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REVERSE MATHEMATICS OF A UNIFORM
KRUSKAL–FRIEDMAN THEOREM

ANTON FREUND

Abstract. The Kruskal–Friedman theorem asserts: in any infinite sequence of finite trees with ordinal
labels, some tree can be embedded into a later one, by an embedding that respects a certain gap condition.
This strengthening of the original Kruskal theorem has been proved by I. Křı́ž (Ann. Math. 1989), in
confirmation of a conjecture due to H. Friedman, who had established the result for finitely many labels.
It provides one of the strongest mathematical examples for the independence phenomenon from Gödel’s
theorems. The gap condition is particularly relevant due to its connection with the graph minor theorem
of N. Robertson and P. Seymour. In the present article, we consider a uniform version of the Kruskal–
Friedman theorem, which extends the result from trees to general recursive data types. Our main theorem
shows that this uniform version is equivalent both to Π1

1-transfinite recursion and to a minimal bad sequence
principle of Křı́ž, over the base theory RCA0 from reverse mathematics. This sheds new light on the role of
infinity in finite combinatorics.

§1. Introduction. We begin with a precise formulation of the Kruskal–Friedman
theorem for trees. Let T [�] be the set of finite rooted trees with vertex labels from
a given ordinal � (identified with the set of its predecessors). Elements of T [�] will
be written in the form α � [t0, ... , tn–1], where α < � is the label of the root and
t0, ... , tn–1 are the immediate subtrees. We ignore the order of subtrees but not their
multiplicities. To determine a partial order on T [�] by recursion, we declare that

s = α � [s0, ... , sm–1] ≤T [�] � � [t0, ... , tn–1] = t

holds precisely if we have α ≤ � and one of the following clauses applies:
(i) there is an injective function f : {0, ... , m – 1} → {0, ... , n – 1} such that we

have si ≤T [�] tf(i) for all i < m,
(ii) we have s ≤T [�] tj for some j < n.

Note that clause (i) corresponds to an embedding that sends the root to the root and
subtrees of s into different subtrees of t, which means that infima with respect to the
tree order are preserved. In clause (ii), the root of s is sent to an internal node of t.
All labels below this node must be at least α, as the above condition α ≤ � applies
recursively. If αi is the root label of si in clause (i), it follows that all labels below
the image of si in tf(i) are at least αi (while we may have α ≤ � < αi at the root
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2 ANTON FREUND

of t). Recursively, the condition propagates to all ‘gaps’ that the image of s leaves
in t. Hence our order on T [�] coincides with H. Friedman’s notion of strong gap
embeddability, as determined by [22, Condition (1.2.5)] (see also [30]).

By the Kruskal–Friedman theorem, we shall mean the statement that T [�] is a
well partial order (WPO) for any ordinal �, i.e., that any infinite sequence t0, t1, ...
in T [�] involves an inequality ti ≤T [�] tj for some i < j. Note that � = 1 amounts
to the case without labels, which was proved by J. Kruskal [24]. The extension to
all finite � < � is due to Friedman (see the presentation by S. Simpson [30]). It has
been used in N. Robertson and P. Seymour’s proof of their graph minor theorem (see
[14]). The Kruskal–Friedman theorem for general � was conjectured by Friedman
and proved by I. Křı́ž [22]. For a somewhat different version of the gap condition,
a proof of the general case was given by L. Gordeev [18].

The original Kruskal theorem is unprovable in a fairly strong axiom system ATR0

that is associated with ‘predicative mathematics’, while the extension to all � < �
is unprovable in the even stronger system Π1

1-CA0, as shown by Friedman [30].
Together with Robertson and Seymour [14], the latter has deduced that Π1

1-CA0

cannot prove the graph minor theorem (not even for bounded tree width). This is a
particularly striking manifestation of the incompleteness phenomenon from Gödel’s
theorems, for the following two reasons: First, the axiom system Π1

1-CA0 is strong
enough to prove the vast majority of mathematical theorems that have been analyzed
in the research program of reverse mathematics (see [32] for a comprehensive
introduction). Secondly, the graph minor theorem has been described as one of
“the deepest theorems that mathematics has to offer” [7, Chapter 12]. It is also of
great importance for theoretical computer science, as it guarantees that certain tasks
can be solved by polynomial time algorithms (see, e.g., [29]).

For Kruskal’s original theorem, we have two proofs that are optimal in different
respects: On the one hand, C. Nash-Williams [26] has given an extremely elegant
proof, for which he introduced his influential notion of ‘minimal bad sequence’.
This proof, however, uses axioms that are stronger than necessary. Specifically,
A. Marcone [25] has shown that a fundamental existence principle for minimal
bad sequences is equivalent to Π1

1-comprehension, the main axiom of Π1
1-CA0. This

axiom is strictly stronger than Kruskal’s theorem. On the other hand, M. Rathjen
and A. Weiermann [28] have analyzed a proof via ‘reifications’, which uses just the
right axioms but is less straightforward. The tension between different forms of
optimality—elegance and the desire to use the weakest possible axioms—is resolved
in a recent paper by Rathjen, Weiermann, and the present author [13]. There we
investigate a uniform version of Kruskal’s theorem, which extends the original result
from trees to general recursive data types (see below for details). By the main result
of [13], this uniform Kruskal theorem is equivalent to Π1

1-comprehension (over
RCA0 with the chain antichain principle). So in the uniform case, the elegant proof
via minimal bad sequences uses just the right axioms. This provides formal support
for the intuition that Nash-Williams has given ‘the canonical’ proof of Kruskal’s
theorem. In the present article, we show that a uniform Kruskal–Friedman theorem
is equivalent to Π1

1-transfinite recursion (explained below). We also show that both
are equivalent to a minimality principle for bad sequences under the gap condition,
which Křı́ž [22] has established in proving the Kruskal–Friedman theorem
for trees.
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 3

Let us now recall the terminology from [13] that is needed to state the uniform
Kruskal–Friedman theorem. To motivate the somewhat abstract definitions, we will
use the case of trees as a running example. First, a map f : X → Y between partial
orders is called a quasi embedding if it is order reflecting, i.e., if f(x) ≤Y f(x′)
implies x ≤X x′. It is called an embedding if it is also order preserving, i.e., if the
converse implication holds as well. Let us write PO for the category with the partial
orders as objects and the quasi embeddings as morphisms. We say that a functor
W : PO → PO preserves embeddings ifW (f) :W (X ) →W (Y ) is an embedding
whenever the same holds forf : X → Y . By [X ]<� we denote the set of finite subsets
of a given set X. To make the construction functorial, we declare that f : X → Y
maps to [f]<� : [X ]<� → [Y ]<� with [f]<�(a) := {f(x) |x ∈ a}. Let us also agree
to write rng(f) = {f(x) |x ∈ X} for the range or image. The forgetful functor from
partial orders to their underlying sets will be left implicit. Conversely, we will often
consider subsets as suborders. We can now recall a central definition from [13],
which adapts J.-Y. Girard’s [15] notion of dilator on linear orders.

Definition 1.1. A PO-dilator is a functorW : PO → PO that preserves embed-
dings and admits a natural transformation supp :W ⇒ [·]<� such that the following
‘support condition’ holds: for any embedding f : X → Y and any � ∈W (Y ), we
have

suppY (�) ⊆ rng(f) ⇒ � ∈ rng(W (f)).

We call W a WPO-dilator ifW (X ) is a WPO whenever X is one.

Concerning the support condition, we point out that the converse implication is
automatic by naturality, as � =W (f)(�0) entails

suppY (�) = suppY ◦W (f)(�0) = [f]<� ◦ suppX (�0) ⊆ rng(f).

If the required transformation exists, then suppY (�) is uniquely determined as the
smallestX ∈ [Y ]<� such that we have � ∈ rng(W (f)) for the inclusionf : X ↪→ Y .
To give an example that will be relevant for the case of trees, we defineW (X ) as the
set of finite multisets [x0, ... , xn–1] with entries xi ∈ X . Let us declare that

[x0, ... , xm–1] ≤W (X ) [y0, ... , yn–1]

holds precisely if there is an injective function f : {0, ... , m – 1} → {0, ... , n – 1}
with xi ≤X yf(i) for all i < m. Note that the transformation X �→W (X ) preserves
WPOs, due to Higman’s lemma. We obtain a WPO-dilator by setting

W (f)([x0, ... , xn–1]) := [f(x0), ... , f(xn–1)],

suppX ([x0, ... , xn–1]) := {x0, ... , xn–1}.

For subsets a and b of a partial order X, we shall abbreviate

a ≤fin
X b :⇔ for each x ∈ a there is a y ∈ b with x ≤X y.

We use analogous notation with < at the place of ≤. In the case of singletons, we
write x ≤fin

X b and a ≤fin y rather than {x} ≤fin
X b and a ≤fin

X {y}, respectively. The
multiset construction that we have just described has the following property.
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4 ANTON FREUND

Definition 1.2. A PO-dilator W is called normal if we have

� ≤W (X ) 	 ⇒ suppX (�) ≤fin
X suppX (	),

for any partial order X and all elements �, 	 ∈W (X ).

In the case of linear orders, the given condition ensures that normal dilators induce
normal functions on the ordinals (essentially due to P. Aczel [1]; see also Girard’s
[15] notion of flower and the discussion in [11]). There is no apparent connection
with our use of normality, which is explained below. The following notion will be at
the heart of our uniform Kruskal–Friedman theorem.

Definition 1.3. For an ordinal � and a normal PO-dilator W, a �-Kruskal fixed
point of W consists of a partial order X and a bijection κ : � ×W (X ) → X with

κ(α, �) ≤X κ(�, 	) ⇔ α ≤ � and
(
� ≤W (X ) 	 or κ(α, �) ≤fin

X suppX (	)
)
.

We say that (X, κ) is initial if any other �-Kruskal fixed point (Y, �) of W admits a
unique quasi embedding f : X → Y such that the diagram

� ×W (X ) X

� ×W (Y ) Y

κ

�×W (f) f

�

commutes, where � ×W (f) denotes the map (α, �) �→ (α,W (f)(�)).

Let us remark that the unique f in the definition is always an embedding, due
to the last claim in Theorem 2.8 below. When W is the multiset construction from
above, a �-Kruskal fixed point is given by the set T [�] of finite rooted trees with
vertex labels from � and the function

κ : � ×W (T [�]) → T [�] with κ(α, [t0, ... , tn–1]) := α � [t0, ... , tn–1].

Here the given value of κ is the tree with root label α and immediate subtrees ti . One
should observe that the equivalence in Definition 1.3 coincides with the recursive
characterization of gap embeddability via clauses (i) and (ii) above. The given fixed
point is initial, since each finite tree can be generated by finitely many applications
of the function κ (starting with the empty multiset to generate leaves). Formally,
this can be confirmed via condition (ii) in Theorem 2.8. Let us point out that the
example motivates all features of our abstract definitions: Functoriality is used to
state the universal property that captures the intuitive idea of a recursively generated
structure. Supports provide a general notion of immediate subtree, not least in the
equivalence in Definition 1.3. Concerning normality, we first note that no tree s can
be embedded into a tree t of smaller height. This can be verified by induction over
the recursive definition of embeddability, as given at the beginning of the present
article. In clause (ii) of that definition, the induction hypothesis will ensure that each
subtree si of s has at most the height of some subtree tf(i) of t. The role of normality
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 5

is to provide the function f on indices. Lemma 2.4 below is a generalization of the
given argument.

In the next section, we will present a construction that yields an initial �-fixed
point of any normal PO-dilator. This fixed point must be isomorphic to any other
initial �-fixed point of the same PO-dilator, by a standard argument about universal
properties (see the paragraph after Corollary 2.9 below). Let us now give a precise
definition of an expression that was used above: by a recursive data type with labels
from �, we shall mean the initial �-fixed point of some normal WPO-dilator W
(note the requirement that W preserves WPOs). As demonstrated by our running
example, the �-labelled trees with gap condition arise as the special case where W is
the multiset construction. The following asserts that the Kruskal–Friedman theorem
holds not only for trees but for general recursive data types.

Theorem 1.4 (Uniform Kruskal–Friedman Theorem for �). When W is a normal
WPO-dilator, the initial �-Kruskal fixed point of W is a WPO.

In addition to proving the theorem, we aim to analyze it from the viewpoint of
reverse mathematics. As a precondition, we need to explain how our definitions are
to be formalized in that framework. The crucial observation is that any PO-dilator
is determined by its restriction to the category of finite partial orders. For the case
of dilators on linear orders, the analogous result is due to Girard [15]. It rests
on the idea that any comparison �0 ≤W (X ) �1 is already determined on the finite
suborder a :=

⋃
i≤1 suppX (�i). Indeed, the support condition from Definition 1.1

allows us to write �i =W (�)(�′i ) for the inclusion � : a ↪→ X . Since W (�) is an
embedding, �0 ≤W (X ) �1 is equivalent to �′0 ≤W (a) �

′
1. This argument also reveals

why Definition 1.1 includes the condition that PO-dilators preserve embeddings.
In fact, some readers may wonder why quasi embeddings are considered at all.
The reason is that a linearization of an order Y can be represented by a surjective
quasi embedding f : X → Y where X is linear. For the purpose of formalization,
the point is that the restrictions of PO-dilators to finite orders are sets rather than
proper classes. To represent them in reverse mathematics, we presume that these
restrictions are countable and indeed coded by subsets of N. In [13] it is carefully
shown how all arguments can be carried out on the level of representations. The
latter are not made explicit in the present article, in order to improve readability.

As we work in the framework of reverse mathematics, we shall identify ordinals
with countable well orders. The principle of Π1

1-recursion along an ordinal � allows
us to define hierarchies 〈Yα |α < �〉 by recursive clauses

Yα = {n ∈ N |ϕ(n, α, 〈Y� | � < α〉)},

where ϕ must be a Π1
1-formula (i. e., of the form ∀X ⊆N∀/∃x1∈N ... ∀/∃xk ∈N. �

with no quantifiers in �). By Π1
1-transfinite recursion, we shall mean the statement

that Π1
1-recursion is available along any (countable) ordinal. For a more detailed

discussion of transfinite recursion in reverse mathematics, we refer to [32]. Finally,
we are ready to state our main result. Concerning the following statement (i), we
note that RCA0 proves the existence and uniqueness of initial �-Kruskal fixed points
(but not the fact that they are WPOs), as shown in the next section.
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6 ANTON FREUND

Theorem 1.5. Over RCA0 extended by the chain antichain principle (CAC), the
following are equivalent for any infinite ordinal �:

(i) the uniform Kruskal–Friedman theorem for �,
(ii) Π1

1-recursion along �.

The restriction to infinite � is inherited from [12], where it saves a tedious case
distinction. It seems likely that the present theorem and the result from [12] extend
to all finite �, but this has not been verified. The important case of � = 1 is the main
result of [13] (with [8, 9] replacing [12]). The chain antichain principle in the base
theory of Theorem 1.5 ensures that different definitions of WPO are equivalent.
Specifically, we adopt the definition that X is a WPO if any infinite sequence
x0, x1, ... ⊆ X involves an inequality xi ≤X xj for some i < j. In the presence
of CAC, one may equivalently ask for a strictly increasing f : N → N such that
xf(i) ≤X xf(i+1) holds for all i ∈ N (see [6] for a detailed analysis). Note that CAC
follows from Ramsey’s theorem for pairs, which is an extremely weak consequence
of our statement (ii). It is somewhat surprising that no proof of CAC from statement
(i) has been found so far.1 According to Lemma 4.2 of the present article, CAC
follows when (i) is available for all ordinals. This improves the base theory in the
following (where finite � may be included due to Corollary 2.10).

Corollary 1.6. The following are equivalent over RCA0:
(i) the uniform Kruskal–Friedman theorem for all �,

(ii) Π1
1-transfinite recursion.

In order to obtain another conclusion of interest, we recall that the following
statement (ii) is equivalent to Π1

1-recursion along � (see, e.g., [12, Section 9]).

Corollary 1.7. The following are equivalent over RCA0 + CAC:
(i) the uniform Kruskal–Friedman theorem for � = �,

(ii) every subset of N is contained in a countable �-model of Π1
1-comprehension.

In the rest of this introduction, we summarize how Theorem 1.5 will be proved.
Let us first observe that the functions κ : � ×W (X ) → X from Definition 1.3 are
order preserving, if we agree that (α, �) ≤ (�, 	) is equivalent to the conjunction of
α ≤ � and � ≤ 	. Now consider a dilator D on linear orders. To make � ×D(Z)
linear, we add that (α, �) ≤ (�, 	) holds whenever we have α < � . But then we
cannot expect to get an order preserving map � : � ×D(Z) → Z, as the domain
may always have larger order type than the range. One way out is to allow � to be
partial. If � is bijective on its domain, we can represent it by its total inverse

� : Y → � ×D(Y ).

In [12, Definition 1.4] we have formulated a condition which ensures that the range
of � is large. If � satisfies this condition, it is called a �-collapse of D. The main
result of [12] shows that Π1

1-recursion along � is equivalent to the statement that any
dilator D on (linear) well orders admits a �-collapse for some well order Y. We now
argue that this last statement follows from (i) of Theorem 1.5. Given a dilator D, one
can find a normal WPO-dilator W that admits a natural family of order reflecting

1Added in proof: For the uniform Kruskal theorem (i.e. for � = 1), a recent preprint of P. Uftring
shows that CAC can be omitted (see arXiv:2502.03978).
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 7

maps �X : D(X ) →W (X ), one for each linear order X. This is a non-trivial result
established in [13]. As in the case of partial orders, it is not hard to construct a
�-collapse � : Y → � ×D(Y ) for some linear order Y. The crucial task is to show
that the latter is well founded. Given (i) of Theorem 1.5, the �-Kruskal fixed point
Z of W is a WPO. We will construct an order reflecting function f : Y → Z (i. e.,
a partial linearization of Z by Y) such that

Y Z

� ×D(Y ) � ×W (Y ) � ×W (Z)

f

�

�×�Y �×W (f)

κ

is a commutative diagram. Given that Z is a WPO, the map f ensures that Y is a
well order. Now (ii) of Theorem 1.5 follows via the cited result from [12]. It may be
interesting to observe that the given argument involves ‘abstract versions’ of classical
results from ordinal analysis: First, the partial inverse � : � ×D(Y ) → Y of � is
intimately connected to the proof theoretic collapsing functions of W. Buchholz
[2]. Secondly, the proof in [12] relativizes the ordinal analysis of Π1

1-recursion, for
which we refer to [3, 5, 21, 27]. Finally, the embedding f : Y → X corresponds to
linearizations of Friedman’s gap condition on trees by traditional ordinal notation
systems, as given in [4, 30].

Let us now sketch the proof that (ii) implies (i) in Theorem 1.5. As we will see,
statement (i) follows from a result due to Křı́ž [22]. More precisely, it follows from a
restriction of this result to finite structures (see Section 3 for the precise statement).
We will refer to this restriction as ‘Křı́ž’s minimality principle’, even though the
main result of Křı́ž covers some infinite structures as well. The logical strength of
the full result is not analyzed in the present article. It will be shown that the restricted
result can be derived from Π1

1-recursion. This closes a circle of implications between
statements (i) and (ii) of Theorem 1.5 and Křı́ž’s minimality principle.

While the original proof by Křı́ž relies on excessively strong axioms at the level
of Π1

2-comprehension, it was already known that Π1
1-recursion proves statement (i)

from Theorem 1.5 for trees, due to work of Gordeev [18, 19] and M. Krombholz
(see [23, Section 5.1]). The extension from trees to general data types is routine.
Nevertheless, we provide a complete proof, which seems particularly transparent
in that it stays very close to the original argument of Křı́ž (except for a small but
crucial modification). Our main result is that (i) implies (ii) in Theorem 1.5. Here
it was already known that Π1

1-recursion has the same consistency strength as the
Kruskal–Friedman theorem for trees (see again [19]). The point of our result is
that we increase the quantifier complexity of the Kruskal–Friedman theorem by
extending it from trees to general data types. This allows us to turn the result about
consistency strength into an actual equivalence. The latter cannot be derived by
traditional ordinal analysis at the level of provable well orders. Instead, it applies
results of functorial ordinal analysis, which goes back to Girard’s work in the 1980s
(see [15, 16]) but has seen important new developments in the last years.

§2. Existence of Kruskal fixed points. In this section, we prove the existence of
initial �-Kruskal fixed points via an explicit construction. We also provide a criterion
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8 ANTON FREUND

that helps to decide whether a given fixed point is initial. Unless otherwise noted,
we work over the base theory RCA0. The presentation in this section is similar to the
one in [10, 13], where the analogous results for � = 1 are proved.

We begin with a definition and lemma that will be used to approximate �-Kruskal
fixed points via their finite suborders.

Definition 2.1. Given a PO-dilator W and a finite partial order a, we put

W0(a) := {� ∈W (a) | suppa(�) = a}.
Let us point out that the given definition is closely related to the notion of trace,

which is due to Girard [15] for linear orders and was transferred to partial orders in
[13]. The following can be seen as a variant of Girard’s normal form theorem.

Lemma 2.2. For each partial order X and each � ∈W (X ), there are unique a ∈
[X ]<� and �0 ∈W0(a) with � =W (�)(�0), where � : a ↪→ X is the inclusion.

Proof. To obtain uniqueness, note that � =W (�)(�0) with �0 ∈W0(a) entails

suppX (�) = suppX ◦W (�)(�0) = [�]<� ◦ suppa(�0) = a,

due to the naturality of supports. Once a is determined, so is �0, as the embedding
W (�) is injective. For existence, set a := suppX (�) and use the support condition
from Definition 1.1 to get � =W (�)(�0) for some �0 ∈W (a). We have �0 ∈W0(a)
by the same computation as in the uniqueness part. �

The following definition yields an initial �-Kruskal fixed point of W, as we will
prove below. It extends the construction for � = 1 given in [13, Definition 3.4].
To allow for applications of W, the definition requires that the arising relation is
a partial order on certain subsets. In hindsight, this requirement turns out to be
redundant: we will see that we get a partial order on the entire fixed point.

Definition 2.3. For an ordinal � and a normal PO-dilator W, we use
simultaneous recursion to generate a set TW [�] of terms and a binary relation
≤TW [�] on it:

• Whenever we have constructed a finite set a ⊆ TW [�] that is partially ordered
by the relation ≤TW [�], we add a term α � (a, �) ∈ TW [�] for each ordinal
α < � and each element � ∈W0(a).

• The relation α � (a, �) ≤TW [�] � � (b, 	) holds precisely when we have α ≤ �
and one of the following conditions is satisfied:

(i) the set a ∪ b is partially ordered by ≤TW [�] and we have

W (�a)(�) ≤W (a∪b) W (�b)(	)

for the inclusions �a : a ↪→ a ∪ b and �b : b ↪→ a ∪ b,
(ii) we have α � (a, �) ≤TW [�] r for some r ∈ b.

More explicitly, the given clauses decide r ∈ TW [�] and s ≤TW [�] t by simulta-
neous recursion on l(r) and l(s) + l(t), respectively, for the length function

l : TW [�] → N with l(α � (a, �)) := 1 +
∑
s∈a 2 · l(s).

To prove that the relation ≤TW is a partial order, we first show how it relates to the
height function

h : TW [�] → N with h(α � (a, �)) := sup{h(s) + 1 | s ∈ a}.
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 9

As indicated in the introduction, the assumption that W is normal is crucial for the
following argument.

Lemma 2.4. From s ≤TW [�] t we get h(s) ≤ h(t).

Proof. We argue by induction on l(s) + l(t). Write s = α � (a, �) and t = � �
(b, 	). If s ≤TW [�] t holds by clause (ii) from Definition 2.3, we get h(s) ≤ h(r) <
h(t) by induction. If it holds by clause (i), then normality as in Definition 1.2 yields

a = suppa∪b ◦W (�a)(�) ≤fin
TW [�] suppa∪b ◦W (�b)(	) = b.

Here the equalities rely on � ∈W0(a) and 	 ∈W0(b) due to the definition of TW [�].
For any s ′ ∈ a we thus find a t′ ∈ b with s ′ ≤TW [�] t

′. By induction hypothesis this
gives h(s ′) ≤ h(t′) < h(t). As s ′ ∈ a was arbitrary, we get h(s) ≤ h(t). �

The previous lemma ensures that clause (ii) of Definition 2.3 cannot ‘break’
antisymmetry. Indeed, if s ≤TW [�] t holds by said clause, we get h(s) < h(t) by
the proof of the lemma. But then the latter excludes t ≤TW [�] s . Apart from this
observation—which motivates the notion of normality—we do not provide a proof
of the following result: instead we refer to the proof of [13, Proposition 3.6], which
treats the case � = 1 and generalizes without essential changes.

Lemma 2.5. The relation ≤TW [�] is a partial order on TW [�].

We now come to a crucial construction, which is justified by Lemma 2.2.

Definition 2.6. Given an ordinal � and a normal PO-dilator W, we define

κ�W : � ×W (TW [�]) → TW [�]

by stipulating κ�W (α, �) = α � (a, �0) for � =W (�)(�0) with �0 ∈W0(a), where we
write � : a ↪→ TW [�] for the inclusion.

Let us show that our definition yields the desired result.

Proposition 2.7. The partial order TW [�] and the function κ�W form a �-Kruskal
fixed point of W, whenever the latter is a normal PO-dilator.

Proof. First note thatκ�W has an obvious inverse and is thus bijective. To establish
the equivalence from Definition 1.3, we look at two values

κ�W (α, �) = α � (a, �0) and κ�W (�, 	) = � � (b, 	0).

Consider the inclusions �a : a ↪→ a ∪ b and �b : b ↪→ a ∪ b as well as � : a ∪ b ↪→
TW [�]. According to the definition of κ�W , we have

� =W (� ◦ �a)(�0) and 	 =W (� ◦ �b)(	0).

In view of 	0 ∈W0(b) we get suppTW [�](	) = b, as in the proof of Lemma 2.2. Given
thatW (�) is an embedding, the desired equivalence from Definition 1.3 amounts to

α � (a, �0) ≤TW [�] � � (b, 	0) ⇔

α ≤ � and
(
W (�a)(�0) ≤W (a∪b) W (�b)(	0) or κ(α, �) ≤fin

TW [�] b
)
.

This coincides with the recursive characterization of ≤TW [�] in Definition 2.3. �
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10 ANTON FREUND

In the following result, the equivalence between (i) and (ii) is the criterion for
initial fixed points that was promised at the beginning of this section. In particular,
this criterion can be used to confirm that the uniform Kruskal–Friedman theorem
entails the original version for trees, as noted in the introduction. Statement (iii)
will allow us to relate Kruskal fixed points for different ordinals. A similar criterion
for the case � = 1 is provided by [10, Theorem 3.5]

Theorem 2.8. Assume that X and κ : � ×W (X ) → X form a �-Kruskal fixed
point of a normal PO-dilator W. The following are equivalent:

(i) The �-Kruskal fixed point (X, κ) is initial.
(ii) There is a function h : X → N such that we have

h(x) < h(κ(α, �)) whenever x ∈ suppX (�).

(iii) For any embedding I : � → � and any �-Kruskal fixed point (Y, �) of W, there
is a unique quasi embedding f : X → Y such that the diagram

� ×W (X ) X

�×W (Y ) Y

κ

I×W (f) f

�

commutes, where I ×W (f) maps (α, �) to (I (α),W (f)(�)).

Furthermore, the unique f in (iii) is always an embedding.

Proof. First, a glance at Definition 1.3 reveals that (iii) entails (i) as the special
case where I is the identity on � = �. Next, we assume (i) and derive (ii). In view of
Proposition 2.7, we get a quasi embedding f : X → TW [�] with

f ◦ κ = κ�W ◦ (� ×W (f)).

Let h : TW [�] → N be the function defined before Lemma 2.4. We show that (ii)
holds with h ◦ f : X → N at the place of h. Given any α < � and � ∈W (X ), invoke
Lemma 2.2 to write W (f)(�) =W (�)(�0) with � : a ↪→ TW [�] and �0 ∈W0(a).
For an arbitrary element x ∈ suppX (�), we get

f(x) ∈ [f]<� ◦ suppX (�) = suppTW [�] ◦W (f)(�) = a,

where the last equality is established as in the proof of Lemma 2.2. Considering the
definition of h, we can conclude

h ◦ f(x) < h(α � (a, �0)) = h
(
κ�W (α,W (f)(�))) = h ◦ f(κ(α, �)),

as needed to establish (ii) for h ◦ f. Finally, we assume (ii) and deduce (iii). To
see that there is at most one f with the required property, note that an arbitrary
element of X can be uniquely written as κ(α, �), since κ is bijective by Definition 1.3.
Commutativity of the diagram in (iii) amounts to

f ◦ κ(α, �) = �(I (α),W (f ◦ �)(�0)) for � =W (�)(�0), (�)

where we take � : a ↪→ X and �0 ∈W0(a) to be determined by Lemma 2.2. As in
the proof of the latter, we learn that the domain a of f ◦ � is equal to suppX (�).
In view of (�), we can thus invoke induction over h(x) to see that f(x) is uniquely
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 11

determined. For existence, the idea is to read (�) as a recursive definition of f. To
ensure that the application of W is explained, we must simultaneously verify that
f ◦ � is a (quasi) embedding. In order to make this precise, we use recursion over h
to define a length function

l : X → N with l(κ(α, �)) = 1 +
∑
x ∈ suppX (�) 2 · l(x).

One can now use (�) to define f(x) by recursion on l(x), while showing

x0 ≤X x1 ⇔ f(x0) ≤Y f(x1)

by a simultaneous induction on l(x0) + l(x1) < l(x). This last induction is based
on the fact that κ and � satisfy the same equivalence from Definition 1.3. For details,
we refer to the proof of the case � = 1 in [10, Theorem 3.5]. �

With respect to the constructions from Definitions 2.3 and 2.6, we can now
strengthen Proposition 2.7 as follows.

Corollary 2.9. The �-Kruskal fixed point (TW [�], κ�W ) of W is initial, for any
normal PO-dilator W.

Proof. Statement (ii) of Theorem 2.8 holds for the function h : TW [�] → N

defined before Lemma 2.4, as shown in the proof of the theorem. �
As pointed out in the introduction, all initial �-Kruskal fixed points of W are

isomorphic, by a general argument about universal properties: Given two initial
fixed points (X, κ) and (Y, �), we get quasi embeddings f and g such that

� ×W (X ) X

� ×W (Y ) Y

� ×W (X ) X

κ

�×W (f)

�×W (g◦f)

f

g◦f�

�×W (g) g

κ

is a commutative diagram. Now there can only be one quasi embedding g ◦ f such
that the outer rectangle commutes, by the uniqueness condition in Definition 1.3.
Hence g ◦ f must be the identity on X. In the same way, we see that f ◦ g is the
identity on Y, which makes f an isomorphism with inverse g. Having shown existence
and essential uniqueness, we may speak of ‘the’ initial �-Kruskal fixed point of
a normal PO-dilator W. Furthermore, we can use TW [�] as notation for ‘this’
fixed point, without committing to the specific construction from Definition 2.3.
The formulation of Theorem 1.5 from the introduction is now fully explained and
justified. We conclude this section with the following observation.

Corollary 2.10. For ordinals � < � and any normal PO-dilator W, we have an
order embedding of TW [�] into TW [�].

Proof. The assumption � < � is witnessed by an embedding I : � → �. We can
conclude via statement (iii) of Theorem 2.8 (which applies due to Corollary 2.9). �

It follows that the uniform Kruskal–Friedman theorem holds for all finite � < �
if it holds for some infinite �, as needed to infer Corollary 1.6 from Theorem 1.5.
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12 ANTON FREUND

§3. Křı́ž’s minimality principle. In this section, we derive the uniform Kruskal–
Friedman theorem from a minimal bad sequence principle for structures with gap
condition, which is due to Křı́ž [22]. We also show that this principle can be derived
from Π1

1-recursion, by presenting a modified version of Křı́ž’s original argument. As
mentioned in the introduction, Gordeev [18, 19] and Krombholz [23] have previously
used Π1

1-recursion to derive an analogous result for trees.
The following coincides with [22, Definition 1.4], except that clause (v) has been

added (cf. the proof of Theorem 3.5 and the remark before Theorem 3.7).

Definition 3.1. For an ordinal �, a �-gap order consists of a quasiorder (X,≤X ),
a function q : X → � and a binary relation � on X, such that the following holds:

(i) if we have s ≤X t, then we must also have q(s) ≤ q(t),
(ii) from r ≤X s � t and q(r) ≤ q(t), we can infer r ≤X t,
(iii) given s0 � ...� sn with mini≤n q(si) ∈ {q(s0), q(sn)}, we get s0 � sn,
(iv) there is no infinite sequence f : N → X with f(i + 1) � f(i) for all i ∈ N,
(v) the set {s ∈ X | s � t} is finite for each t ∈ X .

We shall write �∗ for the reflexive and transitive closure of �.

Let us now show that any initial �-Kruskal fixed point (see the previous section)
can be seen as a �-gap order. With respect to the following definition, we point out
that κ : � ×W (X ) → X is a bijection by Definition 1.3. The recursion is justified
due to part (ii) of Theorem 2.8 (with suppX :W (X ) → [X ]<� as in Definition 1.1).

Definition 3.2. We consider a normal PO-dilator W and its initial �-Kruskal
fixed point (X, κ). Let the function q : X → � be given by q(κ(α, �)) := α. For � < �
we define KW� : X → [X ]<� and K� :W (X ) → [X ]<� by the recursive clauses

KW� (κ(α, �)) :=

{
{κ(α, �)} ∪K�(�) if α ≥ �,
∅ otherwise,

K�(�) :=
⋃

{KW� (r) | r ∈ suppX (�)}.

To obtain a binary relation � on X, we now declare that κ(α, �) � κ(�, 	) is
equivalent to κ(α, �) ∈ K�(	) for � = min{α, �}.

Intuitively, we have s � t when s is a proper subtree of t and the minimal label
on the path between the roots of s and t occurs at one of these roots. The following
extends [22, Lemma 1.6] from trees to general recursive data types.

Lemma 3.3. The previous definition yields a �-gap order (X,≤X , q,�).

Proof. Condition (i) of Definition 3.1 follows from the equivalence in Defini-
tion 1.3. To show condition (ii), we note that r ≤X s � t and q(r) ≤ q(t) entail
q(r) ≤ q(s) and hence s ∈ KW� (t) with q(r) ≤ �. So it suffices to prove

r ≤X s ∈ KW� (t) and q(r) ≤ � ⇒ r ≤X t.

We employ induction on h(t), for h : X → N as in part (ii) of Theorem 2.8. In the
non-trivial case of s �= t, write t = κ(q(t), 	) to get s ∈ KW� (t′) with t′ ∈ suppX (	).
We obtain r ≤X t′ by induction hypothesis. Given q(r) ≤ q(t), the equivalence from
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 13

Definition 1.3 yields r ≤X t, as required. As preparation for the other conditions,
one uses induction on h(t) to verify

s ∈ KW� (t) ⇒ h(s) ≤ h(t) and KW� (s) ⊆ KW� (t) ⊆ KW� (t) for � ≥ �.

One can infer that s � t entails h(s) < h(t), which yields condition (iv). Further-
more, it follows that any s � t = κ(q(t), 	) is contained in the finite set K0(	), so
that condition (v) is satisfied. To derive condition (iii), we write si = κ(q(si), �i).
Given mini≤n q(si) ∈ {q(s0), q(sn)}, we have

�(i) := min{q(si), q(si+1)} ≥ min{q(s0), q(sn)} =: �

for all i < n. Assuming s0 � ...� sn, we also get

si ∈ K�(i)(�i+1) ⊆ KW�(i)(si+1) ⊆ KW� (si+1).

This entails KW� (si) ⊆ KW� (si+1) and then s0 ∈ KW� (sn). As we have h(s0) < h(sn)
and hence s0 �= sn, we even get s0 ∈ K�(�n), which amounts to s0 � sn. �

Let us agree to write [N ]� for the set of infinite subsets of a given set N ⊆ N. To
formulate the minimality principle of Křı́ž, we need the following terminology.

Definition 3.4. Consider a �-gap order (X,≤X , q,�). A sequence f :M → X
withM ∈ [N]� is called bad if there are no i, j ∈M with i < j and f(i) ≤X f(j).
It is called regular if we have q(f(i)) ≤ q(f(j)) for all i < j in M.

The following coincides with [22, Theorem 1.5], except that our Definition 3.1 is
more restrictive than [22, Definition 1.4]. This means that the present statement is
somewhat weaker than Křı́ž’s original result.

Theorem 3.5 (Křı́ž’s minimality principle for �). Assume that (X,≤X , q,�) is
a �-gap order. Given any bad sequence f : N → X , one can find anM ∈ [N]� and a
regular bad sequence g :M → X such that

(i) we have g(i) �∗ f(i) for all i ∈M ,
(ii) there is no bad h : N → X with N ∈ [M ]� and h(i) � g(i) for all i ∈ N .

Below, we show that Křı́ž’s minimality principle can be proved by Π1
1-recursion.

Together with the following result, this entails that (ii) implies (i) in Theorem 1.5.
We note that the following extends [22, Theorem 1.7] from trees to general recursive
data types. A related generalization is given in [22, Section 3].

Theorem 3.6. The uniform Kruskal–Friedman theorem for � follows from Křı́ž’s
minimality principle for �, for any ordinal � and over RCA0.

Proof. Given a normal WPO-dilator W, we consider its initial �-Kruskal fixed
point (X, κ) and the �-gap order (X,≤X , q,�) that arises from Lemma 3.3. To
establish the uniform Kruskal–Friedman theorem, we must show that X is a WPO.
Aiming at a contradiction, we assume that there is a bad sequence f : N → X . By
Křı́ž’s minimality principle, we get a regular bad g :M → X as in Theorem 3.5. Let
us write g(i) = κ(q(g(i)), �i ) in order to define

Y :=
⋃
i∈M suppX (�i) ⊆ X.
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14 ANTON FREUND

We show that Y is a WPO. If not, we find a bad sequence h : N → Y with N ∈
[M ]� and h(i) ∈ suppX (�i), as the supports are finite by Definition 1.1. In view of
Definition 3.2, we put � := min{q(g(i)), q(h(i))} to get

h(i) ∈ KW� (h(i)) ⊆ K�(�i)

and hence h(i) � g(i). We have reached a contradiction with (ii) from Theorem 3.5.
Let us now consider the inclusion � : Y ↪→ X . We may write �i =W (�)(	i) with
	i ∈W (Y ), due to the support condition from Definition 1.1. Given that Y is a
WPO, so isW (Y ), since W is aWPO-dilator. We thus get 	i ≤W (Y ) 	j for some i < j
in M. Since W preserves embeddings (see again Definition 1.1), we can conclude
�i ≤W (X ) �j . The latter entails g(i) ≤X g(j) by the equivalence from Definition 1.3,
as g is regular. This is in contradiction with g being bad. �

We now present Křı́ž’s proof [22] of his minimality principle with some small but
crucial modifications (which will be pointed out). Due to these modifications, the
principle of Π1

1-recursion suffices to carry out the proof, as we shall argue below.

Proof of Theorem 3.5. Let us begin with some preparations. For each ordinal
� , we truncate the given q : X → � into a function

q� : X → � with q�(t) :=

{
0 if q(t) < �,
q(t) otherwise.

In the presence of Kőnig’s lemma, conditions (iv) and (v) of Definition 3.1 yield a
rank function r : X → � such that s � t entails r(s) < r(t). While condition (v)
will be crucial later, it is not essential at this point, as one could also work with
infinite ordinal ranks. We now consider

p� : X → � · � with p�(t) := � · q�(t) + r(t).

At stage � + 1 of the recursive construction below, we minimize with respect to p�
where Křı́ž uses q. We will see that this forces our construction to close after � + 1
stages, while Křı́ž gives no information on the closure ordinal, except that it must be
countable. We now make precise what we mean by minimizing. For k ∈ N and g :
M → X with M ⊆ N, we put [k] := {0, ... , k – 1} and define g[k] :M ∩ [k] → X
as the restriction of g. Given gi :Mi → X with Mi ∈ [N]� for i ∈ {0, 1}, we write
g0 � � g1 if we haveM0 ⊆M1 and there is a k ∈M1 with g0[k] = g1[k] and

p�
(
g0(min{k′ ∈M0 | k′ ≥ k})

)
< p�

(
g1(k)

)
.

There is a close connection with the relation � from [22, Definition 2.1] and the
minimal bad sequences of Nash-Williams [26]. For the purpose of this proof, we
declare that a tree is a non-empty set T of functions � : a → X with finite domain
a ⊆ N, such that � ∈ T entails �[k] ∈ T . By a branch of T, we mean an infinite
function g :M → X with g[k] ∈ T for all k ∈ N. As usual, we write [T ] for the set
of branches of T (even though this overloads the notation [·]). Given a non-empty
set S of infinite functions g :M → X , we define a tree T (S) by stipulating

� ∈ T (S) :⇔ � = g[k] for some g ∈ S and k ∈ N.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10089
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.59, on 27 Sep 2025 at 13:20:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10089
https://www.cambridge.org/core


REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 15

We shall use the following variant of [22, Lemma 2.2], which is standard but will
also be verified in the proof of Theorem 3.7 below:

Consider a non-empty set S of infinite sequences g :M → XwithM ⊆ N.

Assume that we have [T (S)] ⊆ S. For any ordinal �,we then have an h ∈ S (†)

such that g � � h fails for all g ∈ S.

Aiming at a contradiction, assume that Theorem 3.5 fails for a given badf : N → X .
Let S be the set of all infinite bad sequences g :M → X with M ⊆ N such that
g(i) �∗ f(i) holds for all i ∈M . To see that (†) can be applied, we first note that
S contains f and is thus non-empty. The remaining condition [T (S)] ⊆ S expresses
that membership in S can be refuted on finite initial segments, which is indeed
the case. More explicitly, if g :M → X lies in g ∈ [T (S)], then any finite segment
g[k] is equal to g ′[k] for some g ′ ∈ S. For i, j ∈M with i, j < k, the corresponding
properties of g ′ ensure g(i) �≤X g(j) and g(i) �∗ f(i), as needed to get g ∈ S. Now
(†) yields a minimal bad g0 :M0 → X with g0(i) �∗ f(i) for all i ∈M0 ∈ [N]� .
More explicitly, minimality means that g � 0 g0 fails for any bad g :M → X with
g(i) �∗ f(i) for i ∈M ∈ [N]� . Let us observe that this minimal g0 is regular: If
not, then we have q(g0(k′)) < q(g0(k)) for some k < k′ inM0. Now let

g : (M0 ∩ [k]) ∪ (M0\[k′]) → X

be the restriction of g0 to the indicated domain. Given that q0 coincides with q, we get
p0(g(k′)) < p0(g0(k)) and hence g � 0 g0, which contradicts the minimality of g0.
Starting with k0 := min(M0) and g0 :M0 → X as specified, we shall use recursion
on the ordinal α to construct functions gα :Mα → X and elements kα ∈Mα that
validate the following properties:

(i.α) we haveMα ∈ [N]� , and gα :Mα → X is regular and bad,
(ii.α) for any � < α and all i ∈Mα , we have i ∈M� and q(gα(i)) ≥ q(g�(i)), as

well as gα(i) � g�(i) or gα(i) = g�(i),
(iii.α)if α is a limit, any i ∈Mα =

⋂
�<α M� admits a � < α with gα(i) = g�(i),

(iv.α) ifα = � + 1, then we have gα(i) = g�(i) for all i ∈Mα ∩ [kα] =M� ∩ [kα],
as well as gα(i) � g�(i) for all i ∈Mα\[kα],

(v.α) if α = � + 1 and g ′α :M ′
α → X is the restriction of gα toM ′

α :=Mα\[kα],
then g � � g

′
α fails for any bad sequence g :M → X with q(g(i)) ≥ q(g�(i))

and g(i) � g�(i) for all i ∈M ∈ [M ′
α]� .

We note that kα is only relevant when α is a successor. In this case, (v.α) asserts that
g ′α is minimally bad with the properties in (ii.α) and (iv.α). All conditions are valid
(and mostly void) when α = 0. For the recursion step towards α > 0, assume that
g� :M� → X and k� ∈M� are defined and that (i.�) to (v.�) hold for � < α.

Let us first consider the case where α is a limit. The crucial task is to show that
the setMα :=

⋂
�<α M� is infinite. As in the proof of Křı́ž, we map � < α to

k(�) := min{k�+1 | � < � < α}.

Note that α � � �→ k(�) ∈ N is non-decreasing. Let us show that it is unbounded:
If not, pick a �0 < α such that k := k(�0) = k(�) holds for �0 ≤ � < α. We then
find a sequence �0 < �(0) < �(1) < ... < α with k�(i)+1 = k for all i ∈ N. Due to
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16 ANTON FREUND

conditions (iv) and (ii) for �(i + 1) + 1, we obtain

g�(i+1)+1(k) � g�(i+1)(k) �∗ g�(i)+1(k),

which contradicts the well foundedness of �, i.e., property (iv) from Definition 3.1.
For any � < α, we now show k(�) ∈M� by induction on � < α. When � ≤ � + 1, it
suffices to observe that there is a � > � with k(�) = k�+1 ∈M�+1 ⊆M� , where the
inclusion relies on (ii.� + 1). The induction step towards a limit � is immediate by
condition (iii.�). Finally, for � = � + 1 > � + 1 we have k(�) ≤ k� by definition. If
this is an equality, the claim is immediate. Otherwise, we get

k(�) ∈M� ∩ [k� ] =M� ∩ [k� ]

by the induction hypothesis and (iv.�). We can now conclude that

Mα =
⋂
�<α M� ⊇ {k(�) | � < α}

is infinite, as desired. By condition (ii) and the well foundedness of �, each i ∈Mα
admits a �(i) < α such that g�(i) = g�(i)(i) holds for �(i) ≤ � < α. To complete
the limit case of the recursion step, we define gα :Mα → X by gα(i) := g�(i)(i). It
is straightforward to check that conditions (i.α) to (v.α) are satisfied.

Let us continue with the recursion step towards a successor ordinal α = � + 1.
As preparation, we consider an arbitrary bad h :M → X such that h(i) � g�(i)
holds for all i ∈M ∈ [M� ]� . By induction over � ≤ � , we show that we have

q(h(k)) > q(g�(k)) for all k ∈M.

The induction step towards a limit � is immediate by condition (iii.�). To establish
the claim for � = 0 and arbitrary k ∈M , we consider the sequence

g : (M0 ∩ [k]) ∪ (M\[k]) → X with g(i) :=

{
g0(i) if i ∈M0 ∩ [k],
h(i) if i ∈M\[k].

For j ∈M\[k], we can invoke condition (ii.�) to get g�(j) = g0(j) or g�(j) �
g0(j) and q(g�(j)) ≥ q(g0(j)). In either case, we obtain h(j) � g0(j), due to
property (iii) from Definition 3.1. It follows that g is bad: if we had g(i) ≤X g(j)
for i ∈M0 ∩ [k] and j ∈M\[k], we could conclude g0(i) ≤X g0(j) by (ii) of
Definition 3.1, as g0 is regular. Now g � 0 g0 must fail by the choice of g0. We
thus get

� · q0(h(k)) + r(h(k)) = p0(g(k)) ≥ p0(g0(k)) = � · q0(g0(k)) + r(g0(k)).

Since h(k) � g0(k) entails r(h(k)) < r(g0(k)), this yields q0(h(k)) > q0(g0(k)) and
hence q(h(k)) > q(g0(k)). In the induction step towards a successor � = � + 1, we
first assume that we have k ∈M ∩ [k� ]. By condition (iv.�), we get g�(k) = g�(k),
so that it suffices to invoke the induction hypothesis. Now assume k ∈M\[k� ] and
define g ′� :M ′

� → X as in condition (v.�). We observeM\[k] ⊆M ′
� and consider

g ′ : (M ′
� ∩ [k]) ∪ (M\[k]) → X with g ′(i) :=

{
g ′�(i) if i ∈M ′

� ∩ [k],
h(i) if i ∈M\[k].
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 17

As in the case of � = 0, one can show that g ′ is bad. Using the induction hypothesis
and conditions (ii.�) and (iv.�) with � = � + 1, one obtains q(g ′(i)) ≥ q(g�(i)) and
g ′(i) � g�(i) for any i in the domain of g ′. Invoking the minimality condition (v.�),
we can infer p�(h(k)) ≥ p�(g�(k)). As before, we combine this with h(k) � g�(k)
to get q�(h(k)) > q�(g�(k)) and then q(h(k)) > q(g�(k)), as needed.

After these preparations, we carry out the recursion step towards α = � + 1. We
shall first describe the construction of a sequence gα :Mα → X relative to a given
set N� ∈ [M� ]� . Afterwards, we will show that conditions (i.α) to (v.α) hold for
a suitable choice of N� , which depends on the form of � . As the first step in the
construction of gα , we declare that g◦� : N� → X is the restriction of g� . Condition
(i.�) ensures that g◦� is regular and bad. By (ii.�) and the choice of g0, we have
g◦� (i) �∗ f(i) for all i ∈ N� . Due to the assumption that Theorem 3.5 fails for f,
condition (ii) of the theorem must be false for g = g◦� . Hence we get a bad sequence
h : N → X with h(i) � g�(i) for all i ∈ N ∈ [N� ]� . The preparatory claim above
yields q(h(i)) ≥ q(g�(i)). By the principle (3.1), we may assume that h is minimal
with the given properties, in the sense that (v.α) holds with h : N → X at the place
of g ′α :M ′

α → X . For kα := min(N ) andMα := (M� ∩ [kα]) ∪N , we now consider
the sequence

gα :Mα → X with gα(i) :=

{
g�(i) if i ∈M� ∩ [kα],
h(i) if i ∈ N.

This does indeed yieldM ′
α =Mα\[kα] = N and g ′α = h. So (iv.α) and (v.α) hold by

construction, while (iii.α) is void for a successor. Invoking (iii) of Definition 3.1, one
readily derives (ii.α) from (ii.�). If we had g�(i) ≤X h(j) with i ∈M� ∩ [kα] and
j ∈ N , we would get g�(i) ≤X g�(j) by (iii) of Definition 3.1, as g� is regular due
to (i.�). So the sequence gα is bad. This reduces (i.α) to the claim that h is regular.
For indices j < k in N, the minimality condition (v.α) entails q�(h(j)) ≤ q�(h(k)),
by the argument that we have used to prove the regularity of g0. To conclude the
recursion step, we now describe a choice of N� ∈ [M� ]� that ensures

q�(h(j)) ≤ q�(h(k)) ⇒ q(h(j)) ≤ q(h(k)) for j < k in N ∈ [N� ]�. (‡)

Let us point out that the previous arguments are essentially due to Křı́ž [22]. The
latter, however, had no need to show (‡), as he worked with q at the place of p� .
This means that the following is a new contribution of the present article. To satisfy
(‡) for � = 0, we can simply take N0 :=M0, as q0 and q coincide. When � = � + 1
is a successor itself, we put N� :=M ′

� =M�\[k� ]. Note that in this case, we get

kα = min(N ) ≥ min(N�) = k�.

Property (‡) is immediate when we have q�(h(j)) > 0 and hence q�(h(j)) = q(h(j)).
To cover the case where we have q�(h(j)) = 0 and thus q(h(j)) < � = � + 1, we
establish q(h(k)) ≥ �. Aiming at a contradiction, we assume q(h(k)) < �, so that
we get q�(h(k)) = 0. From the above, we have h(k) � g�(k) and thus r(h(k)) <
r(g�(k)), which yields

p�(h(k)) = � · q�(h(k)) + r(h(k)) < � · q�(g�(k)) + r(g�(k)) = p�(g�(k)).
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18 ANTON FREUND

One readily derives a contradiction with (v.�), by considering the sequence

g : (M ′
� ∩ [k]) ∪ (N\[k]) → X with g(i) :=

{
g�(i) if i ∈M ′

� ∩ [k],

h(i) if i ∈ N\[k].

For α = � + 1 = � + 2 and k ∈ N =Mα\[kα], we have seen q(gα(k)) =
q(h(k)) ≥ �. We now consider α = � + 1 for a limit � . For all � < � , the given
argument yields

q(g�+2(k)) ≥ � for any k ∈M�+2\[k�+2].

With the aim of setting N� := {i(j) | j ∈ N}, we define i(0) < i(1) < ... ⊆M� as
follows: Assuming that i(j′) is defined for j′ < j, put

�(j) := sup{q(t) | t ∈ X with q(t) < � and t � g�(i(j′)) for some j′ < j}.
Crucially, the new condition (v) in Definition 3.1 ensures �(j) < � . We now pick a
next index i(j) ∈M� with i(j) ≥ k�(j)+2. Let us point out that this choice of N� is
loosely inspired by an argument of Gordeev [18]. Consider (‡) with i(j′) and i(j)
at the place of j and k, respectively. In the non-trivial case of q�(h(i(j′))) = 0, we
invoke h(i(j′)) � g�(i(j′)) and the definition of �(j) to get the first inequality in

q(h(i(j′))) ≤ �(j) ≤ q(g�(j)+2(i(j))) ≤ q(g�(i(j))) ≤ q(h(i(j))).

Note that the penultimate inequality comes from condition (ii.�), while the
remaining two inequalities were observed during the previous construction. This
completes the proof of (‡) and hence the last case in the recursive construction of
our sequences gα :Mα → X and elements kα ∈Mα .

Recall that we aim at a contradiction with the assumption that Theorem 3.5 fails
for the given f. To conclude his proof, Křı́ž [22] argues that the recursive construction
cannot be successful up to an ordinal α that has uncountable cofinality. Indeed,
we have seen that the limit case gives rise to a map α � � �→ k(�) ∈ N that is
non-decreasing and unbounded. It follows that N � k �→ min{� < α | k(�) ≥ k} is
cofinal in α. Our modified construction cannot even be successful up to α = � + 2.
Otherwise, we would get q(g�+2(k)) ≥ � for sufficiently large k ∈M�+2, as we have
seen above. This would yield a value beyond the range of q : X → �. �

To conclude this section, we discuss the formalization of the previous proof. Let
us recall that Definition 3.1 is more restrictive than the notion of ‘quasiordering with
gap-condition’ in [22], as we have added the new condition (v). Thus our version of
‘Křı́ž’s minimality principle’ is somewhat weaker than the original result in [22]. It
is still strong enough for a large class of applications, as Theorem 3.6 demonstrates.
We do not know whether the following remains valid for Křı́ž’s original principle.

Theorem 3.7. Křı́ž’s minimality principle for � (as formulated in Theorem 3.5)
follows from Π1

1-recursion along �, where � can be any ordinal.

Proof. We build on the notation and arguments from the previous proof. Our
first aim is to show that the sequence h in (†) is arithmetically definable from T (S)
and � . In particular, we will confirm that (†) is correct. Let us say that a tree T is
perfect if we have T ⊆ T ([T ]) and hence T = T ([T ]) (in particular [T ] �= ∅). Note
that this is equivalent to the arithmetical condition that T has no leaves. Given any
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REVERSE MATHEMATICS OF A UNIFORM KRUSKAL–FRIEDMAN THEOREM 19

perfect tree T, we can apply (†) with S := [T ], which yields T = T (S). Conversely,
T (S) is perfect for any set S �= ∅ of infinite g :M → X , as we have S ⊆ [T (S)].
Under the assumption of (†), we can recover S = [T ] from T := T (S). So (†) is
equivalent to the statement that any perfect tree T has a branch gT,� ∈ [T ] such that
g � � gT,� fails for all g ∈ [T ], where � can be any ordinal. To construct gT,� explicitly,
we consider � ∈ T and write it as � : {ai | i < k} → X with a0 < ... < ak–1 in N. We
say that � is �-minimal in T if the following holds for each index j < k, every
number a′j ≥ sup{ai + 1 | i < j} and any sequence 	 : {ai | i < j} ∪ {a′j} → X in T
such that we have �(ai) = 	(ai) for all i < j:

(i) we have p�(�(aj)) ≤ p�(	(a′j)),
(ii) if equality holds in (i), then we have aj ≤ a′j ,

(iii) if equality holds in (i) and (ii), then the numerical code of �(aj) is smaller
than or equal to the one of 	(a′j).

Note that these conditions are arithmetical. Given that T is perfect, a straightforward
induction shows that it contains a unique �-minimal �k : {ak,i | i < k} → X of each
length k ∈ N, where we still assume ak,0 < ... < ak,k–1. When we have j < k, the
restriction �k[ak,j ] is �-minimal and thus equal to �j . So by uniqueness, the numbers
ai := ak,i and the values �k(ai) do not depend on k. We now consider

gT,� : {ai | i ∈ N} =:MT,� → X with gT,�(ai) := �i+1(ai).

The construction ensures that we have gT,� ∈ [T ] and that g � � gT,� fails for any
branch g ∈ [T ]. Due to the considerations above, we obtain (†) with h = gT (S),� .
Crucially, our presentation demonstrates that gT,� :MT,� → X is arithmetically
definable from T and � . For example, we have a ∈MT,� precisely when a lies in
the domain of some or every �-minimal sequence of suitable finite length.

In the notation from the previous proof, let S� be the set of all bad h : N → X
with q(h(i)) ≥ q(g�(i)) and h(i) � g�(i) for all i ∈ N ∈ [N� ]� . By considering the
recursive construction in this proof, we see that the sequence from condition (v.α)
can be given as

g ′�+1 = gT,� for T = T (S�).

Let us agree that T (S) denotes the complement of T (S), say, within the set of all
finite sequences � : a → X with a ⊆ N. We argue that Π1

1-recursion on α allows for
a simultaneous construction of the sequences gα :Mα → X , the numbers kα ∈Mα
and the auxiliary sets T (Sα). Indeed, we have just seen that g ′�+1 is arithmetical

in T (S�) and hence in T (S�). One can conclude that gα and kα are arithmetically
definable from the previous stages of the recursion. Also, the relation h ∈ Sα is
arithmetical with parameters gα and k� for � ≤ α (which determineNα). It follows
that T (Sα) is Σ1

1-definable from these parameters, due to the defining equivalence
for T (S) in the paragraph before statement (†). Hence the complement T (Sα) is
Π1

1-definable from the previous stages. Given that Π1
1-recursion is permitted along

� and hence along � + 3 (in the non-trivial case of � > 0), we can thus carry out the
recursive construction from the previous proof. Once this is achieved, it remains to
accommodate the inductive verification of conditions (i.α) to (v.α). Since the latter
are Π1

1, the induction principle is justified by Π1
1-recursion (along 1 ≤ �). �
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20 ANTON FREUND

§4. From Kruskal–Friedman theorem to Π1
1-recursion. In this section, we prove

the remaining implication of Theorem 1.5, which asserts that the uniform Kruskal–
Friedman theorem entails Π1

1-recursion. A sketch of the proof can be found in the
introduction.

The following result allows us to work over a stronger base theory. It will be
superseded by the aforementioned implication from Theorem 1.5.

Lemma 4.1. If the uniform Kruskal–Friedman theorem holds for some � > 0, then
we get arithmetical comprehension, over the base theory RCA0 + CAC.

Proof. Using Corollary 2.10, we can reduce the claim to the case of � = 1, which
is covered by [13, Lemma 4.6]. We recall the proof of the cited lemma, so that the
reader can compare it with the next proof below. Let us write Seq(Z) for the set
of finite sequences � = 〈z1, ... , zn〉 with entries zi ∈ Z. For another element z0 ∈ Z
and � ∈ Seq(Z) as given, we put z0�� := 〈z0, ... , zn〉. If Z is a partial order, we
declare that 〈〉 ≤Seq(Z) � holds for all � ∈ Seq(Z) and that we have

z0
��0 ≤Seq(Z) z1

��1 ⇔ (z0 ≤Z z1 and �0 ≤Seq(Z) �1) or z0��0 ≤Seq(Z) �1.

This is a recursive characterization of the order from Higman’s lemma, which asserts
that Seq(Z) is a WPO whenever the same holds for Z. The latter is equivalent to
arithmetical comprehension, as shown by Simpson [31]. To complete the proof, we
show that Higman’s lemma follows from the uniform Kruskal–Friedman theorem
for � = 1. Assume Z is a WPO. For each partial order X, put

W [Z](X ) := 1 +Z × X = {0} ∪ {(z, x) | z ∈ Z and x ∈ X}.

Let us agree that the only inequalities in W [Z](X ) are 0 ≤ 0 and (z, x) ≤ (z ′, x′)
for z ≤Z z ′ and x ≤X x′. For a quasi embedding f : X → Y , we define functions

W [Z](f) :W [Z](X ) →W [Z](Y ) and suppX :W [Z](X ) → [X ]<�

by settingW [Z](f)(0) := 0 andW [Z](f)(z, x) := (z, f(x)) as well as suppX (0) :=
∅ and suppX (z, x) := {x}. It is straightforward to check that this turnsW [Z] into
a normal PO-dilator. To learn that we have a WPO-dilator, we invoke the chain
antichain principle, which ensures that the WPOs are closed under taking products
(see [6]). Now consider the function

1 ×W [Z](Seq(Z)) ∼=W [Z](Seq(Z)) κ−−−−→ Seq(Z)

with κ(0) := 〈〉 and κ(z, �) := z��. Our recursive characterization of Higman’s
order coincides with the equivalence from Definition 1.3. Hence Seq(Z) and κ form
a 1-Kruskal fixed point of W [Z]. This fixed point is initial, since the usual length
function h : Seq(Z) → N validates condition (ii) of Theorem 2.8. Now the uniform
Kruskal–Friedman theorem entails that Seq(Z) is a WPO. �

We do not know if CAC follows from the uniform Kruskal–Friedman theorem for
fixed �, even though the theorem has enormous strength when CAC is present. At
the same time, the next result shows that CAC is not needed when we admit arbitrary
�, as the latter can then replace the order Z from the previous proof. This accounts
for the weaker base theory in Corollary 1.6.
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Lemma 4.2. If the uniform Kruskal–Friedman theorem holds for all �, then we get
arithmetical comprehension (and in particular CAC), over the base theory RCA0.

Proof. Let �(�) be the set of sequences 〈α0, ... , αn–1〉 with � > α0 ≥ ... ≥ αn–1

(think of Cantor normal forms). The lexicographic order on �(�) can then be
characterized by 〈〉 ≤�(�) � and

α�� ≤�(�) �
�	 ⇔ α < � or (α = � and � ≤�(�) 	).

Arithmetical comprehension is equivalent to the statement that this order is well
founded for every ordinal �, by a result of Girard [17, Section II.5] and Hirst [20].
To apply the uniform Kruskal–Friedman theorem, consider the transformation

X �→W (X ) := 1 + X = {0} ∪ {1 + x |x ∈ X}

of partial orders, where we declare that 0 ≤W (X ) 0 and 1 + x ≤W (X ) 1 + y for x ≤X
y are the only inequalities inW (X ). For a quasi embedding f : X → Y , we define
W (f) :W (X ) →W (Y ) and suppX :W (X ) → [X ]<� by setting

f(0) := 0, suppX (0) := ∅,
f(1 + x) := 1 + f(x), suppX (1 + x) := {x}.

It is straightforward to check that this turns W into a normal WPO-dilator. By
the uniform Kruskal–Friedman theorem for �, we get a WPO X and a bijection
κ : � ×W (X ) → X that validates the equivalence from Definition 1.3. Assuming
� > 0, we define f : �(�) → X by the recursive clauses

f(〈〉) := κ(0, 0) and f(α��) := κ(α, 1 + f(�)).

One can show that f(�) ≤X f(	) entails � ≤�(�) 	, by a straightforward induction
on the combined lengths of � and 	 (for 	 = ��� prove � ≤�(�) 	 as preparation).
Given that X is a WPO, it follows that �(�) is well founded, as needed to get
arithmetical comprehension via the cited result of Girard and Hirst. �

As indicated in the introduction, we now connect the linear and the partial case.
A quasi embeddingf : X → Y of a linear order X into a partial order Y can be seen
as a linearization of its range. If we know that Y is a WPO, then we can conclude
that X is a well order. To exploit this crucial fact, we shall extend the notion from
single orders to order transformations, i.e., to dilators. By a predilator D on linear
orders we mean a predilator in the sense of [12, Definition 1.1] (which is the obvious
linear counterpart of Definition 1.1 above). If D(X ) is well founded for any well
order X, we say that D is a dilator on linear orders.

Definition 4.3. Consider a PO-dilator W and a predilator D on linear orders.
A quasi embedding � : D ⇒W consists of a quasi embedding �X : D(X ) →W (X )
for each linear order X, such that the naturality conditionW (f) ◦ �X = �Y ◦D(f)
is satisfied for any embedding f : X → Y of linear orders.

Recall that we write TW [�] to denote the initial �-Kruskal fixed point of a normal
PO-dilator W. For each predilator D on linear orders, we have a unique linear order
��(D) that is a �-fixed point in the sense of [12, Definition 1.4], due to Corollary
2.2 and Theorem 2.9 from the same reference. The cited definition of �-fixed points
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in the linear case will be recalled at the beginning of the following proof. Note that
a related result for the simpler case � = 1 has been shown in [13].

Theorem 4.4. Given a quasi embedding of a predilator D on linear orders into a
normal PO-dilator W, we obtain a quasi embedding of ��(D) into TW [�].

Proof. According to [12, Definition 1.4], the �-fixed point ��(D) comes with a
map

� : ��(D) → � ×D(��(D))

that satisfies certain conditions. In order to state the latter, we consider the support
functions suppDX : D(X ) → [X ]<� that are associated with the given predilator D
(see [12, Definition 1.1]). Let the binary relation � on Y := ��(D) be given by

s � t :⇔ s ∈ suppDY (	) for �(t) = (α, 	).

By the first condition from [12, Definition 1.4], this relation � must be well founded.
For any � < �, we can thus use recursion along � to define GD� : Y → [D(Y )]<�

and simultaneously G� : D(Y ) → [D(Y )]<� with

GD� (t) :=

{
{	} ∪G�(	) if �(t) = (α, 	) with α ≥ �,
∅ if �(t) = (α, 	) with α < �,

G�(	) :=
⋃

{GD� (s) | s ∈ suppDY (	)}.

Now the final and crucial condition from [12, Definition 1.4] asserts that we have

rng(�) = {(α, 	) ∈ � ×D(Y ) |Gα(	) <fin
D(Y ) 	}.

It may be instructive to consider the similarity with Definition 3.2. The rest of the
present proof will shed further light on the significance of Gα . Let us also point out
that the well foundedness of � relates to criterion (ii) from Theorem 2.8. Indeed, all
�-fixed points of dilators on linear orders are initial by [12, Proposition 2.1].

Let us write � : D ⇒W for the given quasi embedding. As indicated in the
introduction, we shall define a quasi embedding f such that the diagram

��(D) TW [�]

� ×D(��(D)) � ×W (��(D)) � ×W (TW [�])

f

�

�×�Y �×W (f)

κ

commutes, for Y = ��(D) and (� × g)(α, 	) = (α, g(	)). The point is that this
diagram can be rewritten as a recursive equation. To see this, consider t ∈ ��(D)
and write �(t) = (α, 	). Due to the support condition from [12, Definition 1.1], we
have a unique normal form

	 =NF D(�a)(	′) :⇔ 	 = D(�a)(	′) with a = suppDY (	) and 	′ ∈ D(a),

where �a : a ↪→ Y denotes the inclusion. In view of �Y ◦D(�a) =W (�a) ◦ �a , our
diagram commutes precisely when we have

f(t) = κ(α,W (f ◦ �a) ◦ �a(	′)) for �(t) = (α, 	) with 	 =NF D(�a)(	′).
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As s ∈ a means s � t, this equation can be read as a recursive clause, which is
satisfied by at most one f. Concerning existence, we note that our clause can only
be applied when f ◦ �a is a quasi embedding, so that W (f ◦ �a) is defined. To
complete the recursive definition regardless, we agree to assign some default value
f(t) ∈ TW [�] in the hypothetical case that f ◦ �a is no quasi embedding.

We want to show that this hypothetical case does indeed not occur and, in doing
so, that f is a quasi embedding. For this purpose, we first use recursion over � to
define a length function l : ��(D) → N with

l(t) := 1 +
∑
s∈a 2 · l(s) for �(t) = (α, 	) and a = suppDY (	).

We shall now use induction on l(t0) + l(t1) to prove

f(t0) ≤TW [�] f(t1) ⇒ t0 ≤Y t1.

Let us write �(ti) = (αi , 	i) and 	i =NF D(�a(i))(	′i ). By the induction hypothesis, f
is a quasi embedding on a(0) ∪ a(1). In particular, we are not in the hypothetical
case that was mentioned above, so that f(ti) is defined by the intended recursive
clause. This means that f(t0) ≤ f(t1) amounts to

κ(α0,W (f ◦ �a(0)) ◦ �a(0)(	
′
0)) ≤TW [�] κ(α1,W (f ◦ �a(1)) ◦ �a(1)(	

′
1)).

By the equivalence from Definition 1.3, we must have α0 ≤ α1. If the inequality is
strict, we get �(t0) < �(t1) in the linear order � ×D(Y ) and hence t0 <Y t1 in Y,
as � is an embedding by [12, Definition 1.4]. In the following, we assume α0 = α1.
Let us begin with the case where f(t0) ≤ f(t1) holds by the first disjunct in the
equivalence from Definition 1.3, so that we have

W (f ◦ �a(0)) ◦ �a(0)(	
′
0) ≤W (TW [�]) W (f ◦ �a(1)) ◦ �a(1)(	

′
1).

We factor the inclusions �a(i) as in the commutative diagram

a(i) Y

a(0) ∪ a(1).

�a(i)

�′
a(i) �

As noted above, the induction hypothesis ensures that f ◦ � is a quasi embedding.
We can thus formW (f ◦ �) and compute

W (f ◦ �a(i)) ◦ �a(i)(	
′
i ) =W (f ◦ �) ◦ �a(0)∪a(1) ◦D(�′a(i))(	′i ).

SinceW (f ◦ �) ◦ �a(0)∪a(1) is a quasi embedding whileD(�) is an embedding, we get

	0 = D(�) ◦D(�′a(0))(	′0) ≤D(Y ) D(�) ◦D(�′a(1))(	′1) = 	1.

Once again this yields �(t0) ≤ �(t1) and hence t0 ≤ t1. We now consider the case
where the second disjunct from Definition 1.3 applies, which means that we have

f(t0) ≤fin
TW [�] suppWTW [�] ◦W (f ◦ �a(1)) ◦ �a(1)(	

′
1).

Here we write suppWX :W (X ) → [X ]<� for the support functions that come with
the PO-dilator W. As explained in the paragraph after Definition 1.1, the supports
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are uniquely determined by W as a functor. It follows that any quasi embedding
such as � : D ⇒W respects supports, as shown in [13, Lemma 4.2]. Together with
naturality, we obtain

suppWTW [�] ◦W (f ◦ �a(1)) ◦ �a(1)(	
′
1) = [f ◦ �a(1)]

<� ◦ suppWa(1) ◦ �a(1)(	
′
1) =

[f ◦ �a(1)]
<� ◦ suppDa(1)(	

′
1) = [f]<� ◦ suppDY (	1).

We thus get f(t0) ≤ f(t) for some t ∈ suppDY (	1) = a(1). Let us put

c := {s ∈ Y | l(s) ≤ l(s ′) for some s ′ ∈ a(0) ∪ a(1)}.

Alternatively, one could take c to be the transitive closure of a(0) ∪ a(1) under �
(which can be seen as a subterm relation). Write �′ : c ↪→ Y for the inclusion and
observe that f ◦ �′ is a quasi embedding by induction hypothesis (due to the factor
2 in the definition of l). We will show that any s ∈ c validates the following.

Whenever we have κ(�, �) ≤TW [�] f(s), we get

� ≤W (TW [�]) W (f ◦ �′) ◦ �c(�) (§)

for some � ∈ D(c) with D(�′)(�) ∈ GD� (s).

Before we prove this statement, we show how the desired inequality t0 ≤ t1 follows.
To this end, we apply (§) with κ(�, �) := f(t0) and s := t ∈ a(1) ⊆ c from above.
Let us extend our earlier diagram of inclusions into

a(i) Y

a(0) ∪ a(1) c.

�a(i)

�′
a(i)

�

�′′
�′

Due to the definition of f(t0), we get � = α0 = α1 =: α as well as

� =W (f ◦ �a(0)) ◦ �a(0)(	
′
0) =W (f ◦ �′) ◦ �c ◦D(�′′ ◦ �′a(0))(	′0).

For � as provided by (§), we can derive

	0 = D(�a(0))(	′0) = D(�′) ◦D(�′′ ◦ �′a(0))(	0) ≤D(Y ) D(�′)(�) ∈ GDα (t).

In view of the characterization of rng(�) � �(t1) = (α, 	1) from [12, Definition 1.4],
which was recalled above, we also have

GDα (t) ⊆ Gα(	1) <fin
D(Y ) 	1.

We obtain 	0 ≤ D(�′)(�) < 	1 and hence �(t0) < �(t1) and t0 < t1.
To complete the proof, we establish (§) by induction on s ∈ c in the well order �.

Let us write �(s) = (�, �0) with �0 =NF D(�b)(�′0), so that the premise of (§) reads

κ(�, �) ≤TW [�] f(s) = κ(�,W (f ◦ �b) ◦ �b(�′0)).
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Analogous to the above, we factor �b = �′ ◦ �′b : b ↪→ Y with �′b : b ↪→ c. In view of
Definition 1.3, we have � ≤ � and one of the following two cases applies. First
assume that we have

� ≤W (TW [�]) W (f ◦ �b) ◦ �b(�′0) =W (f ◦ �′) ◦ �c ◦D(�′b)(�′0).

Then (§) is valid with � := D(�′b)(�′0), as �(s) = (�, �0) and � ≥ � yield

D(�′)(�) = D(�b)(�′0) = �0 ∈ GD� (s).

In the remaining case from Definition 1.3, we have

κ(�, �) ≤fin
TW [�] suppWTW [�] ◦W (f ◦ �b) ◦ �b(�′0) = [f]<� ◦ suppDY (�0),

where equality is shown as above. We get κ(�, �) ≤ f(s ′) for some s ′ ∈ suppDY (�0).
Since the latter entails s ′ � s and in particular s ′ ∈ c, we inductively obtain an
element � ∈ D(c) with � ≤W (f ◦ �′) ◦ �c(�) and

D(�′)(�) ∈ GD� (s ′) ⊆ G�(�0) ⊆ GD� (s),

as needed to complete the proof of (§). �

Let us deduce the remaining direction of Theorem 1.5 from the introduction.

Theorem 4.5. The uniform Kruskal–Friedman theorem for any infinite ordinal �
entails Π1

1-recursion along the same �, over the base theory RCA0 + CAC.

Proof. According to [12, Theorem 1.6], the principle of Π1
1-comprehension along

� reduces to the claim that every dilator D on linear orders has a well founded �-
fixed point in the sense of [12, Definition 1.4]. We note that the restriction to infinite
� is inherited from the cited theorem (but see [12, Corollary 4.4] for the case of
externally fixed � < �). To establish the claim about �-fixed points, we assume the
uniform Kruskal–Friedman theorem for � and consider an arbitrary dilator D on
linear orders. One can find a quasi embedding

� : D ⇒W

into a normal WPO-dilator W, as shown in [13, Section 5] (where dilators on linear
orders are calledWO-dilators). The cited reference uses arithmetical comprehension,
which we can accommodate by Lemma 4.1 above. We note that substantial work goes
into the proof that W preservesWPOs (see [13, Theorem 5.11]). Due to Theorem 4.4
above, we can convert � into a quasi embedding

f : ��(D) → TW [�],

where the linear order ��(D) is the unique �-fixed point of D while the partial
order TW [�] is the initial �-Kruskal fixed point of W (see Section 2 of [12] and
of the present article, respectively). So any infinite sequence t0, t1, ... in ��(D) gives
rise to a sequence f(t0), f(t1), ... in TW [�]. The latter is a WPO by the uniform
Kruskal–Friedman theorem. Thus there must be i < j withf(ti) ≤ f(tj) and hence
ti ≤ tj , which allows us to conclude that ��(D) is a well order. As indicated at the
beginning of this proof, we can now invoke [12, Theorem 1.6] to secure Π1

1-recursion
along �. �
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We have just shown that (i) implies (ii) in Theorem 1.5. To conclude this article, we
recall how the converse implication is obtained by combining previous results: From
Theorem 3.7, we know that Π1

1-comprehension along � implies Křı́ž’s minimality
principle for �. The latter entails the uniform Kruskal–Friedman theorem for �, due
to Theorem 3.6. The circle of implications shows that Π1

1-recursion is equivalent
not only to the uniform Kruskal–Friedman theorem but also to Křı́ž’s minimality
principle (up to the paragraph before Theorem 3.7), which is an interesting result in
its own right.
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