k-means clustering and partial least squares regression.
Results. Cortical thinning patterns demonstrated significant associations with nodal centrality
across all modalities, as well as cortical thinning of connected neighbors revealing a network-
dependent atrophy architecture. Fronto-temporal regions emerged as critical epicenters, show-
ing both high nodal centrality and strong correlations with connected neighbors’ thinning
severity. We found that the individual differences in network-weighted cortical abnormality
corresponded to clinical symptom variability, and distinguished two MUD biotypes associated
with drug use.

Conclusions. Our findings suggest that cortical thinning in MUD is influenced by the brain
connectome architecture, providing a mechanistic framework for understanding individual
variability in addiction progression.

Introduction

Methamphetamine use disorder (MUD) has emerged as a critical public health crisis and a
leading contributor to drug-related mortality (Xing et al., 2024). Chronic methamphetamine
exposure induces severe mental and physical health consequences, marked by widespread
cortical thinning in critical brain regions, including the prefrontal, cingulate, parietal, and
temporal cortices (Koester et al., 2012; Nie et al.,, 2020; Petzold et al.,, 2022). Neuroimaging
studies demonstrate that the severity of cortical volume loss escalates with both duration and
cumulative drug exposure, establishing this structural decline as a progressive neuropathological
process (Joo et al., 2023; Lyoo et al., 2015; Nie et al., 2021; Ruan et al,, 2018). However, the
mechanisms driving the regionally selective vulnerability of cortical architecture in MUD remain
unresolved. Identifying the neurobiological determinants of this patterned morphological degen-
eration could reveal critical therapeutic entry points for halting disease progression.

Emerging evidence suggests that the formation and maintenance of addiction are driven by
disruptions in brain connectome networks (Joutsa et al., 2022; Zhang & Volkow, 2019). Patterns
of cortical thinning in MUD are highly organized and circumscribed by specific networks,
supporting the notion that connectome architecture plays a significant role in the pathological
process. For instance, brain volume loss in MUD appears to be highly organized and confined to
specific functional networks such as default mode network (DMN) (Joo et al., 2023). Another
study reported that cortical thinning and the breakdown of white matter integrity occur
concurrently in patients with MUD (Lyoo et al., 2015). The functional connections of region
showing structure alterations and the medial prefrontal cortex could predict relapse status (Geng
etal, 2017). These findings support that brain network organization may be linked to structural
alterations in MUD.

Network-dependent hypothesis supported that the morphological abnormalities observed in
the brain may lie in the influence of the brain network or connectome (Jucker & Walker, 2018;
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Seguin, Sporns, & Zalesky, 2023). Specifically, neural connections
might help spread pathological processes. This occurs by trans-
porting toxic markers to distant cortical areas. Alternatively, if the
network architecture is impaired, it can disrupt normal communi-
cation between brain regions (Wannan et al., 2019). Under this
hypothesis, various models have been developed to explore the
impact of brain networks on regional morphological changes under
diseased conditions (Zhou, Gennatas, Kramer, Miller, & Seeley,
2012). One such model is the nodal stress model, which hypothe-
sizes that highly interconnected regions appear to be more vulner-
able to structural damage due to activity-related ‘wear and tear’
metabolic demands (Brown et al., 2019). For example, studies show
that progressive cortical atrophy is spatially correlated with node
centrality in several diseases. These include neurodegenerative dis-
eases such as Parkinson’s disease (Zeigha et al.,, 2015) and Alzhei-
mer’s disease (Zhou et al,, 2012). Psychiatric conditions such as
major depressive disorder (Ha et al, 2023) and schizophrenia
(Georgiadis et al., 2024) also show this correlation. In addition,
studies believed that white matter connectome architecture can also
contribute to the progression of atrophy, where connected regions
exhibit similar atrophy patterns (here, termed nodal-neighbor com-
mon atrophy model). This model has revealed regional atrophy was
linked to atrophy of connected neighbors under conditions such as
schizophrenia (Shafiei et al., 2020) and frontotemporal dementia
(Shafiei et al, 2023). Network-dependent hypotheses provide a
valuable framework for exploring the development of cortical
morphology in healthy individuals, the progression of diseases, and
their heterogeneity (Jiang et al., 2024; Li et al,, 2024; Liang et al,,
2024). However, limited research has focused on the role of these
models in cortical morphology alterations associated with MUD.

In this study, we aimed to explore the associations between
cortical thickness reduction in individuals with MUD and the
healthy brain connectome, delineating a network-dependent spa-
tial pattern of cortical thickness thinning. First, we spatially correl-
ated nodal centrality with the cortical thinning patterns in patients
with MUD. Second, we examined the relationship between regional
cortical thinning and the collective cortical thickness reduction of
neighboring regions, weighted by the healthy brain connectome.
The relationship between network-weighted cortical abnormality
and clinical phenotype scores was estimated by partial least squares
(PLS) regression. To assess the effects of drug use duration and
dosage on network-based cortical thickness alterations, we per-
formed clustering analysis on MUD subgroups using individual
network-weighted cortical abnormality scores. Building on prior
studies of neurodegenerative and psychiatric disorders, we
hypothesized that cortical thickness reductions in MUD are shaped
by connectome architecture. Specifically, brain regions with high
network centrality may be more susceptible to morphometric
alterations, and such abnormalities may propagate to connected
areas via structural pathways.

Materials and methods
Study samples

The study recruited 139 individuals with MUD from the Kangda
Voluntary Drug Rehabilitation Centre and Hunan Brain Hospital
in Hunan Province, China. We also recruited 119 healthy controls
(HCs) from local communities via online advertisements. All par-
ticipants were right-handed and aged between 18 and 45 years. The
patients with MUD met the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR)
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criteria for substance dependence (methamphetamine) as deter-
mined by the Structured Clinical Interview for DSM Disorders.
Exclusion criteria included learning disabilities, neurological or
psychiatric conditions (excluding substance-induced symptoms),
history of traumatic brain injury (>10 minutes unconsciousness),
familial predisposition to heritable mental disorders, recent neuro-
modulatory interventions within 3 months, pregnancy, MRI
contraindications, and dependence on non-nicotine substances.

The entire study protocol was approved by the institutional
review board of the Second Xiangya Hospital (No. S163, 2011)
and Sir Run Run Shaw Hospital, Zhejiang University School of
Medicine (No. 2023-826-01), in accordance with the Declaration of
Helsinki (1975, revised 2008). Written informed consent was
obtained from all participants prior to their involvement in the
study.

Clinical measurements

The sociodemographic characteristics and drug use patterns of each
participant were evaluated, including sex, age, years of education,
duration of drug use (in months), and lifetime drug consumption.
Among the patients with MUD, we used a 10-point visual analogue
scale to assess methamphetamine craving, where 0 represents the
lowest craving level and 10 indicates the highest intensity of craving
(Mezinskis, Honos-Webb, Kropp, & Somoza, 2001). Additionally,
the severity of psychosis, depression, and anxiety symptoms was
measured using the positive and negative syndrome scale (PANSS),
the 24-item Hamilton depression rating scale (HDRS), and the
14-item Hamilton anxiety rating scale (HARS) (Kay, Fiszbein, &
Opler, 1987; Maier, Buller, Philipp, & Heuser, 1988; Williams,
1988), respectively. To ensure the reliability of these assessments,
all psychiatrists involved in the study underwent extensive training
in administering PANSS, HDRS, and HARS before the study began.

MRI data acquisition

The T1-weighted anatomical images were acquired using a Siemens
Magnetom Trio 3 T scanner (Allegra; Siemens, Erlangen, Ger-
many) with a 64-channel head coil. The scanning parameters were
as follows: a 3D MPRAGE sequence with a 256 x 256 mm? field of
view, 1 mm slice thickness with no gap, repetition time (TR) of
2000 ms, repetition time (TE) of 3.7 ms, flip angle of 8, and a total of
176 slices.

Image processing and cortical thickness calculation

All neuroimage data were preprocessed via FreeSurfer software
(version 7.1, https://surfer.nmr.mgh.harvard.edu). The preprocess-
ing of 3D-T1 images employed a standard auto-reconstruction
algorithm that included several key steps: motion correction, inten-
sity normalization, non-brain tissue removal, automated trans-
formation into Talairach space, segmentation of white and gray
matter, volumetric structure delineation, and tessellation. In add-
ition, automated topology correction and surface deformation
techniques were applied. Cortical thickness (CT) was estimated at
each surface vertex by calculating the shortest distance between the
gray and white matter surfaces. For each participant, CT measure-
ments were obtained for 68 cortex regions according to the
Desikan-Killiany parcellation atlas (Desikan et al., 2006). The
quality of cortical parcellations was visually assessed, with histo-
grams generated for all regions to enable a comprehensive visual
examination. No subjects were excluded from the analysis.
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We identified cortical thinning patterns associated with MUD
by employing a general linear model to assess regional CT differ-
ences between patients and healthy controls. Covariates such as sex,
age, years of education, and intracranial volume (ICV) were
included in the analysis. Bonferroni correction was used for mul-
tiple comparisons across 68 brain regions, resulting in an adjusted
significance threshold of p < 0.05/68. Statistical t-maps were
extracted and converted to z statistics for following analysis.

Structural, morphological, and functional network
reconstruction

We utilized the ENIGMA toolbox (https://enigma-toolbox.readthe
docs.io/en/latest/) to derive resting-state functional connectivity and
structural connectivity matrices. These matrices, sourced from
healthy adults (n = 207, 40% males, mean age = 28.73) in the Human
Connectome Project (HCP; http://www.humanconnectome.org/),
have been employed in prior studies exploring the impact of brain
networks on cortical alterations (Georgiadis et al., 2024; Hettwer
et al,, 2022). A group-average functional connectivity matrix was
generated by calculating pairwise correlations between 68 cortical
regions of Desikan-Killiany atlas. Additionally, the group-average
structural connectivity matrix was computed by applying a distance-
dependent threshold to the number of streamlines connecting these
regions. For more details, see Supplementary Materials.

For the morphological network analysis, CT measurements
were obtained from 68 cortical regions, as defined by the Desikan-
Killiany parcellation scheme, using data from our healthy control
group. A group-level morphological network was constructed by
calculating Pearson correlations between the CT values of each pair
of regions. Fisher r-to-z was applied to the correlation coefficients
to improve normality.

Network analysis of cortical alterations

The modal stress model and nodal-neighbor common atrophy
model were modeled the relationship between normal connectome
across three modality and cortical thickness changes in MUD
(Supplementary Figure S1). In the nodal stress model (Zhou et al.,
2012), we predicted that higher degree centrality of a node would
exhibit larger cortical thinning in MUD. Weighted degree centrality
was calculated using structural, morphological, and functional
connectivity data by summing the values of all cortico-cortical
connections for each region, respectively. Spatial correlation
method was used to examine relationship between MUD-related
cortical thinning patterns (t-value map) and normative weighted
degree centrality profiles using Pearson correlation coefficients.
The significance of associations of nodal centrality and cortical
thinning were tested by spatial autocorrelation permutation tests
(spin tests) with 5000 times (Alexander-Bloch et al., 2018). Specif-
ically, the centroids of the 68 cortical regions defined by the
Desikan-Killiany atlas were projected onto a spherical surface.
The surface was then randomly rotated across the sphere, preserv-
ing the spatial topology of the brain. After each rotation, regional
values were reassigned according to the closest parcel on the rotated
sphere. This process was repeated 5000 times to generate a null
distribution that maintains spatial dependencies. The empirical
p-value was computed as the proportion of permuted correlations
that exceeded the observed correlation.

In the nodal-neighbor common atrophy model (Shafiei et al.,
2020), we predicted that nodes exhibiting more severe cortical
changes are connected to neighboring regions with greater cortical
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thinning. At the group level, we used healthy connectivity networks
from three modalities to estimate the morphological abnormalities
of the neighbors for each region. The structurally weighted neigh-
bor cortical thinning level of a region was then calculated as the
average cortical thinning values of all the brain regions structurally
connected to that node:

i N;
T":ﬁizj'zi,jﬂtf (1)

where T; represents the average neighbor cortical thinning value of
structural neighbors of a given node i, #; is the cortical thinning of
the jth neighbor structurally connected to node i, and N; is the total
number of regions structurally connected to node i. Normalization
by the term N; ensures that the estimated neighbor cortical thinning
value is independent of the nodal degree. The calculation of neigh-
bor cortical thinning excludes self-connections (i.e., i # j).

The morphological-weighted connected neighbor cortical thin-
ning level was assessed using Equation (1), with the exception that
cortical thinning values were weighted by the strength of morpho-
logical connectivity between nodes i and j (SMN)):

i =N
SMN —T; = ﬁizjti,jzltj x SMN; (2)
where SMN-T; represents the average neighbor cortical thinning
value of morphologically defined neighbors of a given node i, and
SMNj; is the mean morphological connectivity between nodes
iand j.

Similarly, the functional-weighted connected neighbor cortical
thinning level was assessed using Equation (2), with the exception
that cortical thinning values were weighted by the strength of
functional connectivity between nodes i and j (FCy):

i N;
FC—T,»:EZMJ:ItijCij 3)

where FC-T; represents the average neighbor cortical thinning
value of morphologically defined neighbors of a given node i, and
FCj; is the mean functional connectivity between nodes i and j.

For structural-, morphological- and functional-weighted neigh-
bor cortical thinning estimations, neighbors of a region were deter-
mined as a node structurally connected to that region. Pearson
correlation coefficients were employed to assess the relationship
between nodal cortical thinning and its structurally, morpho-
logical- and functionally weighted connected neighbors cortical
changes level, respectively. The spatial autocorrelation-preserving
permutation tests was determined the significance of associations of
nodal centrality and cortical thinning (5000 repetitions).

Epicenter identification

To identify potential epicenters of cortical thinning in MUD, we
adopted a nodal-neighbor cortical thinning ranking method
(Shafiei et al., 2020). Specifically, for each brain region, we first
ranked the degree of cortical thinning (based on the group-level
MUD versus control thickness difference) in ascending order.
Separately, for each region, we computed the morphology-
weighted average cortical thinning level of its structurally con-
nected neighbors using the morphological covariance network
and ranked these values in the same way. The final epicenter
likelihood for each region was determined by averaging its own
atrophy rank and its neighbor-based rank. Regions with the lowest
mean ranks were considered the most probable epicenters, as they
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showed high levels of cortical thinning themselves and were sur-
rounded by similarly affected neighbors. To assess the statistical
significance of these rankings, we employed a spin permutation test
with 5000 repetitions, which preserves the spatial autocorrelation
structure of the cortical surface by rotating the cortical thinning
map. Given that the morphological network best explained cortical
thinning patterns in both the nodal stress and nodal-neighbor
models (see Results), the epicenter analysis was conducted based
on morphology-weighted neighbor thinning values.

Individual network-weighted cortical abnormality model

To examine the associations between network-weighted cortical
alterations (participants x brain regions) and clinical factors
(participants x measures) in patients, a multivariate statistical
algorithm, PLS regression, was employed (McIntosh & Misi¢,
2013). Personalized network-weighted cortical abnormality was
defined using connectome-weighted cortical thinning. Specifically,
we estimated individual cortical thinning maps for patients with
MUD by measuring deviations from the normal distribution. A
multiple regression model was developed to predict regional cor-
tical thickness, incorporating sex, age, education level, and ICV as
covariates. This model was then applied to estimate the cortical
thickness for each patient with MUD. Regional W-scores were
generated by calculating the difference between the observed and
predicted cortical thickness, divided by the standard error of the
model fit in controls, providing individualized cortical thickness
maps. A positive W-score means cortical thinning in patients with
MUD in relative to HC and vice versa. Personalized network-
weighted cortical abnormality of a region was determined by the
normalized W score of all regions that were connected to region i by
a morphological connection.

i N
SMN—wi=ﬁiZj¢i)j=1wijc,-j (4)
where SMN-W; represents the individual neighbor cortical thin-
ning value of morphologically defined neighbors of a given node i,
and W is individualized cortical thickness thinning.

PLS analysis was performed to investigate the association
between individual network-weighted cortical abnormalities and
clinical factors (including craving, PANSS, HARS, and HDRS).
Network-weighted cortical abnormality maps served as predictor
variables, while clinical scale scores were used as response variables.
The significance of the variance explained by the PLS components
was evaluated using permutation test with 5000 iterations. To
model the effect of brain atrophy on clinical symptoms, Pearson
correlation analyses were performed between network-weighted
cortical abnormalities (brain scores) and the behavioral phenotypes
(behavior scores) identified in the significant latent variable. The
behavior loadings are denoted by the Pearson correlation between
behavior phenotypic data and the brain scores.

Associations of network-based cortical abnormality and
drug use

Previous studies have indicated that network-level gray matter
abnormalities progress from the early stages of illness to more
severe stages in neurodegenerative and psychiatric diseases
(Chopra et al, 2023; Wannan et al., 2019; Zhou et al., 2012).
Building on these findings, we hypothesized that drug use, such
as duration and dose of drug, might influence cortical thickness
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alterations at the network level, resulting in heterogeneous sub-
groups. To investigate the impact of drug use on network-based
cortical thickness changes, we performed k-means clustering to
identify subgroups related to drug use. K-means clustering divides
the dataset into k non-overlapping groups by minimizing variance
within clusters and maximizing differences between clusters, based
on a predefined distance metric. This method has been widely used
in psychiatric research for data-driven biotype discovery (Ha et al.,
2023; Li et al., 2024). We first constructed a 139 x 139 similarity
matrix by calculating the Pearson correlation coefficients between
SMN-weighted cortical thinning profiles for all MUD participants.
This matrix captures the spatial similarity in cortical thinning
patterns between every pair of individuals, where higher values
indicate greater similarity. Based on this similarity matrix, k-means
clustering using Euclidean distance were applied to identify poten-
tial subgroups. To enhance robustness and reproducibility, the
clustering procedure was repeated 100 times with random initial-
izations. The optimal number of clusters (k) was determined by
calculating silhouette scores for values of k ranging from 2 to 10.
The differences in methamphetamine duration and dose between
the subgroups were assessed using a two-sample test.

Results
Sample characteristics

Table 1 presents the sociodemographic characteristics of patients
with MUD and HC. There was no significant group difference in
sex and age between individuals with MUD and HC. However,
patients with MUD showed lower education level than HC. Patients
with MUD showed higher anxiety and depression level in relative
to HC.

Table 1. The demographic and clinical characteristics of patients with
methamphetamine use disorder and HC

MUD HC X/t p

Number 139 119
Sex (Male/Female) 122/17 99/20 1.09 0.30
Age (Mean + SD, years) 29.12 £5.40 28.31+5.41 1.20 0.23
Education (Mean + SD, 11.76 + 2.66 1455+331 -—7.51 <0.05

years)
Duration (months) 52.22 +30.63
Total dose estimated 74.36 £ 123.98

values
Craving (VAS) 247 +2.61
PANSS

P 18.29 + 7.62

N 19.85 + 7.42

G 39.47 + 10.58

T 77.07 £22.94
HARS 16.28 £ 8.15 3.71+4.69 12.960 <0.05
HDRS 26.58 + 14.73 4.07+7.17 13.159 <0.05

Note: Data are showed as the mean + SD. HC, healthy control; HARS, Hamilton anxiety rating
scale; HDRS, Hamilton depression rating scale; MUD, methamphetamine use disorder; PANSS,
positive and negative syndrome scale; VAS, visual analogue scale.
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Cortical thickness reductions in patients with MUD

Compared to HC, a total of 28 cortex regions were found to exhibit
significant cortical thickness thinning in patients with MUD (p < 0.05,
Bonferroni corrected). We did not find any increased cortical thick-
ness in methamphetamine dependent groups. As illustrated in
Figure 1, pronounced cortical thinning was observed in the frontal
and temporal lobes, particularly in the superior frontal gyrus and
middle temporal gyrus. To investigate whether this cortical thinning
was predominantly associated with specific brain networks, we
employed two brain atlases: (1) the Yeo atlas (Yeo et al., 2011), defined
by intrinsic functional connectivity, and (2) the Von Economo-
Koskinas atlas (Scholtens, de Reus, de Lange, Schmidt, & van den
Heuvel, 2018), based on cytoarchitectonic classes. Mean cortical
alteration values were calculated within each brain system according
to both atlases. A permutation test with 5000 repetitions was used to
assess the significance of cortical alterations at the network level. The
results revealed that patients with MUD exhibited greater cortical
thinning in the frontoparietal (FPN) and DMNs. For the Von
Economo-Koskinas atlas, more significant cortical changes were
observed within the frontal and parietal cytoarchitectonic classes.

Brain connectome shape cortical thinning

We employed two models to investigate the relationship between
brain networks and cortical morphological alterations in patients
with MUD. As described in the Figure 2, in the stress nodal model,
we found that greater nodal degree centrality was significantly

associated with more pronounced cortical thickness changes. This
significant relationship was observed across different brain network
modalities, including structural (r = 0.330, pgpin = 0.007), morpho-
logical (r = 0.583, pgin < 0.001), and functional (r = 0.361,
Pspin = 0.028) degree centrality. In the nodal-neighbor common
atrophy model, cortical thinning in a specific region was signifi-
cantly linked to the cortical thinning of its connected neighbors
across structural (r = 0.368, ppin = 0.020), morphological (r = 0.618,
Pspin < 0.001), and functional (r = 0.480, pgpin = 0.003).

Disease of epicenters

Using a network-based node-neighbor ranking method, we iden-
tified an epicenter likelihood pattern (Figure 2A). This method
determines the epicenter probability of a region by calculating the
mean ranking based on both the nodal cortical thinning value and
the thinning values of its neighboring regions. We found that
regions in the bilateral superior frontal gyrus, the right rostral
middle frontal gyrus, the right pars orbitalis, and the left middle
temporal gyrus exhibited significantly higher mean rankings
(Figure 2D, pgpin < 0.001). This finding was consistent across both
structural- and functional-weighted neighbor thinning analyses.

Mapping individual network-weighted cortical thinning on
clinical symptoms

The PLS analysis identified the first latent variable, which
accounted for 11.66% of the covariance between network-based
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Figure 1. Cortical thickness reductions in patients with methamphetamine use disorder (MUD). (A) Maps displaying cortical morphological changes in both MUD patients and the
control group. (B) Mean cortical alteration values assessed within resting-state networks based on the Yeo atlas. (C) Mean cortical alteration values calculated using the Von
Economo-Koskinas atlas. The brain networks according to the Yeo atlas include: VIS (visual network), SMN (somatomotor network), DAN (dorsal attention network), FPN
(frontoparietal network), VAN (ventral attention network), and DMN (default mode network).
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cortical abnormality maps and clinical scores (p = 0.043, permuta-
tion test). As shown in Figure 3, this latent variable highlighted a
cortical thinning pattern predominantly in prefrontal areas, closely
resembling the epicenter likelihood distribution. Individuals exhib-
iting this thinning pattern experienced more severe psychosis,
anxiety, and depression symptoms. This pattern was not related
to craving.

Network-based cortical thinning identified two MUD biotypes

We employed an unsupervised approach to investigate the impact
of drug use on cortical thinning at the network level. As shown in
Figure 4, K-means clustering analysis identified two distinct MUD
biotypes. Subgroup 1 (n = 94) displayed patterns of cortical
thinning, whereas subgroup 2 (n = 45) exhibited a tendency
toward cortical thickening. Subgroup 1 had significantly longer
durations of methamphetamine use (t = 2.064, p = 0.040) and
higher doses of methamphetamine use (t = 2.896, p = 0.004)
compared to subgroup 2.

Brain loadings

Discussion

The current study employed both the nodal stress model and the
nodal-neighbor common atrophy model to investigate cortical
thinning patterns in patients with MUD at the network level. The
findings revealed that cortical thinning was constrained by healthy
brain networks across distinct modalities. We observed widespread
cortical thickness reduction in patients with MUD, accumulating in
specific systems. Moreover, nodes exhibiting greater cortical thin-
ning were associated with higher nodal degree centrality and con-
nected neighbors’ cortical alterations. The frontal and temporal
regions emerged as key epicenters. The individual network-based
patterns of cortical alteration correlated with clinical symptom
variability, distinguishing MUD subtypes associated with drug use.

Our findings align with previous studies (Joo et al., 2023; Lyoo
et al., 2015), showing widespread cortical thickness reduction in
MUD patients, especially in the prefrontal and temporal areas.
Cortical thinning was organized by specific functional brain net-
works, including the FPN and DMN. It was also structured by
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cytoarchitectonically defined frontal and parietal regions. These
loci anchored within these functional networks, mainly in the
prefrontal areas, were linked to inhibitory control and motivation
(Friedman & Robbins, 2022; Munakata et al., 2011). Dysfunctions
in these behaviors contribute to the initiation and maintenance of
addiction (Ceceli, Bradberry, & Goldstein, 2022; Goldstein &
Volkow, 2011). Combining these insights with epicenter analysis,
we identified the dorsolateral prefrontal cortex as the likely spatial
origin of cortical thinning in MUD, serving as a central hub for the
network-driven spread of cortical changes. This suggested that
damage to the prefrontal cortex is a critical factor in both vulner-
ability to and resilience against drug addiction (Ersche et al., 2020).

Our results further elucidated the relationship between brain
networks and cortical thickness alterations, providing evidence that
cortical morphological changes in MUD may be constrained by
network architecture through both the nodal stress and nodal-
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neighbor models. According to the nodal stress hypothesis, highly
interconnected nodes were positively correlated with greater
degrees of deformation, suggesting that atrophy in patients with
MUD is shaped by the topology of the brain connectome. In line
with our findings, previous studies have reported alterations in
small-world properties and modularity across various substance
use disorders, including nicotine (Fan et al., 2023), alcohol (Ottino-
Gonzilez & Garavan, 2022), methamphetamine (Liu et al., 2022),
and heroin (Yuan et al, 2010). Additionally, cortical thickness
alterations in MUD were influenced by white matter architecture,
as significant relationships were found between nodal cortical
changes and those of their connected neighbors. This may be due
to impaired transneuronal transport of trophic factors, leading to
brain tissue loss (Zalesky et al., 2015). Brain-behavior analysis
revealed that individuals with greater deviations in cortical thick-
ness in the prefrontal areas from the normal model were associated
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with more severe clinical symptoms, such as psychosis and negative
phenotypes. This suggests that network-based morphological alter-
ations not only help trace disease epicenters but also map cortical
alterations underlying clinical symptoms (Li et al, 2023).
Altogether, these findings indirectly support the idea that cortical
morphological alterations in MUD patients align with the trans-
neuronal network spread model, providing an explanation for the
widespread, irregular, and discontinuous pattern of cortical thick-
ness reduction in MUD. It is important to note that our findings
remain correlational, making it difficult to disentangle the causal
relationship between cortical thickness and network architecture in
MUD. Beyond network-level factors, accumulating evidence sug-
gests that neurobiological processes such as neuroinflammation
and excitotoxicity may also play a role (Li et al., 2024). For example,
an early PET study using a Translocator Protein (TSPO) tracer
reported elevated microglial activation (an indicator of neuroin-
flammation) in the midbrain and insular cortex of individuals with
MUD (Sekine et al., 2008). Decreased glutamine levels have been
observed in the medial prefrontal cortex of MUD individuals
relative to HC, which may reflect altered glutamatergic neurotrans-
mission (Wu et al., 2018). These findings underscore the import-
ance of future multimodal studies to elucidate how inflammatory
and excitotoxic processes interact with structural networks in driv-
ing cortical degeneration in MUD.

We further identified two distinct biotypes of MUD based on
individual cortical thickness thinning scores at the network level.
Consistent with our hypothesis, these two biotypes exhibited sig-
nificant differences in drug use variables, such as the duration and
dose of methamphetamine use. Individuals with longer histories
and higher doses of methamphetamine use showed more extensive
cortical alterations, suggesting a progressive network spread of gray
matter changes in MUD. The dose-effect analysis further supports
this notion, as it revealed that global mean cortical thickness in
chronic methamphetamine users was significantly negatively cor-
related with the lifetime dose of drug use (Joo et al., 2023; Lyoo et al.,
2015). These findings are reminiscent of observations in neurode-
generative disorders and schizophrenia (Chopra et al., 2023; Leuzy
et al., 2023; Wannan et al., 2019), where patients in the later stages
of illness tend to experience greater brain structural alterations.
This suggests that the severity and duration of drug exposure play a
critical role in the extent of cortical thinning observed in MUD.

The current study has several limitations. First, our imaging
findings were derived from cross-sectional data, which limit our
ability to make causal inferences about the progression and poten-
tial propagation of cortical thinning in MUD. As such, we cannot
determine whether the observed morphometric alterations reflect
consequences of prolonged drug exposure, predisposing factors, or
dynamic disease processes. To validate the network spread hypoth-
esis and clarify the temporal sequence of structural changes in
relation to brain connectome architecture, future longitudinal
studies are essential. Second, we derived group-level normative
structural and functional connectivity matrices from HCP samples.
Future research should investigate individual connectivity-based
models of atrophy to evaluate how disease-specific connectomes
influence brain atrophy. Third, all findings are based on a single
type of addictive drug and a single dataset. Although we used a
relatively large sample, the results should ideally be validated
independently using a distinct MUD dataset. Additionally, the
generalizability of network spreading of gray matter alterations in
addiction should be further examined using different types of
drugs. Fourth, individuals with MUD exhibited lower education
levels than HC, which could potentially influence cortical thickness
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measurements. Previous studies have shown that variations in
socioeconomic status are a key risk factor for substance use dis-
orders and are associated with alterations in brain structure and
function (Evans-Lacko et al., 2018; Tian et al., 2021). Future
research is encouraged to further investigate the specific impact
of educational attainment and other sociodemographic variables on
brain alterations in MUD.

In conclusion, our results suggest that cortical connectivity
networks can explain the irregular distribution of cortical thickness
reductions in MUD. We identified the prefrontal areas as the
likeliest ‘disease epicenters’. Network-based cortical thickness
reductions were also correlated with the severity of individual
clinical symptoms and could distinguish distinct diagnostic MUD
subtypes associated with drug use. These findings provide network
mechanistic insights into cortical morphological changes in MUD
and addiction.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725102067.
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