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The use of gyrokinetics, wherein phase-space coordinate transformations result in a
phase-space dimensionality reduction as well as the removal of fast time scales, has
enabled the simulation of microturbulence in fusion devices. The state-of-the-art gyroki-
netic models used in practice are parallel-only models wherein the perpendicular part of
the vector potential is neglected. Such models are inherently not gauge-invariant. We gen-
eralise the work of Burby & Brizard (2019 Phys. Lett. A vol. 383, no. 18, pp. 2172–2175) by
deriving a sufficient condition on the gyrocentre coordinate transformation that ensures
gauge invariance. This leads to a parametrised family of gyrokinetic models for which we
motivate a specific choice of parameters that results in the smallest gyrocentre coordinate
transformation for which the resulting gyrokinetic model is consistent, gyro-phase inde-
pendent, gauge-invariant and has an invariant magnetic moment. Due to gauge invariance,
this model can be expressed directly in terms of the electromagnetic fields rather than the
potentials, and the gyrokinetic model thereby results in the macroscopic Maxwell’s equa-
tions. For the linearised model, it is demonstrated that the shear and compressional Alfvén
waves are present with the correct frequencies. The fast compressional Alfvén wave can
be removed by making use of a Darwin approximation. This approximation retains the
gauge invariance of the proposed model.
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1. Introduction

The role of numerical modelling is prevalent not only in understanding the physics
of fusion plasmas, but also in the design and optimisation of magnetic fusion devices.
The collisionless Vlasov–Maxwell model is found to be appropriate when the colli-
sion frequency of the charged particles is much lower than the frequencies that are
of interest, e.g. when studying microturbulence (Garbet et al. 2010). Nonetheless,
such a model is still very challenging to use, not only because of its six-dimensional
phase-space, but also because of the large range of length (four orders of magnitude
between the plasma size and the Debye length) and time (seven orders of magnitude
between the ion–ion collision frequency and the electron plasma frequency) scales.
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Two of the aforementioned challenges are, at least partially, addressed by gyroki-
netic theory (Frieman & Chen 1982; Littlejohn 1983; Sugama 2000; Brizard & Hahm
2007; Burby & Brizard 2019) wherein a sequence of phase-space coordinate transfor-
mations is used to decouple the fast gyration of a charged particle from its otherwise
slower motion along the magnetic field. This thereby results in the removal of the
(high) cyclotron frequency, while at the same time reducing the phase-space dimen-
sionality by one. When moreover considering the quasi-neutral limit, it is found that
also the light wave and the Langmuir wave (or plasma oscillation) are removed
from the model. The use of gyrokinetic theory thereby permits the numerical mod-
elling of turbulent transport in tokamaks, as discussed in the well-written review
paper (Garbet et al. 2010) and was more recently applied to study electromagnetic
turbulence in stellarator plasmas (Mishchenko et al. 2023).

The gyrokinetic model results from a sequence of – mostly near-identity –
phase-space coordinate transformations which are applied to the collisionless
Vlasov–Maxwell model and therefore, in theory, there is no approximation error.
In practice, however, one must always truncate the near-identity phase-space coor-
dinate transformation to some order of the small expansion parameter, resulting in
an unavoidable modelling error. The more recently developed gyrokinetic models
are based on a variational principle which thereby, despite this modelling error, still
preserve essential structures of the original Vlasov–Maxwell model. For instance,
the total (free) charge, momentum and energy should be conserved (Sugama et al.
2018; Hirvijoki et al. 2020; Brizard 2021a; Peifeng, Hong & Jianyuan 2021), while
the choice of the gauge condition on the vector potential should leave the model
invariant (Burby & Brizard 2019), resulting in so-called gauge invariance.

However, to our knowledge, all global gyrokinetic simulations either neglect the
part of the vector potential that is perpendicular to the background magnetic field
and thereby result in a ‘parallel-only’ gyrokinetic model (Kleiber et al. 2016), or use
a simplified model for the parallel component of the perturbed magnetic field (Chen
& Zonca 2016). Both approximations are irreconcilable with gauge invariance and
lead to intermediate wavelength models wherein perpendicular system-scale effects
are incorrectly modelled. There are, however, numerous gyrokinetic theories and
models that include the perpendicular part of the vector potential (Qin et al. 1999;
Qin, Tang & Lee 2000; Qin 2005; Brizard & Hahm 2007). Furthermore, Burby &
Brizard (2019) introduced a novel gauge-invariant gyrokinetic model for which exact
conservation laws are derived by Brizard (2021a,b).

We extend the approach followed by Burby & Brizard (2019) by proposing a
parametrised family of gyrocentre coordinate transformations, resulting in a family
of gauge-invariant gyrokinetic models where a specific choice of parameters yields
the model of Burby & Brizard (2019). A different choice of parameters is motivated
in detail in this paper, resulting in the smallest gyrocentre coordinate transforma-
tion for which the resulting gyrokinetic model is consistent, gyro-phase independent,
gauge-invariant and has an invariant magnetic moment.

The proposed gyrokinetic model is derived in detail using the language of vector
calculus in favour of the customarily used language of differential geometry and
Lie transform methods. Such a derivation is equivalent to the more traditionally
used techniques, as found for example in Hahm (1988), Brizard (1990), Qin et al.
(1999), but we have opted for the vector calculus approach as it reduces the required
prerequisite knowledge of our readers.

Our paper starts with a brief overview of its main results in § 2. In § 3, we discuss
the preliminary phase-space coordinate transformation leading to the guiding-centre

https://doi.org/10.1017/S0022377825100688 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100688


Journal of Plasma Physics 3

single-particle phase-space Lagrangian, wherein only the stationary background mag-
netic field is considered. The perturbed time-dependent electromagnetic fields are
included as a perturbation to the guiding-centre Lagrangian in § 4, followed by a
detailed description of the proposed gyrocentre coordinate transformation, result-
ing eventually in the gyrocentre single-particle phase-space Lagrangian. We then
combine the gyrocentre single-particle Lagrangian for each species with Maxwell’s
equations in § 5, eventually resulting in the gyrocentre equations of motion, Gauss’s
law as well as the Ampère–Maxwell law. A low-frequency quasi-neutral Darwin
approximation of the proposed model is considered in § 6. A comparison with
reduced models is made in § 7, where we compare the two proposed models to
several models from the literature. We conclude with a discussion in § 8.

2. A brief overview of the main results

To compensate for the length and complexity of this paper, we provide a brief
overview of the main results in this section. This is of particular use to those readers
who are not necessarily interested in a detailed derivation of the model, but who
are instead interested in (the implementation of) the resulting models and their key
properties.

In essence, two gauge-invariant models are derived, analysed and proposed in
this paper: the first is referred to as the ‘gyrokinetic Maxwell model’ (see § 5), and
the second is referred to as the ‘quasi-neutral gyrokinetic Darwin model’ (see § 6).
The former yields a model in which fast waves (such as the light wave, Langmuir
wave and compressional Alfvén wave) are retained, whereas such fast waves are
eliminated in the latter model. Each model is derived from an action principle
which can be found in (5.25) and (6.7), respectively, where the action is based
on the gyrocentre single-particle Lagrangian (which is derived in detail in § 4) and
is a function of the gyrocentre coordinate Z(t)= (R(t),U�(t), M, Θ(t)) (where R
denotes the gyrocentre position, U� denotes the velocity component parallel to the
background magnetic field B0, M denotes the invariant magnetic moment and Θ
denotes the gyro-phase), the perturbed scalar potential φ1 and the perturbed vector
potential A1.

2.1. Gyrocentre equations of motion
Imposing the principle of least action (see § 5.3) with respect to the gyrocentre

coordinate yields the gyrocentre equations of motion, which are discussed in detail
in § 5.3.1 and are presented here for convenience:

Ṙ = U�b
�

s − 1
qs B�

s,�

b̂0 × [
qs E�

1 − M∇(B0 + 〈〈
B̊ς

1,�

〉〉)]
, (2.1a)

U̇� = 1
ms

b�s · [qs E�
1 − M∇(B0 + 〈〈

B̊ς

1,�

〉〉)]
, (2.1b)

where we note that the magnetic moment is invariant Ṁ = 0 and the gyro-phase
Θ(t) is an ignorable coordinate as none of the other equations depend on it. Here,
b̂0 = B0/B0 is the normalised background magnetic field, B0 = |B0| is the Euclidean
norm of the background magnetic field, b�s is the effective magnetic field direction
defined in (4.76), B�

s,� is the effective parallel magnetic field defined in (4.77), qs

and ms denote the charge and mass of the species s, E�
1 is the effective electric field

defined in (4.71a) (and is approximately equal to the gyro-averaged electric field
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E�
1 ≈ 〈E̊1〉), and

〈〈
B̊ς

1,�

〉〉
denotes the disc average of the parallel component of the

perturbed magnetic field as defined in (4.49). We note that the equations of motion
are identical for the two models proposed in this paper.

2.2. Gyrokinetic Maxwell model
Imposing the principle of least action with respect to the perturbed vector potential

A1, where the action is given by (5.25), yields the following Ampère–Maxwell law
together with Faraday’s law (we refer to § 5.3.2 for corresponding weak formulation
and to §§ 5.4 and 5.5 for a discussion on the strong formulation):(
ε0I3 +

∑
s msn0,s

B2
0

Π⊥

)
∂E
∂t︸ ︷︷ ︸

polarisation current

= ∇×
(

1
μ0

B − p0,� − p0,⊥
B2

0

B⊥ +
∑

s msn0,su0,�,s

B2
0

b̂0 × E︸ ︷︷ ︸
magnetisation

)

+
∑

s msn0,su0,�,s

B2
0

b̂0 × (∇ × E)︸ ︷︷ ︸
polarisation current

−J f, (2.2a)

∂B
∂t

= −∇ × E, (2.2b)

where we note that both Gauss’s law (cf. (5.44a)) and the magnetic Gauss’s law
(cf. (5.44b)) are satisfied provided that they are satisfied initially. Here, ε0 denotes
the vacuum permittivity, μ0 denotes the magnetic vacuum permeability, n0,s and
u0,�,s denote the background particle density and parallel velocity of species s
(as defined in (5.52)), Π⊥ = I3 − b̂0 ⊗ b̂0 is the perpendicular projection matrix
and I3 denotes the 3 × 3 identity matrix, E = E1 and B = B0 + B1 denote the
electric and magnetic field, B⊥ =Π⊥ B denotes the perpendicular part of the mag-
netic field, p0,⊥, p0,� denote the perpendicular and parallel background pressure as
defined in (5.56), and J f denotes the gyrocentre free-current density defined weakly
in (5.39b).

The evolution equation for the electric field E can be obtained from (2.2a) by
multiplying by the inverse of the 3 × 3 matrix shown on the left-hand side. In this
formulation, it is therefore advantageous to let the vacuum permittivity ε0 be finite,
such that this matrix is invertible, resulting in field equations which are entirely local
and thereby result in a local gyrokinetic model which can be integrated explicitly in
time. The fast compressional Alfvén wave is present in this model as we demonstrate
in § 7.3.

Conditions on the background magnetic field B0 and the initial distribution func-
tion f 0

s are derived in § 5.6, ultimately leading to the MHD equilibrium condition
(5.61) for the correct balance in the perpendicular part of the Ampère–Maxwell law
and (5.62) for the remaining parallel component. Moreover, a local energy conser-
vation law for this model in terms of the kinetic and potential energy densities is
derived in § 5.8.

2.3. Quasi-neutral gyrokinetic Darwin approximation
The gyrokinetic Maxwell model enjoys a favourable local structure of the equa-

tions, but it contains the fast compressional Alfvén wave, the fast light wave as well
as the Langmuir wave, which are often undesirable. To this end, we propose a quasi-
neutral gyrokinetic Darwin model in § 6, wherein these fast waves are removed,
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ultimately resulting in the following field equations in the perpendicular Coulomb
gauge (2.3c):

−∇ ·
(∑

s

msn0,s

B2
0

[∇⊥φ1 − u0,�,s b̂0 × (∇ × A1)
])=Rf, (2.3a)

∇ ×
[

1
μ0

∇ × A1 − p0,� − p0,⊥
B2

0

(∇ × A1)⊥ −
∑

s msn0,su0,�,s

B2
0

b̂0 × ∇⊥φ1

]
+

∑
s msn0,s

B2
0

∇⊥λ=J f − 1
μ0

∇ × B0, (2.3b)

∇ ·
(∑

s msn0,s

B2
0

A1,⊥

)
= 0, (2.3c)

where ∇⊥ =Π⊥∇ denotes the perpendicular part of the gradient operator, the
perpendicular part of the perturbed magnetic field is denoted by (∇ × A1)⊥ =
Π⊥∇ × A1, Rf denotes the gyrocentre free-charge density defined weakly in (5.39a)
and λ is the Lagrange multiplier associated with the constraint (2.3c). Due to the
quasi-neutral Darwin approximation, the field equations are no longer local, but we
note that the quasi-neutrality equation (2.3a) is entirely decoupled from the Ampère–
Maxwell law (2.3b) (together with its constraint (2.3c)) if the background distribution
function is symmetric (u0,�,s = 0) and can therefore be solved for independently.

In § 7.3, we demonstrate that in this model, the fast compressional Alfvén wave is
removed. Moreover, the local energy conservation law from § 5.8 also holds for this
model, except that the energy flux vector is altered slightly as discussed in § 6.5.

3. Preliminary transformations

In this section, we establish most of our notation and apply preliminary coordi-
nate transformations which result in the guiding-centre single-particle phase-space
Lagrangian wherein only a background magnetic field is considered.

3.1. Motivation
We start by considering the model for the motion of a charged particle, of charge q

and mass m, in the presence of a stationary background magnetic field B0 = ∇ × A0,
with magnitude B0 = |B0|, where A0 denotes the background vector potential and
|·| denotes the Euclidean norm. The background magnetic field yields a coordinate
system whose orthogonal basis vectors are denoted by (b̂0, ê1, ê2), where b̂0 = B0/B0

and ê1, ê2 are unit vectors orthogonal to b̂0 for which b̂0 = ê1 × ê2. For any vector
S (such as the velocity U), we denote the component parallel to the background
magnetic field as

S� := S · b̂0. (3.1)

The resulting parallel and perpendicular parts of a vector are denoted by

S� := S� b̂0, S⊥ := S − S�. (3.2)

Equivalent notation is used for the perpendicular gradient operator

∇⊥Q := ∇Q − (∇Q · b̂0)b̂0. (3.3)
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It is well known that the following single-particle phase-space Lagrangian L0 is a
model for the motion of a charged particle in physical coordinates

L0 := Γ0 − H0, Γ0 := (q A0 + mU) · Ṙ, H0 := K0, (3.4)

where Γ0 and H0 denote the symplectic and Hamiltonian part of the Lagrangian L0,
respectively. The kinetic energy per particle is given by

K0 = m

2
|U |2. (3.5)

The model is expressed in terms of the phase-space coordinates Z̃ = (R,U) ∈R6,
where R and U denote the particle position and velocity, respectively.

Imposing the principle of least action (this is explained in more detail in § 3.5)
on the single-particle phase-space Lagrangian (3.4) results in the well-known Euler–
Lagrange equations, which in turn yield the equations of motion (EOMs) for a
charged particle in the presence of a stationary background magnetic field

Ṙ = U, U̇ = q

m
U × B0. (3.6)

If B0 is constant, then the solution to the EOMs is

U(t)= U�(0)b̂0 + [
cos(ωct)

(
ê1 êᵀ1 + ê2 êᵀ2

)+ sin(ωct)
(
ê1 êᵀ2 − ê2 êᵀ1

)]
U⊥(0), (3.7)

where we have defined the cyclotron frequency as

ωc := q B0

m
. (3.8)

In many applications, the frequency of interest is much smaller than the cyclotron
frequency and, therefore, the aim is to decouple this fast gyrating motion by applying
coordinate transformations to the single-particle phase-space Lagrangian.

3.2. Field aligned velocity coordinates
The first coordinate transformation that we consider results in coordinates which

are field aligned in velocity space Z = (R,U�, M, Θ), where the parallel velocity
component U�, magnetic moment M and gyro-phase Θ are defined as

U� := U · b̂0, M := mU 2
τ

2B0
, Θ := arctan

(
U · ê1

U · ê2

)
, (3.9)

where Uτ is defined later. Using the gyro-phase, we define the new coordinate system
(b̂0, τ̂ , ρ̂), where τ̂ , ρ̂ are given by

τ̂ := −ê1 sinΘ − ê2 cosΘ, ρ̂ := ê1 cosΘ − ê2 sinΘ (3.10)

and are such that b̂0 = τ̂ × ρ̂. See also figure 1. We denote the tangential and radial
components of a vector field S by

Sτ := S · τ̂ , Sρ := S · ρ̂. (3.11)
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R

R̄ = R−ρ

τ̂

b̂0

ρ
Θ

ê1

ê2

τ̂

ρ0

1

FIGURE 1. Illustration of the guiding-centre coordinate system. We denote the physical particle
position in black and the guiding-centre position in green. The particle moves along the back-
ground magnetic field in the (blue) b̂0 direction, while gyrating in the (red) plane perpendicular
to the background magnetic field, in the direction of the (red) arrow τ̂ . The extremal values of
the ς parameter (introduced in § 4.4) are indicated in grey.

Note that

tanΘ = U · ê1

U · ê2
= Uτ tanΘ − Uρ

Uτ + Uρ tanΘ
=⇒ Uρ = 0, (3.12)

and therefore, the velocity can be expressed in terms of the field aligned velocity
coordinates as

U = U� b̂0 + Uτ τ̂ , (3.13)

where the signed tangential velocity can be obtained from the magnetic moment as
follows:

Uτ = sgn(q)

√
2M B0

m
. (3.14)

Thus, the kinetic energy can be written as K0 = m(U 2
�

+ U 2
τ )/2 = mU 2

�
/2 + M B0.

The single-particle phase-space Lagrangian in field aligned velocity coordinates is
expressed as

L0 = γ 0 · Ż − H0, γ 0,R = q A0 + mU� b̂0 + mUτ τ̂ , H0 = mU 2
�

2
+ M B0, (3.15)

where the remaining components of γ 0 are zero. Note that the symplectic part of
the Lagrangian is now written as γ 0 · Ż, where we interchangeably refer to γ 0 as the
symplectic part of the Lagrangian.

3.3. Small parameters
Before we discuss near-identity phase-space coordinate transformations, we dis-

cuss the corresponding small parameters in which the coordinate transformation is
expanded.

We let L B be the length scale on which the background magnetic field varies and
let � denote the Larmor radius

L B := [B0]
[∇B0] , � := muth

q[B0] , uth :=
√

2kBT

m
, (3.16)

where [Q] is the constant dimensional part of Q and uth, kB, T denote the thermal
velocity, the Boltzmann constant and the temperature, respectively. The ratio of the
two length scales is denoted by εB :

εB := �

L B
, (3.17)
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which is much smaller than one when the background magnetic field has a weak
inhomogeneity (Brizard & Hahm 2007). This is the parameter that is used in the
guiding-centre coordinate transformation.

We let εδ denote the size of the perturbed magnetic field, which is introduced in
§ 4, relative to the background magnetic field, and we use the first subscript of any
function or vector field to indicate the magnitude in terms of εδ:

εδ := [B1]
[B0] , Ql = O

(
εl
δ

)
. (3.18)

It is assumed that the perturbed electric field E1 scales identically such that any
function linear in E1 is O(εδ). This is the parameter that is used in the gyrocentre
coordinate transformation, which is discussed in § 4. The smallness of this parameter
is motivated in § 5.6.

Frequencies are non-dimensionalised using the cyclotron frequency resulting in
the non-dimensional frequency εω:

εω := ω

[ωc] , (3.19)

which is a small parameter in the magnetic fusion devices that we consider (Zoni
& Possanner 2021). The assumed smallness of this parameter plays a crucial role
in the approximation of the perturbed gyrocentre Lagrangian, which is discussed in
§ 4.5.2.

Finally, we non-dimensionalise the perpendicular length scale 2π/k⊥ (that is, the
typical length scale in the plane perpendicular to b̂0) by the Larmor radius which
results in the non-dimensional wavenumber ε⊥:

ε⊥ := k⊥�. (3.20)

We emphasise that this last parameter is not necessarily small; in particular, when
turbulence is considered, we find that ε⊥ ∼ 1. This parameter is used to approximate
the second-order (in εδ) gyrocentre Hamiltonian in § 4.5.3.

3.4. Guiding-centre coordinates
The second coordinate transformation that we consider results in the guiding-

centre coordinates Z̄ = (R̄, Ū�, M̄, Θ̄). This transformation is aimed specifically at
removing the gyro-phase dependence of γ 0 (which depends on the gyro-phase via
the coordinate vector τ̂ (R, Θ)). It results in the desired decoupling of the EOM for
Θ from the other EOMs and thereby also decouples the fast gyrating motion of the
particle.

The leading-order (in εB) contribution to the near-identity coordinate transforma-
tion of the particle position is given by (see figure 1)

R̄ = R − ρ, (3.21)

where the particle radial vector and gyroradius are defined as

ρ := ρρ̂, ρ := mŪτ

q B0
, (3.22)

and we note that a derivation of this well-known result can be found from Brizard
(1990, (2.58)). The transformation of the remaining phase-space coordinates is not
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of interest to us here and, therefore, we do not list them. The resulting guiding-centre
single-particle phase-space Lagrangian is given by Brizard (1990, (2.57)),

L̄0 := γ̄ 0 · ˙̄Z − H̄0, γ̄ 0,R := q A�
0, γ̄0,Θ := mM̄

q
, H̄0 := K̄0, (3.23)

where the effective guiding-centre vector potential is defined as

A�
0 := A0 + mŪ�

q
b̂0 − mM̄

q2
w0, w0 := (∇τ̂ )ρ̂ + 1

2
(∇ × b̂0)� b̂0, (3.24)

and the guiding-centre kinetic energy per particle is given by

K̄0 = mŪ 2
�

2
+ M̄ B0. (3.25)

Here, the gradient of a vector field S is defined component wise as

(∇S)i j := ∂Sj

∂Ri
(3.26)

such that, for example, the components of w0 are given by the matrix-vector product

(w0)i =
3∑

j=1

∂τ̂ j

∂Ri
ρ̂ j + 1

2
(∇ × b̂0)�(b̂0)i . (3.27)

The relevance of the first contribution to the w0 term becomes apparent when
considering the transformation

Θ 
→Θ +Ψ (R̄), êi 
→ T(−Ψ )êi , (3.28)

where the rotation matrix T is such that

T(ψ)τ̂ (R, Θ)= τ̂ (R, Θ +ψ), T(ψ)b̂0 = b̂0. (3.29)

Invariance of the Lagrangian under this transformation reflects that we should be
free to choose the coordinate vectors êi . This is referred to as gyro-gauge invariance.
Indeed, we find that two terms of the symplectic part of the Lagrangian now depend
on the gyro-phase Θ̄ or the coordinate vectors êi , and their sum is given by

−[(∇τ̂ )ρ̂] · ˙̄R + ˙̄Θ = [−(∇τ̂ )ᵀ ˙̄R + ˙̄Θρ̂
] · ρ̂ = −dτ̂

dt
· ρ̂, (3.30)

which is invariant under the transformation given by (3.28).
Note that we can furthermore show that

∂

∂Θ
[(∇τ̂ )ρ̂] = (∇ρ̂)ρ̂ − (∇τ̂ )τ̂ = 1

2
∇(ρ̂ · ρ̂)− 1

2
∇(τ̂ · τ̂ )= 03, (3.31)

from which it follows that w0 and, therefore, also γ̄ 0 are gyro-phase independent.
This implies that we can select the value Θ = π/2 resulting in

w0 = [(∇τ̂ )ρ̂]|Θ=π/2 + 1
2
(∇ × b̂0)� b̂0 = (∇ê1)ê2 + 1

2
(∇ × b̂0)� b̂0. (3.32)

https://doi.org/10.1017/S0022377825100688 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100688


10 R. Remmerswaal, R. Hatzky and E. Sonnendrücker

3.5. Principle of least action
Provided with the guiding-centre single-particle phase-space Lagrangian, we

impose the principle of least action to obtain the corresponding EOMs. That is,
we impose

d
dε

∣∣∣∣
ε=0

∫ t1

t0
L̄0(Z̄ + εδ, ˙̄Z + εδ̇) dt = 0, (3.33)

where δ is arbitrary with δ(t0)= δ(t1)= 06. This results in the well-known Euler–
Lagrange equations that are given by

d
dt

∂ L̄0

∂ ˙̄Z = ∂ L̄0

∂ Z̄
⇐⇒ ˙̄Z = J̄0

(
∂ γ̄ 0

∂t
+ ∂ H̄0

∂ Z̄

)
, (3.34)

where we have defined the Lagrange and Poisson matrices as

W̄0 :=
(
∂ γ̄ 0

∂ Z̄

)ᵀ
− ∂ γ̄ 0

∂ Z̄
, J̄0 := (W̄0)

−1, (3.35)

respectively. Here, the components of the Jacobian matrix are given by (cf. (3.26))(
∂ γ̄ 0

∂ Z̄

)
i j

= ∂ γ̄ 0,i

∂ Z̄ j
(3.36)

and ᵀ denotes the transpose of a matrix.
Provided with the Poisson matrix J̄0, we can define the guiding-centre Poisson

bracket as

{F, G}0 := ∂F
∂ Z̄

·
(
J̄0
∂G
∂ Z̄

)
, (3.37)

which allows the EOMs, as given by (3.34), to be expressed as

˙̄Z = {Z̄, H̄0}0, (3.38)

where we have made use of the time-independence of γ̄ 0 and we evaluate the bracket
component-wise: ({Z̄, H̄0}0)i = {Z̄i , H̄0}0.

When using our expression for the symplectic part of the Lagrangian γ̄ 0, as given
by (3.23), we find that the Lagrange matrix is given by

W̄0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qB�
0 −m b̂0

m

q
w0 03

m b̂0
ᵀ

0 0 0

−m

q
w

ᵀ
0 0 0

m

q

0ᵀ
3 0 −m

q
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.39)

where we have defined the matrix

B�
0 := ∇ A�

0 − (∇ A�
0)

ᵀ (3.40)

for which
B�

0 S = S × B�
0, B�

0 := ∇ × A�
0. (3.41)
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Inversion of the Lagrange matrix, resulting in the Poisson matrix, is somewhat
tedious and is, therefore, described in detail in Appendix A (this coincides with the
result of Parra & Calvo (2011, Appendix E), except that therein, the derivation is
absent). The result is given by

J̄0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− B0

q B0 B�
0,�

b�0
m

03 −w0 × b̂0

q B�
0,�

−(b
�

0)
ᵀ

m
0 0 − b�0 · w0

m

0ᵀ
3 0 0 − q

m
(w0 × b̂0)

ᵀ

q B�
0,�

b�0 · w0

m

q

m
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.42)

where we have defined

b�0 := B�
0

B�
0,�

= b̂0 + 1
q B�

0,�

[
mŪ� b̂0 × κ − mM̄

q
(∇ × w0)⊥

]
, (3.43)

the parallel component of B�
0 is given by

B�
0,� = B0 + mŪ�

q
(∇ × b̂0)� − mM̄

q2
(∇ × w0)� (3.44)

and the curvature vector κ is defined as

κ := (∇ × b̂0)× b̂0. (3.45)

The matrix B0 is defined analogously to (3.41) and, therefore, is given by

B0 := ∇ A0 − (∇ A0)
ᵀ =⇒ B0 S = S × B0. (3.46)

This results in the following guiding-centre Poisson bracket:

{F, G}0 = − b̂0

q B�
0,�

· (∇F × ∇G)+ b�0
m

·
(

∇F ∂G
∂Ū�

− ∂F
∂Ū�

∇G
)

+ q

m

(
∂F
∂Θ̄

∂G
∂ M̄

− ∂F
∂ M̄

∂G
∂Θ̄

)
+ w0 × b̂0

q B�
0,�

·
(
∂F
∂Θ̄

∇G − ∇F ∂G
∂Θ̄

)
+ b�0 · w0

m

(
∂F
∂Θ̄

∂G
∂Ū�

− ∂F
∂Ū�

∂G
∂Θ̄

)
(3.47)

by substituting (3.42) into (3.37). Substitution of (3.23) and (3.47) in (3.37) yields
the following guiding-centre EOMs:

˙̄R = Ū�b
�

0 + M̄

q B�
0,�

b̂0 × ∇B0, (3.48a)

˙̄U� = − M̄

m
b�0 · ∇B0, (3.48b)
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˙̄M = 0, (3.48c)
˙̄Θ =ωc + w0 · ˙̄R. (3.48d)

Note that whereas the guiding-centre EOMs still contain the fast gyrating motion
for which the frequency is given by the cyclotron frequency ωc, this motion has been
decoupled from the EOMs for the guiding-centre position and parallel velocity. This
means that if one is not interested in the gyro-phase Θ̄ , then the corresponding EOM
can be omitted entirely, thereby resulting in a phase-space dimensionality reduction.

3.6. Discussion on guiding-centre coordinates
We compare the guiding-centre EOMs given by (3.48) to the EOMs in physical

coordinates, as given by (3.6). When integrating (3.7) in time, we find that the
physical particle position is given by

R(t)= R(0)+ U�(0)b̂0t

+ 1
ωc

[
sin(ωct)

(
ê1 êᵀ1 + ê2 êᵀ2

)− (cos(ωct)− 1)
(
ê1 êᵀ2 − ê2 êᵀ1

)]
U⊥(0), (3.49)

where we recall that this result holds only if B0 is constant. Under the same
assumption, we find that the guiding-centre EOMs result in

˙̄R = Ū� b̂0,
˙̄U� = 0, ˙̄M = 0, ˙̄Θ =ωc (3.50)

which, upon integration in time, yields

R̄(t)= R̄(0)+ Ū�(0)b̂0t, M̄(t)= M̄(0), Θ̄(t)= Θ̄(0)+ωct. (3.51)

According to Brizard (1990, (2.58)), the velocity coordinates (U�, M, Θ) trans-
form trivially under the guiding-centre coordinate transformation whenever B0 is
constant and, therefore, (3.51) can be written in physical coordinates as

R(t)= R(0)+ U�(0)b̂0t + 1
ωc

[ρ̂(Θ0 +ωct)− ρ̂(Θ0)]Ūτ (0) (3.52)

upon substitution of (3.8), (3.21) and (3.22) and letting Θ(0)=Θ0. Here, we use the
notational convention, as we do throughout this paper, that a superscripted ‘0’ indi-
cates the initial value. By making use of U⊥(0)= Uτ (0)τ̂ (Θ0), which follows from
(3.13), it can be shown that the solutions given by (3.49) and (3.52) are identical,
thereby confirming that we have consistently decoupled the fast gyrating motion
using the guiding-centre coordinate transformation.

4. Gyrocentre single-particle phase-space Lagrangian

Thus far, we have discussed a model for the motion of a charged particle in the
presence of a stationary background magnetic field B0, where the introduction
of the guiding-centre coordinates has resulted in decoupling the fast gyration and
has furthermore resulted in a phase-space dimensionality reduction. However, the
moving charged particle itself deposits a charge and current, and thereby generates
an electromagnetic field, which in turn affects the motion of the particle. In this sec-
tion, we introduce a ‘perturbation’ to the guiding-centre single-particle phase-space
Lagrangian in the form of time-varying electromagnetic potentials, which in § 5,
allows us to derive a self-consistent formulation of the proposed gyrokinetic model.

https://doi.org/10.1017/S0022377825100688 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100688


Journal of Plasma Physics 13

4.1. Perturbed guiding-centre Lagrangian
In physical coordinates, the perturbed guiding-centre Lagrangian is given by

L̄†
1 := q A1(R, t) · Ṙ − qφ1(R, t), (4.1)

where A1 and φ1 are the perturbed vector and scalar potentials resulting in the
perturbed electric and magnetic field, which are assumed to be small compared with
B0, i.e. εδ 
 1. Note that we have added a superscripted † which we have introduced
to distinguish this Lagrangian from the final perturbed guiding-centre Lagrangian in
which we have subtracted the total derivative of some function.

Using (3.21), we find that
R = R̄ + ρ, (4.2)

which expresses the particle position R in terms of the guiding-centre position R̄
and the radial vector ρ. We introduce the following compact notation to indicate
the evaluation of a scalar function, the gradient of a scalar function or a vector field
at the particle position:

Q̊ := Q(R̄ + ρ), ∇̊Q := (∇Q)(R̄ + ρ), S̊τ := S(R̄ + ρ) · τ̂ (R̄). (4.3)

When considering figure 1, one might expect that the coordinate vector τ̂ should be
evaluated at the particle position R̄ + ρ. However, from the derivation of the model,
it turns out that the evaluation is always done at the guiding-centre position R̄ which
is equivalent to the evaluation at the particle position up to an O(εB) contribution.

When making use of (4.3), it follows that (4.1) can be written in guiding-centre
coordinates as

L̄†
1 = q Å1 · ( ˙̄R + ρ̇)− qφ̊1. (4.4)

Note that both ρ and Å1 (via ρ) depend on the gyro-phase Θ̄ , and, therefore, we
are in need of a third coordinate transformation that is aimed at removing the gyro-
phase dependence of the perturbed guiding-centre Lagrangian and results in the
gyrocentre phase-space coordinates ¯̄Z = ( ¯̄R, ¯̄U�,

¯̄M, ¯̄Θ).

4.2. Gyrocentre coordinate transformation
Before we can perform the gyrocentre coordinate transformation, however, we

must briefly discuss Lie transformations (Dragt & Finn 1976; Littlejohn 1982; Cary
& Littlejohn 1983), which are used for this purpose. We consider second-order Lie
transformations, which are phase-space coordinate transformations of the form

Z̄ = ¯̄Z − ¯̄G1 + 1
2
∂ ¯̄G1

∂ ¯̄Z
¯̄G1 − ¯̄G2, (4.5)

where ¯̄G1 and ¯̄G2 are the first- and second-order generating vectors.
The resulting gyrocentre Lagrangian is defined such that

¯̄L( ¯̄Z, ˙̄̄Z)= L̄(Z̄, ˙̄Z)+ d ¯̄S

dt
+ O

(
ε3
δ

)
, (4.6)

where we have added the total derivative of a generating function ¯̄S = ¯̄S1 + ¯̄S2 to the
gyrocentre Lagrangian

¯̄L 
→ ¯̄L + d ¯̄S

dt
, (4.7)
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resulting in the following additions to the Hamiltonian and symplectic part:

¯̄H 
→ ¯̄H − ∂ ¯̄S

∂t
, ¯̄γ 
→ ¯̄γ + ∂ ¯̄S

∂ ¯̄Z
. (4.8)

This results in the following gyrocentre Hamiltonian ¯̄H = ¯̄H0 + ¯̄H1 + ¯̄H2:

¯̄H0 = H̄0, (4.9a)

¯̄H1 = H̄1 − ∂ H̄0

∂ ¯̄Z
· ¯̄G1 − ∂ ¯̄S1

∂t
, (4.9b)

¯̄H2 = H̄2 − ∂ H̄0

∂ ¯̄Z
· ¯̄G2 −

[
∂

∂t

(
γ̄ 1 − 1

2
∂ γ̄ 0

∂ ¯̄Z
¯̄G1

)
+ ∂

∂ ¯̄Z

(
H̄1 − 1

2
∂ H̄0

∂ ¯̄Z
· ¯̄G1

)]

· ¯̄G1 − ∂ ¯̄S2

∂t
, (4.9c)

whereas the symplectic part ¯̄γ = ¯̄γ 0 + ¯̄γ 1 + ¯̄γ 2 is given by

¯̄γ 0 = γ̄ 0, (4.10a)

¯̄γ 1 = γ̄ 1 + W̄0
¯̄G1 + ∂ ¯̄S1

∂ ¯̄Z
, (4.10b)

¯̄γ 2 = γ̄ 2 + W̄0
¯̄G2 + 1

2

(
W̄1 + ¯̄W1

) ¯̄G1 + ∂ ¯̄S2

∂ ¯̄Z
. (4.10c)

We use the Lagrange matrix W̄0, as given by (3.35) and (3.39), and have equivalently
defined the perturbed Lagrange matrices as

W̄1 :=
(
∂ γ̄ 1

∂ ¯̄Z

)ᵀ
− ∂ γ̄ 1

∂ ¯̄Z
, (4.11a)

¯̄W1 :=
(
∂ ¯̄γ 1

∂ ¯̄Z

)ᵀ
− ∂ ¯̄γ 1

∂ ¯̄Z
= W̄1 +

[
∂

∂ ¯̄Z

(
W̄0

¯̄G1

)]ᵀ − ∂

∂ ¯̄Z

(
W̄0

¯̄G1

)
. (4.11b)

These transformation rules are classical results that can be obtained using Lie trans-
form methods (Cary & Littlejohn 1983), but can also be derived using Taylor series
expansions, as shown in Appendix B. Note that the contribution due to the first-
order generating function vanishes in (4.11b) because the skew-symmetric part of
the Hessian matrix of ¯̄S1 vanishes.

4.3. General form of the gyrocentre coordinate transformation

The generating vectors ¯̄G1 and ¯̄G2, which are used to define the gyrocentre coor-
dinate transformation, are chosen to satisfy some desired form of the symplectic
part ¯̄γ 1, ¯̄γ 2 of the Lagrangian by inverting (4.10b) and (4.10c), respectively. This
yields a transformation of the Hamiltonian part of the Lagrangian, as given by (4.9),
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where the generating vectors re-introduce gyro-phase dependence in the gyrocen-
tre Hamiltonian. The role of the generating functions ¯̄S1 and ¯̄S2 is to absorb the
gyro-phase-dependent part of the resulting gyrocentre Hamiltonian.

4.3.1. First-order transformation
Without specifying the desired form of ¯̄γ 1, we find that this approach results in the
following first-order generating vector field:

¯̄G1 = J̄0

(
¯̄γ 1 − γ̄ 1 − ∂ ¯̄S1

∂ ¯̄Z

)
, (4.12)

which, upon substitution in (4.9b), results in the following first-order Hamiltonian:

¯̄H1 = H̄1 + (
¯̄γ 1 − γ̄ 1

) · ˙̄Z − ∂ ¯̄S1

∂t
− { ¯̄S1,

¯̄H0

}
0
= qψ1 − ∂ ¯̄S1

∂t
− { ¯̄S1,

¯̄H0

}
0
, (4.13)

where we have used (3.34) and (3.37), denote by ˙̄Z the unperturbed guiding-centre
EOMs (3.48) evaluated at the gyrocentre coordinate ¯̄Z and we have defined the
effective potential as

qψ1 := H̄1 + (
¯̄γ 1 − γ̄ 1

) · ˙̄Z. (4.14)

We let the generating function ¯̄S1 absorb the gyro-phase dependent part of ψ1

such that (4.13) results in

∂ ¯̄S1

∂t
+ { ¯̄S1,

¯̄H0

}
0
= qψ̃1 =⇒ ¯̄H1 = q〈ψ1〉, (4.15)

where we define the gyro-average and the resulting gyro-phase-dependent part of
some function Q as

〈Q〉 := 1
2π

∫ 2π

0
Q d ¯̄Θ, Q̃ := Q − 〈Q〉, (4.16)

which is defined component-wise for vector fields. It follows that the first-order part
of the gyrocentre single-particle phase-space Lagrangian is given by

¯̄L1 = ¯̄γ 1 · ˙̄̄Z − ¯̄H1 = ¯̄γ 1 · ˙̄̄Z + 〈γ̄ 1 − ¯̄γ 1〉 · ˙̄Z − 〈H̄1〉. (4.17)

It is insightful to consider the two limiting cases of (4.17): if ¯̄γ 1 = 06, then the
gyrocentre coordinate transformation transforms the entire symplectic part of the
first-order guiding-centre Lagrangian to the Hamiltonian part of the Lagrangian
(this is referred to as the Hamiltonian formulation)

¯̄γ 1 = 06 =⇒ ¯̄H1 = 〈H̄1〉 − 〈γ̄ 1〉 · ˙̄Z (4.18a)

and, conversely, if ¯̄γ 1 = 〈γ̄ 1〉, then the symplectic and Hamiltonian parts of the
first-order guiding-centre Lagrangian simply end up being gyro-averaged

¯̄γ 1 = 〈γ̄ 1〉 =⇒ ¯̄H1 = 〈H̄1〉. (4.18b)
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4.3.2. Second-order transformation
We follow the same approach for deriving the second-order Hamiltonian. That is,
we solve (4.10c) for ¯̄G2 resulting in

¯̄G2 = J̄0

[
¯̄γ 2 − 1

2

(
W̄1 + ¯̄W1

) ¯̄G1 − ∂ ¯̄S2

∂ ¯̄Z

]
, (4.19)

without specifying ¯̄γ 2 and by making use of γ̄ 2 = 06. This allows us to express the
second-order Hamiltonian (4.9c) in the following way:

¯̄H2 = ¯̄γ 2 · ˙̄Z + T 1 · ¯̄G1 − ∂ ¯̄S2

∂t
− { ¯̄S2, H̄0

}
0
, (4.20)

where we have made use of H̄2 = 0, and we have defined

T 1 := 1
2

(
W̄1 + ¯̄W1

) ˙̄Z − ∂

∂t

(
γ̄ 1 − 1

2
∂ γ̄ 0

∂ ¯̄Z
¯̄G1

)
− ∂

∂ ¯̄Z

(
H̄1 − 1

2
∂ H̄0

∂ ¯̄Z
· ¯̄G1

)
(4.21)

by making use of (3.34).
As with the first-order generating function, the second-order generating function

¯̄S2 is defined such that it absorbs the gyro-phase-dependent part of ¯̄H2 resulting in

∂ ¯̄S2

∂t
+ { ¯̄S2, H̄0

}
0
= ˜̄̄γ 2 · ˙̄Z + ˜T 1 · ¯̄G1 (4.22)

and, therefore,
¯̄H2 = 〈 ¯̄γ 2〉 · ˙̄Z + 〈T 1 · ¯̄G1〉. (4.23)

To summarise, we have thus far considered a general gyrocentre coordinate trans-
formation, where we are still free to choose the symplectic parts ¯̄γ 1 and ¯̄γ 2. The
resulting first- and second-order Hamiltonians are given by

¯̄H1 = 〈H̄1〉 + 〈 ¯̄γ 1 − γ̄ 1〉 · ˙̄Z (4.24)

as well as (4.23), respectively as follows from (4.14) and (4.15). For consistency,
we require that ¯̄γ 1 and ¯̄γ 2 are O(εδ) and O

(
ε2
δ

)
, respectively. As the purpose of

the gyrocentre coordinate transformation is to decouple the gyro-phase from the
perturbed Lagrangian, we must also require ˜̄̄γ 1 = ˜̄̄γ 2 = 06. Moreover, we require the
magnetic moment to remain an invariant in gyrocentre coordinates. The requirement
on the coordinate transformation to obtain invariance of the magnetic moment can
be found by considering the Euler–Lagrange equation for ¯̄Θ

d
dt

∂ ¯̄L

∂
˙̄̄
Θ

= ∂ ¯̄L

∂ ¯̄Θ
=⇒ d ¯̄γΘ

dt
= 0 =⇒ ˙̄̄M = − q

m

d
dt

(
¯̄γ1,Θ + ¯̄γ2,Θ

)
, (4.25)

which shows that ¯̄γ1,Θ + ¯̄γ2,Θ = 0 is sufficient for obtaining invariance of ¯̄M . In what
follows, we discuss a fourth requirement on ¯̄γ 1 and ¯̄γ 2, which ensures that the
resulting gyrocentre single-particle phase-space Lagrangian is gauge-invariant.
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4.4. Gauge invariance
Gauge invariance refers to invariance under the gauge transformation

φ1 
→ φ1 − ∂η

∂t
, A1 
→ A1 + ∇η (4.26)

for some scalar function η. The electromagnetic fields, as given by

E1 := −∇φ1 − ∂A1

∂t
, (4.27a)

B1 := ∇ × A1 (4.27b)

are invariant under the gauge transformation (4.26), from which it follows that any
(part of a) model which is expressed in terms of the electromagnetic fields is auto-
matically gauge-invariant. If a model is gauge-invariant, it means that it does not
matter which gauge condition is used to fix the function η, which is what we would
expect from a physical point of view.

Following the discussion by Burby & Brizard (2019), we introduce the following
parametrised perturbed Lagrangian:

L̄†,ς
1 := q Å

ς

1 · ( ˙̄R + ς ρ̇)− qφ̊ς1 , (4.28)

where we have defined
Q̊ς := Q(R̄ + ςρ). (4.29)

The ς parameter, therefore, interpolates from the guiding-centre position (ς = 0) to
the particle position (ς = 1), see also figure 1. It follows that the perturbed guiding-
centre Lagrangian, as given by (4.1), coincides with ς = 1 and can therefore be
written as

L̄†
1 = L̄†,ς=1

1 = L̄†,ς=0
1 + (

L̄†,ς=1
1 − L̄†,ς=0

1

)= L̄†,ς=0
1︸ ︷︷ ︸

L̄†,ZLR
1

+
∫ 1

0

dL̄†,ς
1

dς
dς︸ ︷︷ ︸

L̄†,FLR
1

, (4.30)

which can therefore be written as the sum of a zero Larmor radius (ZLR)
contribution and a finite Larmor radius (FLR) contribution.

Computation of the ς derivative of the parametrised Lagrangian yields

dL̄†,ς
1

dς
= q[(∇̊ς

A1)
ᵀρ] · ( ˙̄R + ς ρ̇)+ q Å

ς

1 · ρ̇ − q∇̊ς
φ1 · ρ. (4.31)

Furthermore, we note that

d
dt

(
ρ · Å

ς

1

)= ρ̇ · Å
ς

1 + ρ · d
dt

A(R̄ + ςρ, t)

= ρ̇ · Å
ς

1 + ρ ·
[
∂ Å

ς

1

∂t
+ (∇̊ς

A1)
ᵀ( ˙̄R + ς ρ̇)

]
, (4.32)

from which it follows that

dL̄†,ς
1

dς
− q

d
dt

(
ρ · Å

ς

1

)= qρ · [( ˙̄R + ς ρ̇)× B̊
ς

1 + E̊
ς

1

]
, (4.33)
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and therefore the FLR part of the perturbed guiding-centre Lagrangian can, up to a
total derivative, be expressed in terms of the gauge-invariant electromagnetic fields.

In what follows, we omit the contribution by the total derivative, as this does not
alter the resulting EOMs after imposing the principle of least action. We denote the
resulting perturbed guiding-centre Lagrangian by L̄1 for which

L̄1 := L̄†
1 − q

d
dt

∫ 1

0
ρ · Å

ς

1 dς. (4.34)

Therefore,
L̄1 = (

γ̄ ZLR
1 + γ̄ FLR

1

) · ˙̄Z − (
H̄ZLR

1 + H̄FLR
1

)
, (4.35a)

where the symplectic part γ̄ 1 := γ̄ ZLR
1 + γ̄ FLR

1 is given by

γ̄ ZLR
1,R := q A1, γ̄ FLR

1,R := q
∫ 1

0
B̊
ς

1 dς × ρ, γ̄ FLR
1,Θ := −qρ2

∫ 1

0
ς B̊

ς

1 dς · b̂0, (4.35b)

and the Hamiltonian part H̄1 := H̄ZLR
1 + H̄FLR

1 is given by

H̄ZLR
1 := qφ1, H̄FLR

1 := −q
∫ 1

0
E̊
ς

1 dς · ρ. (4.35c)

We distinguish the ZLR contributions from the FLR contributions. Note that each
of the FLR contributions is gauge-invariant, as they are expressed in terms of the
electromagnetic fields.

When considering the Lie coordinate transformation given by (4.9) and (4.10),
we find that the following yields a sufficient condition for gauge invariance of the
resulting gyrokinetic model. This is a new result which provides a general approach
for the development of gauge-invariant gyrokinetic models. A proof can be found in
Appendix C.

THEOREM 1 (Sufficient condition for gauge invariance). The gyrocentre single-
particle phase-space Lagrangian (to second-order) is gauge-invariant up to a total
derivative

¯̄L
(4.26)
→ ¯̄L + q

(
∇η · ˙̄̄R + ∂η

∂t

)
= ¯̄L + q

dη
dt

(4.36)

provided that ¯̄γ 1 − γ̄ 1 and ¯̄γ 2 are gauge-invariant.

REMARK 1 (Cross-terms of O(εδεB)). In the expression for γ̄ FLR
1,R in (4.35b), we have

neglected the O(εδεB) contribution. Neglecting this term is consistent with the leading-
order (in O(εB)) approximation of the particle position in terms of the guiding-centre
coordinates as given in (3.21).

When a conventional gyrokinetic ordering is used (Parra & Calvo 2011), where, in
particular, it is assumed that εδ = εB , we find that the neglected cross-terms are of the
same order as terms that eventually end up in the second-order gyrocentre Hamiltonian
¯̄H2 = O

(
ε2
δ

)
(see also § 4.5.3). Hence, when a conventional gyrokinetic ordering is used,

one should retain these terms, as is done by Parra & Calvo (2011). In the present work,
such terms are not retained in favour of clarity and simplicity of the resulting model,
and we note that such cross-terms are also not included in the state-of-the-art parallel-
only gyrokinetic models used in practice (Brizard & Hahm 2007; Kleiber et al. 2016).
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However, the cross-terms can easily be included without breaking the structure of the
proposed model, as we now demonstrate.

A more accurate approximation of the guiding-centre coordinate transformation is
considered, which is given by

R = R̄ + ρ + r, (4.37)

where r is an O(εB) correction (i.e. r= −ρ1 in Brizard (1990, (2.58))). When taking
this additional correction into account, the FLR part of the perturbed guiding-centre
Lagrangian becomes (the ZLR part is unchanged)

q
∫ 1

0
(ρ + r) · [( ˙̄R + ς ρ̇ + ς ṙ)× B̊

ς

1 + E̊
ς

1

]
dς, (4.38)

which, when neglecting O(εδε2
B) terms, results in (cf. (4.33))

L̄FLR
1 = q

∫ 1

0

(
B̊
ς

1 · [ρ × ( ˙̄R + ςρτ̂ ˙̄Θ)]+ ρ · E̊
ς

1

)
dς

+ q
∫ 1

0

[
B̊
ς

1 ·
(
r× [ ˙̄R + ςρτ̂ ˙̄Θ]+ ρ ×

[
ς(∇ρ)ᵀ ˙̄R + ς

∂r

∂Θ
˙̄Θ
])

+ r · E̊
ς

1

]
dς,

(4.39)

where the second row contains all the cross-terms which we do not include in the
present work. We note that the definition of Q̊ς (cf. (4.29)) is altered according
to (4.37) when this more accurate approximation to the perturbed guiding-centre
Lagrangian is considered. Moreover, care should be taken that O(ε2

B) terms are
also included in the guiding-centre Lagrangian L̄0 when such an approach is
followed.

4.5. A family of gauge-invariant gyrocentre coordinate transformations
Thus far, we have considered a general gyrocentre coordinate transforma-

tion, which is defined by the symplectic part of the gyrocentre Lagrangian: ¯̄γ 1
and ¯̄γ 2. In what follows, we let ¯̄γ 2 = 06. Therefore, we find that consistency
(with respect to the Lie transformation), gyro-phase independence, invariance
of the gyrocentre magnetic moment (cf. (4.25)) and gauge invariance of the
resulting gyrocentre Lagrangian requires the following four conditions to be
satisfied:

¯̄γ 1 = O(εδ), ˜̄̄γ 1 = 06, ¯̄γ1,Θ = 0, ¯̄γ 1 − γ̄ 1
(4.26)
→ ¯̄γ 1 − γ̄ 1, (4.40)

respectively.

4.5.1. Overview
Traditionally (Brizard 1990; Brizard & Hahm 2007), the following choice was
made:

¯̄γ 1,R = q〈 Å1〉 (4.41)

with all other components equal to zero. Note that this corresponds to ¯̄γ 1,R = 〈γ̄ †
1,R〉,

where γ̄
†
1 denotes the symplectic part of the perturbed guiding-centre Lagrangian

before the total derivative has been omitted, see also (4.34). This choice satisfies the
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first, second and third of our requirements, but it does not lead to a gauge-invariant
model:

¯̄γ 1 − γ̄
†
1

(4.26)
→ ¯̄γ 1 − γ̄
†
1 −

⎛⎜⎜⎜⎜⎜⎜⎝
q ˜̊∇η

0
qρ

2M̄
ρ̂ · ∇̊η

qρτ̂ · ∇̊η

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.42)

This approach leads to a gyrokinetic model in which the compressional Alfvén wave
can be included by considering a high-frequency approximation for the first-order
generating function ¯̄S1, as proposed by Qin et al. (1999).

More recently, the following gyrocentre coordinate transformation was proposed
by Burby & Brizard (2019):

¯̄γ 1 = γ̄ ZLR
1 =⇒ ¯̄γ 1,R = q A1, (4.43)

which satisfies all of our requirements since

¯̄γ 1 − γ̄ 1 = −γ̄ FLR
1 , (4.44)

which is gauge-invariant as the FLR parts of the perturbed guiding-centre
Lagrangian are gauge-invariant. Rather than keeping only the ZLR part of the sym-
plectic part of the perturbed guiding-centre Lagrangian, we can also include the FLR
effects resulting in

¯̄γ 1 = γ̄ ZLR
1 + 〈γ̄ FLR

1 〉 = 〈γ̄ 1〉. (4.45)

Gauge invariance follows from the gauge invariance of γ̄ FLR
1 , and we have gyro-

averaged the FLR contribution to ensure that our second requirement is satisfied.
We note that (4.45) results in a transformation for which the first-order generat-
ing vector is, in some sense, smallest. This is of interest because the gyrokinetic
model results from a truncated coordinate transformation, where the truncation
error is smaller if the coordinate transformation is smaller (see also the discussion in
Appendix E). In particular, using (4.12), we find that

¯̄γ 1 = 〈γ̄ 1〉 =⇒ 〈 ¯̄G1〉 = J̄0

〈
¯̄γ 1 − γ̄ 1 − ∂ ¯̄S1

∂ ¯̄Z

〉
= 06, (4.46)

and, therefore, the coordinate transformation given by (4.45) contains, to first-order,
only a fluctuating gyro-phase-dependent part.

Henceforth, we consider the following parametrised form of the symplectic part
of the gyrocentre Lagrangian:

¯̄γ 1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

q A1 + ξRq〈|B̊ς

1 × ρ|〉
0

0

−ξΘ qρ2

2

〈〈
B̊ς

1,�

〉〉

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.47)
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where ξR, ξΘ are real-valued parameters that define the coordinate transforma-
tion. The choice (ξR, ξΘ)= (0, 0) yields the model proposed by Burby & Brizard
(2019), (ξR, ξΘ)= (1, 1) results in (4.45) and we note that this general form is
gauge-invariant regardless of the value of ξR, ξΘ . Here, we have defined the radially
averaged gyro-average as

〈|Q̊ς |〉 :=
∫ 1

0
〈Q̊ς〉 dς = 1

2π

∫ 1

0

∫ 2π

0
Q(¯̄r + ςρ) d ¯̄Θ dς (4.48)

and the disc average as (cf. (4.29))

〈〈Q̊ς〉〉 := 2〈|ς Q̊ς |〉 = 1
π

∫ 1

0

∫ 2π

0
ςQ(¯̄r + ςρ) d ¯̄Θ dς, (4.49)

which is defined component-wise for vector fields. The latter operator is referred to
as the disc average (Porazik & Lin 2011) because it exactly yields the average value
of the ‘gyro-disc’ shown in figure 1.

The parametrised coordinate transformation results in the following first-order
gyrocentre Lagrangian:

¯̄L1 = γ̄ ZLR
1 · ˙̄̄Z + 〈

γ̄ FLR
1,R

〉 · [ξR
˙̄̄R + (1 − ξR)

˙̄R]+ 〈
γ̄ FLR

1,Θ

〉[
ξΘ

˙̄̄
Θ + (1 − ξΘ)

˙̄Θ]
− qφ1 + qρ

∫ 1

0

〈
E̊ς

1,ρ

〉
dς, (4.50)

where we have substituted (4.35c) and (4.47) into (4.24). This shows that the param-
eters ξR, ξΘ put the symplectic FLR part of the perturbed guiding-centre Lagrangian
either in the symplectic ((ξR, ξΘ)= (1, 1)) or in the Hamiltonian ((ξR, ξΘ)= (0, 0))
part of the first-order gyrocentre Lagrangian.

We can already ensure that the gyrocentre magnetic moment is an invariant by
imposing our third condition, where we note that

˙̄̄M = − q

m

d
dt
( ¯̄γ1,Θ + ¯̄γ2,Θ)= ξΘ

d
dt

(
¯̄M

〈〈
B̊ς

1,�

〉〉
B0

)
(4.51)

by substituting (4.47) into (4.25). Hence, requiring ¯̄M to remain invariant in
gyrocentre coordinates implies that ξΘ = 0, which we use from here on out.

4.5.2. First-order transformation
The first-order gyrocentre Hamiltonian is found by substituting (3.48) and (4.35b)
into (4.50)

¯̄H1 := qφ1 − qρ
〈∣∣E̊ς

1,ρ

∣∣〉− (1 − ξR)qρ ¯̄U�

〈∣∣B̊ς

1,τ

∣∣〉+ ¯̄M
〈〈

B̊ς

1,�

〉〉
, (4.52)

where we have neglected the O(εB) contributions due to ˙̄R if ξR �= 1.
We need an explicit expression for the first-order generating vector ¯̄G1 for the

computation of the second-order Hamiltonian as follows from (4.23). Recall that the
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first-order generating vector ¯̄G1 is given by (4.12), which itself requires an expression
for the first-order generating function ¯̄S1. From (4.15), it follows that

1
ωc

∂ ¯̄S1

∂t︸ ︷︷ ︸
O(εω)

+
¯̄U�

ωc
b̂0 · ∇ ¯̄S1︸ ︷︷ ︸
O(εω)

+ ∂ ¯̄S1

∂ ¯̄Θ︸︷︷︸
O(1)

= q

ωc
ψ̃1, (4.53)

where we have substituted the zeroth-order Hamiltonian as given by (3.23) and have
neglected the O(εB) contributions from the guiding-centre Poisson bracket (3.47).
Furthermore, we have indicated the magnitude of each of the terms, which is a result
from non-dimensionalisation using

[t] = 1
ω
, [U�] = ω

k�

, (4.54)

where we recall that the non-dimensional frequency εω is defined in (3.19). Using
(4.14) and (4.35), we find that

qψ̃1 = ˜̄HFLR
1 − ˙̄Z · ˜̄γ FLR

1 = −ρ
∫ 1

0

˜̊Fς

1,ρ dς +ωcqρ
2

∫ 1

0
ς
˜̊Bς

1,� dς, (4.55)

where we have introduced the Lorentz force

F1 := q
(
E1 + ¯̄U� b̂0 × B1

)
, F̊

ς

1 := q
(
E̊
ς

1 + ¯̄U� b̂0 × B̊
ς

1

)
. (4.56)

When considering approximations of (4.53), it is important to keep gauge invari-
ance of the resulting model in mind. In particular, when considering the proof of
Theorem 1 as given in Appendix C, we find that gauge invariance of the first-order
generating function ¯̄S1 is needed, and this is proven by observing that ¯̄S1 is the solu-
tion of a linear PDE (4.15) with a gauge-invariant right-hand side given by (4.55).
When obtaining an approximation to ¯̄S1, it is therefore essential that we preserve its
gauge invariance, which can rather easily be achieved by simply keeping the gauge-
invariant parts of the right-hand side ψ̃1 together. The consequence of preserving
gauge invariance is that the high-frequency contribution from ∂A1/∂t , which itself
comes from the E1 term in the Lorentz force (4.56), is kept on the right-hand side
of (4.53). Keeping this term results in a high-frequency compressional Alfén wave,
as discussed in § 6.

We make several long wavelength approximations to (4.55), starting with

F̊ς

1,ρ = F1,ρ + O(ε⊥) =⇒ ˜̊Fς

1,ρ = F̊ς

1,ρ − 〈
F̊ς

1,ρ

〉= F1,ρ + O(ε⊥) (4.57)

as follows from a Taylor series expansion of F1 centred around the gyrocentre posi-
tion ¯̄R (see the discussion in Appendix D), where we recall that the non-dimensional
perpendicular wave number ε⊥ is as defined in (3.20). Similarly, we find that˜̊Bς

1,� = B̊ς

1,� − 〈B̊ς

1,�〉 = O(ε⊥) (4.58)

and, therefore, neglecting O(ε⊥) contributions to the right-hand side of (4.55) and
neglecting the O(εω) part of the left-hand side of (4.53), we find that the first-order
generating function can be approximated by

∂ ¯̄S1

∂ ¯̄Θ
= − ρ

ωc
F1,ρ ⇐⇒ ¯̄S1 = ρ

ωc
F1,τ . (4.59)
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This allows us to approximate the first-order generating vector explicitly as

¯̄G1 = J̄0

(
¯̄γ 1 − γ̄ 1 − ∂ ¯̄S1

∂ ¯̄Z

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
B�

0,�

b̂0 × ∫ 1
0

(
ξR

〈
B̊
ς

1 × ρ
〉− B̊

ς

1 × ρ
)
dς + ρB1,ρ

B0
b̂0

− q

m
b̂0 · ∫ 1

0

(
ξR

〈
B̊
ς

1 × ρ
〉− B̊

ς

1 × ρ
)
dς

−q2ρ2

m

∫ 1
0 ς B̊ς

1,�dς − ρ

B0
F1,ρ

− ρ

2 ¯̄M B0

F1,τ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.60)

where we have substituted (4.35b), (4.47) and (4.59) into (4.12), and have further-
more neglected all spatial derivatives of the perturbed electromagnetic fields for the
evaluation of the Poisson bracket { ¯̄Z, ¯̄S1}0.

From (4.60), it follows that the gyro-average of all except one of the components
of the first-order generating vector vanishes if we choose ξR = 1,

〈 ¯̄G1〉ξR=1 =

⎛⎜⎜⎜⎜⎜⎝
03

0

−
¯̄M

B0

〈〈
B̊ς

1,�

〉〉
0

⎞⎟⎟⎟⎟⎟⎠. (4.61)

This choice, therefore, in some sense, yields the smallest transformation to first-order
in εδ, which is relevant as the magnitude of the coordinate transformation determines
the magnitude of the truncation error of the resulting gyrokinetic model. More
specifically, in Appendix E, we show that this choice minimises the Euclidean norm
of the gyro-average of the first-order generating vector, resulting in the minimisation
of the truncation error of the gyrocentre coordinate transformation.

When considering (4.61), we find that only the magnetic moment is transformed
non-trivially, which is a consequence of choosing ξΘ = 0, which, in turn, was required
to ensure that the magnetic moment remains invariant in gyrocentre coordinates,
as is shown in (4.51). It follows that the gyrocentre coordinate transformation is
smallest for ξR = 1, which, as discussed previously, is of interest as it affects the
accuracy of the resulting model. For this reason, we choose the parameter value
ξR = 1 resulting in the following symplectic part of the gyrocentre Lagrangian:

(ξR, ξΘ)= (1, 0) =⇒ ¯̄γ 1,R = 〈γ̄ 1,R〉 = q A1 + q
〈∣∣B̊ς

1 × ρ
∣∣〉, (4.62)

with all other components equal to zero.

REMARK 2 (Interpreting the gyrocentre magnetic moment). From (4.61), it follows
that the gyrocentre magnetic moment can be interpreted as follows:

〈M̄( ¯̄Z)〉 := ¯̄M − 〈 ¯̄G1,M〉 + O
(
ε2
δ

)≈ ¯̄M

(
1 +

〈〈
B̊ς

1,�

〉〉
B0

)
=⇒ ¯̄M ≈ msŪ 2

τ

2
(
B0 + 〈〈

B̊ς

1,�

〉〉) ,
(4.63)
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where we find that the parallel component of the full magnetic field appears in the
denominator rather than just B0 (cf. (3.9)):

B0 + 〈〈
B̊ς

1,�

〉〉= b̂0 · (B0 + 〈〈
B̊
ς

1

〉〉)
. (4.64)

Thus, it is crucial to include the contribution of the perturbed magnetic field to make
¯̄M an invariant of motion.

4.5.3. Second-order transformation
When assuming ¯̄γ 2 = 06, as we do throughout this discussion, we find that (4.23)
results in

¯̄H2 = 〈T 1 · ¯̄G1〉, (4.65)

where T 1 is as defined in (4.21). The approximation of T 1, followed by substitution
of the approximated first-order generating vector ¯̄G1 and subsequent gyro-averaging
results in the following second-order gyrocentre Hamiltonian:

¯̄H2 :=
¯̄M

2B0
|B1,⊥|2 − m

2q2 B2
0

|F1,⊥|2, (4.66)

which agrees with the result from Burby & Brizard (2019) (hence, with (ξR, ξΘ)=
(0, 0)) upon substitution of the expression for the Lorentz force (4.56). The
derivation of (4.66) is rather tedious and can be found in Appendix F.

It should be noted that many terms have been neglected in the derivation of the
second-order Hamiltonian ¯̄H2. In particular, only the terms of leading order in εB

and ε⊥ have been kept, resulting in a ZLR approximation of ¯̄H2 wherein O(εB) terms
have been neglected. Even though there is no fundamental limitation that keeps us
from including such higher-order terms, we have thus far opted not to do so, thereby
keeping the resulting equations somewhat tractable, more easily interpretable as well
as more suitable for discretisation. We view the proposed model as a pragmatic first
step towards a ‘fully gyrokinetic’ gauge-invariant model wherein such terms are kept
also at second-order in εδ, i.e. in the second-order gyrocentre Hamiltonian.

4.5.4. Gyrocentre single-particle phase-space Lagrangian
When combining the symplectic and Hamiltonian parts of the zeroth-order
Lagrangian defined by (3.23), the first-order gyrocentre Lagrangian defined by (4.47)
and (4.52) (with (ξR, ξΘ)= (1, 0)), as well as the second-order gyrocentre Lagrangian
defined by ¯̄γ 2 = 06 and (4.66), we find that the total gyrocentre single-particle
phase-space Lagrangian is given by

¯̄L = q(A�
0 + A�

1) · ˙̄̄R + m ¯̄M

q
˙̄̄
Θ − m ¯̄U 2

�

2
− qφ1 + qρ

〈∣∣E̊ς

1,ρ

∣∣〉− ¯̄M
(
B0 + 〈〈

B̊ς

1,�

〉〉)
−

¯̄M

2B0
|B1,⊥|2 + m

2q2 B2
0

|F1,⊥|2, (4.67)

where we have defined the FLR corrected vector potential as

A�
1 := A1 + 〈|(∇̊ς × A1)× ρ|〉. (4.68)
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4.6. Principle of least action
For the derivation of the EOMs, we follow the same approach as followed in § 3.5

and, therefore, we must compute the perturbed gyrocentre Lagrange matrix ¯̄W1,
which follows from the skew-symmetric part of the Jacobian matrix of ¯̄γ 1, as defined
in (4.47). We note that the unperturbed gyrocentre Lagrange matrix coincides with
the unperturbed guiding-centre Lagrange matrix W̄0, given by (3.39), except that it
is evaluated at gyrocentre coordinates. From (4.47), it follows that

∂ ¯̄γ 1

∂ ¯̄Z
=

⎛⎜⎜⎜⎜⎜⎝
q(∇ A�

1)
ᵀ 03 −w1 03

0ᵀ
3 0 0 0

0ᵀ
3 0 0 0

0ᵀ
3 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , (4.69)

where we let w1 be defined as

w1 := − q

2 ¯̄M

(〈∣∣B̊ς

1 × ρ
∣∣〉+ 1

2
〈〈[(∇̊ς

B1)
ᵀρ] × ρ〉〉

)
. (4.70)

In addition, we define the FLR corrected electromagnetic fields by

E�
1 := E1 + ∇〈|ρ E̊ς

1,ρ|〉 + 〈|(∇̊ς × E1)× ρ|〉, (4.71a)

B�
1 := ∇ × A�

1 = B1 + ∇ × 〈∣∣B̊ς

1 × ρ
∣∣〉, (4.71b)

where we recall that the radially averaged gyro-average 〈| · |〉 is defined in (4.48).
These fields, which end up being used in the EOMs in (5.23), are referred to as ‘FLR
corrected’ electromagnetic fields because they can be approximated as (cf. (4.27))

E�
1 = 〈E̊1〉 + O(εB), (4.72a)

B�
1 = 〈B̊1〉 + O(εB) (4.72b)

by making use of (D.10) and (D.12). We note that (4.72) only holds due to our
choice of the parameter value ξR = 1.

The resulting Lagrange matrix is given by (cf. (3.39))

¯̄W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

qB� −m b̂0
m

q
w 03

m b̂0
ᵀ

0 0 0

−m

q
wᵀ 0 0

m

q

0ᵀ
3 0 −m

q
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.73)

where we have defined the effective gyrocentre vector potential as (see also (3.24))

A� := A�
0 + A�

1 = A0 + m ¯̄U�

q
b̂0 − m ¯̄M

q2
w0 + A1 + 〈∣∣B̊ς

1 × ρ
∣∣〉, B� := ∇ × A�

(4.74)
as well as w = w0 + w1. The matrix B� is defined analogously to (3.41).

https://doi.org/10.1017/S0022377825100688 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100688


26 R. Remmerswaal, R. Hatzky and E. Sonnendrücker

For the computation of the gyrocentre Poisson bracket, we must invert the gyro-
centre Lagrange matrix. Using the result of Appendix A, we find that the gyrocentre
Poisson matrix is given by

¯̄J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− B0

q B0 B�
�

b�

m
03 −w × b̂0

q B�
�

−(b
�
)ᵀ

m
0 0 − b� · w

m

0ᵀ
3 0 0 − q

m

(w × b̂0)
ᵀ

q B�
�

b� · w

m

q

m
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.75)

where we have defined (cf. (3.43))

b� := B�

B�
�

= b̂0 + 1
B�
�

[
m ¯̄U�

q
b̂0 × κ − m ¯̄M

q2
(∇ × w0)⊥ + B�

1,⊥

]
, (4.76)

and note that B�
�

can be written explicitly as (cf. (3.44))

B�
�
= B�

0,� + B�
1,� = B0 + m ¯̄U�

q
(∇ × b̂0)� − m ¯̄M

q2
(∇ × w0)� + B�

1,�. (4.77)

Analogous to (3.37), we define the gyrocentre Poisson bracket as

{F, G} := ∂F
∂ ¯̄Z

·
(

¯̄J
∂G
∂ ¯̄Z

)
(4.78)

such that the EOMs, similar to (3.38), are given by

˙̄̄Z = ¯̄J
∂ ¯̄γ

∂t
+ { ¯̄Z, ¯̄H}, (4.79)

where the zeroth-order term ¯̄H0 of the Hamiltonian is defined in (3.23), the first-
order term ¯̄H1 is defined in (4.52) and the second-order term is given by (4.66).
Substitution of (4.75) in (4.79) results in

˙̄̄R = 1
m

∂ ¯̄H

∂ ¯̄U�

b� + 1
q B�

�

b̂0 ×
(

∇ ¯̄H + q
∂A�

1

∂t

)
, (4.80a)

˙̄̄U� = − 1
m

b� ·
(

∇ ¯̄H + q
∂A�

1

∂t

)
, (4.80b)

˙̄̄M = 0, (4.80c)

˙̄̄
Θ = q

m

∂ ¯̄H

∂ ¯̄M
+ w · ˙̄̄R . (4.80d)

Here, we note that, even though the EOM for the gyro-phase ¯̄Θ is non-trivial, it does
not have to be solved as none of the other terms on the right-hand side of the EOMs
depend on the gyro-phase.
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5. Gyrokinetic Maxwell model

Thus far, we have derived a gyrokinetic model for single-particle motion for
a given electromagnetic field, which includes a time-dependent perturbation. This
forms the basis for a gyrokinetic approximation of the coupled and self-consistent
Vlasov–Maxwell system of equations, wherein the time-dependent perturbation of
the electromagnetic field results from the motion of the charged particles themselves.

In this section, we first introduce the particle distribution function for each of the
species, which we then use to formulate the self-consistent action principle following
the work of e.g. Sugama (2000). Provided with this action principle, we then derive
the resulting EOMs for the particles as well as the corresponding field equations for
the electromagnetic field. The field equations are considered in a strong formulation
wherein we recognise the macroscopic Maxwell equations. We discuss equilibrium
solutions as well as the well-posedness of the field equations. The section is concluded
with a discussion on energy conservation.

As we exclusively discuss the gyrokinetic model, which is expressed in gyrocentre
coordinates, we drop the ¯̄· notation and simply write Z rather than ¯̄Z.

5.1. Particle distribution function
Several particle species are considered, which we denote by the subscript ‘s’, where

usually s ∈ {i, e} for the ion species ‘i’ and the electron species ‘e’. Each species has
its own particle mass ms and charge qs . A particle distribution function is considered,
for each particle species s, which is denoted by fs(r, u�, μ, t) and coincides with the
number of particles per unit phase-space volume. The particle distribution function
is split into its initial background part and time-dependent part,

fs(r, u�, μ, t)= f 0
s (r, u�, μ)+ δ fs(r, u�, μ, t) (5.1)

with δ fs(r, u�, μ, t0)= 0. Note that the particle distribution function is gyrotropic,
i.e. it does not depend on the gyro-phase, which is a consequence of assuming that
the initial particle distribution function f 0

s is gyrotropic. This, in turn, can be justified
by noting that the non-dimensionalisation of the Vlasov equation for f 0

s implies that
∂ f 0

s /∂θ = O(εω) by making use of (4.54).
We use the lowercase letter z = (r, u�, μ, θ) to refer to the Eulerian equiv-

alent of the Lagrangian phase-space coordinate Z. The dependence of a
particle’s Lagrangian characteristic on the initial phase-space coordinate z0 =
(R(t0),U�(t0), M(t0), Θ(t0)) is denoted in the following way (in the absence of
collisions):

Z(t; z0, t0)= Z(t) with Z(t0)= z0. (5.2)

The particle distribution function then satisfies (by definition)

fs(Z(t; z0, t0), t)= f 0
s (z

0), (5.3)

where we denote by f 0
s the particle distribution function at t0. Hence, the following

Vlasov equation is satisfied:

d fs

dt
= 0 ⇐⇒ ∂ fs

∂t
+ Ṙ · ∇ fs + U̇�

∂ fs

∂u�

= 0, (5.4)

where we consider the EOMs Ż given by (4.80) to be evaluated at the Eulerian
phase-space coordinate z.
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Recall that the physical coordinates, as defined in § 3.1, were denoted by
Z̃. The field-theoretic Lagrangian, which is discussed in § 5.2, is formulated
using integrals over physical space, which has to be transformed to integrals
over the gyrocentre coordinates. For instance, we consider the integral of a
function F̃(x, v, t)=F(r, u�, μ, θ, t) (note that we now write x, v for the phys-
ical position and velocity, to distinguish them from the gyrocentre position
and velocity, which are now denoted by r, u since we have omitted the ¯̄·
notation), ∫

R3

∫
Ω

F̃ d3x d3v =
∫

FJs d6z, (5.5)

where the integration limits and differentials are defined as∫
d6z :=

∫
R3

∫
Ω

d3r d3u,
∫

d3u :=
∫ 2π

0

∫ ∞

0

∫ ∞

−∞
du� dμ dθ, (5.6)

and Js denotes the Jacobian of the coordinate transformation from physical to
gyrocentre coordinates,

Js := det
∂ z̃
∂ z

= B�
s,�

ms
, (5.7)

which is derived in Appendix G (a proof can also be found from Parra & Calvo
(2011, Appendix F)) and can be written explicitly by making use of (4.77).

We find that the gyrocentre EOMs, as given by (4.80), imply that the phase-space
volume is conserved. A proof is given in Appendix H and can also be found from
Parra & Calvo (2011, Appendices G and H).

THEOREM 2 (Gyrocentre Liouville theorem). The phase-space volume is conserved:

∂Js

∂t
+ ∇ · (Js Ṙ)+ ∂

∂u�

(JsU̇�)= 0. (5.8)

Furthermore, integrals of the form (5.5) can be expressed in terms of the initial phase-
space coordinates in the following way:∫

fsFJs d6z =
∫

f 0
s (z

0)F(Z(t; z0, t0))Js(z0, t0) d6z0, (5.9)

where an absence of arguments implies evaluation at (z, t).

By combining (5.4) and (5.8), we find the conservative form of the Vlasov
equation

∂

∂t
( fsJs)+ ∇ · ( fsJs Ṙ)+ ∂

∂u�

( fsJsU̇�)= 0. (5.10)

Note that integration of the conservative form of the Vlasov equation over velocity
space, multiplication by qs and subsequent summation over the species s results in
the free-charge continuity equation

∂Rf

∂t
+ ∇ ·J f = 0, (5.11)
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where the gyrocentre free charge and current density are defined as

Rf :=
∑

s

qs

∫
fsJs d3u, (5.12a)

J f :=
∑

s

qs

∫
fs Ṙ Js d3u, (5.12b)

respectively. It implies local conservation of the free charge.

5.2. Low’s action
We use a variational formulation to obtain a structure-preserving self-consistent

Vlasov–Maxwell system of equations. Such a variational formulation is in particular
suitable for our foreseen structure-preserving discretisation using the finite element
exterior calculus (FEEC) (Kraus et al. 2017).

The starting point is Low’s action (Low 1958) in gyrocentre coordinates

A(Z, φ1, A1) :=
∫

L(Z, φ1, A1) dt, (5.13a)

where the field-theoretic Lagrangian is given by

L(Z, φ1, A1)=
∑

s

∫
f 0
s (z

0)Ls(Z(t; z0, t0), Ż(t; z0, t0))Js(z0, t0) d6z0

+ ε0

2

∫
|E1|2 d3x − 1

2μ0

∫
|B0 + B1|2 d3x . (5.13b)

Here, integration over the time coordinate t is done over the interval [t0, t1], where
t1 denotes the final time, Ls denotes the gyrocentre Lagrangian corresponding to the
species s and μ0 denotes the magnetic permeability in vacuum. Note that we keep
a finite value of the vacuum permittivity ε0 as this favourably yields field equations
which can be integrated explicitly in time. This is discussed in more detail in § 5.5.
In § 6, a low-frequency approximation of this model is proposed, wherein the limit
of quasi-neutrality ε0 → 0 is considered, thereby eliminating fast waves which would
otherwise be present.

We may transform the first integral in (5.13b) by making use of Theorem 2.
Rather than transforming the integral resulting from each of the contributions of
the gyrocentre Lagrangian, we split the gyrocentre Lagrangian in two parts, Ls =
Lpart

s + L field
s , referred to as the particle and field part, respectively. Subsequently, we

transform and linearise the contribution from the field part∫
f 0
s (z

0)Ls(Z(t; z0, t0), Ż(t; z0, t0))Js(z0, t0) d6z0

≈
∫

f 0
s (z

0)Lpart
s (Z(t; z0, t0), Ż(t; z0, t0))Js(z0, t0) d6z0 +

∫
f 0
s L field

s J0,s d6z. (5.14)

Furthermore, we have defined the (unperturbed) guiding-centre Jacobian as
(cf. (5.7))

J0,s := B0

ms
, (5.15)
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where we have neglected the O(εδ) and O(εB) terms from the Jacobian. Note
that this is a modelling choice which does not break the structure of the
resulting equations. The field-theoretic Lagrangian, as given by (5.13b), is now
approximated by

L(Z, φ1, A1) :=
∑

s

∫
f 0
s (z

0)Lpart
s (Z(t; z0, t0), Ż(t; z0, t0))Js(z0, t0) d6z0

+
∑

s

∫
f 0
s L field

s J0,s d6z + ε0

2

∫
|E1|2 d3x

− 1
2μ0

∫
|B0 + B1|2 d3x . (5.16)

The field part of the Lagrangian does not affect the EOMs of the particles directly,
but only affects the potentials via the field equations, which are derived in § 5.3.2.
The reason for splitting the field-theoretic Lagrangian in this way is to simplify the
resulting discretised model. For instance, we want to obtain linear field equations
and, thus, have linearised the corresponding field part of the Lagrangian. Note
that neglecting the time-dependent part δ fs of the particle distribution function is
justified only if δ fs is small compared with f 0

s , which is the case e.g. when studying
microturbulence in the core of fusion devices (Garbet et al. 2010).

We recall that the gyrocentre single-particle phase-space Lagrangian is given by
(4.67); the following splitting is considered:

Lpart
s (Z, Ż) := qs A�

s · Ṙ + ms M

qs
Θ̇ − H part

s (Z), L field
s (z) := −H field

s (z) (5.17a)

for
H part

s (Z) := ms

2
U 2

�
+ M

(
B0 + 〈〈

B̊ς

1,�

〉〉)+ qsφ1 − qsρ
〈∣∣E̊ς

1,ρ

∣∣〉 (5.17b)

and
H field

s (z) := μ

2B0
|B1,⊥|2 − ms

2q2
s B2

0

|F1,⊥|2. (5.17c)

5.3. Principle of least action
In what follows, we compute the EOMs for the gyrocentre characteristic Z as

well as the field equations for the potentials φ1, A1. We follow the principle of least
action, which states that the EOMs and field equations are stationary points of
the action. The following notation is introduced for computing the variation of the
action with respect to the gyrocentre coordinate

δA

δZ
[δ] := d

dε

∣∣∣∣
ε=0

A(Z + εδ, φ1, A1), (5.18)

which we define analogously for the other arguments of the action.

5.3.1. Equations of motion
The EOMs are defined by setting the variation of the action with respect to the
gyrocentre coordinate to zero for all suitable trajectories δ with δ(t0)= δ(t1)= 06.
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It follows that the trajectories satisfy

∑
s

∫
f 0
s (z

0)

[(
∂Lpart

s

∂Z
− d

dt

∂Lpart
s

∂ Ż

)
· δ + d

dt

(
∂Lpart

s

∂ Ż
· δ

)
︸ ︷︷ ︸

=0

]
Js(z0, t0) d6z0 dt = 0

(5.19)
by making use of partial integration in time. As this must hold for all trajectories δ,
it follows that the EOMs satisfy the Euler–Lagrange equations (see e.g. (3.34)) and,
therefore, the EOMs are of the form given by (4.80), except that only the particle
part of the Hamiltonian, as defined in (5.17b), is used on the right-hand side.

We compute the required partial derivatives of H part
s . The term appearing in the

EOMs given by (4.80) can be written as

∇H part
s + qs

∂A�
1

∂t
= M∇(B0 + 〈〈

B̊ς

1,�

〉〉)− qs E�
1 (5.20)

by substituting (4.71a), (4.27), (4.68) and (5.17b). Furthermore, we made use of
Faraday’s law,

∂B1

∂t
= −∇ × E1, (5.21)

which follows from the definition of the electromagnetic fields (4.27).
The second partial derivative that is required for the EOMs is the one with respect

to the parallel velocity and is given by

∂H part
s

∂U�

= msU�. (5.22)

Substitution of these results in (4.80) yields (we only show the relevant and non-
trivial EOMs)

Ṙ = U�b
�

s − 1
qs B�

s,�

b̂0 × [
qs E�

1 − M∇(B0 + 〈〈
B̊ς

1,�

〉〉)]
, (5.23a)

U̇� = 1
ms

b�s · [qs E�
1 − M∇(B0 + 〈〈

B̊ς

1,�

〉〉)]
, (5.23b)

where we recall that b�s is defined in (4.76) and B�
s,� is given by (4.77). When substi-

tuting (4.76), we find that the EOM for the gyrocentre position R can be written as

Ṙ = U�

(
b̂0 +

magnetic flutter︷ ︸︸ ︷
B�

1,⊥
B�

s,�

)
+ 1

qs B�
s,�

[ExB drift︷︸︸︷
qs E�

1 −
grad-B drift︷ ︸︸ ︷

M∇(B0 + 〈〈
B̊ς

1,�

〉〉)+
curvature drift︷ ︸︸ ︷
msU

2
�
κ

− ms MU�

qs
(∇ × w0)× b̂0︸ ︷︷ ︸

gyro-gauge invariance

]
× b̂0,

(5.24)

where we have indicated the physical meaning of each of the terms. The EOM for the
gyrocentre parallel velocity U�, as given by (5.23b), contains two contributions: an
acceleration due to the perturbed parallel component of the FLR corrected electric
field E�

1 as well as the contribution due to the magnetic mirror force.
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We recall that the FLR corrected electromagnetic fields E�
1 and B�

1 are approxi-
mations of their respective gyro-averaged counterparts 〈E̊1〉 and 〈B̊1〉 according to
(4.72). It should be noted that letting B�

1 = 〈B̊1〉 and/or E�
1 = 〈E̊1〉 implies that the

model no longer results from an action principle, thereby resulting in a loss of energy
conservation. Even if εB = 0, one must be aware that the identities given by (4.72)
result from application of the gradient Theorem (D.10), which is not likely to hold
numerically.

5.3.2. Field equations
We give Low’s action explicitly for our parameter choice (ξR, ξΘ)= (1, 0) such that
we can find the field equations by computing the appropriate variations

A(Z, φ1, A1)=
∑

s

∫
f 0
s (z

0)

[
qs

(
A�

0,s + A1 + 〈∣∣B̊ς

1 × ρ
∣∣〉) · Ṙ + ms M

qs
Θ̇

− ms

2
U 2

�
− M

(
B0 + 〈〈

B̊ς

1,�

〉〉)− qsφ1 + qsρ
〈∣∣E̊ς

1,ρ

∣∣〉]Js(z0, t0) d6z0dt

+
∑

s

∫
f 0
s

[
ms

2B2
0

|E1,⊥|2 − msu�

B2
0

b̂0 · (E1 × B1)−
(
μB0 − msu

2
�

) |B1,⊥|2
2B2

0

]
J0,s d6z dt

+ ε0

2

∫
|E1|2 d3x dt − 1

2μ0

∫
|B0 + B1|2 d3x dt, (5.25)

where we have substituted (4.68), (5.17) and (5.16) into (5.13a). Recall that the
electromagnetic fields are defined in (4.27).

Each of the field equations can be derived by setting the corresponding variation
with respect to the function to zero. We start by computing Gauss’s law, which
results from setting the variation of Low’s action (5.25) with respect to the scalar
potential φ1 to zero. That is, Gauss’s law is derived from

δA

δφ1
[Λ] = 0, (5.26)

where Λ is a scalar test function. We note that the substitution φ1 
→ φ1 + εΛ results
in

E1 
→ E1 − ε∇Λ. (5.27)

This results in the following Gauss law:

−
∫
(ε0 E1 +P1) · ∇Λ d3r =

∑
s

qs

∫
fs〈Λ̊〉Js d6z, (5.28)

where we have used Liouville’s theorem to transform the integral over fs , assumed
the test function to be independent of time and have defined the electric polarisation
as

P1 :=
∑

s

∫
f 0
s P1,sJ0,s d3u, P1,s := ms

qs B2
0

F1,⊥, (5.29)

where we recall that F1 denotes the Lorentz force as defined in (4.56). In simplifying
the right-hand side of (5.28), we have made use of the gradient Theorem (D.8),

Λ+ ρ〈|ρ̂ · ∇̊ς
Λ|〉 = 〈Λ̊〉. (5.30)
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We note that, because the gradient theorem in this form does not hold numeri-
cally, it is important to discretise the gyro-average using the left-hand side of (5.30),
whenever gauge invariance is to be preserved numerically.

The Ampère–Maxwell law is derived by imposing

δA

δA1
[Λ] = 0, (5.31)

where Λ is a vector-valued test function and we note that the substitution A1 
→
A1 + εΛ results in

E1 
→ E1 − ε
∂Λ

∂t
, B1 
→ B1 + ε∇ × Λ. (5.32)

This results in

1
μ0

∫
(B0 + B1) · (∇ × Λ) d3x =

∫ [
∂

∂t
(ε0 E1 +P1)+ ∇ ×M1

]
· Λ d3r

+
∑

s

∫
fs

[
qs Ṙ · (Λ + ∇〈|ρΛ̊ς

ρ |〉 + 〈|(∇̊ς × Λ)× ρ|〉)−μ〈〈(∇̊ς × Λ)�〉〉
]
Js d6z,

(5.33)

where we made use of partial integration in time, substituted (5.10) and (5.15), and
have defined the magnetisation as

M1 :=
∑

s

∫
f 0
s M1,sJ0,s d3u, M1,s := −u� b̂0 × P1,s − μ

B0
B1,⊥. (5.34)

We define the rest-frame magnetic and electric dipole moments per particle as

ms := −μ
(

b̂0 + B1,⊥
B0

)
, (5.35a)

p1,s := ms

qs B2
0

F1,⊥ = ms

B2
0

(
E1,⊥ + u� b̂0 × B1

)
, (5.35b)

where we have included the intrinsic guiding-centre magnetic moment −μb̂0

(Bittencourt 2004, (4.35)) coming from the ZLR part of −μ〈〈(∇̊ς × Λ)�〉〉 (the last
term on the right-hand side of (5.33)). The minus sign in (5.35a) reflects the fact
that the plasma is diamagnetic as the magnetic dipole moment points in the oppo-
site direction to the magnetic field. It follows that the magnetic and electric dipole
moments per particle are given by

Ms =ms − v0 × p1,s, (5.36a)

P1,s = p1,s + 1
c2

v ×ms︸ ︷︷ ︸
=0

(5.36b)

by making use of (5.29) and (5.34). Here, c = 1/
√
ε0μ0 denotes the speed of

light, and we have defined the velocity v as

v :=
(

b̂0 + B1,⊥
B0

)
u�, (5.37)
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which includes the contribution from the magnetic flutter as found in (5.24). The
expressions for the magnetic and electric dipole moments per particle can now
directly be compared with those found from Brizard & Hahm (2007, (34) and (35))
as well as with the expressions of a moving electric and magnetic dipole described
by Fisher (1971) and Hnizdo (2012).

REMARK 3. In obtaining (5.33), we have made use of partial integration in time,
thereby omitting the following term from the variation of the action:

δA

δA1
[Λ] =

∫
(the Ampère–Maxwell law) dt −

∑
s

qs

∫
∂

∂t

(
fsJsρ〈|Λ̊ς

ρ |〉
)
d6z dt

−
∑

s

∫
f 0
s

ms

qs B2
0

∂

∂t
(F1,⊥ · Λ)J0,s d6z dt. (5.38)

We explicitly state this term as it plays a crucial role in the derivation of the conserved
energy in § 5.8.

5.4. Strong formulation of the field equations
The previously discussed field equations were given in a weak formulation, which

is how they naturally arise from the variational formulation. The weak formulation
is exactly what we need for a future FEEC (Kraus et al. 2017) discretisation of
the field equations; however, when it comes to physical interpretation, it is not the
most convenient way to present the equations. To this end, we consider the strong
formulation of the field equations, where we moreover highlight the macroscopic
Maxwell structure of the equations.

In essence, the strong formulation of Gauss’s law is the equation which, once
multiplied by the scalar test function Λ and integrated over the spatial domain,
results in Gauss’s law (5.28) after partial integration. Here, we note that the right-
hand side of Gauss’s law (5.28) contains the gyro-average of the test function. Hence,
to find the strong formulation, we must define the gyro-average adjoint of the free
charge density Rf, which is defined such that∫

RfΛ d3r :=
∑

s

qs

∫
fs〈Λ̊〉 Js d6z (5.39a)

for all suitable test functions Λ. A similar definition for the gyro-average adjoint of
the free current density holds∫

J f · Λ d3r :=
∑

s

∫
fs

[
qs Ṙ · (Λ + ∇〈|ρΛ̊ς

ρ |〉 + 〈|(∇̊ς × Λ)× ρ|〉)
−μ〈〈(∇̊ς × Λ)�〉〉

]
Js d6z (5.39b)

for which ∫
J f · Λ d3r =

∑
s

qs

∫
fs〈U � · Λ̊〉 Js d6z + O(εB) (5.40)

by making use of (D.10) and (D.7). Here, we have defined the effective gyrocentre
velocity as (cf. (3.13))

U � := Ṙ + uτ τ̂ (5.41)
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for which 〈U �〉 = Ṙ. The tangential velocity component uτ used in (5.41) is in gyro-
centre coordinates, i.e. it is defined according to (3.14) evaluated at gyrocentre
coordinates. Similarly, the gyroradius ρ is defined according to (3.22) evaluated at
gyrocentre coordinates.

We recall that the contribution to the free current density given by −μ〈〈(∇̊ς ×
Λ)�〉〉 on the right-hand side of (5.39b) results in the intrinsic guiding-centre magnetic
moment and was included in (5.35a) to define the rest-frame magnetic moment. The
complicated term on the right-hand side of (5.39b) that multiplies Ṙ is essential in
§ 5.7 for showing that the field equations are compatible. The key property of this
term is found by letting Λ = ∇Λ, as one does when computing the divergence of the
adjoint of the free current density. This results in∫

J f · ∇Λ d3r =
∑

s

qs

∫
fs Ṙ · ∇〈Λ̊〉Js d6z, (5.42)

where we have made use of the gradient Theorem (D.8) and shows that the gradient
of the gyro-average of the test function is found rather than the gyro-average of the
gradient. This equality is essential in showing that the gyro-average adjoint of the
free-charge continuity equation also holds,∫ (

∂Rf

∂t
+ ∇ ·J f

)
Λ d3r = 0 =⇒ ∂Rf

∂t
+ ∇ ·J f = 0 (5.43)

as follows from multiplying the conservative form of the Vlasov equation (5.10)
by qs and the gyro-averaged scalar test function 〈Λ̊〉, integrating over phase-space,
by making use of partial integration, and by substituting the gyro-average adjoints
defined in (5.39).

We can write the strong formulation of the field equations as

∇ ·D =Rf, (5.44a)
∇ · B = 0, (5.44b)

∇ × E = −∂B
∂t
, (5.44c)

∇ ×H= ∂D
∂t

+J f, (5.44d)

where the constitutive relations defining the displacement and magnetising field are
given by

D := ε0 E1 +P1, (5.44e)

H := 1
μ0

B −M1. (5.44f )

The displacement current density is given by ∂D/∂t . We recall that the polarisation
P1 and magnetisation M1 are defined in (5.29) and (5.34), respectively, and we
note that B = B0 + B1 as well as E = E1. In addition to Gauss’s law (5.44a) and
the Ampère–Maxwell law (5.44d), we have included Faraday’s law (5.44c) as well
as the magnetic Gauss law (5.44b). The latter two equations are satisfied automat-
ically when a potential formulation is used, but due to the gauge invariance of the
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proposed model, we are able to express the proposed model entirely in terms of the
electromagnetic fields, which thereby requires (5.44b) and (5.44c).

Writing the field equations in this way shows that the proposed gauge-invariant
gyrokinetic model can in fact be interpreted as a material property in the macro-
scopic Maxwell equations. As with the vacuum Maxwell equations, we find that
substituting the partial time derivative of Gauss’s law (5.44a) in the divergence of
the Ampère–Maxwell law (5.44d) yields the free-charge continuity equation (5.43).
Hence, the field equations possess a constraint which is automatically satisfied as a
consequence of the particle EOMs. The fact that precisely this constraint arises in
the field equations is a consequence of gauge invariance of the gyrocentre single-
particle phase-space Lagrangian (cf. (4.36)) as discussed in § 5.7 and, in particular,
Remark 4.

5.5. Structure of the initial value problem
The Ampère–Maxwell law (5.44d) can be written as (upon substitution of

Faraday’s law (5.44c))

(ε0I3 + C(1)Π⊥)
∂E
∂t

= ∇ ×H−J f + C(u�)b̂0 × (∇ × E), (5.45)

where the perpendicular projection matrix is defined as

Π⊥ := I3 − b̂0 ⊗ b̂0, (5.46)

and we have defined the spatially varying functions C(ζ ) as

C(ζ ) := 1
B2

0

∑
s

ms

∫
f 0
s ζJ0,s d3u. (5.47)

We note that the positivity of C(1) implies that the matrix on the left-hand side can
be trivially inverted, provided that the vacuum permittivity ε0 is positive. This results
in an evolution equation for the electric field E, which, combined with the evolution
equation for the magnetic field B (i.e. Faraday’s law (5.44c)) as well as the particle
EOMs (5.23), yields an initial value problem (IVP) for the unknowns (E, B, fs)
(where the solution of the characteristics Z(t; z0, t0) define the distribution function
fs). We note that solving this IVP requires an initial particle distribution function
f 0
s that has to be compatible with the background magnetic field B0 (as discussed

in § 5.6), an initial electric field E0 that satisfies Gauss’s law (5.44a) and an initial
magnetic field B0 that satisfies the magnetic Gauss law (5.44b).

Moreover, it is worth noting that having a positive vacuum permittivity introduces
the light wave as well as the Langmuir wave into the proposed model, which sounds
problematic due to their high velocity. However, the light wave does not travel
at the vacuum speed of light, but rather at the speed of light in the gyrokinetic
plasma, which is much lower than the vacuum speed of light (Burby et al. 2015).
The presence of such fast waves (including the compressional Alfvén wave, as
we demonstrate in § 7.3), however, implies that explicit time integration yields a
stringent time step constraint and, to this end, implicit time-integration methods
might be of interest. A quasi-neutral Darwin approximation to the gyrokinetic model
can be considered when such fast waves are not of interest, as discussed in § 6.

In the limit of quasi-neutrality (i.e. ε0 = 0), the light wave as well as the Langmuir
wave are removed from the model, while the compressional Alfvén wave remains.
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In this limit, we find that the displacement field is perpendicular to the background
magnetic field D ⊥ b̂0 (by substituting (4.56) and (5.29))

ε0 = 0 =⇒ D = C(1)E⊥ + C(u�)b̂0 × B. (5.48)

It follows that (5.45) yields an evolution equation for E⊥ only and not for E�. This
means that upon discretising (5.44) in space, we find a differential algebraic system
of equations (DAEs) rather than a system of ordinary differential equations (ODEs).

Here, we follow the works of Chen et al. (2021) and McMillan (2023), and com-
pute the time derivative of the parallel component of the Ampère–Maxwell law
(5.44d), followed by substituting Faraday’s law (5.44c). This results in the following
constraint equation for E1,� (i.e. not an evolution equation):

1
μ0

b̂0 · (∇ × [∇ × (
E1,� b̂0

)])= −∂J�
f

∂t

− b̂0 ·
[
∇ ×

(
1
μ0

∇ × E1,⊥ + ∂M1

∂t

)]
. (5.49)

In general, the magnetisation M1 also depends on B1,⊥, and therefore its time
derivative depends on E1. However, this dependency vanishes when an isotropic
background pressure is considered (see also (7.12)), as is often the case. It is worth
noting that, for a constant background magnetic field, the operator on the left-
hand side of (5.49) reduces to the perpendicular Laplacian ∇ · ∇⊥E1,�. Hence, if
so desired, an equation for E1,� can be obtained, but we leave the details of a
corresponding numerical solution strategy for a future paper.

5.6. Equilibrium solutions of the field equations
The gyrocentre coordinate transformation discussed in § 4 is based on the assump-

tion that εδ 
 1, which we have not yet justified. For this assumption to hold, we
require that the initial particle distribution function f 0

s and background magnetic
field B0 are close to equilibrium. That is, at t = t0, we require that the field equa-
tions approximately hold true to leading order in εδ, i.e. when setting the perturbed
fields to zero. This results in equilibrium solutions of the field equations.

We assume that the background distribution function is nearly symmetric in u�,
that is, it is of the form

f 0
s (r, u�, μ)= f 0

s
,S(r, u� − δus, μ) with f 0

s
,S(r, u�, μ)= f 0

s
,S(r,−u�, μ),

(5.50)
where εU,s := δus/uth,s is assumed to be small. This results in

n0,su0,�,s =
∫

f 0
s
,SδusJ0,s d3u = n0,sδus, (5.51)

where we have defined the background particle density and parallel velocity as

n0,s :=
∫

f 0
s J0,s d3u, (5.52a)

u0,�,s := 1
n0,s

∫
f 0
s u�J0,s d3u. (5.52b)
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Throughout the discussion on the equilibrium solutions, we neglect O(ε2
B,s) and

O(εB,sεU,s) terms, and we consider the ZLR limit ε⊥ → 0.
For Gauss’s law (5.44a), we find that the leading order part is given by

0 =
∑

s

qsn0,s, (5.53)

where we have made use of (5.12a). The background distributions must result in an
(approximately) quasi-neutral plasma to justify εδ 
 1.

The leading order part of the ZLR limit of the Ampère–Maxwell law (5.44d) is
given by

1
μ0

∇ × B0 =J f,ZLR
0 , (5.54)

where the ZLR limit of the background gyrocentre free-current density results in

J f,ZLR
0 =

∑
s

qsn0,sδus b̂0 + pS
0,�

B0
∇ × b̂0 + pS

0,⊥
B2

0

b̂0 × ∇B0 − ∇ ×
(

pS
0,⊥
B0

b̂0

)
(5.55)

by making use of (3.48a), (5.39b) and (5.51). The background pressures are defined
as

p0,� :=
∑

s

ms

∫
f 0
s u2

�
J0,s d3u, (5.56a)

p0,⊥ :=
∑

s

ms

2

∫
f 0
s u2

τJ0,s d3u = B0

∑
s

∫
f 0
s μJ0,s d3u (5.56b)

with equivalent definitions for the pressures resulting from the symmetric dis-
tribution function: pS

0,�, pS
0,⊥. Moreover, we have made use of (5.51) as well as

∫
f 0
s u2

�
J0,s d3u =

∫
f 0
s
,Su2

�
J0,s d3u + O(ε2

U,s), (5.57a)∫
f 0
s μJ0,s d3u =

∫
f 0
s
,SμJ0,s d3u + O(εB,sεU,s), (5.57b)

to conclude that p0,� = pS
0,� and p0,⊥ = pS

0,⊥ up to O(ε2).
We find that the perpendicular part of the ZLR limit of the background gyrocentre

free-current density can alternatively be written as

J f,ZLR
0,⊥ = 1

B0
b̂0 × (∇ · P0), P0 := pS

0,� b̂0 ⊗ b̂0 + pS
0,⊥(I3 − b̂0 ⊗ b̂0), (5.58)

where we have made use of

Q(∇ × b̂0)⊥ = b̂0 × ∇ · (Q b̂0 ⊗ b̂0). (5.59)

When combined with the Ampère–Maxwell law, this results in the equilibrium
condition (as can also be found in e.g. Grad (1966))

(∇ × B0)× B0 =μ0(∇ · P0)⊥, (5.60)
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which, for an isotropic background distribution with p0 = pS
0,� = pS

0,⊥, results in the
MHD equilibrium condition (Grad 1966, 1967)

(∇ × B0)× B0 =μ0∇ p0, (5.61)

wherein we have imposed b̂0 · ∇ p0 = 0, as usually required by the tools for com-
puting MHD equilibria. The condition on the parallel derivative of the background
pressure implies that the background particle density and temperature must be a
function of the flux surface label.

MHD equilibria can be computed using software tools such as VMEC (Hirshman
& Whitson 1983) and GVEC (Hindenlang et al. 2019), which for a given geometry
and pressure find a magnetic field B0 such that (5.61) holds. However, we note that
(5.61) and (5.60) only ensure that the perpendicular part of the Ampère–Maxwell
law is satisfied and, to this end, we consider the parallel component of the Ampère–
Maxwell law

1
μ0

b̂0 · (∇ × B0)=
∑

s

qsn0,sδus + pS
0,� − pS

0,⊥
B2

0

b̂0 · (∇ × B0) (5.62)

as follows substitution of the parallel component of (5.55). Correctly satisfying the
parallel component of the Ampère–Maxwell law is crucial for the modelling of, for
example, kink modes (Dudkovskaia et al. 2023). To this end, we note that the shift
δus(r) (which may be a function of the gyrocentre position) is the only unknown in
(5.62) and, therefore, this equation can be used to impose a constraint on the shift to
satisfy the parallel component of the Ampère–Maxwell law. Moreover, it shows that
the background distribution function must be strongly anisotropic if it is unshifted,
unless b̂0 · (∇ × b̂0)= 0. The smallness of the non-dimensional shift εU,s per species
can be deduced from the non-dimensionalisation of (5.62)

O(1)=
∑

s

β0,s

1 −μ0

(
pS

0,� − pS
0,⊥
)
/B2

0

εU,s

εB,s
, (5.63)

where the plasma-β is defined per species as

β0,s := 2μ0n0,skBTs

B2
0

. (5.64)

This approach is comparable to the work presented by McMillan (2023). Therein,
a global Maxwellian particle distribution function is considered, for which it is shown
that only part of the parallel component of the Ampère–Maxwell law is correctly
satisfied for a (toroidally symmetric) Grad–Shafranov equilibrium (Grad & Rubin
1958). This issue is then resolved by introducing a slight modification (in particular,
(McMillan 2023, (3.5) and (3.6))) to the global Maxwellian particle distribution
function. We similarly modify the originally symmetric particle distribution function
by a shift δus to correctly satisfy the parallel component of the Ampère–Maxwell
law. Our approach, however, does not require toroidal symmetry of the background
magnetic field and can therefore also be applied to three-dimensional (3-D) MHD
equilibria in stellarator devices.

To summarise, we can choose any symmetric background distribution function
f 0
s
,S from which we compute the parallel and perpendicular pressure according to
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(5.56). We then solve the equilibrium equation (5.60) (or (5.61) if the background
distribution function is isotropic), resulting in the background magnetic field B0.
Finally, we use (5.62) to find the shifts δus(r), thereby adjusting the background
distribution function f 0

s according to (5.50). Constructing the background distribu-
tion function and magnetic field in this way ensures that we are near equilibrium,
which thereby ensures that the underlying assumption of the gyrocentre coordinate
transformation εδ 
 1 is justified.

5.7. Well-posedness of the field equations
Well-posedness of the field equations is non-trivial. With well-posedness, we refer

to the existence and uniqueness of solutions to the field equations. This is a rather
mathematical topic and therefore falls outside the scope of this paper when it is
considered fully rigorously. However, as we can see, a necessary condition for well-
posedness is related to the bound-charge continuity equation and thereby allows for
a physical interpretation.

To illustrate that well-posedness is a non-trivial property, we consider the following
general form of Gauss’s law and the Ampère–Maxwell law:

ε0∇ · E1 =Rf +Rb, (5.65a)
1
μ0

∇ × B = ε0
∂E1

∂t
+J f +J b, (5.65b)

where we have defined the bound charge density as

Rb := −∇ ·P1 (5.66)

and consider some unspecified bound current density denoted by J b. Computing
the divergence of the Ampère–Maxwell law (5.65b) results in

0 = ε0∇ · ∂E1

∂t
+ ∇ ·J f + ∇ ·J b ⇐⇒ ∂Rb

∂t
+ ∇ ·J b = 0︸ ︷︷ ︸
bound-charge

continuity equation

, (5.67)

where we have substituted the free-charge continuity equation (5.43) as well as
Gauss’s law (5.65a). That is, we find that the bound-charge continuity equation
(5.67) must hold for the two field equations to be compatible. Note that compatibil-
ity here means that the divergence of the Ampère–Maxwell law should coincide with
the time derivative of Gauss’s law. For the strong formulation, we find

J b = ∂P1

∂t
+ ∇ ×M1 (5.68)

for which it can easily be shown that (5.67) is satisfied.

REMARK 4. Compatibility of the field equations can also directly be deduced from the
action principle by computing the following gauge-invariant variation:

d
dε

∣∣∣∣
ε=0

A(Z, φ1 − ε∂η/∂t, A1 + ε∇η)= 0 (5.69)

for some scalar test function η. When substituting (5.25), we find that this results in

0 =
∑

s

qs

∫
f 0
s (z

0)

(
∇η · Ṙ + ∂η

∂t

)
Js(z0, t0) d6z0 dt, (5.70)
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where we note that this is a direct consequence of the gauge invariance of the gyrocentre
single-particle phase-space Lagrangian, see (4.36). By making use of Theorem 2 as well
as partial integration, this results in

0 = −
∫ (

∂Rf

∂t
+ ∇ ·J f

)
︸ ︷︷ ︸

(5.11)= 0

η d3r dt, (5.71)

where we have moreover substituted the definitions of free charge and current density
as given by (5.12), and thereby results in a constraint which is automatically satisfied
as a consequence of the free-charge continuity equation (5.11). It follows that this
gauge-invariant variation does not give an additional constraint as it is consistent with
the free-charge continuity equation (5.11) derived from the conservative form of the
Vlasov equation (5.10). We note that this specific variation coincides with computing
the difference between the divergence of the Ampère–Maxwell law (i.e. letting Λ = ∇η
in (5.33)) and the time derivative of Gauss’s law (i.e. letting Λ= ∂η/∂t in (5.28)).

5.8. Energy conservation
Typically, the derivation of conservation laws for quantities such as energy and

momentum is achieved by making use of Noether’s method (Noether 1918), wherein
symmetries of the Lagrangian result in conserved quantities. The derivation of exact
local conservation laws for electromagnetic gyrokinetic systems has been elusive
(Peifeng et al. 2021), however, due to the presence of the integrals over time only
in the Lagrangian owing to the particles. Peifeng et al. (2021) proposed a procedure
to overcome this difficulty, resulting in exact local conservation laws for energy and
momentum of arbitrary-order gyrokinetic models. Alternatively, one can switch to
Eulerian variables (i.e. transforming from the Lagrangian EOMs Z to the particle
distribution function fs) as it is done by Hirvijoki et al. (2020) for models based
on an Euler–Poincaré variational formulation. The conservation laws derived by
Hirvijoki et al. (2020) are rederived by Brizard (2021a) for models that are based
on an Eulerian variational principle.

5.8.1. Derivation
In our work, we follow a more direct and simple approach, as we do not aim to
derive conservation laws for arbitrary-order gyrokinetic models. We first derive the
evolution of the kinetic energy per particle Ks , which then leads to the evolution
equation of the kinetic energy density K upon integration over the particles. Next,
we derive the evolution equation of the potential energy density U . When combined,
the two evolution equations result in the local energy conservation law, which, upon
integration over the spatial coordinate, leads to the global energy conservation law.

The gyrocentre kinetic energy per particle is defined as

Ks := msU 2
�

2
+ M

(
B0 + 〈〈

B̊ς

1,�

〉〉)
, (5.72)

which is derived from applying the gyrocentre coordinate transformation (4.61) to
the guiding-centre kinetic energy K̄0 (as defined in (3.25)). The kinetic energy of a
particle evolves as

dKs

dt
= qs Ṙ · E�

1 − M〈〈(∇̊ς × E1)�〉〉 (5.73)
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by making use of (5.23) as well as Faraday’s law (5.21). Hence, if the perturbed
electric field vanishes, we find that the kinetic energy per particle is conserved, as
can be expected because static magnetic fields do no work.

The kinetic energy per particle can be integrated over all particles resulting in the
kinetic energy density

K :=
∑

s

∫
fs KsJs d3u, (5.74a)

whereas the displacement and magnetising field result in the potential energy density

U := 1
2
(D · E +H · B). (5.74b)

This results in the following local energy conservation law for which a proof can be
found in Appendix I.

THEOREM 3 (Local energy conservation). The kinetic energy density (5.74a) satisfies

∂K
∂t

+ ∇ ·
(∑

s

∫
fs ṘKsJs d3u

)
=J f · E, (5.75)

whereas the potential energy density (5.74b) satisfies Poynting’s theorem

∂U
∂t

+ ∇ · (E ×H)= −J f · E. (5.76)

The magnetising field H and free current density J f are defined in (5.44f) and (5.39b),
respectively. It follows that the following local energy conservation law holds:

∂

∂t
(K + U)+ ∇ ·

(
E ×H+

∑
s

∫
fs ṘKsJs d3u

)
= 0. (5.77)

On the right-hand side of the evolution equation for the energy densities, i.e. (5.75)
and (5.76), we recognise the J f · E source term, which is often used for diagnostic
purposes (Bottino & Sonnendrücker 2015; Novikau et al. 2021; Kleiber et al. 2024).

When integrating the sum of the kinetic and potential energy densities over the
spatial domain, we find the total energy

E :=
∫
(K + U) d3r, (5.78)

which is conserved as a consequence of (5.77).

REMARK 5 (Total energy conservation in weak form). The derivation of the total
energy presented previously is based on the strong formulation of the equations, but
we note that the conserved energy can also be derived directly from the field-theoretic
Lagrangian. This is of interest as this implies that a numerical model based on this
weak formulation can also be exactly energy conserving, provided that it is properly
discretised.

We start by considering the total time derivative of the field-theoretic Lagrangian
(5.16)

dL
dt

= δL

δZ
[Ż] + δL

δφ1

[
∂φ1

∂t

]
+ δL

δA1

[
∂A1

∂t

]
. (5.79)
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We then assume that the characteristics and fields satisfy the EOMs and field equa-
tions, respectively, and make use of the fact that these equations are found by setting
the respective variation of the action to zero, up to partial integration in time. For
instance, for the gyrocentre characteristics, we find that

δL

δZ
[Ż] = d

dt

∑
s

∫
f 0
s (z

0)
∂Lpart

s

∂ Ż
· ŻJs(z0, t0) d6z0 (5.80)

by making use of (5.19). Similarly, we find that (5.38) becomes

δL

δA1

[
∂A1

∂t

]
= − d

dt

∑
s

∫ (
qs fsJsρ

∂

∂t
〈| Åς

1,ρ|〉 + f 0
s P1,s · ∂A1

∂t
J0,s

)
d6z (5.81)

upon substitution of the Ampère–Maxwell law. The variation for φ1 did not require
any partial integration in time and, therefore, we find that (5.79) results in

dE
dt

= 0, (5.82)

where the conserved energy is given by

E=
∑

s

∫ (
fs
∂Lpart

s

∂ Ż
· ŻJs − qs fsρ

∂

∂t
〈| Åς

1,ρ|〉Js − f 0
s

ms

qs B2
0

F1,⊥ · ∂A1

∂t
J0,s

)
d6z −L.

(5.83)

It can be shown that (5.83) reduces to (5.78) by substituting the definitions of the
particle (5.17b) and field (5.17c) Hamiltonian in Low’s action (5.16) and by making
use of Gauss’s law as well as the gradient theorem (D.8).

5.8.2. Comparison with results from literature
Despite using a more direct approach in deriving the local energy conservation law,
the resulting conserved energy density should agree with other results from the litera-
ture. To facilitate this comparison, we consider the work of Brizard (2021a), wherein
the ZLR limit of the model proposed by Burby & Brizard (2019) is considered, which
conveniently coincides with the ZLR limit of the proposed model.

The conserved energy density of the proposed model in the ZLR limit is given by

KZLR + UZLR =
∑

s

∫
fs K ZLR

s Js d3u + 1
2
(D · E +H · B), (5.84)

where the ZLR limit of the kinetic energy per particle is given by

K ZLR
s = msU 2

�

2
+ M(B0 + B1,�) (5.85)

by making use of (5.74a) as well as the observation that the displacement and
magnetising field do not contain any FLR contributions.

The kinetic energy per particle of Brizard (2021a, (3.4)) is defined differently from
ours (5.72) and is given by

K B
s := K ZLR

s + H2,s, (5.86)
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where we have neglected the contribution from the guiding-centre electric dipole
moment as a result of neglecting the mixed O(εδεB) terms in the proposed model.
Note that the second-order gyrocentre Hamiltonian can be expressed in terms of the
magnetisation and polarisation per particle as (cf. (5.34), (5.29) and (4.66))

H2,s = −1
2
(P1,s · E + M1,s · B) (5.87)

such that the kinetic energy density can be written as

KB =KZLR +
∑

s

∫
fs H2,sJs d3u =KZLR

+ 1
2

[
− (D − ε0 E) · E +

(
H− 1

μ0
B
)

· B
]

(5.88)

by substituting (5.44e) and (5.44f ). Furthermore, we have ignored the linearisation
of the particle part of the Hamiltonian introduced in (5.16) as no such linearisation
is applied by Brizard (2021a). Finally, we note that the potential energy density of
Brizard (2021a, (5.11)) is given by

UB =D · E − ε0

2
|E|2 + 1

2μ0
|B|2 (5.89)

such that the conserved energy densities are indeed found to be the same: KZLR +
UZLR =KB + UB. We note that the conserved energy density also agrees with that
found by Hirvijoki et al. (2020, (82)).

6. Quasi-neutral gyrokinetic Darwin model

The proposed gyrokinetic Maxwell model keeps more physics than the popular
reduced parallel-only model (discussed in § 7.1) and has more structure than the
symplectic Brizard–Hahm model (Brizard & Hahm 2007) (discussed in § 7.2). In
particular, we find that the Ampère–Maxwell law (5.33) contains a displacement
current density, which is not present in either of the two other models. Part of this
displacement current density, however, gives rise to fast waves such as the light wave,
the Langmuir wave and the compressional Alfvén wave (as demonstrated in § 7.3),
and in most situations, such waves are undesired due to their high frequency.

In this section, a quasi-neutral Darwin approximation is proposed, which removes
the fast waves from the model. This approximation consists of two steps: first, the
limit of quasi-neutrality is considered thereby removing the light wave as well as
the Langmuir wave from the model and, second, the compressional Alfvén wave
is removed by considering a Darwin approximation wherein the transversal part
of the displacement current density is removed from the Ampère–Maxwell law. The
resulting model is gauge-invariant, is obtained via an action principle, has compatible
field equations and still possesses a local energy conservation law.

6.1. Darwin approximation to Maxwell’s equations
One way to deal with high-frequency components in the solution is to damp them

numerically using implicit time integration methods. Another option is to remove
such waves from the underlying model, i.e. from the Lagrangian. For instance, to
remove the light wave from Maxwell’s equations, rather than considering the limit
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of quasi-neutrality, one can consider the Darwin approximation, wherein only the
longitudinal (i.e. irrotational or curl free) part is kept in the ε0∂E1/∂t term in the
Ampère–Maxwell law. Thus, the transversal (i.e. solenoidal or divergence free) part
of the displacement current density is neglected

ε0
∂E1

∂t
≈ ε0

∂(ΠL E1)

∂t
, (6.1)

where ΠL is the longitudinal projection operator, which is defined as (with
appropriate boundary conditions on the inverse Laplace operator)

ΠL S := ∇[∇−2(∇ · S)]. (6.2)

This results in a model which yields a second- and third-order accurate electric and
magnetic field, respectively, in the small parameter εc = v/c (Degond & Raviart
1992) and restricts the dynamics of the Vlasov–Maxwell system to an invariant slow
manifold of the Vlasov–Maxwell phase space (Miloshevich & Burby 2021).

Note that the Darwin approximation is a gauge-invariant approximation, as the
projection operator acts on the electric field directly. If the Coulomb gauge is used,
then the vector potential is transversal and we find that the Darwin approximation
simply neglects the vector potential contribution to the electric field,

∇ · A1 = 0 =⇒ ΠL E1 = −∇φ1. (6.3)

6.2. Darwin approximation of the gyrocentre Hamiltonian
We follow an approach similar to the Darwin approximation to remove the fast

compressional Alfvén wave. As the proposed model is defined in terms of an action
principle, we propose a modification to the action (5.25), which corresponds to the
removal of the compressional Alfvén wave. Recall that the second-order gyrocentre
Hamiltonian is given by (cf. (4.66))

H2,s = − ms

2B2
0

|E1,⊥|2 + msU�

B2
0

b̂0 · (E1,⊥ × B1)+ M B0 − msU 2
�

2B2
0

|B1,⊥|2, (6.4)

where we have substituted the definition of the Lorentz force (4.56), and thus agrees
exactly with the result found by Burby & Brizard (2019, (14)). We note that the com-
pressional Alfvén wave comes from the transversal contribution to the |∂A1,⊥/∂t |2
term (which itself comes from the |E1,⊥|2 term), and it should therefore be sufficient
to remove exactly this term from H2,s .

When keeping only the contribution from the longitudinal part of the electric field
in the second-order Hamiltonian, we find the following contribution to the action
from the second-order Hamiltonian:∑

s

∫
f 0
s HDar

2,s J0,sd3u : = − 1
2C(1)

∣∣ΠL,⊥ (C(1)E1)
∣∣2

+ C(u�)

C(1) b̂0 · [ΠL,⊥ (C(1)E1)× B1

]+ p0,⊥ − p0,�

2B2
0

|B1,⊥|2,
(6.5)
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where the gyrokinetic longitudinal projection operator is defined as (cf. (6.2))

ΠL,⊥S := C(1)∇⊥
([∇ · (C(1)∇⊥)]−1 [∇ · S⊥]

)
, (6.6)

and we recall that C(ζ ) is defined in (5.47).

6.3. Principle of least action
As the particle part of the Hamiltonian is still given by (5.17b) and the symplectic

part of the Lagrangian is unchanged when compared with the proposed gyrokinetic
Maxwell model, we find that the EOMs are still given by (5.23).

The explicit expression of Low’s action, while using (6.5), is given by (cf. (5.25))

ADar(Z, φ1, A1)=
∑

s

∫
f 0
s (z

0)

[
qs

(
A�

0,s + A1 + 〈∣∣B̊ς

1 × ρ
∣∣〉) · Ṙ + ms M

qs
Θ̇

− M
(
B0 + 〈〈

B̊ς

1,�

〉〉)− ms

2
U 2

�
− qsφ1 + qsρ

〈∣∣E̊ς

1,ρ

∣∣〉]Js(z0, t0)d6z0 dt

+
∫ (

1
2C(1)

∣∣ΠL,⊥ (C(1)E1)
∣∣2 − C(u�)

C(1) b̂0 · [ΠL,⊥ (C(1)E1)× B1

]
− p0,⊥ − p0,�

2B2
0

|B1,⊥|2
)

d3rdt − 1
2μ0

∫
|B0 + B1|2 d3x dt. (6.7)

Compared with the action of the proposed gyrokinetic Maxwell model, as given in
(5.25), we additionally consider the limit of quasi-neutrality (i.e. ε0 = 0) to eliminate
the fast light wave as well as the Langmuir wave from the proposed model.

Setting the variations of the action (6.7) with respect to the scalar and vector
potential to zero results in the following quasi-neutrality equation (cf. (5.28)) and
the Ampère–Maxwell law (cf. (5.33)):

−
∫

PDar
1 · ∇⊥Λ d3r =

∑
s

qs

∫
fs〈Λ̊〉Js d6z, (6.8a)

1
μ0

∫
(B0 + B1) · (∇ × Λ) d3x =

∫ (
∂PDar

1

∂t
+ ∇ ×MDar

1 +J f

)
· Λ d3r, (6.8b)

respectively, by making use of the self-adjointness of the projection operator ΠL,⊥.
The Darwin polarisation (cf. (5.29)) and magnetisation (cf. (5.34)) are given by

PDar
1 :=ΠL,⊥P1 =ΠL,⊥

(C(1)E1 + C(u�)b̂0 × B1

)
, (6.9a)

MDar
1 := p0,� − p0,⊥

B2
0

B1,⊥ − C(u�)

C(1) b̂0 ×ΠL,⊥
(C(1)E1

)
, (6.9b)

where we note that the Darwin polarisation is entirely longitudinal, as desired.
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6.4. Strong formulation of the field equations

6.4.1. Gauge-invariant formulation
We find that the resulting model can be written in strong formulation as

∇ ·DDar =Rf, (6.10a)

∇ ×HDar = ∂DDar

∂t
+J f, (6.10b)

where the Darwin displacement and magnetising field are defined as

DDar :=PDar
1 , (6.11a)

HDar := 1
μ0

B −MDar
1 . (6.11b)

It follows that the field equations are compatible in the sense that the divergence of
the Ampère–Maxwell law yields the time derivative of the quasi-neutrality equation.
That is, the bound-charge continuity equation is satisfied for the gyrokinetic Darwin
model analogous to the discussion from § 5.7.

6.4.2. Perpendicular Coulomb gauge
Despite the favourable structure of the resulting field equations, we note that the
explicit presence of the gyrokinetic longitudinal projection operator is not desirable
because it is not a local operator and, in particular, involves the inversion of a
perpendicular Laplace operator. Specific choices of the gauge condition can be made
to avoid this complication and, in particular, we consider the perpendicular Coulomb
gauge given by ∫

C(1)∇⊥Λ · A1 d3x = 0. (6.12)

This gauge condition implies that the longitudinal part of the scaled vector potential
vanishes

0 =
∫

∇⊥Λ ·ΠL,⊥ (C(1)A1) d3x =⇒ ΠL,⊥ (C(1)A1)= 03 (6.13)

as follows from the adjoint of the projection operator as well as

ΠL,⊥ (C(1)∇⊥Λ)= C(1)∇⊥Λ. (6.14)

Within the perpendicular Coulomb gauge (6.12), we find that the quasi-neutrality
equation (6.10a) reduces to

−∇ ·
(∑

s

msn0,s

B2
0

[∇⊥φ1 − u0,�,s b̂0 × (∇ × A1)
])=Rf, (6.15)

where we have substituted the value of C(1) and C(u�) from (5.47), and have made
use of the adjoint of the longitudinal projection operator and (6.14). Note that this
equation is decoupled from the Ampère–Maxwell law if the background distribution
function is symmetric (i.e. u0,�,s = 0) and thereby reduces to the well-known (and
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well-posed) perpendicular Laplace equation for φ1. We note that using a perpendic-
ular Lorenz-type gauge results in a similar simplification, but we do not consider this
here.

For the vector potential A1, we have to solve the following system of equations (by
substituting the definition of the magnetising field (6.11b) and magnetisation (6.9b)
into (6.10b)):

∇ ×
[

1
μ0

∇ × A1 − p0,� − p0,⊥
B2

0

(∇ × A1)⊥ −
∑

s msn0,su0,�,s

B2
0

b̂0 × ∇⊥φ1

]
+
∑

s msn0,s

B2
0

∇⊥λ=J f − 1
μ0

∇ × B0, (6.16a)

∇ ·
(∑

s msn0,s

B2
0

A1,⊥

)
= 0, (6.16b)

where we have intentionally dropped the contribution from the longitudinal displace-
ment current density and have instead introduced a Lagrange multiplier λ for which

∂DDar

∂t
= −C(1)∇⊥λ =⇒ λ := ∂φ1

∂t
− [∇ · (C(1)∇⊥)]−1

[
∇ ·

(
C(u�)b̂0 × ∂B1

∂t

)]
,

(6.17)

which thereby replaces the displacement current density and simultaneously enforces
the gauge condition (6.16b). We note that keeping the contribution from the dis-
placement current density would yield λ= 0 as a consequence of the compatibility
of the field equations, which in turn is a consequence of the gauge invariance of the
proposed model. Hence, the Lagrange multiplier λ is non-zero only because we have
chosen to drop the contribution from the displacement current density for numerical
reasons.

If the background particle distribution functions are symmetric, i.e. u0,�,s = 0, it
results in a full decoupling of the field equations for the potentials: (6.15) yields the
scalar potential and (6.16) yields the vector potential. The key property of (6.16a) is
that it is invariant under A1 
→ A1 + ∇η, and a gauge condition is therefore needed
to fix this freedom. Such a gauge condition is exactly provided by the constraint
(6.16b). The well-posedness of (6.16) for an isotropic pressure and a symmetric
background distribution is discussed in Appendix K.

6.5. Energy conservation
For the gyrokinetic Darwin model, we find that the evolution equation for the

kinetic energy density (5.75) is unchanged. The equivalent to Poynting’s theorem
can also be shown, except that the potential energy density

UDar := 1
2
(DDar · E +HDar · B) (6.18)

evolves according to (cf. (5.76))

∂UDar

∂t
+ ∇ · (E ×HDar +S)= −J f · E, (6.19)
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where the additional potential energy flux is given by

S = 1
2

[
φEΠT,⊥

∂P1

∂t
− ∂φE

∂t
ΠT,⊥P1 + φBΠT,⊥

(
C(1)∂E⊥

∂t

)
− ∂φB

∂t
ΠT,⊥ (C(1)E⊥)

]
.

(6.20)

The gyrokinetic transversal projection operator ΠT,⊥ is defined as

ΠT,⊥S := S −ΠL,⊥S, (6.21)

and φE , φB are the scalar potential parts of the (longitudinal) displacement,

φE := −[∇ · (C(1)∇⊥)]−1 [∇ · (C(1)E⊥)] , (6.22)

φB := −[∇ · (C(1)∇⊥)]−1
[∇ · (C(u�)b̂0 × B

)]
, (6.23)

which, in the perpendicular Coulomb gauge, yields φE = φ1 and the potentials relate
to the Lagrange multiplier λ from (6.16) via λ= ∂(φE + φB)/∂t .

This results in the following conserved energy:

EDar :=
∫
(K + UDar) d3r, (6.24)

where the kinetic energy density is still defined by (5.74a).

7. Comparison with some models from literature

The two proposed gyrokinetic models which have been derived thus far are more
comprehensive and possess more structure than the models usually found in the
literature (Qin et al. 1999; Brizard & Hahm 2007; Kleiber et al. 2016). In this
section, we compare the proposed gyrokinetic models to several models from the
literature. This comparison is not intended to be exhaustive: we compare the two
proposed models to the parallel-only model (Kleiber et al. 2016) as it is the ‘working
horse’ of gyrokinetic simulations, the symplectic gyrokinetic model from Brizard &
Hahm (2007) as this is a frequently cited paper which presents a novel gyrokinetic
model which includes A1,⊥ but is not gauge-invariant, and finally we compare the two
proposed models to the gauge-invariant gyrokinetic model from Burby & Brizard
(2019) as the two proposed models are a generalisation thereof and are largely
inspired by it.

For each model under consideration, we discuss the gyrocentre single-particle
Lagrangian, the resulting EOMs and field equations as well as their corresponding
strong form. Furthermore, the well-posedness of the models is discussed, and disper-
sion relations are derived and used to compare the models in terms of the presence
of shear and/or compressional Alfvén waves.

7.1. Parallel-only model
The parallel-only model, as is discussed for example by Kleiber et al. (2016), is

based on the assumption that the perpendicular part of the vector potential can be
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neglected: A1,⊥ = 03. This assumption is combined with the following approximation
in the derivation of the Hamiltonian

B1 = ∇ × (A1,� b̂0)= ∇⊥ A1,� × b̂0︸ ︷︷ ︸
O(ε⊥)

+ A1,�∇ × b̂0︸ ︷︷ ︸
O(εB )

≈ ∇⊥ A1,� × b̂0, (7.1)

where it is assumed that

εB 
 ε⊥ ⇐⇒ 1
k⊥


 L B . (7.2)

That is, it is assumed that no system-scale effects are present in the perpendicular
direction. When considering that FLR effects are already neglected in the second-
order gyrocentre Hamiltonian H2, it follows that the reduced parallel-only model is
valid for intermediate wavelengths only: �
 1/k⊥ 
 L B .

7.1.1. Gyrocentre single-particle Lagrangian
When neglecting the perpendicular part of the vector potential and by making use
of the approximation given by (7.1), we find that the symplectic part is given by

γ �

1,R,s := 〈(b̂0 · γ̄
†
1,s,R)b̂0〉 = qs〈 Å1,�〉b̂0, (7.3)

whereas the first- and second-order Hamiltonian are reduced to (cf. (4.52))

H �

1,s := qs〈φ̊1〉 (7.4a)

and (cf. (4.66))

H �

2,s := − ms

2B2
0

|∇⊥(φ1 − U� A1,�)|2 + M

2B0
|∇⊥ A1,�|2, (7.4b)

respectively, by making use of the gradient Theorem (D.8).

7.1.2. Principle of least action
We find that the reduced EOMs are given by (cf. (5.23))

Ṙ = U�b
�,�

s − 1

qs B�,�
s,�

b̂0 × (
qs E�,�

1 − M∇B0

)
, (7.5a)

U̇� = 1
ms

b�,�s · (qs E�,�

1 − M∇B0

)
, (7.5b)

where the electromagnetic fields are defined as (cf. (4.71))

E�,�

1 := −∇〈φ̊1〉 − ∂〈 Å1,�〉
∂t

b̂0, (7.6a)

B�,�

1 := ∇ × (〈 Å1,�〉b̂0), (7.6b)

and we have defined b�,�s and B�,�
s,� analogously to (4.76) and (4.77), i.e. by replacing

B�
1 by B�,�

1 .
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For the derivation of the field equations, we again give Low’s action explicitly
resulting in (cf. (5.25) and (6.7))

A�(Z, φ1, A1,�)=
∑

s

∫
f 0
s (z

0)

[
qs

(
A�

0,s + 〈 Å1,�〉b̂0

)
· Ṙ + ms M

qs
Θ̇ − ms

2
U 2

�
− M B0

− qs〈φ̊1〉
]
J�

s(z
0, t0) d6z0 dt

+
∑

s

∫
f 0
s

[
ms

2B2
0

|∇⊥(φ1 − u� A1,�)|2 − μ

2B0
|∇⊥ A1,�|2

]
J0,s d6z dt

− 1
2μ0

∫
|B0 + ∇⊥ A1,� × b̂0|2 d3x dt, (7.7)

where the Jacobian is now given by J�

s := B�,�
s,� /ms (cf. (5.7)). Compared with the

action of the proposed gyrokinetic Maxwell model, as given in (5.25), we consider
the limit of quasi-neutrality (i.e. ε0 = 0).

The quasi-neutrality equation (cf. (5.28) and (6.8a)) and Ampère’s law (cf. (5.33)
and (6.8b)) are given by

−
∫

P�

1 · ∇⊥Λ d3r =
∑

s

qs

∫
fs〈Λ̊〉J�

s d6z, (7.8a)

1
μ0

∫
∇⊥ A1,� · ∇⊥Λ d3x =

∫
M�

1 · (b̂0 × ∇⊥Λ) d3r +
∑

s

qs

∫
fs Ṙ�〈Λ̊〉J�

s d6z,

(7.8b)

where the reduced polarisation (cf. (5.29) and (6.9a)) and magnetisation (cf. (5.34)
and (6.9b)) are given by

P�

1 :=
∑

s

∫
f 0
s P �

1,sJ0,s d3u, P �

1,s := ms

qs B2
0

F�

1,⊥, F�

1,⊥ := −qs∇⊥(φ1 − u� A1,�),

(7.9a)

M�

1 :=
∑

s

∫
f 0
s M�

1,sJ0,s d3u, M�

1,s := −b̂0 ×
(

u� P �

1,s − μ

B0
∇⊥ A1,�

)
. (7.9b)

When considering the EOMs (7.5) as well as field equations (7.8) of the reduced
model, we find that this model coincides with reduced parallel models from the
literature. We note that this is only due to the choice (ξR, ξΘ)= (1, 0), which yields
the appropriate gyro-averages on both the scalar and vector potential.

7.1.3. Strong formulation
To be able to interpret the equations more easily, we present the strong formulation
of the field equations as follows (cf. (6.16)):
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−∇ ·
[∑

s

msn0,s

B2
0

(∇⊥φ1 − u0,�,s∇⊥ A1,�

)]=Rf, (7.10a)

− 1
μ0

∇ · ∇⊥ A1,� − ∇ ·
(∑

s msn0,su0,�,s

B2
0

∇⊥φ1 − p0,� − p0,⊥
B2

0

∇⊥ A1,�

)
=J f,�

�
,

(7.10b)

where we recall that n0,s and u0,�,s denote the background particle density and paral-
lel velocity, as defined in (5.52). The gyro-average adjoint of the parallel component
of the free current density J f,�

� is different from the one discussed in § 5.4, and it is
defined in a weak sense as (cf. (5.39b))∫

J f,�
�
Λ d3r :=

∑
s

qs

∫
fs Ṙ�〈Λ̊〉J�

s d6z. (7.11)

The following identities:∫
f 0
s u�J0,s d3u = 0,

∫
f 0
s

(
msu

2
�
−μB0

)
J0,s d3u = 0, (7.12)

which hold for a centred Maxwellian background distribution

f 0,CM
s (r, u�, μ) := n0,s(r)√

π
3
uth,s(r)3

exp
(

−msu2
�
+ 2μB0(r)

msuth,s(r)2

)
, (7.13)

result in decoupling the field equations (7.10). Note that (7.12), in physical terms,
coincides with the absence of a parallel background current density (u0,�,s = 0) as
well as the isotropy of the pressure/temperature (p0,⊥ = p0,�).

7.2. Symplectic gyrokinetic model from Brizard–Hahm
In addition to the gauge-invariant model described by Burby & Brizard (2019),

there are also gauge-variant gyrokinetic models which include A1,⊥. In particular,
we consider the symplectic model from Brizard & Hahm (2007, (171) and (173)
with (α, β)= (1, 1)), which we hereafter refer to as the Brizard–Hahm (BH) model.

7.2.1. Gyrocentre single-particle Lagrangian
The symplectic part of the Lagrangian is as given in (4.41), whereas the first- and
second-order Hamiltonians are derived from Brizard & Hahm (2007, (171) and (173)
with (α, β)= (1, 1)) resulting in (cf. (4.52) and (7.4a))

HBH
1,s := qs〈φ̊1〉 + M

〈〈
B̊ς

1,�

〉〉
(7.14a)

and (cf. (4.66) and (7.4b))

HBH
2,s := − ms

2B2
0

|∇⊥(φ1 − U� A1,�)|2 + M

2B0
|∇⊥ A1,�|2, (7.14b)

respectively. The derivation, which neglects terms of O(ε3
⊥) in HBH

2,s , can be found in
Appendix J. We note that this result can alternatively be derived from (4.66), when
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making use of the approximation B1 ≈ ∇⊥ A1,� × b̂0 + (∇ × A1,⊥)� b̂0 and neglecting
∂A1,⊥/∂t .

Note that the second-order Hamiltonian coincides exactly with that of the
parallel-only model: HBH

2,s = H �

2,s . This is remarkable, as it implies an absence of
the polarisation current density as well as an absence of a contribution to the
magnetisation from the perpendicular part of the vector potential.

Both the proposed gyrokinetic Maxwell model and the Brizard–Hahm model
(Brizard & Hahm 2007) reduce to the parallel-only model when neglecting the per-
pendicular part of the vector potential. Note that the same cannot be said about
the gauge-invariant model from Burby & Brizard (2019), which coincides with
(ξR, ξΘ)= (0, 0). Therein, we find that, e.g. A�

1 = A1 such that the vector potential
without gyro-averaging appears in the EOMs.

7.2.2. Principle of least action
The EOMs are found by substituting the expression for the particle Hamiltonian
H part,BH = H0 + HBH

1 into the general form of the EOMs given by (4.80), where we
now have A�,BH

1 := 〈 Å1〉. This results in EOMs which have an identical structure as
the EOMs of the quasi-neutral gyrokinetic Maxwell model (5.23), except that the
electromagnetic fields are defined as (cf. (4.71) and (7.6))

E�,BH
1 := −∇〈φ̊1〉 − ∂〈 Å1〉

∂t
, (7.15a)

B�,BH
1 := ∇ × 〈 Å1〉, (7.15b)

and we have defined b�,BH
s and B�,BH

s,� analogously to (4.76) and (4.77). The explicit
expression of Low’s action is given by (cf. (5.25), (6.7) and (7.7))

ABH(Z, φ1, A1, λ)=
∑

s

∫
f 0
s (z

0)

[
qs

(
A�

0,s + 〈 Å1〉
) · Ṙ + ms M

qs
Θ̇ − ms

2
U 2

�
− M B0

− qs〈φ̊1〉 − M
〈〈

B̊ς

1,�

〉〉]
JBH

s (z0, t0) d6z0 dt +
∑

s

∫
f 0
s

[
ms

2B2
0

|∇⊥(φ1 − u� A1,�)|2

− μ

2B0
|∇⊥ A1,�|2

]
J0,s d6z dt − 1

2μ0

∫
|B0 + B1|2 d3x dt

+
∫

CBH(Z, φ1, A1, λ) d3x dt, (7.16)

where a Lagrange multiplier λ is introduced with an associated constraint CBH to
ensure that a well-posed system of equations is found, as it is discussed in more detail
in § 7.2.4. Therein, we show that the constraint necessarily depends on all unknowns
of our problem, including the characteristics Z. Hence, when using a variational
formulation of the Brizard–Hahm model (Brizard & Hahm 2007), we find that well-
posedness of the model implies that the Lagrange multiplier λ affects the EOMs as
well as each of the field equations. We do not show this dependence here explic-
itly and, for now, we ignore the contribution due to the constraint. Moreover, the
Jacobian is given by JBH

s := B�,BH
s,� /ms (cf. (5.7)).
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The action (7.16) results in the same quasi-neutrality equation as found for the
reduced parallel-only model, as given by (7.8a). We find that Ampère’s law is given
by

1
μ0

∫
(B0 + B1) · (∇ × Λ) d3x =

∫
∇ · (M�

1 × b̂0)Λ� d3r

+
∑

s

∫
fs

[
qs Ṙ · 〈Λ̊〉 −μ〈〈(∇̊ς × Λ)�〉〉

]
JBH

s d6z.

(7.17)

7.2.3. Strong formulation
As usual, we consider the strong formulation of the field equations, which results
in the following quasi-neutrality equation and Ampère’s law (cf. (5.44), (6.16) and
(7.10))

−∇ ·
[∑

s

msn0,s

B2
0

(∇⊥φ1 − u0,�,s∇⊥ A1,�

)]=Rf, (7.18a)

1
μ0

∇ × (∇ × A1)− b̂0∇ ·
(∑

s

msn0,su0,�,s

B2
0

∇⊥φ1 − p0,� − p0,⊥
B2

0

∇⊥ A1,�

)
=J f,BH

− 1
μ0

∇ × B0. (7.18b)

The meaning of the gyro-average adjoint of the free current density J f,BH is differ-
ent from the one discussed in § 5.4, and it is defined in a weak sense as (cf. (5.39b))∫

J f,BH · Λ d3r :=
∑

s

∫
fs

[
qs Ṙ · 〈Λ̊〉 −μ〈〈(∇̊ς × Λ)�〉〉

]
JBH

s d6z. (7.19)

This adjoint of the free current density coincides with the one from the proposed
gyrokinetic model, as given by (5.39b), whenever εB = 0 thanks to (D.10).

In contrast to the proposed gyrokinetic Maxwell model discussed in strong formu-
lation in § 5.4, we now fail to recognise the structure of the macroscopic Maxwell’s
equations in (7.18). This is primarily due to the absence of the polarisation current
density, but also due to the fact that the magnetisation current density J m,BH cannot
be written as the curl of a magnetisation. Even when neglecting O(εB) contributions,
this is not possible, in which case we find

J m,BH = (∇ ×M�

1)� + O(εB). (7.20)

7.2.4. Well-posedness of the field equations
For the symplectic Brizard–Hahm model (Brizard & Hahm 2007), we note that
the free current density is defined differently from the free current density of the
proposed model (5.39b). This implies in particular that the gyro-average of the free-
charge continuity equation is no longer satisfied,∫ (

∂Rf

∂t
+ ∇ ·J f,BH

)
Λ d3r =

∫
J f · (∇〈Λ̊〉 − 〈∇̊Λ〉) d3r. (7.21)
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As the right-hand side does not vanish in general, we find that a result analogous to
(5.43) is not obtained.

Upon inspecting (7.17), we find that the bound current density is given by

J b,BH =J m,BH = b̂0∇ · (M�

1 × b̂0), (7.22)

which is not divergence free. Computation of the divergence of Ampère’s law (7.18b)
results in the unsatisfied constraint

0 = ∂

∂t
(Rf +Rb,BH)+ ∇ · (J f,BH +J b,BH) (7.23)

upon addition of the quasi-neutrality equation (7.18a), where we let Rb,BH := −∇ ·
P�

1. In this case, the gyro-average adjoint of the free-charge continuity equation does
not vanish and we are, therefore, left with a total continuity equation which must
be enforced by means of a Lagrange multiplier. Due to the non-zero right-hand side
of (7.21), we find that the constraint (7.23) also depends on the characteristics Z,
which is very undesirable as it implies that the Lagrange multiplier λ also affects the
EOMs.

Hence, for the symplectic Brizard–Hahm model (Brizard & Hahm 2007), we find
that λ �= 0 for three independent reasons: the polarisation current density is miss-
ing, the magnetisation current density is not the curl of a magnetisation and the
gyro-average adjoint of the free-charge continuity equation does not hold. Note
that a polarisation current density can be included by considering higher-order
approximations of the first-order generating function, see e.g. Qin et al. (1999).

7.3. Linearised models in a slab
To study the dispersive properties of the models under consideration, we consider

a slab geometry, wherein the background magnetic field B0 is assumed to be con-
stant. In this case, the FLR corrected electromagnetic fields exactly coincide with
what one would expect (cf. (4.72))

B�
1 = 〈B̊1〉, E�

1 = 〈E̊1〉, (7.24)

as εB = 0. Furthermore, the term that multiplies Ṙ in the Ampère–Maxwell law
exactly coincides with 〈Λ̊〉 (cf. (D.10)). We reiterate that each of these three
identities holds only because of the specific choice of our gyrocentre coordinate
transformation (ξR, ξΘ)= (1, 0).

7.3.1. Proposed gyrokinetic Maxwell model
We make use of the so-called susceptibility tensor to study the dispersive properties
of the proposed model. The susceptibility tensor represents the linearised model with
a Fourier ansatz. More precisely, we find that computing the time derivative of the
Ampère–Maxwell law (5.44d) results in

− 1
μ0

∇ × (∇ × E1)= ∂2

∂t2
(ε0 E1 +P1)+ ∇ × ∂M1

∂t
+ ∂J f

∂t
, (7.25)

where we have substituted (5.44e), (5.44f ) and (5.44c). By substituting the expres-
sions for the polarisation (5.29), magnetisation (5.34) and the gyrocentre current
density, and by repeatedly using Faraday’s law (5.21), we can obtain an equation
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which is expressed entirely in terms of the perturbed electric field E1. We then
linearise this equation and substitute the Fourier ansatz

E1 = Ê1ei(k·r−ωt), (7.26)

which results in an equation of the form (Hasegawa 1975, (2.37))

ω2(I3 + ¯̄X)Ê1 + c2k × (k × Ê1)= 03, (7.27)

where ¯̄X is referred to as the gyrokinetic susceptibility tensor, I3 denotes the 3 × 3
identity matrix and c = √

1/(μ0ε0) denotes the speed of light in vacuum. Note that
I3 + ¯̄X is often referred to as the dielectric tensor. The susceptibility tensor contains
the (linearised) contributions to the Ampère–Maxwell law from the polarisation,
magnetisation as well as the gyrocentre current density, and reduces the linearised
gyrokinetic model to a material property: the permittivity of the ‘material’ is given
by ε0(I3 + ¯̄X).

We follow the discussion from Zonta et al. (2021), wherein the gyrokinetic sus-
ceptibility tensor XZLR is derived for the drift kinetic model from Burby & Brizard
(2019) (i.e. the proposed model with (ξR, ξΘ)= (0, 0) in the ZLR limit ε⊥ → 0)
and subsequently compared with the ZLR limit (Hasegawa 1975, (2.159)) of the
Vlasov–Maxwell susceptibility tensor (Hasegawa 1975, (2.42) and (2.43)).

The derivation of the susceptibility tensor can be found in Appendix L, and the
expression for the susceptibility tensor in its most general form can be found in
(L.31). We make two simplifications: first, we consider the ZLR limit of the suscep-
tibility tensor, resulting in the drift kinetic susceptibility tensor given by (L.34), which
coincides exactly with the low-frequency and ZLR limit of the Vlasov–Maxwell sus-
ceptibility tensor found from Hasegawa (1975, (2.159)). Second, we consider the use
of a centred Maxwellian background particle distribution as defined in (7.13). Note
that a constant background magnetic field B0 combined with a centred Maxwellian
background distribution with constant density trivially satisfies the equilibrium con-
ditions discussed in § 5.6. When using the identities given by (7.12), we find that the
resulting susceptibility tensor is given by

ω2

c2
¯̄X =

∑
s

β0,s

u2
th,s

⎛⎜⎝ ω2 iωωc,s 0

−iωωc,s ω2 − k2
⊥u2

th,s 0

0 0 0

⎞⎟⎠

−
∑

s

β0,s

n0,su2
th,s

∫
k2
�

f 0,CM
s

(k�u� −ω)2

⎛⎜⎜⎜⎜⎜⎝
0 0 0

0 u4
τk

2
⊥

1
4

i
k⊥
k�

u2
τ

ωωc,s

2

0 −iu2
τ

k⊥
k�

ωωc,s

2

ω2ω2
c,s

k2
�

⎞⎟⎟⎟⎟⎟⎠ J0,sd3u,

(7.28)

where we recall that the plasma-β is defined in (5.64).
The remaining integrals can be expressed in terms of the plasma dispersion

function Z ,

Z(ζ ) := 1√
π

∫ ∞

−∞

e−u2

u − ζ
du. (7.29)
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Substitution of (7.28) in (7.27) results in

¯̄DÊ1 = 03,
¯̄D = ω2

c2
I3 + ω2

c2
¯̄X + K2, (7.30)

where the matrix K is such that

KS = S × k, (7.31)

and the matrix ¯̄D can explicitly be written as

¯̄D =

⎛⎜⎜⎜⎜⎜⎝
ω2

c2
− k2

�
0 k�k⊥

0
ω2

c2
− k2 0

k�k⊥ 0
ω2

c2
− k2

⊥

⎞⎟⎟⎟⎟⎟⎠+
∑

s

β0,s

u2
th,s

⎛⎜⎜⎝
ω2 iωωc,s 0

−iωωc,s ω2 − k2
⊥u2

th,s 0

0 0 0

⎞⎟⎟⎠

−
∑

s

β0,s

u2
th,s

Z ′(ω/(k�uth,s))

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0

0
k2

⊥u2
th,s

2
i
k⊥ωωc,s

2k�

0 −i
k⊥ωωc,s

2k�

ω2ω2
c,s

k2
�u2

th,s

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.32)

We highlight the boxed ω2 term for the discussion that follows in § 7.3.2.
Non-trivial solutions to (7.30) exist if and only if the dispersion matrix given by

(7.32) is singular, and to this end, we implicitly define the dispersion relation ω(k)
via

det ¯̄D(ω(k), k)= 0. (7.33)

7.3.2. Other models
It is a priori not clear what effect the Darwin approximation has on the dispersive
properties of the proposed model and, to this end, we also consider the gyrokinetic
Darwin susceptibility tensor for which a derivation can be found in Appendix L.6.
When using a centred Maxwellian, as we did in § 7.3, we find that the susceptibility
tensor is given by (7.32), where the boxed ω2 term is removed while the limit of
quasi-neutrality yields c → ∞.

As discussed in § 7.2, the EOMs of the symplectic Brizard–Hahm (BH) model
(Brizard & Hahm 2007) coincide with those from the proposed gyrokinetic Maxwell
model if εB = 0, which is what we assume here. Similarly, we find that the mag-
netisation term vanishes, as it does in the proposed gyrokinetic model, for the
centred Maxwellian background particle distribution function that we consider here.
Hence, the only difference between the proposed model and the Brizard–Hahm
model, under the current simplifying assumptions, is the missing polarisation current
density.

However, when reconsidering (7.23) under the current simplifying assumptions
and while including the same gauge condition used in the quasi-neutral gyrokinetic
Darwin model, we find that the compatibility constraint reduces to

∇ ·
(∑

s msn0,s

B2
0

∇⊥λ
)

= ∂

∂t
∇ ·

(∑
s msn0,s

B2
0

∇⊥φ1

)
(7.34)
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upon substitution of (7.18a), and it therefore follows that in this case, λ= ∂φ1/∂t .
This implies that the Lagrange multiplier for the Brizard–Hahm model restores the
polarisation current density and thereby coincides with the quasi-neutral gyrokinetic
Darwin model. Note that this only holds under the simplifying assumptions that
we use here: the model is linearised, we assume εB = 0, use a centred Maxwellian
background distribution, and we consider the ZLR limit.

For the parallel-only model, we make use of the dispersion relation provided by
Kleiber et al. (2016, (40)).

7.3.3. Comparison of the dispersion relations
The models are compared by numerically evaluating the dispersion rela-
tions (the code can be found from Remmerswaal (2023, examples/
gauge_invariant.ipynb)). We consider electron and ion (deuteron) species,
with Ti = Te, qi = −qe and an electron to ion mass ratio given by me/m i = 1/3671.
Furthermore, we non-dimensionalise the frequency and wave vector as

ω̌ := ω

uth,ik�

, ǩ := �ik. (7.35)

In this case, we expect to find a shear and compressional Alfvén wave, which have
the following frequencies (in the quasi-neutral limit c → ∞):

ω̌As := 1√
β0
, ω̌Ac := k

k�

ω̌As, (7.36)

respectively. We note that the shear Alfvén frequency is constant with respect to
ǩ⊥, whereas the compressional Alfvén frequency increases linearly with increasing
wavenumber. Hence, the compressional Alfvén wave is a fast wave. This is especially
true when small perpendicular length scales are considered (turbulence), as in such
a case, the compressional Alfvén frequency becomes comparable to the cyclotron
frequency

ε⊥ ∼ 1, ω=ωAc =⇒ εω = ωAc

ωc,i
= ǩ√

β0
∼ 1. (7.37)

The presence of the compressional Alfvén wave in the proposed gyrokinetic model
is therefore incompatible with the low-frequency approximation of the first-order
generating function (4.59), which relies on εω 
 1. This incompatibility seems to
suggest that we have made a mistake in the derivation of the proposed gyrokinetic
model. The origin of this issue lies in the low-frequency approximation of the first-
order generating function as discussed in § 4.5.2, where we have intentionally kept
the gauge-invariant parts of the right-hand side of (4.53). While this ensures gauge
invariance, it neglects the fact that the part of the electric field that comes from the
vector potential has a time derivative, and this term would therefore be neglected if
we had neglected all O(εω) terms.

In figure 2, we show the dispersion relations for a fixed value of ǩ� = 2 × 10−3

and β0 = 10 %. The gyrokinetic Maxwell model with (ξR, ξΘ)= (1, 0) results in two
waves, which have the correct real part of the frequency, whereas the imaginary part
has the correct sign which results in damping. The dispersion relation of the other
models result only in the shear Alfvén wave, as expected.

To further explore the parameter space, we use the geometrical parameters of the
tokamak fusion devices ASDEX Upgrade (AUG) and ITER as well as the stellarator
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R0 a �i ǩ� ǩ⊥
AUG 1.6 m 0.8 m 3.4 × 10−3 m 2.1 × 10−3 7.2 × 10−3

ITER 6.2 m 2 m 2.4 × 10−3 m 3.9 × 10−4 2.0 × 10−3

W7-X 5.5 m 0.53 m 4.4 × 10−3 m 7.9 × 10−4 1.4 × 10−2

TABLE 1. The length scales used for determining the wave vector ǩ, as obtained from Zoni
& Possanner (2021). The non-dimensional wavenumbers ǩ� and ǩ⊥ are computed according

to (7.38).

10−4 10−3 10−2 10−1

101

102

103

ǩ⊥

�(
ω̌
)

10−4 10−3 10−2 10−1

10−8

10−6

10−4

10−2

ǩ⊥

−�
(ω̌

)

Parallel-only QN gyrokinetic Darwin / BH Gyrokinetic Maxwell

The real part. The negative imaginary part.

(a) (b)

FIGURE 2. Dispersion relations for a fixed value of ǩ� = 2 × 10−3 and β0 = 10 %. The black
dotted line corresponds to ω̌= ω̌As, whereas the black dashed line corresponds to ω̌= ω̌Ac.

Wendelstein 7-X (W7-X) to determine the value of the wave vector ǩ. For both the
parallel and perpendicular direction, we consider the lowest non-trivial wavenumber

ǩ� = �i

R0
, ǩ⊥ = 2π�i

a
√

4 + π 2
, (7.38)

where R0 and a denote the major and minor radii of the tokamak, respectively.
The values of R0, a, �i are shown in table 1 and are taken from Zoni & Possanner
(2021) for the tokamak fusion devices and from Grieger et al. (1992) and Klinger
et al. (2019) for the stellarator W7-X. We moreover show the resulting wavenumbers
according to (7.38).

For each of the three models and each of the three machines, we compute the
dispersion curve where we vary β0 and keep the wave vectors fixed. The results are
shown in figure 3. We find that the real part of the dispersion curves all overlap and
agree with (7.36), which suggests that the shear Alfvén frequency depends only on
β0. When considering the imaginary part of the dispersion curve, we find differences
not only between the machines, but also between the models, in particular, for larger
values of β0. The gyrokinetic Maxwell and quasi-neutral gyrokinetic Darwin model
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Parallel-only QN gyrokinetic Darwin / BH Gyrokinetic Maxwell
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FIGURE 3. Dispersion relations for fixed values of ǩ⊥ and ǩ�, as determined from table 1. Only
the shear Alfvén wave is shown.

agree well, which shows that the removal of the compressional Alfvén wave has not
altered the shear Alfvén wave. Moreover, we find that the parallel-only model yields
a different imaginary part of the shear Alfvén frequency.

7.4. Summary of comparison
We have compared five different gyrokinetic models, all of which are derived from

an action principle. An overview of the most essential properties is given in table 2,
wherein we have also included the symplectic part of the gyrocentre single-particle
phase-space Lagrangian γ 1,R – with all other components equal to zero – which
defines the gyrocentre coordinate transformation. We summarise the comparison of
the models.

The parallel-only model (Kleiber et al. 2016), as described in § 7.1, neglects the per-
pendicular part of the vector potential and thereby results in two scalar, well-posed,
perpendicular Poisson-type field equations which decouple for a centred Maxwellian
background particle distribution function. The model is not gauge-invariant. Due to
the absence of the perpendicular part of the vector potential, we find that the EOMs
of the parallel model do not contain a grad-B1,� drift. This model is still the ‘work-
ing horse’, and it is widely used for the global simulation of turbulence in fusion
devices (Garbet et al. 2010; Mishchenko et al. 2023). It is favourable if more com-
plex models reduce to this well-known model in the limiting case A1,⊥ = 03, not only
because it is reassuring that the traditional parallel-only model is recovered in this
limit, but also because it implies that any differences in simulation results are only
due to the presence of the perpendicular part of the vector potential when results are
compared between the parallel-only model and a more complex gyrokinetic model.
In particular, differences in simulation results cannot be due to a different choice of
coordinates.

The symplectic Brizard–Hahm model (Brizard & Hahm 2007) (see § 7.2) contains
the full vector potential and results in a curl–curl-type Ampère law which is coupled
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¯̄γ 1,R Reduces to
parallel-only

Gauge-
invariant

Fast
waves

Compatible
equations

Parallel-only q〈 Å1,�〉b̂0 N/A N N Y
Brizard–Hahm q〈 Å1〉 Y N N† N
Burby–Brizard q A1 N Y Y/N∗ Y/N∗
QN gyrokinetic
Darwin

q A1 + q〈|B̊ς1 × ρ|〉 Y Y N Y

Gyrokinetic
Maxwell

q A1 + q〈|B̊ς1 × ρ|〉 Y Y Y Y

TABLE 2. Properties of the different gyrokinetic models under consideration. The two models
proposed in this paper are in boldface: the gyrokinetic Maxwell model with (ξR, ξΘ)= (1, 0)
and its corresponding quasi-neutral gyrokinetic Darwin approximation. † This can be a ‘yes
(Y)’ if the approach from Qin et al. (1999) is followed. ∗ If the polarisation current density is
kept, then the compressional Alfvén wave is present and the Lagrange multiplier vanishes, but
if the polarisation current density is neglected, then the compressional Alfvén wave is absent

and the Lagrange multiplier is needed to restore the bound-charge continuity equation.

to the same quasi-neutrality equation as found in the parallel-only model. This model
is also not gauge-invariant and reduces to the parallel-only model when neglecting the
perpendicular part of the vector potential. The grad-B1,� drift is present in the EOMs;
this is the case for each of the gyrokinetic models which have the full vector potential.
Interestingly, the second-order Hamiltonian of the Brizard–Hahm model coincides
with that of the parallel-only model. This implies that this model has no polarisation
current density, and the magnetisation effects do not depend on the perpendicular
part of the vector potential. Moreover, the magnetisation current density is not the
curl of a magnetisation, and we find that the continuity equation is not satisfied for
the gyro-average adjoint of the free charge and current density. For those reasons,
the total continuity equation, consisting of the free and bound charge density, is not
satisfied, which is a necessary condition for well-posedness of the field equations.
It follows that well-posedness of the Brizard–Hahm model (Brizard & Hahm 2007)
requires the introduction of a Lagrange multiplier, which affects both the EOMs and
the field equations in an unphysical way.

The gyrokinetic model from Burby & Brizard (2019) has played an essential role
in this paper, as it has guided us to the development of a family of gauge-invariant
gyrokinetic models. Their model coincides with the parameter choice (ξR, ξΘ)=
(0, 0). To suppress the compressional Alfvén wave, they propose to neglect the
polarisation current density altogether, as it is a higher-order contribution in εω.
This choice, however, breaks the bound-charge continuity equation and therefore
requires the introduction of a Lagrange multiplier to restore it. Moreover, letting
ξR = 0 results in a model where the symplectic part is essentially drift kinetic and
does not reduce to the parallel-only model if the perpendicular part of the vector
potential is neglected.

Instead, we propose to use (ξR, ξΘ)= (1, 0), which results in a gauge-invariant
gyrokinetic model for which all terms in both the EOMs and the field equations
can be interpreted from a physical point of view. Moreover, it yields the smallest
coordinate transformation (see the discussion at the end of § 4.5.2) while resulting
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in a gauge-invariant model wherein the gyrocentre magnetic moment is an invari-
ant. This model does reduce to the parallel-only model if the perpendicular part
of the vector potential is neglected. The gyrocentre single-particle Lagrangian and
resulting Vlasov–Maxwell action principle of this model are derived and described
in detail in §§ 4 and 5, respectively. We find that the continuity equation is satisfied
for the gyro-average adjoint of the free charge and current density, and, since the
model is gauge-invariant and derived from an action principle, it follows that the
bound-charge continuity equation is satisfied as well. These are necessary conditions
for well-posedness of the field equations, which are satisfied without the need of a
Lagrange multiplier.

The presence of the polarisation current density in the proposed gyrokinetic
Maxwell model results in a compressional Alfvén wave, which is often undesired due
to its relatively high frequency. To this end, the quasi-neutral Darwin approximation
can be applied to the proposed gyrokinetic Maxwell model (see § 6). Therein, we
consider the limit of quasi-neutrality and remove the part of the polarisation current
density that is responsible for the compressional Alfvén wave (as we have demon-
strated by making use of the dispersion relation), while retaining the compatibility
of the field equations as well as gauge invariance of the model.

Finally, we have derived a dispersion relation for each of the models, which has
confirmed the expected properties of the models: each model contains the shear
Alfvén wave and only the proposed gyrokinetic Maxwell model includes the com-
pressional Alfvén wave. In both cases, the real part of the frequency agrees well with
the theory, whereas the imaginary part is negative and thereby results in damping of
the wave.

8. Conclusions

Motivated by the need for a more complete gyrokinetic model, wherein the per-
pendicular part of the vector potential is kept, we have discussed the gyrocentre
coordinate transformation in detail. The purpose of the gyrocentre coordinate trans-
formation is to transform the perturbed guiding-centre single-particle phase-space
Lagrangian in such a way that it becomes independent of the gyro-phase. This results
in a reduction of the phase-space dimension from six to five (the gyrocentre position,
the parallel velocity and the invariant magnetic moment) and when moreover con-
sidering the limit of quasi-neutrality, removes the fastest time scales from the large
range of length and time scales present in the Vlasov–Maxwell model.

When gyrokinetic modelling is considered at the level of the Lagrangian, which
thereby utilises a variational principle, it is ensured that the gyrokinetic model is
structure preserving. In particular, we find that energy is conserved regardless of the
modelling error introduced by the truncated gyrocentre coordinate transformation.
However, an aspect that is often overlooked in gyrokinetics is the property of gauge
invariance (Brizard & Hahm 2007), which ensures that the model is invariant under
the gauge transformation, as it is the case for the Vlasov–Maxwell model. In partic-
ular, the traditionally used parallel-only models are not gauge-invariant. To this end,
we have generalised the approach proposed of Burby & Brizard (2019), wherein a
gauge-invariant gyrokinetic model is introduced. We have derived sufficient condi-
tions on the gyrocentre coordinate transformation which ensure that the resulting
gyrocentre single-particle phase-space Lagrangian is gauge-invariant. Despite this
additional restriction, the gyrocentre coordinate transformation is by no means
uniquely defined, and this approach therefore results in a family of gauge-invariant
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gyrokinetic models. The family of models is parametrised by two parameters ξR, ξΘ ,
where the model from Burby & Brizard (2019) coincides with (ξR, ξΘ)= (0, 0). Our
derivation is presented by making use of vector calculus, as opposed to the more
customarily used formalism of differential geometry.

In an effort to obtain a gyrokinetic model, for which each of the equations of
motion as well as the field equations can be interpreted from a physical point of
view, we have chosen (ξR, ξΘ)= (1, 0). This choice leads to the smallest coordi-
nate transformation which results in a gauge-invariant model wherein the gyrocentre
magnetic moment is an invariant. We find that the proposed model reduces to the
parallel-only model when the perpendicular component of the vector potential is
neglected, which does not hold for the gauge-invariant model from Burby & Brizard
(2019). The resulting model has been derived to second-order in the perturbation
parameter εδ, and the second-order part of the Lagrangian contains polarisation and
magnetisation effects which have a clear physical meaning. Due to gauge invariance,
the model can be expressed directly in terms of the electromagnetic fields rather than
the potentials. The gyrokinetic model thereby results in the macroscopic Maxwell’s
equations. Moreover, we have derived equilibrium conditions on the background dis-
tribution function and magnetic field which justify the smallness of the perturbation
parameter εδ.

We find that the proposed gyrokinetic Maxwell model possesses a magnetisation
current density which is the curl of a magnetisation. In addition, it has a polari-
sation current density, and we find that the free-charge continuity equation holds
for the gyro-average adjoints of the free charge and current density. Each of those
three properties is essential for showing that the bound-charge continuity equation
is naturally satisfied, which is necessary for the well-posedness of the field equations.
Hence, unlike the Brizard–Hahm model (Brizard & Hahm 2007), we find that the
field equations of the proposed gyrokinetic Maxwell model are compatible without
the need of a Lagrange multiplier. A brief summary of the comparison between each
of the models under consideration is found in table 2.

In addition, we have derived the gyrokinetic susceptibility tensor, which covers the
material properties of the linearised gyrokinetic model in the macroscopic Maxwell’s
equations for each of the models under consideration. In the zero Larmor radius
limit, we find that the gyrokinetic susceptibility tensor of the proposed gyrokinetic
Maxwell model agrees with that of the Vlasov–Maxwell system. Moreover, the result-
ing dispersion relation shows that, in addition to the usual shear Alfvén wave, a fast
compressional Alfvén wave is present in the proposed gyrokinetic Maxwell model.
Due to the potentially high frequency of this wave, we have proposed a quasi-neutral
Darwin approximation to the proposed gyrokinetic Maxwell model which success-
fully removes the fast compressional Alfvén wave. We find that the quasi-neutral
gyrokinetic Darwin model is still well-posed and gauge-invariant.

In future work, we plan to implement the two proposed models in the gyrokinetic
particle-in-cell code EUTERPE (Jost et al. 2001; Kleiber et al. 2024) and compare
them with the well-established and traditionally used parallel-only model.
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Appendix A. Inversion of the Lagrange matrix
We consider the inversion of the Lagrange matrix

W =
( W11 W12

−W ᵀ
12 W22

)
, (A.1)

where

W11 =
(

qB −m b̂0

m b̂0
ᵀ

0

)
, W12 =

⎛⎜⎝
m

q
w 03

0 0

⎞⎟⎠ , W22 =

⎛⎜⎜⎝
0

m

q

−m

q
0

⎞⎟⎟⎠ . (A.2)

Here, B is such that
BS = S × B (A.3)

for some magnetic field B.
The inverse of W22 is readily given by

W−1
22 =

⎛⎜⎝ 0 − q

m
q

m
0

⎞⎟⎠ . (A.4)

Using the Schur complement

S = W11 + W12W−1
22 W ᵀ

12, (A.5)

we find that the inverse of the 2 × 2 block matrix W is given by

W−1 =
(

S−1 −S−1W12W−1
22

W−1
22 W ᵀ

12S−1 W−1
22 − W−1

22 W ᵀ
12S−1W12W−1

22

)
. (A.6)

The expressions for the block matrices result in

S = W11 (A.7)
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for which the inverse is given by

S−1 =

⎛⎜⎜⎜⎝
− B0

q B0 B�

B
m B�

− Bᵀ

m B�

0

⎞⎟⎟⎟⎠ (A.8)

as can be verified by computing the product

SS−1 =
(

qB −m b̂0

m b̂0
ᵀ

0

)⎛⎜⎜⎜⎝
− B0

q B0 B�

B
m B�

− Bᵀ

m B�

0

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
−BB0 + B0 Bᵀ

B0 B�

qBB
m B�

−m b̂0
ᵀ
B0

q B0 B�

1

⎞⎟⎟⎟⎠ (A.9)

and observing that using (3.41),

BB = B × B = 0, Bᵀ
0 b̂0 = B0 × b̂0 = 0 (A.10)

as well as

(−BB0 + B0 Bᵀ) S = −B(S × B0)+ B0(B · S)
= −(S × B0)× B + B0(B · S)
= B�B0 S (A.11)

for any vector S, which implies that −BB0 + B0 Bᵀ = B�B0I3.
Using these intermediate results, we are ready to evaluate the blocks of the inverse

of W

(W−1)12 = −S−1W12W−1
22 =

⎛⎜⎜⎜⎝
03 −w × b̂0

q B�

0 − B · w

m B�

⎞⎟⎟⎟⎠ (A.12)

and

(W−1)22 = W−1
22 − W−1

22 W ᵀ
12S

−1W12W−1
22 =

⎛⎜⎝ 0 − q

m
q

m
0

⎞⎟⎠ (A.13)

such that the inverse of the Lagrange matrix is given by

W−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− B0

q B0 B�

B
m B�

03 −w × b̂0

q B�

− Bᵀ

m B�

0 0 − B · w

m B�

0ᵀ
3 0 0 − q

m

(w × b̂0)
ᵀ

q B�

B · w

m B�

q

m
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.14)
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Appendix B. Gyrocentre coordinate transformation
The gyrocentre Lagrangian ¯̄L is defined according to (4.6). The transformation

rules for the Hamiltonian and symplectic part follow directly by substituting (4.5)
into (4.6) and by subsequently making use of a Taylor series expansion centred
around the gyrocentre coordinate ¯̄Z. The contribution due to the generating function
¯̄S is omitted here.

For the guiding-centre Hamiltonian, this results in

H̄(Z̄)= H̄ + ∂ H̄

∂ ¯̄Z
·
(

− ¯̄G1 + 1
2
∂ ¯̄G1

∂ ¯̄Z
¯̄G1 − ¯̄G2

)
+ 1

2
∂2 H̄

∂ ¯̄Z2
: ( ¯̄G1 ⊗ ¯̄G1

)+ O(ε3
δ ) (B.1)

upon substitution of (4.5) and using a Taylor-series expansion of H̄ centred around
the gyrocentre coordinate ¯̄Z. We use the notational convention that an absence of
arguments implies evaluation at the gyrocentre coordinate, and we let ⊗ denote the
outer product of two vectors

(a ⊗ b)i j = ai b j (B.2a)
such that

M : (a ⊗ b)=
3∑

i, j=1

M i j ai b j . (B.2b)

This expression can be simplified to

H̄(Z̄)= H̄ − ∂ H̄

∂ ¯̄Z
·
(

¯̄G1 + ¯̄G2

)
+ 1

2

[
∂

∂ ¯̄Z

(
∂ H̄

∂ ¯̄Z
· ¯̄G1

)]
· ¯̄G1 + O(ε3

δ ). (B.3)

The same approach is followed for the symplectic part of the guiding-centre
Lagrangian. Let Γ̄ (Z̄)= γ̄ (Z̄) · ˙̄Z. Substitution of (4.5) results in

Γ̄ (Z̄)=
[
γ̄ − ∂ γ̄

∂ ¯̄Z

(
¯̄G − 1

2
∂ ¯̄G1

∂ ¯̄Z
¯̄G1

)
+ 1

2
∂2γ̄

∂ ¯̄Z2
:
(

¯̄G1 ⊗ ¯̄G1

)]

·
[

˙̄̄Z − d
dt

(
¯̄G − 1

2
∂ ¯̄G1

∂ ¯̄Z
¯̄G1

)]
+ O(ε3

δ ), (B.4)

where we write ¯̄G := ¯̄G1 + ¯̄G2 for brevity, and we use the notational convention that
an absence of arguments implies evaluation at the gyrocentre coordinate ¯̄Z. We are
permitted to add a total derivative by virtue of considering an action principle. We
add the total derivative of(

γ̄ − 1
2
∂ γ̄

∂ ¯̄Z
¯̄G
)

·
(

¯̄G − 1
2
∂ ¯̄G1

∂ ¯̄Z
¯̄G1

)
(B.5)

resulting in the following symplectic part of the gyrocentre Lagrangian:

¯̄γ = γ̄ + W̄

(
¯̄G − 1

2
∂ ¯̄G1

∂ ¯̄Z
¯̄G1

)
+ 1

2
∂2γ̄

∂ ¯̄Z2
: ( ¯̄G1 ⊗ ¯̄G1

)
+ 1

2

([
∂ ¯̄G1

∂ ¯̄Z

]ᵀ
∂ γ̄

∂ ¯̄Z
−
[
∂

∂ ¯̄Z

(
∂ γ̄ 0

∂ ¯̄Z
¯̄G1

)]ᵀ)
¯̄G1, (B.6)
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where the following piece of the symplectic part of the transformed guiding-centre
Lagrangian moves to the Hamiltonian part of the gyrocentre Lagrangian (while
switching sign):

∂

∂t

(
γ̄ 1 − 1

2
∂ γ̄ 0

∂ ¯̄Z
¯̄G1

)
· ¯̄G1, (B.7)

where we have made use of ∂ γ̄ 0/∂t = 06.
To further simplify (B.6), we write it component wise as

¯̄γi = γ̄i + W̄ i j

(
¯̄G j − 1

2
∂ ¯̄G1, j

∂ ¯̄Zk

¯̄G1,k

)
+ 1

2

(
∂2γ̄i

∂ ¯̄Z j∂
¯̄Zk

− ∂2γ̄0, j

∂ ¯̄Zi∂
¯̄Zk

)
¯̄G1, j

¯̄G1,k

+ 1
2

W̄ k j
∂ ¯̄G1, j

∂ ¯̄Zi

¯̄G1,k, (B.8)

where we have simplified the expression, and we note that a repeated index implies
summation. Note that

∂

∂ ¯̄Zi

(
W̄ k j

¯̄G1, j

)
− ∂

∂ ¯̄Zk

(
W̄ i j

¯̄G1, j

)
=
(

∂2γ̄i

∂ ¯̄Z j∂
¯̄Zk

− ∂2γ̄k

∂ ¯̄Z j∂
¯̄Zi

)
¯̄G1, j

+ W̄ k j
∂ ¯̄G1, j

∂ ¯̄Zi

− W̄ i j
∂ ¯̄G1, j

∂ ¯̄Zk

, (B.9)

which allows (B.8) to be written as

¯̄γi = γ̄i + W̄ i j
¯̄G j +

[
∂

∂ ¯̄Zi

(
W̄ k j

¯̄G1, j

)
− ∂

∂ ¯̄Zk

(
W̄ i j

¯̄G1, j

)]
¯̄G1,k . (B.10)

Finally, the gyrocentre Hamiltonian follows from subtracting (B.7) from (B.3)
resulting in

¯̄H = H̄ − ∂ H̄

∂ ¯̄Z
·
(

¯̄G1 + ¯̄G2

)
+
[
− ∂

∂t

(
γ̄ 1 − 1

2
∂ γ̄ 0

∂ ¯̄Z
¯̄G1

)
+ 1

2
∂

∂ ¯̄Z

(
∂ H̄

∂ ¯̄Z
· ¯̄G1

)]
· ¯̄G1.

(B.11)

Appendix C. Proof of sufficient condition for gauge invariance

THEOREM 4 (Sufficient condition for gauge invariance). The gyrocentre single-
particle phase-space Lagrangian (to second-order) is gauge-invariant up to a total
derivative

¯̄L
(4.26)
→ ¯̄L + q

(
∇η · ˙̄̄R + ∂η

∂t

)
= ¯̄L + q

dη
dt
, (C.1)

provided that ¯̄γ 1 − γ̄ 1 and ¯̄γ 2 are gauge-invariant.

Proof. We assume that ¯̄γ 1 − γ̄ 1 is gauge-invariant. Note that the perturbed guiding-
centre Lagrangian (4.35) is gauge-invariant (up to a total derivative),

L̄1
(4.26)
→ L̄1 + q

(
∇η · ˙̄R + ∂η

∂t

)
= L̄1 + q

dη
dt
. (C.2)
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From (4.10b) and (4.9b) it follows that the first-order gyrocentre Lagrangian can be
written as

¯̄L1 = L̄1 +
(
W̄0

¯̄G1 + ∂ ¯̄S1

∂ ¯̄Z

)
· ˙̄̄Z + ∂ H̄0

∂ ¯̄Z
· ¯̄G1 + ∂ ¯̄S1

∂t
, (C.3)

from which it follows that ¯̄L1 is gauge-invariant up to a total derivative if
the first-order generating vector ¯̄G1 and first-order generating function ¯̄S1 are
gauge-invariant.

Using (4.14), (4.15) and (4.35c), we find that

∂ ¯̄S1

∂t
+ { ¯̄S1,

¯̄H0

}
0
= qψ̃1 = ˜̄H1 + ˙̄Z · ˜( ¯̄γ 1 − γ̄ 1

)= ˜̄HFLR
1 + ˙̄Z · ˜( ¯̄γ 1 − γ̄ 1

)
, (C.4)

where we note that H̄FLR
1 is gauge-invariant as it is expressed in terms of the

electric field and, therefore, ¯̄S1 is gauge-invariant as ¯̄γ 1 − γ̄ 1 is assumed to be gauge-
invariant. It follows that the generating vector ¯̄G1 by (4.12) and thereby also the
first-order gyrocentre Lagrangian are gauge-invariant.

We additionally assume that ¯̄γ 2 is gauge-invariant. The second-order gyrocentre
Lagrangian is given by

¯̄L2 = ¯̄γ 2 · ˙̄̄Z − ¯̄H2, (C.5)

where the second-order gyrocentre Hamiltonian is given by (4.23). For the second-
order gyrocentre Lagrangian to be gauge-invariant, we therefore need to show that
the corresponding Hamiltonian is gauge-invariant, which upon inspection of (4.23)
requires the vector T 1 to be gauge-invariant.

The vector T 1, as given by (4.21), can be written as

T 1 =
[
W̄1

˙̄Z − ∂ H̄1

∂ ¯̄Z
− ∂ γ̄ 1

∂t

]
︸ ︷︷ ︸

T†
1

+1
2

[
∂ γ̄ 0

∂ ¯̄Z

∂ ¯̄G1

∂t
+ ( ¯̄W1 − W̄1)

˙̄Z + ∂

∂ ¯̄Z

(
∂ H̄0

∂ ¯̄Z
· ¯̄G1

)]
,

(C.6)
where we note that ¯̄W1 − W̄1 is gauge-invariant because ¯̄G1 is gauge-invariant
(cf. (4.11)). It therefore remains to be shown that T †

1 is gauge-invariant, which is
expressed in terms of the first-order symplectic and Hamiltonian part of the guiding-
centre Lagrangian. We note that the FLR part of the first-order guiding-centre
Lagrangian is expressed in terms of the electromagnetic fields (cf. (4.35)) and is
therefore gauge-invariant. Hence, we need only to show that the ZLR part T †,ZLR

1 is
gauge-invariant, which is given by

T †,ZLR
1 = W̄ ZLR

1
˙̄Z − ∂ H̄ZLR

1

∂ ¯̄Z
− ∂ γ̄ ZLR

1

∂t
=

⎛⎜⎜⎜⎝
q(E1 + ˙̄R × B1)

0
0
0

⎞⎟⎟⎟⎠ (C.7)

and is therefore gauge-invariant. �
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Appendix D. Gyro-averaging identities
D.1. Taylor-series expansions

Let Q = Q(r, t) be a smooth function. We denote by HQ the Hessian matrix of
second-order partial derivatives of Q,

(HQ)i j = ∂2 Q

∂ri∂r j
, (D.1)

which allows us to write the Taylor series expansion of Q centred around r as

Q̊ = Q(r + ρρ̂)= Q + ρρ̂ · ∇Q + ρ2

2
(HQ) : (ρ̂ ⊗ ρ̂)+ O(ρ3), (D.2)

where we recall (B.2) and note that an absence of arguments implies evaluation at
(r, t).

Non-dimensionalisation of (D.2) results in

Q̌(r + ρρ̂)= Q̌ + ε⊥ρ̂ · ∇Q̌ + ε2
⊥
2
(ȞQ̌) : (ρ̂ ⊗ ρ̂)+ O(ε3

⊥), (D.3)

where Q = [Q]Q̌ and we recall that the non-dimensional perpendicular wavenumber
is defined in (3.20).

We note that the O(ε3
⊥) term in (D.3) contains a ρ̂ ⊗ ρ̂ ⊗ ρ̂ term, which yields

zero upon computing the gyro-average. It follows that the gyro-average of Q̊ has the
following Taylor series expansion:

〈Q̊〉 = Q + ρ2

4
(HQ) : (ê1 ⊗ ê1 + ê2 ⊗ ê2)+ O(ε4

⊥), (D.4)

where we have multiplied (D.3) by [Q] and have made use of

〈ρ̂〉 = 03, (D.5a)

〈ρ̂ ⊗ ρ̂〉 = 1
2

(
ê1 ⊗ ê1 + ê2 ⊗ ê2

)
. (D.5b)

D.2 Stokes’s theorem
Using the definition of the gyro-average, as found in (4.16), we find that

〈S̊τ 〉 = 1
2π

∫ 2π

0
S( ¯̄R + ρ) · τ̂ ( ¯̄R, ¯̄θ) d ¯̄θ = − 1

2πρ

∫
∂Dρ

S · t̂ dl, (D.6)

where t̂ ⊥ b̂0 is the counter-clockwise tangent to the boundary of the disk Dρ centred
at ¯̄R (i.e. the shaded disk shown in figure 1), which results in the minus sign. Using
Stokes’s theorem and (4.49), we find that (see also (Porazik & Lin 2011))

〈S̊τ 〉 = − 1
2πρ

∫
Dρ

(∇ × S)�d2x = −ρ
2

1
πρ2

∫
Dρ

(∇ × S)�d2x = −ρ
2
〈〈(∇̊ς × S)�〉〉,

(D.7)
where d2x is an infinitesimal area element on the disk.
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D.3. Gradient theorem
Terms containing a radial average (i.e. an integral over ς ) can often be interpreted

in some alternative way. For instance, the gradient theorem (or fundamental theorem
of calculus for line integrals) results in

ρ〈|ρ̂ · ∇̊ς
Q|〉 = 1

2π

∫ 2π

0

∫ 1

0
ρ · (∇Q)( ¯̄R + ςρ) dς d ¯̄θ = 〈Q̊〉 − Q. (D.8)

The same identity can be derived for vector fields

ρ〈|(∇̊ς
S)ᵀρ̂|〉 = 〈S̊〉 − S. (D.9)

By making use of ∇(a · b)= a × (∇ × b)+ b × (∇ × a)+ (∇b)ᵀa + (∇a)ᵀb, while
neglecting O(εB) contributions, we find that

〈|∇̊ς
(ρSρ)|〉 + ρ〈|(∇̊ς × S)× ρ̂|〉 + O(εB)= 〈S̊〉 − S. (D.10)

Similarly, we find that application of (D.9) to the curl of a vector field results in

ρ〈|[∇̊ς
(∇ × S)]ᵀρ̂|〉 = 〈∇̊ × S〉 − ∇ × S. (D.11)

By making use of ∇ × (a × b)= a∇ · b − b∇ · a + (∇a)ᵀb − (∇b)ᵀa, while neglect-
ing O(εB) contributions, we then find that

ρ〈|∇̊ς × [(∇ × S)× ρ̂]|〉 + O(εB)= 〈∇̊ × S〉 − ∇ × S. (D.12)

Appendix E. Smallness of the coordinate transformation
The choice of the parameter ξR is based on the smallness of the gyrocentre coor-

dinate transformation, which is relevant because we truncate the expansion (in the
small parameter εδ) at second-order in (4.9) and (4.10). To make this more explicit,
we consider a specific contribution of H̄1 to ¯̄H3, which is therefore neglected in the
proposed second-order accurate model. We consider the following gyro-averaged
contribution from (B.1)

¯̄H �
3 = 1

2

〈
∂2 H̄1

∂ ¯̄Z2
: ( ¯̄G1 ⊗ ¯̄G1

)〉= O(ε3
δ ), (E.1)

where we note that the corresponding fluctuating part would be absorbed by the
third-order generating function ¯̄S3 if this term was to be included in the proposed
model. By decomposing each term in terms of its mean and fluctuating part, we find
that

¯̄H �
3 = 1

2

〈
∂2 H̄1

∂ ¯̄Z2
: (˜̄̄G1 ⊗ ˜̄̄G1

)〉+ 1
2
∂2〈H̄1〉
∂ ¯̄Z2

: (〈 ¯̄G1〉 ⊗ 〈 ¯̄G1〉
)

+
〈
∂2 ˜̄H 1

∂ ¯̄Z2
: (˜̄̄G1 ⊗ 〈 ¯̄G1〉

)〉
, (E.2)
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where we note that the first contribution does not depend on ξR. The magnitude of
¯̄H �

3 can be bounded from above as follows:

| ¯̄H �
3 |� 1

2

∣∣∣∣∂2〈H̄1〉
∂ ¯̄Z2

∣∣∣∣
F

|〈 ¯̄G1〉|2 +
∣∣∣∣∣
〈
∂2 ˜̄H 1

∂ ¯̄Z2
˜̄̄G1

〉∣∣∣∣∣ |〈 ¯̄G1〉| + . . . , (E.3)

where we have omitted the contribution that does not depend on ξR (now denoted
by . . .), and by making use of the triangle and Cauchy–Schwarz inequalities, substi-
tuting (4.35c), and by letting |·|F denote the Frobenius norm for which |S ⊗ S|F =
|S|2.

As the fluctuating part of the first-order generating vector ˜̄̄G1 is independent of the
choice of ξR , we can minimise the upper bound of the magnitude of the neglected
term ¯̄H �

3 by minimising the Euclidean norm (squared) of the gyro-average of the
first-order generating vector

|〈 ¯̄G1〉|2 =
¯̄M2

B2
0

〈〈
B̊ς

1,�

〉〉2 + (1 − ξR)
2

(
〈|B̊ς

1,�|〉2

(B�
0,�)

2
+ q2

m2

〈∣∣B̊ς

1,τ

∣∣〉2) , (E.4)

which is achieved by letting ξR = 1. This choice yields a second-order accurate (in
terms of εδ) gyrocentre Lagrangian for which the upper bound of the truncation
error is minimised with respect to the contributions from the first-order generating
vector, under the constraint that the resulting gyrocentre magnetic moment is an
invariant (i.e. letting ξΘ = 0).

Appendix F. Approximation of the second-order Hamiltonian
We consider (4.65), with the first-order generating vector approximated by (4.60)

and T 1 is as defined by (4.21), which we repeat here for convenience,

T 1 = 1
2

(
W̄1 + ¯̄W1

) ˙̄Z︸ ︷︷ ︸
A

− ∂

∂t

(
γ̄ 1 − 1

2
∂ γ̄ 0

∂ ¯̄Z
¯̄G1

)
︸ ︷︷ ︸

B

− ∂

∂ ¯̄Z

(
H̄1 − 1

2
∂ H̄0

∂ ¯̄Z
· ¯̄G1

)
︸ ︷︷ ︸

C

. (F.1)

In this section of the appendix, we use the following shorthand notation:

Q† := 1
2
(Q + 〈Q〉). (F.2)

For the approximation of ¯̄H2, we omit all derivatives of the background magnetic
field as well as of the perturbed electromagnetic fields.

Using (4.35b) and (4.47), we find that

1
2
(γ̄ 1 + ¯̄γ 1)=

⎛⎜⎜⎜⎜⎜⎜⎝
q A1 + qρ

∫ 1
0 (B̊

ς

1 × ρ̂)†dς

0

0

−qρ2

2

∫ 1
0 ς

(
B̊ς

1,�

)
dς

⎞⎟⎟⎟⎟⎟⎟⎠ , (F.3)
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from which it follows that

1
2
(W̄1 + ¯̄W1)=

∫ 1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qB1 03 − qρ

2 ¯̄M
(B̊

ς

1 × ρ̂)† −qρ

2
B̊
ς

1 × τ̂

0ᵀ
3 0 0 0

qρ

2 ¯̄M

[(
B̊
ς

1 × ρ̂
)†]ᵀ

0 0 −qρ2

2 ¯̄M
ς
(
B̊ς

1,�

)
qρ

2

(
B̊
ς

1 × τ̂
)ᵀ

0
qρ2

2 ¯̄M
ς
(
B̊ς

1,�

)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dς,

(F.4)

where the matrix B1 is defined analogously to (3.41). We have omitted all derivatives
of the background magnetic field as well as of the perturbed electromagnetic fields.
Subsequent evaluation of the matrix-vector product with ˙̄Z (while neglecting O(εB)
contributions), where the guiding-centre EOMs are given by (3.48), results in

A = 1
2
(W̄1 + ¯̄W1)

˙̄Z =
∫ 1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qŪ� b̂0 × B1 − qρωc

2
B̊
ς

1 × τ̂

0

qρŪ�

2 ¯̄M
(B̊

ς

1 × ρ̂)† · b̂0 − ωcqρ2

2 ¯̄M
ς
(
B̊ς

1,�

)
qρŪ�

2
(B̊

ς

1 × τ̂ ) · b̂0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dς. (F.5)

The second term in T 1 is given by

B =

⎛⎜⎜⎜⎜⎜⎜⎝
q
∂A1

∂t
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ (F.6)

by making use of (4.35b), (3.23) and (4.60) as well as Faraday’s law (5.21). The
third term in T 1 involves the average of the first-order guiding-centre and gyrocentre
Hamiltonians

1
2
(H̄1 + ¯̄H1)= qφ1 −

∫ 1

0

[qρ

2

(
E̊ς

1,ρ + 〈
E̊ς

1,ρ

〉)− ¯̄Mς〈B̊ς

1,�〉
]

dς, (F.7)

which follows from substituting (4.35c) and (4.52). This results in

C =
∫ 1

0

⎛⎜⎜⎜⎜⎜⎝
q∇φ1

0

− qρ

4 ¯̄M

(
E̊ς

1,ρ + 〈
E̊ς

1,ρ

〉)+ ς〈B̊ς

1,�〉
−qρ

2
E̊ς

1,τ

⎞⎟⎟⎟⎟⎟⎠ dς, (F.8)

where we have again neglected all derivatives of the background and perturbed
electromagnetic fields.
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When combining (F.5), (F.6) and (F.8), we find that T 1 is given by

T 1 =
∫ 1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 − qρωc

2
B̊
ς

1 × τ̂

0

ρ

4 ¯̄M

(
F̊ς

1,ρ + 〈
F̊ς

1,ρ

〉)− ς
(
B̊ς

1,� + 〈
B̊ς

1,�

〉)
ρ

2
F̊ς

1,τ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
dς, (F.9)

where we have made use of the definition of the Lorentz force F1 as given by (4.56).
We are ready to evaluate the second-order gyrocentre Hamiltonian, as expressed in
(4.65), by substituting (4.60) and (F.9)

¯̄H2 =
〈(

F1 − qρωc

2

∫ 1

0
B̊
ς

1 × τ̂ dς
)

·
(

− b̂0

B�
0,�

×
∫ 1

0

˜̊B
ς

1 × ρ dς + ρB1,ρ

B0
b̂0

)〉

−
〈∫ 1

0

[
ρ

4 ¯̄M

(
F̊ς

1,ρ + 〈
F̊ς

1,ρ

〉)− ς
(
B̊ς

1,� + 〈
B̊ς

1,�

〉)]
dς

[
q2ρ2

m

∫ 1

0
ς B̊ς

1,� dς − ρ

B0
F1,ρ

]〉
+
〈[
ρ

2

∫ 1

0
F̊ς

1,τ dς
] [

− ρ

2B0
¯̄M

F1,τ

]〉
. (F.10)

We consider the ZLR limit of all the terms. That is, we make use of the
approximation Q̊ς ≈ Q resulting in

¯̄H2 = ρ

B0

〈[
F1 − qρωc

2
B1 × τ̂

]
·
[

b̂0 × (〈B1 × ρ̂〉 − B1 × ρ̂
)+ B1,ρ b̂0

]〉
+ 1

2

〈[
ρ

2 ¯̄M
(F1,ρ + 〈F1,ρ〉)− B1,�

] [
−q2ρ2

2m
B1,� − ρ

B0
F1,ρ

]〉
− ρ2

4B0
¯̄M

〈
F2

1,τ

〉
,

(F.11)
where we have moreover approximated B�

0,� ≈ B0. When subsequently making use
of 〈τ̂ 〉 = 〈ρ̂〉 = 03 as well as

〈S2
ρ〉 = 〈S2

τ 〉 = (S ⊗ S) : 〈ρ̂ ⊗ ρ̂〉 = 1
2
(S ⊗ S) : (ê1 ⊗ ê1 + ê2 ⊗ ê2)= 1

2
|S⊥|2, (F.12)

we find that
¯̄H2 =

¯̄M

2B0
|B1,⊥|2 − m

2q2 B2
0

|F1,⊥|2. (F.13)

Appendix G. Computation of the Jacobian
The aim is to compute the Jacobian of the transformation from the physical

coordinates Z̃ = (R,U) to the gyrocentre coordinates ¯̄Z. To this end, we write the
Lagrangian in physical coordinates Z̃ as

L̃ = γ̃ · ˙̃Z − H̃ = [q(A0 + A1)+ mU ] · ˙̄̄R −
(

qφ1 + m

2
|U |2

)
. (G.1)

Here, the coordinate transformation Z̃ = Z̃(t, ¯̄Z) is defined implicitly by imposing
that the physical Lagrangian is transformed to the gyrocentre Lagrangian given by
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(4.67)
L̃(Z̃)= ¯̄L( ¯̄Z), (G.2)

where we note that Z̃ as a dependent coordinate also depends on time t via the
perturbed potentials. Note that

˙̃Z = ∂ Z̃
∂t

+ ∂ Z̃

∂ ¯̄Z
˙̄̄Z, (G.3)

from which it follows that (G.1) and (G.2) imply

γ̃ ·
(
∂ Z̃

∂ ¯̄Z
˙̄̄Z
)

= ¯̄γ · ˙̄̄Z =⇒ ¯̄γ =
(
∂ Z̃

∂ ¯̄Z

)ᵀ

γ̃ . (G.4)

This results in the following expression for the gyrocentre Lagrange matrix:

¯̄W =
(
∂ ¯̄γ

∂ ¯̄Z

)ᵀ
− ∂ ¯̄γ

∂ ¯̄Z
=
(
∂ γ̃

∂ ¯̄Z

)ᵀ
∂ Z̃

∂ ¯̄Z
−
(
∂ Z̃

∂ ¯̄Z

)ᵀ
∂ γ̃

∂ ¯̄Z
=
(
∂ Z̃

∂ ¯̄Z

)ᵀ

W̃
∂ Z̃

∂ ¯̄Z
, (G.5)

from which it follows that

det
∂ Z̃

∂ ¯̄Z
=
√

det ¯̄W

det W̃
. (G.6)

From the definition of γ̃ in (G.1), it follows that

det W̃ = det
(

qB −mI3
mI3 03

)
= m6 (G.7)

and

det ¯̄W = det ¯̄S det ¯̄W22 = det ¯̄W11
m2

q2
(G.8)

by the Schur complement determinant formula, where we use the block structure
of the Lagrange matrix as discussed in Appendix A. Finally, we note that direct
computation shows that

det ¯̄W11 = det

(
qB� −m b̂0

m b̂0
ᵀ

0

)
= (qm B�

�
)2 (G.9)

such that

det
∂ Z̃

∂ ¯̄Z
= B�

�

m
. (G.10)

Appendix H. Proof of Liouville’s theorem

THEOREM 5 (Gyrocentre Liouville theorem). The phase-space volume is conserved:

∂Js

∂t
+ ∇ · (Js

˙̄̄R)+ ∂

∂ ¯̄u�

(Js
˙̄̄U�)= 0. (H.1)
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Furthermore, integrals of the form (5.5) can be expressed in terms of the initial
phase-space coordinates in the following way:∫

¯̄fsFJs d6¯̄z =
∫

¯̄f 0
s (¯̄z

0)F( ¯̄Z(t; ¯̄z0, t0))Js(¯̄z0, t0) d6¯̄z0, (H.2)

where an absence of arguments implies evaluation at (z, t).

Proof. The gyrocentre EOMs (4.80) imply that

∂B�
s,�

∂t
= ∂B�

1,�

∂t
, (H.3a)

∇ · (B�
s,�

˙̄̄R)= B�
s

ms
· ∇ ∂

¯̄Hs

∂ ¯̄U�

+ 1
qs

(
∇ ¯̄Hs + qs

∂A�
1

∂t

)
· (∇ × b̂0)− ∂B�

1,�

∂t
, (H.3b)

∂

∂ ¯̄U�

(
B�

s,�
˙̄̄U�

)= − 1
qs
(∇ × b̂0) ·

(
∇ ¯̄Hs + qs

∂A�
1

∂t

)
− B�

s

ms
· ∂

∂ ¯̄U�

∇ ¯̄Hs, (H.3c)

from which (H.1) follows by simply adding the contributions.
We consider the coordinate transformation ¯̄z = ¯̄Z(t; ¯̄z0, t0) 
→ ¯̄z0 applied to the

left-hand side of (H.2) resulting in∫
¯̄fs(¯̄z, t)F(¯̄z, t)Js(¯̄z, t) d6¯̄z

=
∫

¯̄f 0
s (¯̄z

0)F( ¯̄Z(t; ¯̄z0, t0))Js(
¯̄Z(t; ¯̄z0, t0), t)H( ¯̄Z(t; ¯̄z0, t0), t) d6¯̄z0 (H.4)

by defining the Jacobian

H= det
∂ ¯̄Z
∂¯̄z0

(H.5)

and by making use of (5.3). Therefore, we must show that

d
dt
(JsH)= 0, (H.6)

where we note that the product JsH is the Jacobian of the coordinate transformation
from initial gyrocentre coordinates to physical coordinates.

We note that (H.1) implies

J̇s = −Js
∂

∂ ¯̄Z
· ˙̄̄Z. (H.7)

To proceed, we make use of (for a proof, we refer to Bouchut et al. (2000,
Proposition 1.1))

Ḣ=H
∂

∂ ¯̄Z
· ˙̄̄Z. (H.8)

When combining this result with (H.7), we find

d
dt
(JsH)= J̇sH+ JsḢ= J̇sH+ JsH

∂

∂ ¯̄Z
· ˙̄̄Z = J̇sH−HJ̇s = 0. (H.9)

It follows that
JsH= Js(¯̄z0, t0)H(¯̄z0, t0)= Js(¯̄z0, t0), (H.10)

which upon substitution in (H.4), results in (H.2). �
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Appendix I. Proof of local energy conservation

THEOREM 6 (Local energy conservation). The kinetic energy density (5.74a) satisfies

∂ ¯̄K
∂t

+ ∇ ·
(∑

s

∫
¯̄fs

˙̄̄R ¯̄KsJs d3u

)
=J f · E, (I.1)

whereas the potential energy density (5.74b) satisfies Poynting’s theorem,

∂ ¯̄U
∂t

+ ∇ · (E ×H)= −J f · E. (I.2)

The magnetising field H and free current density J f are defined in (5.44f) and (5.39b),
respectively. It follows that the following local energy conservation law holds:

∂

∂t
( ¯̄K + ¯̄U)+ ∇ ·

(
E ×H+

∑
s

∫
¯̄f s

˙̄̄R ¯̄KsJs d3 ¯̄u

)
= 0. (I.3)

Proof. A direct computation of the partial derivative of the kinetic energy density
(5.74a) per species results in

∂ ¯̄Ks

∂t
=
∫

∂

∂t
( ¯̄f sJs)

¯̄Ks d3 ¯̄u −
∫

¯̄f s
¯̄μ〈〈(∇̊ς × E1)�〉〉Js d3 ¯̄u

= −∇ ·
∫

¯̄f s
˙̄̄R ¯̄KsJs d3 ¯̄u +

∫
¯̄f s

¯̄μ ˙̄̄R · ∇(B0 + 〈〈
B̊ς

1,�

〉〉)
Js d3 ¯̄u

+ ms

∫
¯̄f s

˙̄̄U�
¯̄u�Js d3 ¯̄u −

∫
¯̄f s

¯̄μ〈〈(∇̊ς × E1)�〉〉Js d3 ¯̄u

= −∇ ·
∫

¯̄f s
˙̄̄R ¯̄KsJs d3 ¯̄u + 1

ms

∫
¯̄f s

¯̄μ
(
¯̄u�B�

s − b̂0 × E�
1

) · ∇(B0 + 〈〈
B̊ς

1,�

〉〉)
d3 ¯̄u

+ 1
ms

∫
¯̄f s B�

s · [qs E�
1 − ¯̄μ∇(B0 + 〈〈

B̊ς

1,�

〉〉)]
¯̄u� d3 ¯̄u

−
∫

¯̄f s
¯̄μ〈〈(∇̊ς × E1)�〉〉Js d3 ¯̄u

= −∇ ·
∫

¯̄f s
˙̄̄R ¯̄KsJsd3 ¯̄u + qs

∫
¯̄f s

˙̄̄R · E�
1Jsd3 ¯̄u −

∫
¯̄f s

¯̄μ〈〈(∇̊ς × E1)�〉〉Js d3 ¯̄u

(I.4)

upon substitution of Faraday’s law (5.21), the conservative form of the Vlasov equa-
tion (5.10) and the gyrocentre EOMs (5.23). It follows that the total kinetic energy
evolves as (I.1) upon substitution of the definition of the free current density (5.39b)
and summation over the species s.

For computing the partial time derivative of the potential energy density (5.74b),
we note that

∂

∂t
(D · E)= 2

∂D
∂t

· E

+
∑

s

ms

B2
0

∫
¯̄f 0
s
¯̄u�

[
(b̂0 × B1) · ∂E

∂t
−
(

b̂0 × ∂B1

∂t

)
· E

]
J0,sd3 ¯̄u (I.5)
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and similarly
∂

∂t
(H · B)= 2H · ∂B

∂t
+ ∂B
∂t

·M1 − ∂M1

∂t
· B. (I.6)

Upon substitution of the strong form of the Ampère–Maxwell law (5.44d) as well as
Faraday’s law (5.44c), we find that

∂D
∂t

· E +H · ∂B
∂t

= (∇ ×H−J f) · E −H · (∇ × E)= −∇ · (E ×H)−J f · E.

(I.7)
It remains to be shown that the two remaining terms from (I.5) and (I.6) vanish.
The sum of the two terms is written as∑

s

ms

B2
0

∫
¯̄f 0
s

(
¯̄u�

[
(b̂0 × B1) · ∂E1

∂t
−
(

b̂0 × ∂B1

∂t

)
· E1

]
− ∂B1

∂t
·
[
¯̄u� b̂0 × E1,⊥ +

(
¯̄μB0

ms
− ¯̄u2

�

)
B1,⊥

]
+ ∂

∂t

[
¯̄u� b̂0 × E1,⊥ +

(
¯̄μB0

ms
− ¯̄u2

�

)
B1,⊥

]
· B1

)
J0,s d3 ¯̄u (I.8)

upon substitution of the definition of the magnetisation and polarisation as defined
in (5.34) and (5.29), respectively. Indeed, the sum vanishes and, therefore, (I.2) also
holds. �

Appendix J. Derivation of the Brizard–Hahm Hamiltonian
The aim is to compute the ZLR approximation of the second-order Hamiltonian as

found by Brizard & Hahm (2007, (173)). Their first- and second-order Hamiltonian
are given by

¯̄HBH
1 = q〈ψBH

1 〉, ψBH
1 := φ̊1 − ¯̄U� Ã1,� − ¯̄Uτ Å1,τ (J.1a)

and

¯̄HBH
2 = −q

2

〈{
¯̄S

BH

1 , ψ̃BH
1

}
0

〉
+ q2

2m
[〈| Å1,⊥|2〉 + 〈( Ã1,�)

2〉] + q

B0
〈 Å1,⊥〉 · (b̂0 × ∇〈ψBH

1

〉)
,

(J.1b)
respectively. The first-order generating function ¯̄SBH

1 again satisfies (4.53) to zeroth-
order in εω.

J.1. ZLR approximation of the Poisson bracket
We use the following shorthand notation for the components of a vector field S

in terms of the local coordinates ê1, ê2:

Sî := S · êi (J.2)

as well as the corresponding directional derivative of a scalar function

∂î Q := êi · ∇Q. (J.3)

Provided with the first-order generating function ¯̄SBH
1 , we want to approximate the

leading order term in ε⊥ of the gyro-averaged guiding-centre Poisson bracket (3.47)
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while neglecting O(εω) and O(εB) terms. This results in〈{
¯̄S

BH

1 , ψ̃BH
1

}
0

〉
= q

B0

〈
∂

∂ ¯̄M

(
ψ̃BH

1

)2
〉

︸ ︷︷ ︸
A

− b̂0

q B0
·
〈
∇⊥ ¯̄S

BH

1 × ∇⊥ψ̃BH
1

〉
︸ ︷︷ ︸

B

+O(ε3
⊥). (J.4)

Application of (D.4) to ψ̃BH
1 results in

ψ̃BH
1 = − B2

0

m
ρ · Q1 − ρ ¯̄Uτ ρ̂ · ∇⊥ A1,τ − ρ ¯̄Uτ

2
(∇ × A1,⊥)� − ρ2 ¯̄Uτ

2
(ρ̂ ⊗ ρ̂) : (HA1,τ )

+ ρ2

2
(ρ̂ ⊗ ρ̂) : [H(φ1 − ¯̄U� A1,�

)]− ρ2

2
∇2

⊥
(
φ1 − ¯̄U� A1,�

)+ O(ε3
⊥), (J.5)

which shows that the first term can be written as

A = q

B0

∂

∂ ¯̄M

〈(
B2

0

m
ρ · Q1

)2

︸ ︷︷ ︸
A1

+ ρ2 ¯̄U 2
τ ρ̂ · ∇⊥

(
τ̂ · A1,⊥

)
(∇ × A1,⊥)�︸ ︷︷ ︸

A3

+ ρ2 ¯̄U 2
τ

4
[(∇ × A1,⊥)�]2︸ ︷︷ ︸

A2

+ [
ρ ¯̄Uτ ρ̂ · ∇⊥

(
τ̂ · A1,⊥

)]2︸ ︷︷ ︸
A4

+ ρ2 ¯̄U 2
τ A1,τ (ρ̂ ⊗ ρ̂) : (HA1,τ )︸ ︷︷ ︸

A5

〉
,

(J.6)

where we made use of the fact that integration over the interval [0, 2π ] of odd
powers of cosine and/or sine functions yields zero, and we have defined the vector
Q1 as

Q1 := − m

B2
0

[∇⊥
(
φ1 − ¯̄U� A1,�

)+ωc A1,⊥ × b̂0

]
. (J.7)

Moreover, we used the fact that the A1,⊥ term in Q1 is the only O(ε0
⊥) term of ψ̃BH

1
and, therefore, the only term that remains upon multiplication by the ρ2(HA1,τ )
term, when neglecting O(ε3

⊥) terms and after integration over θ . Recall that the
outer product is defined in (B.2).

The first contribution can be evaluated as follows:

A1 = B2
0

qm
| Q1|2, (J.8)

where we made use of (D.5b). The second contribution can trivially be evaluated as

A2 = 2 ¯̄M

q B0
[(∇ × A1,⊥)�]2, (J.9)

whereas the third contribution yields

A3 = 4 ¯̄M

q B0
(∇ × A1,⊥)�

(
∂2̂ A1,1̂ − ∂1̂ A1,2̂

)= − 4 ¯̄M

q B0
(∇ × A1,⊥)2� (J.10)
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by making use of

〈ρ̂ ⊗ τ̂ 〉 = 1
2
(ê2 ⊗ ê1 − ê1 ⊗ ê2). (J.11)

The fourth contribution can be written as

A4 =
¯̄M

q B0

(|∇⊥ A1,⊥|2 + 2[(∇ × A1,⊥)�]2 − 2 det G⊥
)
, (J.12)

where we make use of

〈sin4 θ〉 = 〈cos4 θ〉 = 3
8
, 〈sin2 θ cos2 θ〉 = 1

8
(J.13)

and define

G⊥ :=
(
∂1̂ A1,1̂ ∂2̂ A1,1̂

∂1̂ A1,2̂ ∂2̂ A1,2̂

)
. (J.14)

Finally, the fifth contribution can be written as

A5 =
¯̄M

q B0

[
A1,⊥ · ∇2

⊥ A1,⊥ − 2(A1,⊥ × ∇⊥[(∇ × A1,⊥)�])�
]
. (J.15)

Since the B term in (J.4) already has a factor ε2
⊥, we need to only keep the

zeroth-order term of ψ̃BH
1 (cf. (J.5)) for obtaining an O(ε3

⊥) approximation

ψ̃BH
1 = ¯̄Uτ A1,τ + O(ε⊥) (J.16)

and similarly for ¯̄SBH
1 for the computation of the second term in (J.4) resulting in

B = −
¯̄U 2
τ

B0ωc
b̂0 · (∇⊥ A1,1̂ × ∇⊥ A1,2̂

)+ O(ε3
⊥)= − 2 ¯̄M

q B0
det G⊥ + O(ε3

⊥). (J.17)

By making use of

1
2
∇2

⊥|A1,⊥|2 = |∇⊥ A1,⊥|2 + A1,⊥ · ∇2
⊥ A1,⊥, (J.18)

we then find that the contribution to ¯̄HBH
2 due to the first-order generating function

can be approximated by (neglecting O(ε3
⊥) terms)〈{

¯̄S
BH

1 , ψ̃BH
1

}
0

〉
= B2

0

qm
| Q1|2 +

¯̄M

q B0

[
1
2
∇2

⊥|A1,⊥|2 − 2b̂0 · (A1,⊥ × ∇[(∇ × A1,⊥)�])
]
.

(J.19)

Note that, in principle, a high-frequency approximation of the first-order gener-
ating function ¯̄SBH

1 can also be considered, such as in the work of Qin et al.
(1999).
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J.2. ZLR approximation of the Hamiltonian

The remaining gyro-averaged terms in ¯̄HBH
2 can be approximated in the ZLR limit

as follows:

q2

2m
〈( Ã1,�)

2〉 =
¯̄M

2B0
|∇⊥ A1,�|2 + O(ε4

⊥), (J.20)

q2

2m
〈| Å1,⊥|2〉 = q2

2m
|A1,⊥|2 +

¯̄M

4B0
∇2

⊥|A1,⊥|2 + O(ε4
⊥), (J.21)

〈 Å1,⊥〉 = A1,⊥ + ρ2

4
∇2

⊥ A1,⊥ + O(ε4
⊥) (J.22)

by making use of (D.4). Moreover, we note that

〈ψ̊BH
1 〉 = φ1 − ¯̄U� A1,� + ρ2

4
∇2

⊥(φ1 − ¯̄U� A1,�)+
¯̄M

q
(∇ × A1)� + O(ε3

⊥) (J.23)

by making use of (D.7) and (D.4). Combining the ZLR approximations results in
the following ZLR approximation of the second-order Hamiltonian:

¯̄HBH
2 = − B2

0

2m
| Q1|2 +

¯̄M

2B0
|∇⊥ A1,�|2 + q2

2m
|A1,⊥|2 + q

B0
A1,⊥ · [b̂0 × ∇⊥(φ1 − ¯̄U� A1,�)],

(J.24)
which can be simplified to (7.14b).

Appendix K. Well-posedness of the saddle-point problem
Here, we briefly, and rather informally, discuss the well-posedness of the saddle-

point problem given by (6.16) under the simplifying assumptions of a constant
background magnetic field, an isotropic pressure p0,⊥ = p0,� as well as a spa-
tially constant coefficient C(1). Therefore, the following system of equations is
considered:

∇ × (∇ × A)− ∇⊥λ=J , (K.1a)
∇⊥ · A = 0, (K.1b)

where ∇ ·J = 0 and with appropriate boundary conditions. Assume that λ= 0 and
that A satisfies

−∇2
⊥ A� =J�, (K.2a)

−∇2 A⊥ =J ⊥ − ∇⊥(b̂0 · ∇A�), (K.2b)

then we can show that (λ, A) also satisfy (K.1) provided that εB = 0. As each of
the PDEs in (K.2) is well-posed provided with appropriate boundary conditions, we
find that (K.1) is well-posed as well.

The equivalence can be shown as follows. Assume that A solves (K.2). Computing
the divergence of (K.2b) results in

∇2(∇⊥ · A)= ∇⊥ ·J − b̂0 · ∇(∇2
⊥ A�)= ∇⊥ ·J + b̂0 · ∇(J�)= ∇ ·J = 0 (K.3)
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upon substitution of (K.2a). If homogenous Dirichlet boundary conditions are
‘included’ in the Laplace operator, then this implies that (K.1b) holds. Finally, we
add b̂0 times (K.2a) to (K.2b) resulting in

b̂0(b̂0 · ∇)2 A� − ∇2 A =J − ∇⊥(b̂0 · ∇A�). (K.4)

When rearranging the terms and by making use of (K.1b), we find that

∇(∇ · A)− ∇2 A =J , (K.5)

which shows that A satisfies (K.1a).

Appendix L. Susceptibility tensor in a slab
For the computation of the susceptibility tensor, we require a linearisation of

the proposed model under a Fourier ansatz. In particular, we require the Fourier
component of the linearised distribution function, the free current density, the polar-
isation current density and finally the magnetisation current density. Once each of
these Fourier components is known, we combine the results into the gyrokinetic
susceptibility tensor, and we compute the drift kinetic limit.

L.1. Fourier component of the linearised distribution function

We need a closed-form expression for δ ¯̄fs , which can be obtained upon
substitution of the Fourier ansatz

δ ¯̄f s = δ̂ ¯̄f s(¯̄u�, ¯̄μ)ei(k·̄̄r−ωt) (L.1)

into the linearised Vlasov equation (cf. (5.4))

∂δ ¯̄f s

∂t
+ ¯̄u� b̂0 · ∇δ ¯̄f s − 1

ms
b̂0 · (μ∇〈〈B̊ς

1,�

〉〉− qs〈E̊1〉
)∂ ¯̄f 0

s

∂ ¯̄u�

= 0, (L.2)

where we have made use of(
B�

s,�
˙̄̄R)

0
= B0 ¯̄u�,

(
B�

s,�
˙̄̄R)

1
= ¯̄u�〈B̊1〉 +

(
〈E̊1〉 − ¯̄μ

qs
∇〈〈B̊ς

1,�

〉〉)× b̂0 (L.3)

using the gyrocentre EOM (5.24), (4.74) and (4.72b) as well as(
B�

s,�
˙̄̄U�

)
0
= 0,

(
B�

s,�
˙̄̄U�

)
1
= − 1

m
B0 · (μ∇〈〈B̊ς

1,�

〉〉− qs〈E̊1〉
)
, (L.4)

which follows from substituting (4.76) and (5.20) into the gyrocentre EOM (4.80b)
and having assumed ∇ f 0

s = 03. Subsequent substitution of the Fourier ansatzes (L.1)
and (7.26) (and similarly for the magnetic field) results in

−iωδ̂ ¯̄f s + i¯̄u� b̂0 · kδ̂ ¯̄f s − 1
ms

b̂0 ·
(
iμk

〈̂〈
B̊ς

1,�

〉〉− qs 〈̂E̊1〉
)∂ ¯̄f 0

s

∂ ¯̄u�

= 0. (L.5)

To proceed, we must express the Fourier component of the gyro-average of a
function in terms of the Fourier component of that function itself. We write the
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wave vector k in terms of its parallel and perpendicular components as

k = k� b̂0 + k⊥(ê1 cos α + ê2 sin α) (L.6)

for some angle α. It follows that the gyro-average of a function Q

Q(r)=
∫

Q̂(k)eik·r d3k (L.7)

can be expressed in terms of the Fourier component in the following way:

〈Q̊〉(r)= 1
2π

∫
Q̂eik·r

∫ 2π

0
eik⊥ρ cos θ dθ d3k =

∫
Q̂eik·r J0 d3k (L.8)

and, therefore,
〈̂Q̊〉 = J0 Q̂, (L.9)

where Jn denotes the nth-order Bessel function of the first kind evaluated at k⊥ρ

Jn = 1
2π in

∫ 2π

0
eik⊥ρ cos θeiθn dθ. (L.10)

A similar computation for the disc average, (4.49), yields

̂〈〈Q̊ς〉〉 = 2
∫ 1

0
ς J0(ςk⊥ρ) dς Q̂ = 2J1

k⊥ρ
Q̂, (L.11)

δ̂ ¯̄f s = f s · Ê1, f s :=
(

J0 b̂0 − i
2 ¯̄μk� J1

ωqsk⊥ρ
b̂0 × k

)
ωc,s((∂

¯̄f 0
s )/(∂ ¯̄u�))

iB0(ω− k�
¯̄u�)

, (L.12)

where we have made use of Faraday’s law (5.21) in Fourier space

B̂1 = 1
ω

k × Ê1. (L.13)

L.2. Fourier component of the linearised gyrocentre free-current density
We write the gyrocentre free-current density (5.39b) as

J f =
∑

s

J f
s, J f

s :=
∫ [

qs〈 ¯̄f sJs
˙̄̄R〉 − ¯̄μ〈〈∇ × ( ¯̄f sJs b̂0)〉〉

]
d3 ¯̄u, (L.14)

where we have made use of (D.10) with εB = 0 and define the gyro-average adjoint
〈Q〉 as (and similarly for the disc average)∫

〈Q〉Λ d3¯̄r :=
∫

Q〈Λ̊〉 d6¯̄z (L.15)

for all suitable test functions Λ.
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Linearisation of the gyrocentre free-current density (5.39b), as is required for
computing the susceptibility tensor, results in

J f
1,s = qs

ms

∫ [
¯̄f 0
s

(〈(
B�

s,�
˙̄̄R)

1

〉− ¯̄μ

qs
〈〈∇ × B�

1,s,�〉〉
)

+ 〈δ ¯̄f s〉B0 ¯̄u� − ¯̄μ

qs
〈〈∇ × (δ ¯̄f s B0)〉〉

]
d3 ¯̄u, (L.16)

where we have substituted
(
B�

s,�
˙̄̄R)

0
= B0 ¯̄u� b̂0 as follows from (5.23a).

We need the Fourier component of the adjoint of the gyro-average for evaluating
(L.16). The gyro-average adjoint on Ω =R3 with constant B0 is given by∫

QΛ(¯̄r + ρ( ¯̄μ)ρ̂( ¯̄θ)) d6¯̄z =
∫

Q(¯̄r − ρ( ¯̄μ)ρ̂( ¯̄θ))Λ d6¯̄z =⇒ 〈Q〉 = 〈Q(¯̄r − ρ)〉,
(L.17)

where we have made use of the coordinate transformation

¯̄r 
→ ¯̄r − ρ( ¯̄μ)ρ̂( ¯̄θ), (L.18)

which has unit Jacobian. It follows that the corresponding Fourier component is
given by

〈̂Q〉 = J0(−k⊥ρ)Q̂ = J0 Q̂ (L.19)

by the symmetry of the zeroth-order Bessel function of the first kind. A similar result
holds for the adjoint of the disc average

〈〈Q〉〉 = 〈〈Q(¯̄r − ςρ)〉〉 =⇒ 〈̂〈Q〉〉 = 2J1

k⊥ρ
Q̂. (L.20)

It follows that (L.16), in terms of Fourier components, can be expressed as

Ĵ f
1,s = qs

ms

∫ [
¯̄f 0
s

(
J0

̂(
B�

s,�
˙̄̄R)

1
+ i

¯̄μ

qs

2J1

k⊥ρ
B̂�

1,s,� b̂0 × k
)

+ δ̂ ¯̄f s

(
J0 B0 ¯̄u� + i

¯̄μ

qs

2J1

k⊥ρ
B0 × k

)]
d3 ¯̄u (L.21)

for which we find that (L.3) can be written in terms of Fourier components as
follows:

̂(
B�

s,�
˙̄̄R)

1
= Rs Ê1, Rs := J0

(
− ¯̄u�

ω
K + 1

B0
B0

)
+ i

2 ¯̄μJ1

ωqsk⊥ρ
(k × b̂0)(k × b̂0)

ᵀ,

(L.22)
where the matrix K is such that (7.31) holds. Moreover, the Fourier transform of
B�

1,s,� is given by

B̂�
1,s,� = J0 B̂1,� = J0

ω
(b̂0 × k) · Ê1 (L.23)

by making use of (L.13).
When substituting (L.19), (L.23) and (L.22) into (L.21), we find

Ĵ f
1 = JÊ1, (L.24)
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where

J :=
∑

s

qs

ms

∫ [
¯̄f 0
s

(
J0Rs + i

¯̄μ

qs

2J1

k⊥ρ
J0

ω
(b̂0 × k)(b̂0 × k)ᵀ

)
+
(

J0 B0 ¯̄u� + i
¯̄μ

qs

2J1

k⊥ρ
B0 × k

)
f ᵀ

s

]
d3 ¯̄u. (L.25)

L.3. Fourier component of the polarisation and magnetisation
Computing the Fourier component of the polarisation (5.29), while substituting

Faraday’s law (L.13), results in

P̂1 = PÊ1, P :=
∑

s

∫ ¯̄f 0
s

B0

[
Π⊥ + ¯̄u�

ω
(kb̂0

ᵀ − I3k�)

]
d3 ¯̄u, (L.26)

where we have made use of the perpendicular projection as defined in (5.46). For
the magnetisation (5.34), we find

M̂1 = MÊ1, M := −
∑

s

∫ ¯̄f 0
s

ms

[
ms ¯̄u�

B0

(
− 1

B0
B0Π⊥ + ¯̄u�

ω
Π⊥K

)
− ¯̄μ

ω
Π⊥K

]
d3 ¯̄u.

(L.27)

L.4. Gyrokinetic susceptibility tensor
We consider the Fourier component of the linearisation of (7.25)

−ω2
(
ε0 Ê1 + P̂1

)= 1
μ0

k × (k × Ê1)−ωk ×M̂1 + iωĴ f
1 (L.28)

and therefore, when comparing with (7.27), we find that the gyrokinetic susceptibility
tensor ¯̄X is given by

ε0
¯̄X = P + 1

ω
KM + i

1
ω

J, (L.29)

where the polarisation, magnetisation and current matrices are given by (L.26),
(L.27) and (L.25), respectively.

To facilitate the comparison with the results from Hasegawa (1975) and Zonta
et al. (2021), we choose the following parallel and perpendicular directions:

b̂0 = êz, k = k⊥ êx + k� êz. (L.30)

When substituting this into (L.25), (L.27) and (L.29), we find

¯̄X =
∑

s

ω2
p,s

ωω2
c,s

∫ ¯̄f 0
s

¯̄n0,s

⎛⎜⎝ω− 2k�
¯̄u� 0 k⊥ ¯̄u�

0 ω− 2k�
¯̄u� 0

k⊥ ¯̄u� 0 0

⎞⎟⎠ J0,s d3 ¯̄u

−
∑

s

ω2
p,s

ω2ω2
c,s

∫ ¯̄f 0
s

¯̄n0,s

(
¯̄u2
�
− ¯̄u2

τ

2

)
J0,s d3 ¯̄u

⎛⎜⎝−k2
�

0 k⊥k�

0 −k2
�

0

k�k⊥ 0 −k2
⊥

⎞⎟⎠
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+ i
∑

s

ω2
p,s

ω2ωc,s

∫ ¯̄f 0
s

¯̄n0,s
J 2

0

⎛⎜⎜⎜⎝
0 ω− k�

¯̄u� 0

k�
¯̄u� −ω i

2k⊥ ¯̄uτ J1

J0
−k⊥ ¯̄u�

0 k⊥ ¯̄u� 0

⎞⎟⎟⎟⎠ J0,s d3 ¯̄u

−
∑

s

ω2
p,s

ω2

∫
k2
�

¯̄f 0
s

¯̄n0,s(k�
¯̄u� −ω)2

⎛⎜⎜⎜⎜⎜⎝
0 0 0

0 ¯̄u2
τ J 2

1 i
ω

k�

¯̄uτ J0 J1

0 −i
ω

k�

¯̄uτ J0 J1
ω2

k2
�

J 2
0

⎞⎟⎟⎟⎟⎟⎠ J0,s d3 ¯̄u,

(L.31)

where J0,s = B0/ms and the plasma frequency is given by

ωp,s = qs

√
¯̄u0,s

ε0ms
. (L.32)

In deriving (L.31), we have made use of partial integration with respect to ¯̄u� and

assume that ¯̄f
0

s vanishes at ¯̄u� = ±∞.

L.5. Drift kinetic susceptibility tensor
To compare with the results from Zonta et al. (2021), we ignore FLR effects

by assuming k⊥ρ
 1 such that we may approximate the Bessel functions as
follows:

J0 ≈ 1, J1 ≈ k⊥ρ
2
. (L.33)

This results in the following ZLR limit of (L.31):

¯̄XZLR =
∑

s

ω2
p,s

ωω2
c,s

∫ ¯̄f 0
s

¯̄n0,s

⎛⎜⎝ω− 2k�
¯̄u� 0 k⊥ ¯̄u�

0 ω− 2k�
¯̄u� 0

k⊥ ¯̄u� 0 0

⎞⎟⎠ J0,s d3 ¯̄u

−
∑

s

ω2
p,s

ω2ω2
c,s

∫ ¯̄f 0
s

¯̄n0,s

(
¯̄u2
�
− ¯̄u2

τ

2

)
J0,s d3 ¯̄u

⎛⎜⎝−k2
�

0 k�k⊥
0 −k2

�
0

k�k⊥ 0 −k2
⊥

⎞⎟⎠

+ i
∑

s

ω2
p,s

ω2ω2
c,s

∫ ¯̄f 0
s

¯̄n0,s

⎛⎜⎜⎝
0 ωc,s(ω− k�

¯̄u�) 0

−ωc,s(ω− k�
¯̄u�) ik2

⊥ ¯̄u2
τ −ωc,sk⊥ ¯̄u�

0 ωc,sk⊥ ¯̄u� 0

⎞⎟⎟⎠ J0,sd3 ¯̄u
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−
∑

s

ω2
p,s

ω2

∫
k2
�

¯̄f 0
s

¯̄n0,s(k�
¯̄u� −ω)2

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 ¯̄u4
τk

2
⊥

1
4ω2

c,s

i
k⊥
k�

¯̄u2
τ

ω

2ωc,s

0 −i¯̄u2
τ

k⊥
k�

ω

2ωc,s

ω2

k2
�

⎞⎟⎟⎟⎟⎟⎟⎠ J0,s d3 ¯̄u. (L.34)

It can be verified that this agrees with Hasegawa (1975, (2.159)).

L.6. Gyrokinetic Darwin susceptibility tensor
This is very similar to the gauge-invariant gyrokinetic model, except that we must

express the additional term in the Darwin polarisation (6.9a) in terms of the electric
field Ê1. That is, we must express the perpendicular part of the vector potential in
terms of the electromagnetic fields.

From the definition of the electric field (4.27), we find that

Ê1 = −ikφ̂1 + iω Â1 =⇒ k⊥ · Ê1 = −ik2
⊥φ̂1, (L.35)

after having substituted the Fourier ansatz as well as the constraint (6.16b), k⊥ · Â1 =
0. It follows that the perpendicular part of the vector potential is given by

Â1,⊥ = Ê1,⊥k2
⊥ − k⊥(k⊥ · Ê1)

iωk2
⊥

. (L.36)

Using the specific parallel and perpendicular directions given by (L.30), we find

Â1,⊥ = A⊥ Ê1, A⊥ =

⎛⎜⎜⎝
0 0 0

0 − i
ω

0

0 0 0

⎞⎟⎟⎠ (L.37)

such that when considering (L.29) and (6.9a), we find that the gyrokinetic Darwin
susceptibility tensor is given by

¯̄XDar = ¯̄X − iω
∑

s

ω2
p,s

ω2
c,s

A⊥, (L.38)

where we have moreover substituted the definition of the plasma frequency (L.32).
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