Cambridge Prisms: Drylands  Groundwater potential mapping in India: A

review of approaches and pathways for
sustainable management

www.cambridge.org/dry

Santanu Banerjee', Sayantan Majumdar” @, Jayashree Saha', Meetpal S. Kukal',
Praveen K. Thakur’, Virendra S. Rathore”, Pankaj R. Kaushik®, Gaurav Talukdar®,
Debasmita Misra’ and Christopher Ndehedehe®’

Review

Cite this article: Banerjee S, Majumdar S, Saha
J, Kukal MS, Thakur PK, Rathore VS, Kaushik
PR, Talukdar G, Misra D and Ndehedehe C
(2025). Groundwater potential mapping in
India: A review of approaches and pathways
for sustainable management. Cambridge
Prisms: Drylands, 2, e12, 1-17
https://doi.org/10.1017/dry.2025.10008

"Department of Soil and Water Systems, University of Idaho-Boise, Boise, ID, USA; *Division of Hydrologic Sciences,
Desert Research Institute, Reno, NV, USA; *Indian Institute of Remote Sensing, Indian Space Research Organisation,
Dehradun, UK, India; *Department of Remote Sensing and Geoinformatics, Birla Institute of Technology Mesra, Ranchi,
JH, India; "WSP Australia, Fortitude Valley, QLD, Australia; “Department of Civil Engineering, Indian Institute of
Technology Delhi, New Delhi, India; “Department of Civil, Geological and Environmental Engineering, University of

Received: 27 May 2025 Alaska Fairbanks, Fairbanks, AK, USA; ®School of Environment & Science, Griffith University, Nathan, QLD, Australia

Revised: 15 October 2025
Accepted: 18 October 2025

Keywords:
groundwater; machine learning; agriculture;
remote sensing; water security

Corresponding author:
Sayantan Majumdar;
Email: sayantan.majumdar@dri.edu

S.B. and S.M. these two authors have contributed
equally.

© The Author(s), 2025. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

Cambridge

== Prisms

CAMBRIDGE

UNIVERSITY PRESS

\

and Australian Rivers Institute, Griffith University, Nathan, QLD, Australia

Abstract

Groundwater is a critical support system for agriculture, domestic and industrial consumption
in India, but escalating depletion and climatic stresses underscore the need for scientifically
robust groundwater potential zone (GWPZ) mapping. In response to the aggravating water
security issues in India, this study presents a critical and systematic-methodical review of
research articles focused on GWPZ mapping. The primary goal of this research is to integrate
input parameters, modeling techniques and validation methods to produce an evidence-based
framework for selecting appropriate and effective GWPZ mapping strategies. Six prominent
thematic categories — topography, geology, hydrology, climate, land cover and aquifer properties
— seem to be inevitably predominant in different physiographic zones. Methodological tenden-
cies suggest a shift from conventional Multi-Criteria Decision-Making models, that is, Analytical
Hierarchy Process and Frequency Ratio, toward sophisticated machine learning techniques like
Random Forests, Support Vector Machine and Extreme Gradient Boosting. Validation practices
are dominated by a high incidence of receiver operating characteristic curve analysis and area
under the curve metrics, with occasional addition of precision, recall, F1-score and root mean
square error. Across the studies reviewed, field-derived data, well yield, groundwater depth,
aquifer thickness and resistivity surveys remain critical for ground-truthing model results. Our
view is that even though Indian GWPZ research has taken significant methodological strides,
regional data heterogeneity, aquifer complexity and climatic variability issues continue to pose a
key challenge in GWPZ mapping. We suggest future strategies involving high-resolution
datasets, three-dimensional subsurface modeling, climate-resilient algorithms and more diver-
sified validation frameworks. Through this critical synthesis, the article presents an integrated
guide to support planners select cost-effective mapping techniques, inform policymakers on
strategic investments and data collection priorities and direct researchers toward the most
critical scientific gaps in India’s increasingly dynamic hydro-environmental context.

Impact statement

Groundwater serves as India’s critical lifeline, directly supporting agriculture, industry and the
daily existence of millions across the country. However, this vital resource is under immense
pressure from increasing demand and climate vulnerabilities, leading to a growing water security
crisis. Here, we provide a crucial step forward by offering a comprehensive overview of how
researchers are currently working to locate hidden groundwater reserves across the country.
Instead of just adding another map, this study takes a broader look, reviewing and collating
numerous existing efforts to identify areas with high groundwater potential. By analyzing the
common factors used (like land features, geology and rainfall), the evolving scientific techniques
— from traditional methods to advanced statistical modeling — and how these findings are
verified, this research documents the current state of groundwater exploration in India. The real
impact of this work lies in its ability to guide future efforts. We highlight what is working well, but
more importantly, we pinpoint persistent challenges like limited data availability and the
complex nature of groundwater systems. Moreover, by synthesizing current knowledge and
identifying key areas for improvement — such as the need for higher-quality data, more
sophisticated three-dimensional subsurface modeling and climate-resilient approaches — we
aim to provide a clearer roadmap for researchers, policymakers and water management
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authorities across India. Ultimately, we envision this research to support effective and sustainable groundwater management practices,
ensuring India’s groundwater resources are available for future generations, and offering valuable lessons for other nations facing similar

water scarcity challenges.

Introduction

Groundwater is a fundamental resource that is vital for sustaining
life and supporting the water-food-energy nexus (Margat and van
der Gun, 2013). Globally, about 2.5 billion individuals rely on
groundwater for their daily needs, which reflects its significance
(Chen et al., 2020; Gronwall and Danert, 2020; Yousefi et al., 2020;
Chen et al., 2021; Arabameri et al., 2022; Kaushik et al., 2023). In
India, groundwater resources are critical, as the country is the
largest user of groundwater globally (~230 km® yr™') — roughly
equivalent to nearly one-quarter of the global use (Margat and van
der Gun, 2013; Diaz-Alcaide and Martinez-Santos, 2019; Halder
etal, 2021; Ghosh et al., 2022; Thanh et al., 2022). It supports more
than 60% of irrigation and provides 85% of India’s domestic
drinking water needs (Al-Abadi et al., 2021; Paria et al., 2021;
Tamiru et al., 2022; Shandu and Atif, 2023).

Apart from water security, groundwater is also central to the
sustainable socioeconomic and environmental resource pillars
underpinning India, providing 50% of urban and over 80% of rural
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water needs (Bhattacharya et al., 2017). Consequently, groundwater
depletion is a critical concern not only for India (Sadhasivam et al.,
2025) but also at the global level, especially in arid and semi-arid
areas (Hasan et al,, 2023; Herrera-Garcia et al., 2021). Most large
aquifers are suffering from alarming rates of depletion due to
overpumping (Figure 1la,b). For instance, the High Plains
(Ogallala) Aquifer of the United States was depleted at 27.6 mm yr ™'
(12.5 km® yr~') between 2003 and 2013 (Scanlon et al., 2012).
Similarly, aquifers of Iran, Iraq, Syria and Turkey in the northern
Middle East declined at 17.3 mm yr ' (13.0 km® yr™") from 2003 to
2009 (Voss et al., 2013), while the Arabian Aquifer System and the
Canning Basin (Western Australia) lost 9.1 mm yr_1
(15.5 km® yr ') and 9.4 mm yr ' (3.6 km’ yr '), respectively, over
the period 2003-2013 (Richey et al, 2015). Australia’s largest
aquifers, the Murray Darling Basin and the Great Artesian Basin,
were also depleted significantly between 2002 and 2010 due to
prolonged droughts (George et al., 2009; Leblanc et al., 2012; Seoane
et al., 2013; Kaushik et al., 2021; Castellazzi et al., 2024).
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Figure 1. (a) Global map of selected major aquifers focusing on arid and semi-arid regions showing (b) annual groundwater depletion rates in terms of depth decline and volume

loss (sourced from Famiglietti, 2014).
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India, specifically, is facing an acute groundwater crisis, with the
northwestern states of Punjab, Haryana and Rajasthan registering
an average depletion rate of 40 mm yr~ "' (17.7 km® yr™') from 2002
to 2008 (Rodell et al., 2009). Other heavily affected regions include
the North China Plain, which dropped by 22.0 mm yr '
(8.3km® yrfl) from 2003 to 2010 (Feng et al., 2013), and California’s
Central Valley, which declined at 20.4 mm yr ' (3.1 km® yr ")
during the same period (Famiglietti et al., 2011). The primary causes
of increasing groundwater depletion are the accelerated growth in
population, intense competition between agriculture and urbaniza-
tion, dietary shifts, overallocation or over-appropriation and the
changing hydroclimatic patterns, particularly precipitation and
evaporative demands, which have resulted in greater reliance on
groundwater for irrigation and drinking purposes (Tan et al., 2012;
George et al., 2019; Meza et al., 2020; Liu et al., 2022; Masroor et al.,
2023; McDermid et al., 2023; Gupta et al., 2024; Ott et al., 2024; Paul
and Roy, 2024; Kukal and Hobbins, 2025; Ndehedehe et al., 2025;
Thirumalai et al., 2025; Womble et al., 2025).

Groundwater acts as the principal water supply during dry spells
and erratic monsoons, providing a critical hedge against crop loss
and ensuring national food security (Prasad et al., 2020; Masroor
etal., 2023; Talukdar et al., 2023). Also, the decline in surface water
supplies has aided the growing dependency on groundwater.
Rivers, dams and reservoirs are subject to over-abstraction, con-
tamination and climate volatility, which is driving the enhanced use
of groundwater as a protective measure (Dar et al., 2024). Water
quality, sanitation and hygiene problems also attest to this trend.
Discharge of industrial effluent, agricultural runoff and municipal
waste contamination has degraded surface water quality, rendering
groundwater a more coveted source for secure drinking water
supply and irrigation (Paria et al., 2021; Seifu et al., 2022). Sustained
exploitation of groundwater resources poses not just water security
but also food security, economic stability and sustainable develop-
ment threats (Thakur et al.,, 2021; Dar et al,, 2024). Nearly two
billion individuals currently rely on groundwater for domestic
drinking water, and nearly half of the world’s population is con-
fronted with seasonal water shortage (Intergovernmental Panel on
Climate Change [IPCC], 2021).

Overuse of groundwater has resulted in accelerated depletion
and deteriorating water quality (Erban et al., 2013; Smith et al,,
2018; Hasan et al., 2023), leading to water table declines (Jasechko
et al., 2024) that have reportedly affected crop yields (Mieno et al.,
2024) and raised risks of contamination (Smith et al., 2018). More-
over, agricultural and other anthropogenic activities bring in con-
taminants, rendering groundwater unsuitable for consumption
(Abascal et al., 2022; Knierim et al., 2022; Wang et al., 2023). Most
countries that rely on this resource are concerned about its degrad-
ing quality and quantity. In the global south, the use of untreated
groundwater subjects people to toxic substances such as fluoride,
arsenic and nitrates (Erban et al., 2013; Kar et al., 2016; Verma et al.,
2023; Pal et al, 2024; Piwowarska et al., 2024). Hence, proactive
monitoring and management of groundwater systems are critical for
sustainable development, highlighting the need for robust hydrologic
modeling frameworks.

Addressing this complex problem of groundwater depletion
requires a multifaceted approach. As the World Bank (2018) out-
lines, sustainable water reform rests on five interconnected pillars:
(1) enhancing the legislative foundation, (2) strengthening water
governance at national and basin levels, (3) optimizing economic
policy instruments, (4) building and implementing adaptive cap-
acity practices to address climate change and (5) improving data
collection and information-sharing. While this article focuses

specifically on the fifth priority — advancing the scientific basis
for data collection through improved groundwater potential zone
(GWPZ) mapping — we acknowledge that it is a foundational
component of a much larger strategy. The other four pillars,
although critical for translating scientific insights into effective
policy and action, fall beyond the scope of this review. Nevertheless,
strengthening the technical and data-driven aspects of groundwater
assessment is an essential prerequisite for enabling meaningful
progress across all areas of water governance.

GWPZ modeling is instrumental for the sustainable manage-
ment of water resources, enabling fair and rational allocation of the
valuable resource in agriculture, industry and household uses.
GWP zoning allows the definition of optimal areas for exploitation
with maintenance of long-term sustainability and resilience against
climatic extremes like drought (Priya et al., 2022; Sarkar et al,
2022a, 2022b). Conventional methods include costly and time-
consuming ground surveying (Sarkar et al., 2022a), whereas Geo-
graphic Information System (GIS) and remote sensing geospatial
technologies have now revolutionized the field. For example, the
Indian Space Research Organization (ISRO, 2011, 2015, 2025)
provides 1:50,000 scale (500 m ground resolution) GWPZ maps
throughout India that have been developed by integrating multi-
source datasets derived from remote sensing, hydrologic and
hydrogeologic surveys, GIS techniques and rigorous ground-
truthing. In addition, several researchers have relied on more com-
plex methods, including Multi-Criteria Decision-Making (MCDM)
Analytical Hierarchy Process (MCDM-AHP; Arulbalaji et al., 2019;
Sarkar et al., 2022a; Borah and Bora, 2025), weighted overlay analysis
(WOA; Gyeltshen et al., 2020), fuzzy logic (Roy et al., 2022; Das and
Pal, 2019), GIS-fuzzy logic integration (Bhadran et al., 2022; Shahid
et al, 2002) and hybrid multi-criteria methods in Google Earth
Engine (Gorelick et al., 2017; Singha et al., 2024), to enhance GWP
estimation.

With the emergence of machine learning (ML) and increased
availability and accessibility to multisource geospatial datasets
(Gorelick et al., 2017; Ndehedehe, 2022; Roy et al., 2025), GWPZ
modeling has been greatly enhanced with better ability to separate
complex, nonlinear relationships in hydrogeologic, hydrologic
and hydroclimatic data. In contrast to conventional practices,
ML algorithms adjust automatically to shifting conditions with
greater predictive accuracy and autonomy (Yadav et al.,, 2020;
Gomez-Escalonilla et al., 2022; Radhakrishnan and CA, 2023).
Since supervised ML approaches leverage the statistical correlations
and complex nonlinear relationships across multiple predictors and
the response or target variables (Hastie et al., 2001), the ML model
performances depend on dataset characteristics, requiring com-
parative studies to determine the most appropriate method
(Majumdar et al., 2024; Talib et al., 2024; Akbar et al., 2025; Asfaw
et al., 2025; Parasar et al., 2025). Typical ML algorithms used for
GWPZ mapping and related applications (e.g., predicting ground-
water levels and irrigation mapping) include artificial neural net-
works (ANNs; Rahman, 2016; Al-Waeli et al., 2022), ensemble
trees, such as Random Forests (RFs; Breiman, 2001; Belgiu and
Dréagut, 2016; Rahmati et al., 2016; Raisa et al., 2024) and Extreme
Gradient Boosting (XGBoost; Chen and Guestrin, 2016; Janssen
et al., 2025), function models (Beheshtirad, 2021), decision trees
(Lee and Lee, 2015; Gémez-Escalonilla et al., 2022), Shannon
entropy (SE) combined with GIS (Wahile et al., 2022), deep learning
(Wunsch et al., 2022; Pranjal et al., 2024; Talib et al., 2024; Sadeghi
et al,, 2025) and Support Vector Machines (SVM; Radhakrishnan
and CA, 2023). Of particular significance are RFs, XGBoost and
ANNeS, as these have shown to identify subtle spatial patterns, with
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improved predictive skills (Yadav et al., 2020; Wunsch et al., 2022;
Majumdar et al., 2024; Raisa et al., 2024; Janssen et al., 2025; Hasan
et al., 2025; Asfaw et al., 2025).

This review article gives a systematic and comprehensive over-
view of GWPZ mapping in India, noting its chronological progres-
sion, methodological evolution and contextual changes in modeling
approaches during the last few decades (from 2000 onward).
Diverse hydrogeological, climatic and socioeconomic conditions in
India have necessitated an increasing demand for credible ground-
water resource estimation. With the rising pressure on groundwater
from overexploitation, urbanization and climate change (Meza et al.,
2020; Hasan etal., 2023), GWPZ mapping is now a key instrument in
sustainable groundwater management as well as policy planning. The
main thrust of this review is to examine the best ways to monitor,
ratify and validate the critical input parameters that control GWPZ
mapping over diverse Indian landscapes.

In particular, we highlight six key thematic groups that strongly
affect model quality and consistency: topographic, geomorphic,
geological, hydrological, climatic, land cover and aquifer-related
parameters. Collectively, these represent the surface and subsurface
realms that impact recharge, storage and extraction capacity of the
aquifers over spatial and temporal domains (Bhanja et al., 2019;
Chatterjee et al., 2020) India-specific GWPZ mapping studies, over
time, have employed an array of methodological platforms, from
classic expert-based systems to advanced ML and hybrid systems.
Earlier research tended to utilize mainly statistical models like the
AHP and Frequency Ratio (FR), enabling efficient MCDM from
existing thematic maps. With increasing data quality and availabil-
ity due to advances in satellite remote sensing and GIS, research
then turned toward ML models like RF, SVM and more so in recent
times, ensemble or hybrid models that included fuzzy logic, deci-
sion trees and deep learning frameworks. The ML-based
approaches have been shown to have greater predictive accuracy
and better generalization in geologically and climatically diverse
parts of India (Prasad et al., 2020; Parasar et al., 2025).

An important aspect of GWP studies is model validation that
proves spatial and statistical reliability of groundwater potential
predictions. In this review, both the parameters and methods of
validation used in Indian settings have been discussed. Physical and
hydrological data like borehole/well yield, groundwater level fluc-
tuations, specific capacity, spring occurrence, discharge rates, aqui-
fer transmissivity, aquifer type and thickness and geophysical
resistivity surveys are the common validation indicators. These
are the inputs required for ground-truthing the output of statistical
and ML models. From the point of view of statistical assessment,
model quality and dependability are measured with the help of
performance metrics like precision, recall, F1-score, overall accur-
acy, receiver operating characteristic (ROC) curves, area under the
curve (AUC), Kappa index, root mean square error (RMSE), mean
absolute error (MAE), and consistency ratio (CR).

In addition, this review describes the timely advancement of
GWPZ mapping research in India, including how methodological
paradigms, data sources and thematic emphases have responded in
reaction to evolving environmental stresses, technological improve-
ments and policy requirements. Transformation from low-resolution,
field-high methods to high-resolution, multisource geospatial mod-
eling paradigms indicates both scientific progress and escalating
groundwater management needs.

Apart from compiling past research, this review also assesses the
status and prospects of GWPZ mapping in India today and in the
future. It underlines the recurrent issues — such as regional incon-
sistency of data, climatic uncertainty and heterogeneity of aquifers
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— and encourages the incorporation of high-resolution inputs,
sophisticated model algorithms and region-specific calibration of
models. Since India is still facing increasing water scarcity and
climate uncertainty, this review will act as a substantive reference
guide for researchers to improve GWPZ mapping, ultimately inform-
ing and supporting policymakers involved in sustainable groundwater
resource planning. Our article focuses on: (a) a conceptual framework
and definitions of GWPZ; (b) the essential factors for GWPZ map-
ping; (c) GWPZ mapping model techniques; (d) GWPZ validation
parameters; (¢) GWPZ model validation techniques and (f) the
current status and issues in future GWPZ mapping.

Conceptual framework and definitions of GWPZ

GWP lacks a uniform, universally applicable definition since its
meaning is largely context-dependent and influenced by its purpose
of use, with characteristics that are unique to each zone being
examined. Some authors define GWP as the capacity for subsurface
groundwater storage, while others define it as the likelihood of
groundwater occurrence or extractable yield in a given area. More-
over, a number of articles highlight its importance in the determin-
ation of the best locations for borehole drilling and abstraction of
groundwater.

Despite these definitional refinements, a common methodo-
logical underpinning lies in that GWP is determined by combining
secondary indicators based on hydrogeological, topography, cli-
matic and land-use parameters. GWP measurement is goal-
specific, determined by its intended final use, which spans domes-
tic water supply, irrigation, urban consumption and industrial
usage. Each use involves specific hydro-environmental demand —
for example, areas with abundant groundwater supply might be
unsuitable for potable water because of geogenic contamination or
anthropogenic pollutants.

Thus, a strong GWP assessment needs to consider several
dimensions, such as aquifer storage, recharge capacity, sustainable
yield and groundwater quality, to enable informed and sustainable
groundwater management. “Potential” inherently refers to a prob-
abilistic and latent capability that is dynamic in time and space and
whose development may be submaximal. Its assessment, conse-
quently, demands a methodology that effectively addresses spatial
heterogeneity, data uncertainty and temporal variation. GWPZ
mapping is, therefore, a spatially explicit estimation of the prob-
ability and capability of a place to support sustainable groundwater
abstraction under current hydrogeological conditions for a given
time frame.

Due to the highly variable and multifaceted nature of ground-
water systems, a single criterion is insufficient for the comprehensive
assessment of total GWP. MCDM, geospatial modeling techniques
and combined hydrogeological methodologies have thus been
broadly used to outline groundwater potential areas with improved
accuracy. Some methodologies prioritize long-term storage and
potential recharge, while others prioritize extractive potential, water
quality limitations and ecological viability. Considerations such as
aquifer contamination risk, land use change and climatic variability
further refine GWPZ delineation. Taking all of these into account, we
define GWP as “the estimated capacity of an aquifer to supply
groundwater for a particular use without compromising long-term
sustainability, yield or water quality.” Realizing this potential requires
time-limited abstraction allocations that are subject to mandatory,
periodic review based on predefined trigger points (e.g., critical
water-level declines) to proactively ensure sustainability. This defin-
ition highlights the necessity for an integrated, multidisciplinary
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approach to GWP assessment that harmonizes availability with
sustainability thresholds. As global water scarcity and demand
pressures only increase, particularly in semi-arid and arid regions,
scientifically sound GWP estimates are crucial to guaranteeing long-
term water security and sustainable groundwater use worldwide.

Systematic selection and thematic structuring of Indian
studies on GWPZ mapping

GWPZ mapping is significant for the delineation of areas suitable
for groundwater exploration, conservation and sustainable use. In
India, the growing pressure on groundwater resources owing to
climatic variability, agricultural intensification and rapid urbaniza-
tion has fueled a significant research effort directed toward finding
and GWPZ modeling with various techniques. In order to provide a
targeted and high-quality synthesis of this literature, this review is
limited to studies carried out in India and adheres to a systematic
selection protocol.

The literature collection process was guided by the Preferred
Reporting Items for Systematic Review and Meta-Analysis
(PRISMA) framework (Moher et al., 2009; Basche and DeLonge,
2019; Page et al., 2021; Afrifa et al., 2022; Uc Castillo et al., 2022),
which ensures transparency and repeatability in systematic reviews.
In line with standard procedures (Alfadil et al., 2022), the process
comprised four main phases: (a) Identification — comprehensive
collection of relevant Indian GWPZ studies from databases such as
Scopus, Web of Science and Google Scholar using keywords includ-
ing “groundwater potential zone,” “AHP,” “MCDM,” “machine
learning,” “hybrid models,” “deep learning,” “model validation,”
“remote sensing” and “GIS”; (b) Screening — removal of duplicates
and nonrelevant articles based on titles and abstracts; (c) Eligibility
— applying inclusion criteria to retain only those studies that
directly emphasize GWPZ mapping in India and (d) Inclusion —
final selection of articles used for review and thematic analysis (see
Figure 2 for the PRISMA flow diagram).

All included publications focus specifically on GWPZ mapping in
India, employing a range of modeling methods and input parameters
appropriate for Indian hydrogeology. From this systematic selection,
we have found five major thematic areas that are consistently recurring
throughout the literature focused on India and constitute the funda-
mental structure of this review: (a) main driving factors in GWPZ
mapping, (b) methods and models applied for GWPZ delineation,
(c) parameters used for model validation, (d) methods for validating
GWP models and (d) challenges and future directions in GWPZ
mapping in India. By classifying the literature under this thematic
order, this review offers a systematized snapshot of the methodology,
approaches and issues relating to GWPZ mapping in India.

Essential factor for GWPZ mapping

GWPZ mapping in India is fundamentally shaped by the integra-
tion of multiple thematic parameters derived from physical, cli-
matic, hydrological and geological domains. These parameters are
selected based on their relevance to infiltration, storage and move-
ment of groundwater, and are commonly extracted from diverse
sources such as remote-sensing data, field surveys, legacy maps and
government databases (Supplementary Table 1). Indian GWP
studies consistently utilize key input variables — primarily topo-
graphic, geological, hydrological, climatic, land cover and aquifer-
related parameters — across varied terrains and climatic zones.
Topographic factors, particularly slope, slope aspect, altitude,

Systematic Selection and Thematic
Structuring of Indian Studies on
Groundwater Potential Zone Mapping

,
(I

Data base

Web of
Science

Google
Scholar

Scopus

Keywords

|
Screening I e

AHP , MCDM

Machine learning,
Hybrid models

Deep learning, Model
validation
Remote sensing, and
GIS

Focused on only directly addressing
GWPZ mapping in India article

—————————— Inclusion

Ginal selection of paper and revivew thema
|

Main Driving Factors in

Removal of Removal of non- |

duplicate articles relevant articles

Eligibility R

Groundwater Potential

Parameters Used for
Model Validation

Challenges and Future

Mapping

Methods and Models
Applied for GWP Zone
Delineation

Methods for Validating

Groundwater Potential
Models

Directions in GWP Mapping
in India

Figure 2. Systematic selection and thematic structuring of studies on groundwater
potential zone mapping in India.

topographic wetness index (TWI) and slope length, are crucial in
determining runoff behavior, percolation potential and ground-
water recharge zones.

Gently sloping areas are generally associated with higher infil-
tration and groundwater retention, while steep slopes tend to
facilitate rapid surface runoff and erosion, reducing percolation
opportunities (Magesh et al., 2012; Ali et al., 2015; Pradhan et al.,
2021). The orientation of slopes (aspect) influences evapotranspir-
ation and soil moisture, especially in hilly or forested terrain, which
directly impacts recharge dynamics (Waikar and Nilawar, 2014;
Rajasekhar et al., 2021). Lower altitudes have been observed to
accumulate more groundwater due to favorable gravitational and
hydrological conditions (Agarwal and Garg, 2016; Prasad et al,
2020). TWT helps identify potential surface water accumulation areas
and has shown a strong inverse correlation with groundwater yield in
Indian conditions (Chowdhary et al,, 2008; Ghosh et al., 2016).
Parameters such as slope length, which relate to runoff velocity
and erosion risk, also refine recharge zone delineation (Singh et al,,
2013; Murmu et al., 2019). These topographic variables are primarily
derived from high-resolution Digital Elevation Models (DEMs) such
as the Shuttle Radar Topography Mission (SRTM) and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
datasets, widely used in Indian studies (Waikar and Nilawar, 2014;
Agarwal and Garg, 2016; Pradhan et al,, 2021).

Geological factors are equally vital, as they govern subsurface
conditions such as permeability, porosity and structural controls on
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water movement. Parameters such as lithology, lineament density
and distance to faults are widely applied in India. Unconsolidated
sediments — like alluvium and weathered basalt — generally exhibit
high porosity and recharge capacity, whereas hard crystalline rocks
like granites and gneisses depend on secondary porosity through
fractures, faults and joints for water movement (Ali et al., 2015;
Ibrahim-Bathis and Ahmed, 2016). In southern and central India,
where hard rock terrain dominates, the influence of lineaments and
fault systems on groundwater availability is especially pronounced.
High lineament density typically correlates with enhanced ground-
water movement due to increased secondary permeability (Abijith
et al., 2020; Golla et al., 2022). Fault zones also act as significant
recharge conduits in weathered and fractured zones.

While traditional geological data were collected via field surveys
and topographic sheets (Bagyaraj et al., 2013), advancements in
remote sensing now enable accurate lineament mapping using
satellite datasets like ASTER DEM and Landsat ETM, further
refined through GIS-based analysis (Das and Pal, 2018; Singh
et al., 2011). Hydrological parameters are indispensable in GWP
assessment as they directly influence groundwater recharge and
surface water interactions. Commonly used variables include vege-
tation cover, hydrogeologic information, drainage density (DD),
river density, flow accumulation and distance to rivers or drainage
networks (Chowdhury et al., 2008). In Indian studies, DD is fre-
quently used as a proxy for runoff and infiltration potential. A low
DD often indicates higher permeability and infiltration capacity,
while high DD is associated with poor recharge and rapid runoff
(Ghosh et al,, 2016; Das, 2019). These patterns are particularly
notable in regions like the Indo-Gangetic Plains and deltaic areas,
where river networks are dense, but flat terrain and suitable lith-
ology support effective recharge. Distance to rivers is another
widely used factor, as proximity to surface water bodies enhances
recharge potential through direct and lateral infiltration, especially
in alluvial and semi-arid zones (Mukherjee et al., 2012; Ibrahim-
Bathis and Ahmed, 2016). Such hydrological features are typically
derived using GIS tools applied to DEMs, which help generate flow
direction, flow accumulation and stream order data (Bagyaraj et al.,
2013; Waikar and Nilawar, 2014; Singh et al., 2013).

Climatic factors — primarily rainfall and land surface tempera-
ture (LST) — play a dominant role in controlling recharge patterns,
particularly in India’s monsoon-dependent climatic zones. Rainfall
acts as the principal recharge driver, and regions with higher annual
precipitation tend to demonstrate greater groundwater accumula-
tion (Mukherjee et al., 2012; Shekhar and Pandey, 2015; Agarwal
and Garg, 2016). Recharge is typically seasonal, with a significant
rise in groundwater level observed during monsoon months. In
addition to rainfall, LST, derived from thermal satellite imagery, has
been used to estimate antecedent soil moisture conditions affecting
recharge rates. Warmer land surfaces indicate drier soil with low
recharge potential, while cooler zones are generally more conducive
to infiltration and storage (Mallick et al., 2015). This is particularly
relevant in arid and semi-arid zones like Bundelkhand, western
Rajasthan and parts of Telangana, where climatic variability sig-
nificantly impacts aquifer recharge dynamics. Land cover param-
eters, such as land use/land cover (LULC), soil type, soil depth and
vegetation indices like the Normalized Difference Vegetation Index
(NDVI), are also critical for GWPZ mapping.

These parameters influence both the rate of water percolation
and the intensity of groundwater withdrawal. Land use significantly
affects recharge and abstraction; urban areas often exhibit reduced
infiltration due to impervious surfaces, while agricultural lands
(depending on the management practices and irrigation systems)
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enhance recharge through improved infiltration (Bos et al., 2009;
Basche and DeLonge, 2019; Hall et al., 2020; Robinson et al., 2022).
Soil characteristics — especially texture and depth — are central to
recharge estimation. Sandy and loamy soils, common in the Indo-
Gangetic Plain, allow for higher percolation, while clayey soils,
widespread in the Deccan Plateau, restrict water movement due
to low permeability (Agarwal and Garg, 2016; Saha et al., 2022).
Detailed soil data for Indian studies are frequently obtained from
the National Bureau of Soil Survey and Land Use Planning
(NBSS&LUP), which provides standardized maps on soil type,
texture and depth across various agroclimatic zones. Additionally,
NDVI, derived from satellite platforms like MODIS or Landsat, is
used to estimate vegetation cover and infer subsurface moisture
conditions. Higher NDVI values often indicate healthier vegetation
and, indirectly, better groundwater availability (Shekhar and Pandey,
2015; Mandal et al., 2016).

Aquifer-related parameters — such as aquifer thickness, resist-
ivity, groundwater depth, confined or unconfined pressure condi-
tions and chemical quality — further enhance the spatial resolution
and accuracy of GWP models. Aquifer thickness, typically inferred
from weathered zone data, directly correlates with storage potential;
thicker zones yield more water and are common in fractured
crystalline and weathered sedimentary terrains like those in Kar-
nataka and Chhattisgarh (Shekhar and Pandey, 2015). Electrical
resistivity surveys, such as Vertical Electrical Sounding (Halder
et al,, 2024), are often conducted to identify saturated zones. Low
resistivity indicates water-saturated strata, whereas high resistivity
suggests dry or compact layers (Jha et al., 2010). Groundwater
depth is another essential variable; shallower water tables generally
reflect active recharge and accessibility, while deeper levels may
indicate stress or overexploitation, particularly in drought-prone
regions (Machiwal et al.,, 2011). Groundwater quality fundamen-
tally influences potential, with two distinct threats degrading this
resource. Saline intrusion is a major concern in coastal zones such
as Tamil Nadu and Odisha due to excessive pumping, while high
nitrate levels from agricultural fertilizers degrade water quality in
productive aquifers of belts like Punjab and Haryana (Central
Ground Water Board, 2024).

Altogether, the integration of these multidisciplinary input
parameters provides a comprehensive framework for GWP model-
ing across India’s varied terrains and climatic zones. Their consistent
use, supported by robust geospatial and field-based datasets — includ-
ing those from NBSS&LUP, SRTM, ASTER and remote-sensing
missions — has enabled researchers to delineate GWPZs with increas-
ing accuracy and utility for sustainable water resource management.

GWPZ mapping model techniques

GWPZ mapping of India has undergone a swift methodological
change in the last decades from the conventional expert-based
methodologies toward advanced ML and hybrid models. The
advancements have been pushed by changes in computational
power, enhanced geospatial data availability and enhanced require-
ments for accurate estimation of groundwater resources in variable
climatic and geological environments.

A variety of studies across India have utilized these modeling
approaches — spanning from statistical models, such as AHP and FR,
to advanced ML models, such as RF, XGBoost, SVM and fuzzy-neuro
and decision tree hybrids. A detailed summary of such models,
methodological frameworks, spatial context, input parameters and
validation procedures is provided in Supplementary Table 1, which
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gives the most significant contributions to Indian GWP studies based
on MCDM, statistical, ML and ensemble methods.

These models represent the multidimensional character of
groundwater systems, especially in India, where the availability of
groundwater is determined by the intricate interaction of terrain,
land use, geology and monsoonal variability. MCDM-AHP is one of
the most applied statistical techniques because of its structured
decision process and possible embedding of expert wisdom. It has
been used widely for areas like Tamil Nadu, Jharkhand and West
Bengal, and upon application with GIS for thematic mapping
(lithology, slope, drainage and land cover), it has delivered prom-
ising results (Selvam et al., 2016; Jenifer and Jha, 2017; Singh et al.,
2020). MCDM-AHP’s self-restrictive parameter, subjectivity in
setting weightages, in certain publications, has been lessened by
utilization of model-predicted output verification through field-
verifiable boreholes and well yields.

The FR model ranks among the most prevalent statistical
models for Indian GWP studies. Its simplicity and capacity to
forecast groundwater occurrence probability using past well or
spring distribution and thematic conditioning factors like geology,
geomorphology, DD and slope are reasons for its popularity. FR has
been successfully applied for eastern states like Odisha and West
Bengal with strong predictive potential (Mandal et al., 2016; Bala-
murugan et al., 2017). The weights of evidence (WOE) model,
which is based on Bayesian theory, has also been used for Tamil
Nadu and Jharkhand to estimate the probabilistic impact of spatial
characteristics on the occurrence of groundwater. It has the benefit
of minimizing human bias but presumes independence between the
variables, which may be a drawback in cases where landscapes are
hydrologically connected (Bagyaraj et al., 2013).

Because of the increased prevalence of data-rich situations and
satellite-derived data, ML models have also gained popularity in
their ability to detect complex nonlinear relationships. RF is one
ML model that has been largely used to apply to map GWP between
Indian states like Gujarat, Maharashtra and regions of Andhra
Pradesh. RF’s ability to handle high-dimensional data and rank
variable importance has been helpful in consolidating diverse fac-
tors such as rainfall, NDVI, topographic index and lithology (Pham
et al., 2019; Singh et al., 2020). Though simpler, logistic regression
remains an option due to its interpretability and transparency. It
has been used for Uttar Pradesh and Tamil Nadu, particularly in
those projects where there was a need for binary classification of
groundwater presence/absence (Shekhar and Pandey, 2015). Other
ML models, such as SVM and Boosted Regression Trees (BRT),
have also been used widely in India-specific GWPZ mapping
research. SVM has been used in Indian peninsular hard rock areas
where groundwater availability is controlled significantly by frac-
ture networks and weathered zones, whereas BRT has been used in
areas of abundant data due to its capability to prevent overfitting
and handle environmental interactions of higher complexity. Over
the last few years, ensemble and hybrid models have been a strong
trend in GWPZ mapping in India because these effectively combine
outputs from several modeling approaches to improve prediction
accuracy and spatial consistency.

For instance, Singh et al. (2020) proposed a hybrid model that
integrated Catastrophe Theory with MCDM-AHP to delineate
GWP zones in West Bengal for better management of qualitative
and quantitative variables. Pham et al. (2019) proposed several
hybrid models in Gujarat using Decision Stump (DS) with RF,
Bagging and other ensemble learners, and achieved improved
classification performance over single models. Some studies have

used soft computing techniques such as Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) optimized by genetic algorithms or
Particle Swarm Optimization to improve performance in compli-
cated hydrogeological conditions, such as in central and southern
India. Such hybrid models have been particularly encouraging in
the harder-rock regions where groundwater availability is very
heterogeneous and difficult to estimate by any simple model alone.
As India struggles with increasing groundwater depletion, pollution
and spatial heterogeneity in recharge problems, the constant mixing
of data-driven models with field validation, high-resolution satellite
inputs and regional modifications continues to be a priority. The
models explained in Supplementary Table 1 reflect the development
of GWP research in India and provide a body of methodological tools
prone to regional and thematic demands. The modeling techniques
not only contribute to the improvement of space decision-making
but also provide a scientific platform for sustainable groundwater
management across different Indian ecosystems.

GWPZ validation parameters and techniques

Validation is a crucial step in determining the scientifically
obtained results and applicability of GWPZ models. In various
studies, field-based conventional indicators as well as contempor-
ary geospatial techniques have been employed to determine the
accuracy of both. Most frequently utilized validation parameters
include borehole and well yield, groundwater level data, specific
capacity, spring discharge rates and spatial distribution of wells or
springs. Besides, geophysical parameters like resistivity surveys,
aquifer transmissivity, aquifer thickness and groundwater level
fluctuation are widely utilized to corroborate forecasted zones.
Increasingly, parameters like weathered zone storage volume and
satellite-derived groundwater storage volume have been utilized,
especially for huge or data-deficient areas.

At the same time, researchers applied quantitative validation
techniques increasingly to measure model performance quantita-
tively. ROC curve and AUC are utilized extensively to measure
classification accuracy. Other measures of evaluation, such as
accuracy, sensitivity, specificity, the Kappa coefficient and RMSE,
provide additional information regarding prediction consistency
and reliability. Also, for checking advanced models — mainly ML,
deep learning and hybrid-based models — the metrics of perform-
ance like precision, recall, F1-score and overall accuracy have been
widely utilized. Together, these determine the modeled GWPZs to
be statistically sound and hydrogeologically accurate.

Drawing on the need for validation in determining the scientific
strength and real-world applicability of GWPZ models, there is a
need to examine more closely the specific tools and methods that
facilitate this process. Robust validation strategies not only lend
credibility to the modeled zones but also to their usability in actual
groundwater management. Here, we categorize the validation strat-
egies as (a) GWPZ validation parameters that consist of physical,
geophysical and hydrological indicators, and (b) GWPZ model
validation techniques used to measure model accuracy, from trad-
itional statistical techniques to sophisticated computational perform-
ance measures. The subsequent sections specify the main indicators
widely utilized for GWPZ validation (Section “GWPZ validation
parameters”), with a description of the most prevailing qualitative
and quantitative validation approaches afterward (Section “GWPZ
model validation techniques”). Such methodical analysis illustrates
the entire knowledge about how scholars make delineated GWPZs
scientifically viable as well as operationally efficacious.
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GWPZ validation parameters

Accurate identification and validation of GWPZ have increasingly
become crucial for sustainable groundwater management in India’s
diverse geological and climatic conditions. Effective delineation is
largely dependent on robust validation parameters that truly rep-
resent real aquifer conditions (Figure 3). Among these parameters,
well and borehole yield data are particularly important due to their
quantifiable, direct representation of aquifer productivity that can
be rigorously tested through the accuracy of groundwater models.
Early studies by Pradhan (2009) showed good spatial agreement
between mapped areas of groundwater potential and borehole
yields, providing the first empirical evidence for such models.
Follow-up research, such as Machiwal et al. (2011), Agarwal
etal. (2013), Singh et al. (2013) and Agarwal and Garg (2016), went
on to further improve model performance by strategically reserving
yield data subsets to cross-validate predictions separately, signifi-
cantly improving the reliability and scientific merit of groundwater
estimates. These initial methods were subsequently supported
through rigorous verification in subsequent studies by Jhariya
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et al. (2021), Thapa et al. (2017), Kumar and Krishna (2016),
Arulbalaji et al. (2019), Das (2019), Nithya et al. (2019), Mukherjee
and Singh (2020), Qadir et al. (2020), Kumar et al. (2020), Arunbose
etal. (2021), Singh et al. (2020), Singha et al. (2024), Sutradhar et al.
(2021), Kumar et al. (2022) and Goswami et al. (2023), who
consistently demonstrated high correlations between yield obser-
vations and forecasted groundwater availability zones in various
Indian environments.

Groundwater level data are also essential, as lesser depths have
been found to represent higher aquifer potential, a fact verified by
various researchers like Nagarajan and Singh (2009), Mallick et al.
(2015), Maity and Mandal (2019), Patra et al. (2018), Kumar et al.
(2020), Pal et al. (2020), Singh et al. (2020), Chatterjee and Dutta
(2022), Priya et al. (2022), Sarkar et al. (2022b), Goswami et al.
(2023), Moharir et al. (2023), Saikia et al. (2023) and Yadav et al.
(2023). Borehole/well-specific capacity, measuring borehole prod-
uctivity per unit drawdown, though less common, was effectively
employed by Jasrotia et al. (2013, 2016), yet again validating GWPZ
calculations. Where quantitative yield data are limited in specific
regions, the presence or number of boreholes, wells and springs has
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Figure 3. A schematic diagram illustrating the workflow for groundwater potential zone (GWPZ) mapping in India and the key parameters used for model validation. The flowchart
depicts the standard process, beginning with model application, followed by results generation and validation. The lower panel details a suite of essential field-based parameters
for validating GWPZ models, including borehole/well yield, groundwater level, specific capacity, spring discharge rate, aquifer thickness data and aquifer transmissivity from
resistivity surveys. The number or the presence of existing boreholes, wells and springs is also a critical validation component.
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been effectively employed as a surrogate validating technique. High
correspondence between field-surveyed positions of groundwater
facilities and calculated potential areas has been achieved by Singh
etal. (2013, 2018), Balamurugan et al. (2017), Mallick et al. (2019),
Das (2019), Pal et al. (2020), Dar et al. (2020), Qadir et al. (2020),
Maity et al. (2022), Bhuyan and Deka (2022), Hasanuzzaman et al.
(2022), Goswami et al. (2023) and Gandhi and Patel (2022), creat-
ing the feasibility of this method.

In addition, borehole/well/spring discharge rates have been
corroborated directly with GWP models, showing good correlation
between high discharge values and groundwater-rich modeled
areas identified by Mallick et al. (2015), Murmu et al. (2019),
Mandal et al. (2021), Singh et al. (2020), Ashwini et al. (2023),
Goswami et al. (2023) and Kumar et al. (2023). Geophysical resist-
ivity surveys further complemented verification through studies by
Murasingh et al. (2018), Gyeltshen et al. (2020), Jhariya et al. (2021)
and Prabhu and Sivakumar (2018), which verified that regions of
high groundwater are highly correlated with low-resistivity satur-
ated rocks. Aquifer transmissivity, while scarce in data, was found
to be useful by Jasrotia et al. (2016) for the simulation of ground-
water mobility in aquifers. Moreover, aquifer thickness data have
been effectively utilized by Pal et al. (2020) and Rashid et al. (2012),
who reported that thicker saturated layers are associated with
increased groundwater availability.

Finally, the degree of variations in groundwater levels can
indicate recharge mechanisms with complex spatiotemporal rela-
tionships (Bera et al., 2020; Kumar et al., 2020; Saranya and Sar-
avanan, 2020; Rajasekhar et al., 2021; Saravanan et al., 2021; Verma
and Patel, 2021; Chatterjee and Dutta, 2022; Senapati and Das,
2022; Moharir et al., 2023). Collectively, these general scientific
validations demonstrate the inherent significance of integrating
different parameters — borehole/well yield, groundwater level,
specific capacity, number or presence of boreholes/wells/springs,
discharge rates, resistivity surveys, aquifer transmissivity, aquifer
thickness and groundwater level changes — to effectively ensure
scientific accuracy, functional usability and context strength of
GWP evaluations.

GWPZ model validation techniques

Model validation is also key to assessing the predictive capacity and
generalizability of GWPZ models. As more sophisticated compu-
tational tools are being used in groundwater exploration, use of
different model techniques from data-driven to decision-based
techniques has grown substantially. Relying on ML, MCDM and
other modeling techniques (Supplementary Table 1), researchers
have established more precise and credible spatial prediction
models for GWPZ assessment.

To evaluate the performance of such models, several statistical
validation measures are used, as a function of the model form and
the kind of its output — categorical or continuous. For models that
are of a classification type, precision, recall, F1-score, accuracy and
ROC-AUC are the most widely used measures of performance
(Hastie et al., 2001). These give comprehensive information regard-
ing the capacity of a model to differentiate between various ground-
water potential classes (Supplementary Table 2). Accuracy is
correctly predicted positive instances divided by the total predicted
positive instances. Accuracy can be utilized where false positives are
expensive, that is, overestimating GWP over unsuitable localities.
Moreover, the sensitivity or true positive rates (TPRs) are correctly
predicted positives divided by the total actual positives. This is

particularly very useful where missed high-potential areas will have
fatal repercussions.

The harmonic mean of precision, recall and F1-score provides a
trade-off among them, particularly for imbalanced classes (Hastie
etal,, 2001). While easy to use and intuitive, accuracy may, in some
instances, not be a suitable measure for imbalanced data since
correctly classifying the majority class can mask poor performance
on the minority class. To address these shortcomings, the ROC
curve is widely employed. It is the point at which the TPR and false
positive rate curve for all possible classification thresholds intersect.
AUC estimated from the ROC curve indicates model performance;
typically, AUCs between 0.5 and 0.6 are poor, 0.6-0.7 average, 0.7—
0.8 good, 0.8-0.9 very good and 0.9-1.0 excellent. AUC is particu-
larly beneficial for model comparison over class distribution and is
among the best measures of binary classification problems. Cohen’s
Kappa statistic is also frequently used to estimate the level of
agreement between predicted and actual classes, adjusting for
chance agreement. An agreement measure above 0.8 indicates high
agreement, and below 0.4 indicates inconsistent models.

For continuous output models, that is, groundwater level pre-
diction, irrigation water use, aquifer transmissivity or recharge,
statistical error-based measures are employed (Wunsch et al,
2022; Majumdar et al, 2024; Talib et al, 2024; Hasan et al,
2025). These include RMSE, which penalizes the model strongly
for large errors, MAE and bias, which measures systematic over- or
underestimation of the model. These are most applicable in
regression-based ML models and physically based hydrological
models (Majumdar et al., 2024).

Validation of MCDM models — particularly AHP — is typically
done with internal consistency analysis. Consistency Ratio (CR) is
employed for ascertaining whether the decision-makers’ pairwise
comparisons are or are not logically consistent. Any CR below 0.1 is
generally regarded as the threshold for a consistent judgment
matrix. CR in hybrid methods that blend data-driven models and
expert-based systems, the use of a blend of agreement-based, clas-
sification and error-based validation methods provides a stable and
equitable evaluation. It is particularly important in spatial decision-
making applications where accuracy, reliability and interpretability
should be balanced. Choice of validation methods should thus be
determined by model type used, data structure and purpose of
model results. To summarize, validation checks through precision,
recall, F1-score, accuracy, ROC, AUC, Kappa, RMSE, MAE and CR
offer are key to gauging model performance and assessing spatial
generalizability for operational GWPZ mapping and groundwater
management.

Current status, future issues, and challenges in GWPZ
mapping

Groundwater is a crucial resource in India, supporting agriculture,
drinking water supply to rural and urban areas and industrial
activities. With a growing reliance on this finite resource and rising
indicators of aquifer depletion in numerous regions, the scientific
community has focused significantly on finding and defining GWP
areas. These areas assist in indicating where groundwater will likely
occur and be extracted sustainably.

This review provides an in-depth analysis of the existing
methods practiced in GWPZ mapping in the Indian context, the
data and models utilized, their accuracy levels and validation and
challenges emerging — most notably those environmentally and
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climatically induced. GWPZ mapping studies typically classify the
regions into five categories depending on groundwater availability:
very high, high, moderate, poor and very poor potential areas
(Mukherjee et al,, 2012; Kumar et al., 2022; Thanh et al., 2022).
This classification is generally made from the integration of various
thematic factors affecting groundwater occurrence and movement.
In the Indian context, eight thematic layers are typically employed,
such as geology, slope, LULC, soil type, DD, lineament density,
altitude and rainfall.

Collectively, these parameters broadly represent the factors
controlling recharge and groundwater storage over a wide range
of terrains. Preparation of these thematic layers is highly dependent
on satellite-based remote-sensing data and hydrogeological field
surveys. Remote-sensing technologies improved remarkably in
India during the recent decades, providing large datasets to monitor
Earth’s surface and atmosphere at sufficiently high spatiotemporal
scales. Consequently, these tools have weakened dependence on
long-term field surveying for preliminary GWPZ delineation. Yet,
field-level data from well and borehole drilling, production logging,
aquifer tests and water-level measurements are beyond replace-
ment for the calibration and testing of models that deliver localized
and accurate description of subsurface conditions.

Nevertheless, such data collection is still cumbersome, costly
and regionally inconsistent. Mapping methodologies of GWP
zones in India are categorically divided into three types: statistical
approaches, ML models and ensemble or hybrid models. Statistical
models like MCDM, AHP, WOA, FR, Evidence Belief Function and
WOE have been extensively used in Indian studies (Gaur et al,
2011; Singh et al., 2013; Ghosh et al.,, 2016; Murmu et al., 2019;
Gyeltshen et al., 2020; Dandapat et al., 2024). These models are easy
to use and involve lesser inputs of data, hence are more appropriate
for areas with sparse hydrogeological data. As computation power
and availability of data improved, ML methods gained momentum
in groundwater research. Methods like RF, XGBoost, BRT and
SVM are widely used in India-specific GWPZ mapping. These
enable researchers and practitioners to work with vast, intricate
data sets and determine nonlinear correlations between variables,
often showcasing superior predictive capabilities compared to trad-
itional statistical techniques.

Based on these developments, ensemble and hybrid models have
become very effective tools. These integrate multiple statistical and
ML methods to improve model stability and prediction accuracy.
Some notable examples include the combination of RF with SVM, RF
with DS and the integration of ANFIS with GA, showing promising
results (Pham et al., 2019; Malik et al., 2020; Prasad et al., 2020). Such
hybrid approaches are especially effective in addressing the complex
and region-specific factors that drive groundwater availability distri-
bution in India.

While robust model validation strategies have been employed
across most the studies reviewed, GWPZ mapping in India still
encounters several significant challenges. For example, the extreme
heterogeneity between regions in terms of geological, hydrological,
climatic and socioeconomic conditions poses a key issue to develop
generalizable models through a single modeling paradigm. To
address this, localized models specific to physiographic regimes
are often required. Inconsistent quality and availability of data also
worsen the problem, as detailed or recent hydrogeological records
are not available for most regions, which can negate model preci-
sion, repeatability and, thus, reliability.

An increasing problem for future GWPZ mapping in India is the
complex effect of climatic variabilities. Changes in precipitation
patterns, rising temperatures and the increase in extreme weather
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phenomena are already affecting the hydrologic cycle in profound
ways. These changes have a direct impact on groundwater recharge
processes (Bhanja et al., 2019; Chatterjee et al., 2020), surface runoff
(i.e, overland flow) dynamics (Chuphal and Mishra, 2023;
Ketchum et al., 2023; Kuntla et al., 2024) and evapotranspiration
rates (Kukal and Hobbins, 2025). For instance, irregular monsoonal
rainfall — both volume and timing — can decrease effective recharge,
particularly in areas reliant on seasonal water buildup (Gupta et al,,
2024; Mishra et al., 2024; Thirumalai et al., 2025). At the same time,
extended dry periods and increased evapotranspiration caused by
increased temperatures might result in net groundwater losses,
potentially affecting groundwater-dependent ecosystems (Rohde
et al., 2024). While the 1:50,000 scale GWPZ maps developed by
ISRO provide valuable information, these climate-driven disruptions
add to uncertainty in groundwater modeling and pose a threat to the
long-term reliability of current GWPZ maps, which are predomin-
antly static (ISRO, 2011, 2015). Therefore, these static GWPZ maps
can become obsolete in the near future unless they are operationally
updated with state-of-the-art climate-responsive data and integrated
with national geospatial portals like the Bhuvan-Bhujal groundwater
prospects and quality information system (ISRO, 2025).

Future groundwater modeling endeavors need to incorporate
climate variables and projections into their platforms to accommo-
date resilience and accuracy. This may include the integration of
rainfall trend analysis, drought indices, future land-use scenarios
and seasonal variability data into GWP estimates. Without such
adaptive modeling strategies, groundwater management plans rely-
ing on outmoded or partial maps stand the risk of further aggra-
vating water scarcity, particularly in climate-vulnerable areas like
central and peninsular India. Future groundwater research in India
must target improving the quality, resolution and variety of input
data. High-resolution satellite imagery combined with strong field-
based hydrogeological data can dramatically enhance the detail and
precision of GWP maps.

There is also a compelling demand for integrated modeling
practices that combine statistical and ML methods to take advantage
of their respective strengths. Region-specific model modifications,
dynamic data integration and utilization of three-dimensional sub-
surface modeling can provide a deeper insight into groundwater
systems, especially in more densely populated or water-scarce areas.
In conclusion, the GWPZ mapping in India has made tremendous
progress with the advancement of data acquisition, computational
methods and interdisciplinary research. However, addressing the
emerging challenges of data heterogeneity, regional variability and
climate change impacts will require a shift toward more dynamic,
adaptive and localized modeling approaches. A future-proofed
groundwater mapping structure — able to incorporate real-time data,
high-resolution imagery and climate-resilient modeling tools — will
be critical to allow sustainable groundwater management in India’s
complex and quickly changing environmental system.

Conclusions

This review has produced a general synthesis of the development
and status of GWPZ mapping in India, its theoretical significance
and practical utility to sustainable water resource management. The
relation between changing controlling factors — ranging from geo-
logical and topographic characteristics to climatic and hydrologic
conditions — has enabled scientists to construct strong tools to
demarcate regions that are rich in groundwater, particularly when
the geology and data are inferior.
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With increased use of geospatial datasets derived from remote
sensing, climate models, GIS and other sources, GWPZ studies in
India are leveraging state-of-the-art methods such as MCDM and
AHP, ML algorithms and hybrids, enhancing both accuracy and
usefulness of boundary delineation for groundwater potential
regions.

This research emphasizes the necessity of model validation in
guaranteeing the credibility and usability of groundwater potential
estimates. Varying validation criteria are applied in Indian studies
that range from empirical measurements like borehole and well
yields, variation in groundwater level, specific capacity and spring
flow rates. Geophysical measures like aquifer transmissivity, resist-
ivity, aquifer thickness and satellite-groundwater storage volumes are
increasing in popularity in providing supportive results that are
modeled. Employment of statistical performance indicators like
precision, recall, F1-score, accuracy, ROC-AUC and others also lends
scientific credibility to groundwater potential models. All the multi-
parametric and multimodel solutions provide spatially consistent,
statistically valid and application-compatible groundwater potential
maps. These solutions are not only vital to groundwater management
and informing water conservation policies under the mounting stres-
ses of urbanization, agriculture and climate variability.

Limitations and future scope

The scope of our recommendations in Section “Current status,
future issues and challenges in GWPZ mapping” represents a limi-
tation in the immediate applicability of this work for policymakers.
We primarily focus on improving the analytical rigor and meth-
odology of GWPZ mapping — a necessary precursor to effective
policy. However, we do not explicitly detail the subsequent steps
required to operationalize these findings. For this review to serve as
a complete reference guide, it would benefit from a more developed
section on translating improved mapping techniques into tangible
governance tools and actionable public policy.

In addition, sustained enhancement of data aggregation, com-
putational complexity and local model calibrations is necessary to
meet India’s changing groundwater needs. Future research must
target adaptive modeling approaches with the application of high-
resolution spatial data, historical and future climate projections and
real-time monitoring networks. The ultimate purpose of refining
GWPZ mapping is not merely an academic exercise in model
improvement, but to provide the foundational knowledge required
to address the most pressing challenges in groundwater govern-
ance. These key challenges include determining regional-scale volu-
metric extraction limits and establishing maximum drawdown criteria
for aquifers (Cook et al,, 2022; Ott et al., 2024), quantifying the water
needs of groundwater-dependent ecosystems (Rohde et al., 2024; Camp-
bell et al, 2025) and managing groundwater pumping impacts on
surface water (Ketchum et al, 2023). While the specific nuances of
solving these issues go beyond the scope of this article, the reliable
GWPZ delineation is the indispensable first step. It provides the essential
spatial data upon which all subsequent sustainable yield calculations and
effective, evidence-based management decisions must be built. These
efforts will render GWPZ mapping an ever-changing science-based and
policy-relevant instrument for India’s groundwater issues.

Finally, it is critical to recognize that technical sophistication
alone is insufficient for achieving sustainable outcomes. Adhering
to the principle that “all models are wrong, but some are useful” (Box,
1976), the ultimate value of any GWPZ model is determined not by
its precision alone but by its integration into real-world decision-
making (Cox etal., 2013). This article’s focus on modeling techniques
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must be contextualized by the overriding importance of the “human
factor,” authentic water planning involving key stakeholders and
end-users and robust governance (George et al., 2009; 2016). With-
out embedding these advanced tools within robust frameworks of
governance and participatory stakeholder engagement from the very
beginning, even the most accurate scientific efforts risk yielding
unrealistic expectations, flawed water allocation policies and a repe-
tition of historical management failures. Therefore, the future success
of groundwater management in India hinges on coupling these
improved models with inclusive planning processes that ensure the
science is not just accurate, but also actionable, equitable and trusted
by the communities it is meant to serve.
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