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Algebraic Values of Entire Functions with
Extremal Growth Orders: An Extension of
a Theorem of Boxall and Jones

Taboka Prince Chalebgwa

Abstract. Given an entire function f of ûnite order ρ and positive lower order λ, Boxall and Jones
proved a bound of the form C(logH)η(λ ,ρ) for the density of algebraic points of bounded degree and
height at most H on the restrictions to compact sets of the graph of f . he constant C and exponent
η are eòectively computable from certain data associated with the function. In this followup note,
using diòerent measures of the growth of entire functions, we obtain similar bounds for other classes
of functions to which the original theorem does not apply.

1 Introduction

In this paper we are concerned with the study of the density of algebraic points of
bounded height and degree on graphs of transcendental functions. A trivial upper
bound of the form C(d)H2d follows immediately from Northcott’s theorem, where
H and d are the height and degree bounds, respectively. As such, one o�en seeks
to obtain bounds of the form C(logH)η , where C and η depend on some parameters
associated with the function. As onewould expect, such bounds are usually nontrivial
to prove.

he notion of height of an algebraic number that we will be using throughout this
paper is the absolute multiplicative height, which, for the convenience of the reader,
we recall below. A�er this, in order to place our results within the context of what is
known in the general literature, we will brie�y discuss a few related results, leading
us to the Boxall–Jones theorem. In Section 2, we give the deûnitions of the measures
of growth of the entire functions whose arithmetic properties we are going to study,
as well as two key lemmas needed for our proofs. Section 3 consists of the statements
and proofs of the main results.

We begin with the deûnition of the height of an algebraic number. Let P(z) =

a∏
d
j=1(z−α j) be a polynomial with complex coeõcients. heMahler measureM(P)

of P is the quantity

M(P) = ∣a∣
d
∏
j=1

max{1, ∣α j ∣}.
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Let α be an algebraic number of degree d, with minimal polynomial P; then the
absolute multiplicative height of α, H(α) is deûned as

H(α) =M(P)
1
d .

If α and β are algebraic numbers, we use the notation H(α, β) to represent the
quantity

max{H(α),H(β)}.

1.1 Some Known Results

he current line of research can be traced back to the Bombieri–Pila theorem for
counting lattice points on graphs of real analytic functions.

Given a set Γ ⊂ R2 and a positive number t ≥ 1, the homothetic dilation of Γ by t,
denoted by tΓ is the set

tΓ ∶= {(tx1 , tx2) ∶ (x1 , x2) ∈ Γ}.

In [3] Bombieri and Pila considered, amongst several other variants, the following
question. Let f ∶ [0, 1] → R be an analytic function, and denote by X f ⊂ R2 the
graph of f . Given t ≥ 1, how does the quantity ∣tX f ∩ Z2∣ depend on t? When f is
a transcendental function, and for any є > 0, it was shown that there exists constant
c( f , є) such that ∣tX f ∩Z2∣ ≤ c( f , є)tє for all t ≥ 1.

In [9], Pila extended and reûned some of the results obtained in [3] to counting
rational points of bounded height. Given that f is a transcendental real analytic func-
tion on a closed and bounded interval I, and є > 0, it was shown that there is a constant
c( f , є) such that for any positive integer H, the number of rational points of height at
most H on X f is at most c( f , є)Hє .
Although this was shown to be the best possible bound in general, in certain in-

stances, such as when additional hypotheses are imposed on f , or when f is some
concrete function, it is sometimes possible to improve the bound to one of the form
c(logH)η for some c, η > 0.

In [8], Masser showed that there are at most c( log H
log log H )2 rational points on the

graph of the Riemann ζ-function restricted to the interval (2, 3).
In [2], adapting Masser’s method, Besson studied the density of algebraic points

of bounded degree and height on the graph of the Γ-function and obtained a similar
bound for restrictions of Γ to intervals of the form [n − 1, n].

In [10], assuming only that f is complex analytic and transcendental, Surroca ob-
tained a Cd3(logH)2 bound for the number of algebraic points of degree at most d
and height at most H on the restriction to a compact subset of the graph of f . How-
ever, the bound is valid only for inûnitely many real H ≥ 1. Unfortunately, one cannot
replace the “inûnitely many real H ≥ 1” with “for all suõciently large H”.

Recall that the order and lower order of an entire function f are deûned as

ρ = lim sup
r→∞

log logM(r, f )
log r

and λ = lim inf
r→∞

log logM(r, f )
log r

,

respectively.
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Remark 1.1 If ρ is ûnite, then ρ is the inûmum of the set of all α such that
M(r, f ) ≤ er

α
for suõciently large r and λ is the supremum of the set of all β such

that er
β
≤ M(r, f ) for suõciently large r.

In [4], motivated by earlier work ofMasser in [8], Boxall and Jones studied the den-
sity of algebraic points of bounded height and degree on graphs of entire functions of
ûnite order ρ andpositive lower order λ restricted to compact subsets ofC. hey attain
a bound of the form C(logH)η where the constant C and the exponent η are eòective
and η depends only on ρ and λ. More speciûcally, they prove the following theorem.

heorem 1.2 (Boxall and Jones [4]) Let f be a nonconstant entire function of order

ρ and lower order λ. Suppose 0 < λ ≤ ρ < ∞ and let d ≥ 1 and r > 0. here is a constant

C > 0 such that for all H > e, there are at most C(logH)η(λ ,ρ) complex numbers z such

that ∣z∣ ≤ r, [Q(z, f (z)) ∶ Q] ≤ d, and H(z, f (z)) ≤ H.

Given the Boxall–Jones theorem, one can ask several followup questions towards
possible generalizations. Can one ûnd an analogue for meromorphic functions? Us-
ing Nevanlinna theory, we address this question elsewhere. Still within the case of
entire functions, can one extend this result to functions of order zero or inûnite order?

he latter question is the focus of this paper.

1.2 A Proposition of Masser

Oneof the key ingredients of our proof strategy is an auxiliary polynomial constructed
by Masser in [8], which enables us to “convert” the question of counting algebraic
points on the graph of the function f to that of ûnding an upper bound for the num-
ber of zeroes of a related function g, say, a task that can then be handled by analytic
methods.

his is essentially a non-zero polynomial P(X ,Y) ∈ Z[X ,Y] such that P(z, f (z))
= 0 whenever

(z, f (z)) ∈ Q
2
, deg(z, f (z)) ≤ d , and H(z, f (z)) ≤ H.

We give the exact details of Masser’s polynomial below.

Lemma 1.3 (Masser [8, Prop. 2]) Let d ≥ 1 and T ≥
√
8d be positive integers and

let A, Z ,M, and H be positive real numbers such that H ≥ 1. Let f1 , f2 be functions
analytic on an open neighbourhood of B(0, 2Z), with max{∣ f1(z)∣, ∣ f2(z)∣} ≤ M on

this set. Suppose Z ⊂ C is ûnite and satisûes the following for all z,w ∈ Z:

● ∣z∣ ≤ Z ,

● ∣w − z∣ ≤ 1
A ,

● [Q( f1(z), f2(z)) ∶ Q] ≤ d,

● H( f1(z), f2(z)) ≤ H.

hen there is a nonzero polynomial P(X ,Y) of total degree at most T such that

P( f1(z), f2(z)) = 0 for all z ∈ Z provided

(AZ)
T
> (4T)

96d2/T
(M + 1)16d

H
48d2 .
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Moreover, if ∣Z∣ ≥ T2/8d, then P(X ,Y) can be chosen such that all the coeõcients

are integers each with absolute value at most

21/d
(T + 1)2

H
T .

Remark 1.4 he “moreover” part in the conclusion of this lemma does not appear
in the proposition as stated in [8], but it follows as a byproduct of his proof of the
proposition. For our purposes, we do need this detailed information on the size of
the coeõcients of the polynomial.

In addition, we will be using the special case of the lemma where f1(z) = z and
f2(z) = f (z).

2 Other Notions of Growth of Entire Functions and Auxiliary
Lemmas

he following deûnition was introduced in the literature as a ûner measure of growth
for entire functions of order zero. For properties of these functions and related con-
structions thereof, one can consult [7].

Let f be a nonconstant entire function. he logarithmic order ρ0 of f is deûned as

ρ0( f ) ∶= lim sup
r→∞

log logM(r, f )
log log r

.

he logarithmic lower order of f is then deûned to be

λ0( f ) ∶= lim inf
r→∞

log logM(r, f )
log log r

.

Remark 2.1 In analogy with Remark 1.1, if ρ0 is ûnite, then ρ0 is the inûmum of the
set of all α such that M(r, f ) ≤ r(log r)α−1 for suõciently large r and λ0 is the supremum
of the set of all β such that r(log r)β−1 ≤ M(r, f ) for suõciently large r.

he notion of the hyper-order of an entire function was introduced in [12] to study
the growth properties of functions with inûnite order.

Let f be a nonconstant entire function. he hyper-order ρ2 of f is deûned as

ρ2( f ) ∶= lim sup
r→∞

log log logM(r, f )
log r

.

Analogously, the lower hyper-order of f is deûned to be

λ2( f ) ∶= lim inf
r→∞

log log logM(r, f )
log r

.

Remark 2.2 If ρ2 is ûnite, then ρ2 is the inûmum of the set of all α such that
M(r, f ) ≤ exp(exp(rρ2)) and λ2 is the supremum of the set of all β such that
exp(exp(rλ2)) ≤ M(r, f ) for suõciently large r.

he next lemma gives a quantitative way of covering the zeroes of a polynomial
P(z) with a collection of disks outside of which ∣P(z)∣ > 1.
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Lemma 2.3 (Boutroux–Cartan) Let P(z) ∈ C[z] be a monic polynomial with degree

n ≥ 1. hen ∣P(z)∣ > 1 for all complex z outside a collection of at most n disks the sum

of whose radii is 2e.

In the following lemma, we use the notation n(r, 1
f ) to denote the number of zeroes

of f in B(0, r). his is a standard Nevanlinna theoretic notation.

Lemma 2.4 (A corollary of Jensen’s formula) Let G be a nonconstant entire function

such that G(0) ≠ 0. Let 0 < r < R < ∞. hen

n(r,
1
G

) ≤
1

log R
r

log (
M(R,G)

∣G(0)∣
) .

3 Main Results

We now state and prove the main results of this paper, ûrst for certain functions of
order zero and then for functions with inûnite order. he proofs of the two theo-
rems are very similar, and indeed, are just (routine) adaptations of the Boxall–Jones
argument. We shall, however, include both of them for the sake of completeness.
Before moving on to our ûrst result, we brie�y discuss the related recent work of

Comte and Yomdin, with a view towards contrasting it with ours.

3.1 A Result of Comte and Yomdin

In [5], Comte and Yomdin studied polynomial zero estimates for certain transcen-
dental functions analytic in a disk. One of their results gives a C(logH)β bound for
the number of rational points of bounded height on restrictions of the graphs of func-
tions f (z) deûned by lacunary series whose coeõcients satisfy some growth condi-
tion. When f deûned as such is an entire function, the restriction on the coeõcients
allows it to be a function of order zero. We give a precise statement of their result
below.

heorem 3.1 ([5, heorem 5.2(3)]) Let the sequence {nk}
∞
k=1 ⊂ N be such that there

exists q > 2 such that for any k ≥ 1, n2
k < nk+1 < n

q
k . Let f (z) = ∑

∞
k=1 akz

nk , where

ak ∈ Q and suppose that there exists p > 0 such that ∣ak ∣ ≥ e
−n p

k for all k. Let r > 0 and
suppose f is analytic on a neighborhood of B(0, r). Let H > e. hen there exist C , β > 0
such that there are at most C(logH)β rational points of height at most H on the graph

of f restricted to B(0, r
4 ).

When f (z) = ∑∞k=n anz
n is an entire function, the order of f can be found by the

formula

(3.1) ρ = lim sup
n→∞

n log n

− log ∣an ∣
.

For the proof of this formula, the reader can consult [6, heorem 14.1.1]. In [1], an
analogous formula is proved for the logarithmic order. More precisely, when f (z) =
∑
∞
k=n anz

n is an entire function of order zero, the logarithmic order of f can be found
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by the formula

(3.2) ρ0 = 1 + lim sup
n→∞

log n

log(− 1
n log ∣an ∣)

.

We note that if f (z) as deûned in heorem 3.1 is an entire function, then by equation
(3.1), ρ( f ) ≥ 0, and by equation (3.2), ρ0( f ) ≥ 1. Furthermore, no assumption is
made on the lower (logarithmic) order of f .

In this regard their result is slightly more general than ours, since the functions to
which our theorem applies are the ones for which 1 < ρ0( f ) < ∞. In fact, we proved
our theorem for functions for which λ0( f ) > 3. his was just a technical assumption,
and it may be possible to replace it with λ0( f ) > 1, ideally. However, we do not make
any assumption on the growth of the coeõcients of the functions, and therefore, our
result applies to a wider class of functions.

3.2 Functions with Order Zero

heorem 3.2 Let f be a nonconstant entire function of log-order ρ and lower

log-order λ such that 3 < λ ≤ ρ < ∞. Let d, α, β, є, and s be as follows: s > 0, d ≥ 1,
0 < є < λ−1

2 , β = λ− 1− є, and α = ρ + β. hen there is a constant C > 0 such that for all

H > e e , there are at most C(logH)4α2 numbers z ∈ C such that [Q(z, f (z)) ∶ Q] ≤ d,

H(z, f (z) ≤ H and ∣z∣ ≤ s.

Proof Let H > e e . We shall denote by C a positive constant independent of H. he
constant C cannot be the same at each occurrence. By ∣P∣ we are referring to the
modulus of the coeõcient of a polynomial with largest absolute value.

We would ûrst like to obtain a nonzero polynomial P(X ,Y) ∈ Z[X ,Y] of degree
at most T = (logH)α such that ∣P∣ ≤ 2

1
d (T + 1)2HT and P(z, f (z)) = 0 whenever

[Q(z, f (z)) ∶ Q] ≤ d, H(z, f (z) ≤ H, and ∣z∣ ≤ s. To this end, let

A =
1
2s
, Z = 3s, T = (logH)

α ,

S = M(6s, f ), M = max{6s, S}.

We then have that max{∣z∣, ∣ f (z)∣} ≤ M for all z ∈ B(0, 2s) (in particular).
From the above choices of A, Z , T , and M, we have, on the one hand, that

(AZ)
T
= (3/2)T , and hence log(AZ)T

= C(logH)
α .

On the other hand,

log[(4T)
96d2/T

(M + 1)16d
H

48d2
] = 96d2

/T log(4T) + 16d log(M + 1) + 48d2 logH

≤ C(logH).

herefore,
(AZ)

T
> (4T)

96d2/T
(M + 1)16d

H
48d2 .

We note that the bound we are trying to prove is worse than C(logH)2α . We can thus
assume that there are at least T2

8d complex numbers such that [Q(z, f (z)) ∶ Q] ≤ d
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and H(z, f (z) ≤ H. By Lemma 1.3, Masser’s proposition, there is a polynomial
P(X ,Y) satisfying all our requirements.

Let G(z) = P(z, f (z)). We would like to bound the number of zeroes of G in
B(0, s). To do this, ûrst let k be the highest power of Y in P(X ,Y). We can assume
k ≥ 1. Let P̃(X ,Y) = Y kP(X , 1

Y ), R(X) = P̃(X , 0), and Q(X ,Y) = P̃(X ,Y) − R(X).
We note that R(X) is not identically zero. Let Q̃(X ,Y) = 1

Y Q(X ,Y). he highest
power of X in Q̃ is at most T and ∣Q̃∣ ≤ ∣P∣ ≤ 2

1
d (T + 1)2HT . Finally, Q̃ has at most

(T + 1)2 terms.
We would now like to ûnd some z i ∈ C such that ∣G(z i)∣ = ∣P(z i , f (z i))∣ ≥ 1.
Let z = re iθ ∈ C be such that ∣ f (z)∣ = M(r, f ) ≥ 1. hen

∣Q̃(z,
1
f (z)

) ∣ ≤ 2
1
d (T + 1)4

H
T
r
T .

herefore,

∣Q(z,
1
f (z)

) ∣ ≤
1
2
,

provided

(3.3) 2
1
d (T + 1)4

H
T
r
T
≤

1
2
M(r, f ).

We would like to estimate the size of r (in terms of H) that would make the above
inequality hold.

Let 0 < C1 < C2 be such that

C1(logH)
(log H)α

≤ r ≤ C2(logH)
(log H)α ;

then (bearing in mind that T = C(logH)α),

(3.4) C(logT) + T(logH) + T log r ≤ C
′
2(logH)

2α
(log logH).

Abusing notation slightly, inequality (3.4) above implies that, for a carefully cho-
sen C > 0, the logarithm of the le� hand side of inequality (3.3) is dominated by
C(logH)2α(log logH).

On the other hand, since r ≥ C1(logH)(log H)α , we have that

(log r)
β+1

≥ C(logH)
α(β+1)

(log logH)
β+1 .

By assumption, λ > 3 and therefore by deûnition β > 1. Hence,

(3.5) C(logH)
2α
(log logH) ≤ C(logH)

α(β+1)
(log logH)

β+1 .

By combining inequalities (3.4) and (3.5), we have that

log[2
1
d (T + 1)4

H
T
r
T
] ≤ C(logH)

α(β+1)
(log logH)

β+1 .

It follows that for large enough H and possibly a diòerent choice of C > 0,

2
1
d (T + 1)4

H
T
r
T
≤

1
2
r
(log r)β .

Since β < λ − 1 and H is suõciently large, by Remark 2.1,

r
(log r)β

≤ M(r, f ).
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We thus get that:

∣Q(z,
1
f (z)

) ∣ ≤
1
2
,

as required.
Note that the degree of R(X) is also at most T . For i = 1, . . . , [T] + 14, say, let r i

be the ith integer a�er C(logH)(log H)α . Let z i be such that ∣z i ∣ = r i and ∣ f (z i)∣ =

M(r i , f ). By the Boutroux–Cartan lemma, there will be at least one i such that
∣R(z i)∣ > 1. For such i, we have:

∣P̃(z i ,
1

f (z i)
) ∣ ≥

1
2
.

We can (again by Remark 2.1) conclude that

∣G(z i)∣ = ∣P(z i , f (z i))∣ = ∣ f (z i)
k
P̃(z i ,

1
f (z i)

) ∣ ≥
1
2
r i

k(log r i)β ,

and therefore ∣G(z i)∣ ≥ 1. We note that B(0, s) ⊂ B(z i , µ)where µ = C(logH)(log H)α .
By the maximum modulus principle and Lemma 2.4, the corollary of Jensen’s

formula, we have that

n(s,
1
G

) ≤
1

log 2
log (

M(3µ,G)

∣G(z i)∣
) ≤

logM(3µ,G)

log 2
.

Since α > ρ − 1 and H is suõciently large, by Remark 2.1, we have that

M(3µ,G) ≤ ∣P∣(T + 1)2
(3µ)T

(3µ)T(log 3µ)α .

Recalling the deûnitions (or bounds) of ∣P∣, T , and µ in terms ofH, we can thus deduce
that

logM(3µ,G) ≤ C(logH)
4α2 .

herefore,

n(s,
1
G

) ≤ C(logH)
4α2 ,

as required. ∎

We note that the constant C can be computed from d , s, λ, ρ, and some constant
r0 > 0 such that r(log r)β−1 ≤ M(r, f ) ≤ r(log r)α−1 for all r ≥ r0.

he exponent of logH could be potentially improved through more careful
considerations.

3.3 Functions with Infinite Order

heorem 3.3 Let f be a nonconstant entire function of hyper-order ρ and lower hyper-

order λ such that 4 < λ ≤ ρ < ∞. Let d , α, β, and s be as follows: s > 0, d ≥ 1, β = λ
2

and α = max{1, ρ}+β. hen there is a constant C > 0 such that for all H > e e
e
, there are

at most C(logH)
2α2
β numbers z ∈ C such that [Q(z, f (z)) ∶ Q] ≤ d, H(z, f (z) ≤ H,

and ∣z∣ ≤ s.
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Proof hroughout the proof we assume that H is suõciently large. We shall denote
byC a positive constant independent ofH. he constantCmaynot be the same at each
occurrence. By ∣P∣ we are referring to the modulus of the coeõcient of a polynomial
with largest absolute value.

We would ûrst like to obtain a nonzero polynomial P(X ,Y) ∈ Z[X ,Y] of degree
at most T = (logH)

α
β such that ∣P∣ ≤ 2

1
d (T + 1)2HT and P(z, f (z)) = 0 whenever

[Q(z, f (z)) ∶ Q] ≤ d, H(z, f (z) ≤ H, and ∣z∣ ≤ s. To this end, let

A =
1
2s
, Z = 3s, T = (logH)

α
β ,

S = M(6s, f ), M = max{6s, S}.

We then have that max{∣z∣, ∣ f (z)∣} ≤ M for all z ∈ B(0, 2s) (in particular).
From the above choices of A, Z , T , and M, we have, on the one hand, that

(AZ)
T
= (3/2)T , and hence log(AZ)T

= C(logH)
α
β .

On the other hand,

log [(4T)
96d2

T (M + 1)16d
H

48d2]

=
96d2

T
log(4T) + 16d log(M + 1) + 48d2 logH

= C(logH).

herefore,

(AZ)
T
> (4T)

96d2
T (M + 1)16d

H
48d2 .

We note that the bound we are trying to prove is worse than C(logH)
2α
β . We can thus

assume that there are at least T2

8d complex numbers such that [Q(z, f (z)) ∶ Q] ≤ d

and H(z, f (z) ≤ H. By Lemma 1.3, there is a polynomial P(X ,Y) satisfying all our
requirements.

Let G(z) = P(z, f (z)). We would like to bound the number of zeroes of G in
B(0, s). To do this, ûrst let k be the highest power ofY in P(X ,Y). We can assume that
k ≥ 1. Let P̃(X ,Y) = Y kP(X , 1

Y ), R(X) = P̃(X , 0), and Q(X ,Y) = P̃(X ,Y) − R(X).
We note that R(X) is not identically zero. Let Q̃(X ,Y) = 1

Y Q(X ,Y). he highest
power of X in Q̃ is at most T and ∣Q̃∣ ≤ ∣P∣ ≤ 2

1
d (T + 1)2HT . Finally, Q̃ has at most

(T + 1)2 terms.
We would now like to ûnd some z i ∈ C such that ∣G(z i)∣ = ∣P(z i , f (z i))∣ ≥ 1.
Let z = re iθ ∈ C be such that ∣ f (z)∣ = M(r, f ) ≥ 1. hen

∣Q̃(z,
1
f (z)

) ∣ ≤ 2
1
d (T + 1)4

H
T
r
T .

herefore,

∣Q(z,
1
f (z)

) ∣ ≤
1
2

provided

2
1
d (T + 1)4

H
T
r
T
≤

1
2
M(r, f ).
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Wewould like to ûnd an explicit bound for r in terms ofH for which the above desired
inequalities will hold. We note that if for some 0 < C1 < C2,

C1(log logH)
α
β ≤ r ≤ C2(logH)

α
β , say;

then, on the one hand,

log[2
1
d (T + 1)4

H
T
r
T
] = C(logT) + T(logH) + T log r,(3.6)

≤ C2(logH)
2α
β ,

whilst on the other hand
exp(rβ) ≥ C1(logH)

α .

Recall that α ∶= max{1, ρ} + β. Since β ∶= λ
2 where λ > 4, we have that

(logH)
α
≥ (logH)

2α
β .

herefore, it follows from inequality (3.6) that

log[2
1
d (T + 1)4

H
T
r
T
] ≤ exp(rβ).

In conclusion, for large enough H (and possibly a diòerent choice of the constant C),
we have that

2
1
d (T + 1)4

H
T
r
T
≤

1
2
exp(exp(rβ)).

Since β < λ and H is suõciently large, by Remark 2.2,

exp(exp(rβ)) ≤ M(r, f ).

We thus get that

∣Q(z,
1
f (z)

) ∣ ≤
1
2
,

as required.
Note that the degree of R(X) is also at most T . For i = 1, . . . , [T] + 14, say, let r i

be the i-th integer a�er C(log logH)
α
β . Let z i be such that ∣z i ∣ = r i and ∣ f (z i)∣ =

M(r i , f ). By the Boutroux–Cartan lemma, there will be at least one i such that
∣R(z i)∣ > 1. For such i, we have

∣P̃(z i ,
1

f (z i)
) ∣ ≥

1
2
.

We can (again by Remark 2.2) conclude that

∣G(z i)∣ = ∣P(z i , f (z i))∣ = ∣ f (z i)
k
P̃(z i ,

1
f (z i)

) ∣ ≥
1
2
exp(exp(krβi )),

and therefore ∣G(z i)∣ ≥ 1. We note that B(0, s) ⊂ B(z i , µ) where µ = C(logH)
α
β .

By the maximum modulus principle and Lemma 2.4, we have that

n(s,
1
G

) ≤
1

log 2
log (

M(3µ,G)

∣G(z i)∣
) ≤

logM(3µ,G)

log 2
.

Since α > ρ,
M(3µ,G) ≤ ∣P∣(T + 1)2

(3µ)T
(3µ)T(log 3µ)α .
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We can thus deduce that

logM(3µ,G) ≤ C(logH)
2α2
β .

herefore,
n(s,

1
G

) ≤ C(logH)
2α2
β ,

as required. ∎

We note that the constant C can be computed from d , s, λ, ρ and some constant
r0 > 0 such that exp(exp(rβ)) ≤ M(r, f ) ≤ exp(exp(rα)) for all r ≥ r0.
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