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Abstract
Themain goal of this paper is to introduce a newmodel of evolvement of beliefs on networks. It generalizes
the DeGroot model and describes the iterative process of establishing the consensus in isolated social
networks in the case of nonlinear aggregation functions. Our main tools come from mean theory and
graph theory. The case, when the root set of the network (influencers, news agencies, etc.) is ergodic is fully
discussed. The other possibility, when the root contains more than one component, is partially discussed
and it could be a motivation for further research.
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1. Introduction
This paper aims to generalize the classical model due to DeGroot (see e.g. DeGroot (1974) or
Jackson (2008)) to the case when the update of beliefs is nonlinear. A set of agents corresponds to
the set of nodes of the network, and a directed edge denotes the belief flow between two nodes.
Each of them has his/her own aggregation function, which depends on the belief of (not necessar-
ily all) other agents. The question is, will a consensus develop after a while on a given network? Is
this belief unique if we know the initial situation (agents’ initial beliefs and aggregation functions)?
If not, when can the formation of a unique common belief be guaranteed and when not?

In this work, we seek to answer these questions using the theory of invariant means. The
simplest case is when the aggregation functions are weighted arithmetic means, then our model
reduces to the above mentioned DeGroot model. The weights show how much impact a given
agent has on other beliefs.

The foundational model of network interactions concerning information dissemination, belief
development, and consensus achievement was introduced by DeGroot (1974) (see Jackson (2008),
sect. 8.3 for the details). This quite straightforward and intuitivemodel provides a basic framework
that aids in comprehending how a network’s structure affects belief propagation and the shaping
of beliefs.

Here we follow Section 8.3 of Jackson’s book (2008) to introduce DeGroot’s model.
Agents in a society start with initial beliefs on a subject. Let these be represented by an n-

dimensional vector of numbers, p(0)= (p1(0)), . . . , pn(0)). Each pi(0) lies in the interval I, and
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might be thought of as, for example, the probability that a given statement is true, or the qual-
ity of a given product, or the likelihood that the agent might engage in a given activity, etc.
The interaction patterns are represented by an n× n nonnegative matrix T, which may be
weighted (it is not required that positive entries in a row are equal to each other) and directed
(we do not claim Tij = Tji). Specifically, suppose T is a (row) stochastic matrix, meaning the sum
of the entries in each row equals one. The element Tij can be understood as the degree of weight
or trust that agent i assigns to agent j’s current belief when updating their belief for the subsequent
period. The beliefs are updated over time so that we obtain a sequence (p(t))∞t=0 of elements in In
defined as follows

p(t)= Tp(t − 1)= Ttp(0).

The DeGroot model can be seen as a version of the aggregation process with bounded rational-
ity, where agents maintain constant weightings over time. However, repeating the update process
enables agents to integrate more remote belief and potentially achieve consensus. Additionally,
this straightforward updating method can still lead agents to arrive at a completely accurate belief
over time in certain cases.

Indeed, following Golub and Jackson (2010), convergence of this process is related
to the properties of the directed graph PT with vertices VT = {1, . . . , n} and vertices
ET := {(i, j) ∈VT : Tij > 0}. Remarkably, in the mentioned paper it was not explicitly stated in
the graph setup, however, this approach is equivalent.

We say that a group of nodes B⊂VT is closed (with relative to T) if i ∈ B and Tij > 0 yields
j ∈ B. Then Golub and Jackson (2010), applying Perkins (1961), states that �(p) := limt→∞ Ttp
exists for all vectors p ∈ In if, and only if, T is strongly aperiodic (that is, it is aperiodic restricted
to every close group of nodes).

Note that the DeGroot model possesses significant limitations. Namely, the update of beliefs
relies only on the stochastic matrix T. As an immediate consequence, not only all iterates Tt but
also the limit � is a linear function (of the initial beliefs). Meanwhile, our new approach involves
the following additional aspects:

- there is no reason to claim that the update is a linear function of the beliefs;
- aggregation function may not represent only the trust of the agents but also other aspects,
for instance, preferences between beliefs (fear, hope, risk-aversion, etc.);

- a set of a special group of agents (the root) is carefully defined, characterized (see
Section 4.1, in particular Theorem 4.4), which has a key role in the existence of a unique
common belief on the network;

- under the mild assumptions on the averaging functions the impact of the initial belief of
an agent to the final agreement depends mostly on its position in the social network (not
on the belief itself).

As a result, we reinstate the leader–follower model in such processes (see for example Shen
et al. (2023)). To be more precise, we show that there exists a group of agents (whose member-
ship depends exclusively on their position in the graph) that establishes the consensus among
themselves. All the remaining agents attain this consensus in the limit, regardless of their initial
belief.

This study was started in Pasteczka (2023) under the additional assumption that the social
graph is irreducible which means that for every two agents there exists a chain of neighbors con-
necting them (in both directions). This assumption, however, seems to be quite restrictive in the
real world. There is plenty of one-sided communication, for example: influencers → followers,
politicians → voters, newspapers → readers, etc. This paper shows how such directed ways of
communication impact the spreading of the beliefs.
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Comparison to the DeGroot model
DeGroot model enables the description of achieving consensus in the limited case when all agents
update their beliefs based on a weighted arithmetic mean. Using the standard conjugacy method,
one can easily extend this model to the case when updates are obtained via the expected utility
model with the same utility function. This generalization, however, does not convey any additional
information. The only difference is that the averaging concerns utilities instead of original inputs.
The core remains unchanged.

Meanwhile, several recent studies require a more general approach. The most natural one
(which we will discuss later on) is the expected utility model with agent-dependent utility
functions. This represents the situation where each agent has a different risk aversion.

Our approach rephrases the principles of DeGroot in the new framework. Namely, we start
with a sedentary social graph. Then, each agent has a fixed list of neighbors and updates his/her
belief based on an agent’s own averaging function (which is a mean). For the purpose of this paper,
for a given p ∈N and an interval I ⊂R, a p-variable mean on I is an arbitrary functionM : Ip → I
satisfying the inequality

min(x)≤M(x)≤max(x) for all x ∈ Ip.
In a sense, this generalization is in Nash’s spirit, where an agent is unaware of the structure

of the social graph and the behavior of other agents. Contrary to the DeGroot model, our only
assumptions are continuity and strictness (which, roughly speaking, claims that the aggregating
function can return neither the minimum nor the maximum value of the input vector) of the
aggregating functions. This will not only cover all cases described above, but also several very natu-
ral further extensions. For example, the trust can be associated with beliefs instead of agents, which
would lead to the class of Bajraktarević means; see Bajraktarević (1958, 1963). Another meaning-
ful example comes from the prospect theory by Kahneman and Tversky (1979), the CPTmodel by
Tversky andKahneman (1992), Bonferronimeans (see Bonferroni (1950)), generalized Bonferroni
means (see Chen et al. (2024)), or a mix of the above (which reflects the agent-dependent choice of
the model). The freedom to choose the corresponding mean for each agent separately also allows
us to simulate psychological phenomena, such as the confirmation bias, and verify how levels of
self-confidence affect the consensus.

Outline of the paper
The remaining part of the paper is organized as follows. In the second section, we introduce the
main concepts beyond the model, the third section provides several remarks to provide its better
support. This section does not explicitly include any meaningful results, but delivers an insight to
the model.

The next section, Section 4, is devoted to introduce the mathematical tools that will be used
later on and several easy examples. The main results are contained in the fifth section jointly with
several further examples. Finally, we set the conclusions. All proofs are postponed to the appendix.

2. The model
Contrary to the classical DeGroot model we allow aggregation functions to be arbitrary (continu-
ous and strict) means. We claim the following principles:

(a) each agent has its initial belief;
(b) there is a discrete-time measurement, in every time frame each agent may modify his/her

belief. A discrete-time measurement implies that it is reasonable to tell about the next or
previous time frames which naturally leads to a sort of iteration process;

(c) beliefs in each step depend only on beliefs in the previous step (Markov principle);
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(d) each agent has a time-independent aggregation function and a list of neighbors, which are
given a’priori and remain unchanged during the process; It means that the list of neighbors
could be modified in the course of time however this phenomenon is not covered by the
model similarly to DeGroot’s one;

(e) once the process begins, agents are isolated from external data. This means that there will
be no new information during the iteration process.

All these principles are valid for the DeGroot model, however this approach is much more
general.

Let us also mention some of these principles void in some variations of DeGroot model (see for
example Parsegov et al. (2017)).

Principle (d) can be made more realistic with the assumption that a certain agent can modify
its neighbors and change its aggregation function. However, in real networks this happens only
during a longer time period presumably with little changes. It is quite unusual that somebody
completely changes his/her belief sources and his/her belief of their authenticity. So assuming
principle (b) with tiny time frames, principle (d) becomes completely reasonable.

Axiom (e) is also natural when the iteration is taken in small time frames (for example daily or
hourly). In such a case the knowledge of each agent remains unchanged and, as a consequence, no
external data impacts the process.

The principles above give us some insight into the mathematical model of this setting.
Since the necessary notation system is not trivial, we will devote a whole section (see the first

part of Section 3 for the details) to introduce it through an example, and then, in connection with
this, we will also present the necessary mathematical apparatus in general.

Based on the principle (d), our basic object is a directed graph G= (V , E) where V denotes the
vertices of the graph and E⊂V ×V denotes the directed edges, which is an abstract visualization
of a network. A number is assigned to all vertices, which symbolizes the initial “belief” of the vertex
(agents) in question. The directed edges will be induced by the neighbors (see Section 3).

Following the principle (a) initial beliefs could be represented by a functionm0 : V →D, where
D is some abstract set of beliefs (among this paper we will assume that D is a subset of the reals).
Following (b), we can also associate a similar function to each (k-th) time frame, we denote it as
mk : V →D.

Property (c) mimics discrete-time Markov chain rule. Indeed, based on properties (b)–(d),
there exists a modification function M : DV →DV (validating additional requirements implied
by assertions above) such thatmk+1 =M ◦mk, that ismk =Mk (see Example 3.5). In the following
D always denotes an interval. Then we have two possible behaviors:

- (mk)∞k=1 is not convergent which means that this process does not achieve an equilibrium
in the limit,

- (mk)∞k=1 is convergent to m∞ : V →D which refers to the fact that each agent achieves
a final belief in the limit. Then m∞ can be considered as a limit beliefs of the whole
network.

It is natural to expect that m∞ is an equilibrium, that is, m∞ =M ◦m∞ in the second case. It
turns out that the convergence (or convergence to some equilibrium) cannot be easily character-
ized (see examples in Section 5). Therefore we study a bit more restricted problem: convergence
to an equilibrium which is a total agreement.

The key tool is the existence of invariant means, and their uniqueness (which is a mathematical
model of the situation described above). This highly depends on the structure of the incidence
graph of the aggregating functions of root elements (see Section 4.1 for the exact definition), and
on the structure of the root.

Contrary to the authors listed above, we assume that the set of admissible beliefs (that is D) is
an arbitrary interval and each aggregation function is a mean. However, this approach has already
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been studied by Pasteczka (2023), with an important restriction. That is, all the results contained
in Pasteczka (2023) were proved under the assumption that the social graph is aperiodic and irre-
ducible. Aperidodicity of social graphs seems to be just a technical assumption which is easy to
validate (for example if a graph contains a totally connected subgraph with three vertices, or there
is at least one agent who takes into account its own belief, that is, there is at least one loop in the
graph). Irreducibily assumption is, however, the one which should be avoided to cover (real) social
networks.

Essentially, we distinguish the subset of vertices which, from the point of view of the graph,
have a privileged position – we call them root elements (or influencers). The idea beyond the root
is that each vertex is reachable (possibly indirectly) from some root elements, and if the root set is
reachable from some other vertex, then it must also be an element of the root. Note that the initial
belief of a root could have an impact on non root elements. Root elements can be influenced only
by other (not necessarily all of them) root elements.

3. Introductory remarks and examples
The aim of this section is to deliver toy examples to provide a better understanding of our model.
For the sake of simplicity, we will use a notation which will be formally introduced in the next
section (in this section they will be only announced).

Example 3.1. Let us consider first the following simple (academic) example. Assume that there are
four agents symbolized by {1, 2, 3, 4}.

In our case, their aggregation functions are equal to the following weighted-arithmetic means:

M1(x1, x2, x3, x4)= x1+x2
2 , M2(x1, x2, x3, x4)= 3x1+4x2

7 ,
M3(x1, x2, x3, x4)= x2+2x3+x4

4 , M4(x1, x2, x3, x4)= x1+x3+2x4
4 .

It is clear that an agent does not necessarily take into account all the other agents’ beliefs. For example
the first agent aggregates only its own belief and the second agent’s belief with equal weights. The
second one takes into account the first agent’s belief and its own belief but with different weights
(with 3

7 and
4
7 , respectively), and so on.

We have to introduce some notation to handle this problem (make everything precise) from
mathematical point of view.

Firstly, all the aggregation functions are four variables means, but practically they depend on
less variables only. In what follows we denote by p the number of the agents and at the same time
the number of the variables, and by di the number of the variables for which the ith aggregation
function really depends on. Unfortunately, this is not enough. We also have to designate exactly
which variables are involved in the ith mean, and this will be denoted by αi.

In our example, we have

p= 4,
d1 = 2, d2 = 2, d3 = 3, d4 = 3,
α1 = (1, 2), α2 = (1, 2), α3 = (2, 3, 4), α4 = (1, 3, 4).

(3.1)

This means that αi ∈ {1, . . . , p}di .
Now, we introduce some notations concerning the aggregation functions using the previously

introduced notations.
If Mi is a di variables mean, then M(p,αi)

i will be a p variables mean (which actually depends on
only di variables) defined in the following way:

M(p,αi)
i (x1, . . . , xp)=Mi(xαi,1 , . . . , xαi,di ).
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For example, in the above introduced example if i= 1 and M(u, v)= u+v
2 is the ordinary two

variables arithmetic mean, then

p= 4, d1 = 2, α1,1 = 1, α1,2 = 2,

M(4,(1,2))(x1, x2, x3, x4)=M(x1, x2)= x1 + x2
2

.

For the sake of simplicity and shorter notation, we collect all the dis, αis and Mis in one. So, using
the brief notation Np := {1, . . . , p}, we set

d := (d1, . . . , dp) ∈N
p, N

d
p := N

d1
p × · · ·Ndp

p ,

α = (α1, . . . , αp) ∈N
d
p , Mα = (M(p,α1)

1 , · · · ,M(p,αp)
p ).

In our example we set the d-averaging mapping M := (M1,M2,M3,M4) (see Definition 4.7 for the
details) by

M1 : R2 →R M1(x, y) := x+ y
2

;

M2 : R2 →R M2(x, y) := 3x+ 4y
7

;

M3 : R3 →R M3(x, y, z) := x+ 2y+ z
4

;

M4 : R3 →R M4(x, y, z) := x+ y+ 2z
4

.

Then this averaging mapping jointly with the vector α = (α1, . . . , α4) ∈N
d
4 defined in (3.1) induces

the mean-type mapping Mα : R4 →R
4 defined by

Mα(x1, x2, x3, x4)=
(
x1 + x2

2
,
3x1 + 4x2

7
,
x2 + 2x3 + x4

4
,
x1 + x3 + 2x4

4

)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 0
3
7

4
7

0 0

0
1
4

1
2

1
4

1
4

0
1
4

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4

⎞
⎟⎟⎟⎟⎟⎠

is the collected aggregation function, which is a mean-type mapping. Its properties have a central role
in our investigation.

Let us review this process. First, we are given p ∈N and a vector d ∈N
p. Then we independently

set a d-averaging mapping M and a vector α ∈N
d
p . Next, they are combined to obtain a mean-

type mapping Mα : Rp →R
p. This separation has an impact on our research. More precisely some

properties depend mostly on a (d-averaging) mapping M while other properties depend on a vector
α (belonging toNd

p). Surprisingly, it turns out that most of the properties are vector-dependent while
only a few of them are mapping-dependent. As a consequence, in most of our results, we will have
natural assumptions for the mapping and very specific assumptions for the vector.

We see that each entry in a d-averaging mapping could have a different domain, however, they
are fully described by an interval and a vector d.
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The aggregation function of a given network (denoted above as α) generates a directed graph as
well, which will be also important in our inquiries.

The nodes of this graph will be the agents and there is a directed edge from the jth agent to the ith
agent if the ith agent takes the jth agent’s belief into account, more precisely, if j ∈ αi.

In the case of the above mentioned Mα the corresponding graph, which is the generated network
as well, is

1 2

3 4

The most important concept here is the root set of a graph (see the Section 4.1).

Remark 3.2. The issue is to obtain total agreement at the end. Such a state is not expected in the
real world; on the other hand, it is not very surprising when we take into account that, following the
principle (e), the aggregation is isolated from the external data except for fixing the initial values. As
a consequence, no new information is delivered to the network, and the only evolution of beliefs is
caused by aggregating the beliefs of others. It turned out that such convergence of iterations (taking
shape of a narrative) is naturally connected to the notion of invariant means.

Remark 3.3. Note that if we restrict admissible means to weighted arithmetic means then our
approach reduces to the DeGroot model. However, the belief is conveyed in the weights associated
with each edge.

In our setup, this belief is shifted to the averaging function. As a result, there is no need to consider
weighted graphs.

As we saw in Example 3.1 the matrix belonging to the aggregation function of the network is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 0
3
7

4
7

0 0

0
1
4

1
2

1
4

1
4

0
1
4

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the result of the limiting process is

lim
n→∞

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 0
3
7

4
7

0 0

0
1
4

1
2

1
4

1
4

0
1
4

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
13

7
13

0 0
6
13

7
13

0 0
6
13

7
13

0 0
6
13

7
13

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

So, the consensus depends only on the starting belief of the first two agents. As we see later, they
constitute the root set of the corresponding graph, and the root here is ergodic.

Example 3.4. Let D= [0, 1], V = {1, 2, 3} andM : DV →DV be given by

M(a, b, c) :=
(
b+ c
2

,
a+ c
2

,
a+ b
2

)
.
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Then

Mn(a, b, c)= 1
3

⎡
⎢⎢⎢⎣
2−n+1(−1)n + 1 (−1)n+12−n + 1 (−1)n+12−n + 1

(−1)n+12−n + 1 2−n+1(−1)n + 1 (−1)n+12−n + 1

(−1)n+12−n + 1 (−1)n+12−n + 1 2−n+1(−1)n + 1

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎝
a

b

c

⎞
⎟⎟⎠

Therefore

lim
n→∞ Mn(a, b, c)=

(
a+ b+ c

3
,
a+ b+ c

3
,
a+ b+ c

3

)
.

The corresponding matrix here is

A=

⎡
⎢⎢⎢⎢⎢⎣
0

1
2

1
2

1
2

0
1
2

1
2

1
2

0

⎤
⎥⎥⎥⎥⎥⎦ , and the limit is lim

n→∞ An =

⎡
⎢⎢⎢⎢⎢⎣

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤
⎥⎥⎥⎥⎥⎦ .

So, everybody’s belief takes with equal weights in the consensus.

Example 3.5. In the next example, we assume that we have five agents (n= 5), they aggregate their
belief using the certainty equivalent under the expected utility model (see for example Föllmer and
Schied (2016)), and the Arrow-Pratt index of risk aversion (see Arrow (1965)) is constant (but agent-
dependent). Assume that the risk aversions equal r = (1.7, 2.3, 0,−1, 1), respectively. Furthermore,
not all agents are aware of each other belief, say

α= (
(1, 2), (1, 2), (1, 2, 3), (3, 1), (3, 4))

which has the following interpretation: the first two agents are aware of each other’s beliefs and take
their own belief into account; the third agent takes the belief of the first two and its own, etc. In a
social-network manner, one agent takes others’ beliefs into account if, and only if, there is a direct
connection between them in a social network (which will be formally introduced on page 23). In this
particular case, α describes the social network presented at Figure 1. For the sake of simplicity we
assume that all impacters or a given agent are equally treated.

The update of beliefs is described by the following mapping M : R5 →R
5

M(x1, x2, x3, x4, x5) :=
(

1
−1.7

ln
(e−1.7x1 + e−1.7x2

2

)
,

1
−2.3

ln
(e−2.3x1 + e−2.3x2

2

)
,
x1 + x2 + x3

3
,

ln
(ex1 + ex3

2

)
,− ln

(e−x3 + e−x4

2

))
.
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1

2

3

4

5

Figure 1. A directed graph corresponding to the social network α.

Starting from the beliefs x= (3, 10, 7, 5, 8) we obtain the following sequence of iterations

M0(x)= x= (3, 10, 7, 5, 8);
M1(x)= (3.40773, 3.30137, 6.66667, 6.32500, 5.56622);
M2(x)= (3.35215, 3.35130, 4.45859, 6.01123, 6.48131);
M3(x)= (3.35173, 3.35173, 3.72068, 4.05117, 4.95972);
M4(x)= (3.35173, 3.35173, 3.47471, 3.55312, 3.87233);
M5(x)= (3.35173, 3.35173, 3.39272, 3.41511, 3.51315);
M6(x)= (3.35173, 3.35173, 3.36539, 3.37243, 3.40385);
M7(x)= (3.35173, 3.35173, 3.35628, 3.35858, 3.36891);
M8(x)= (3.35173, 3.35173, 3.35324, 3.35401, 3.35743);
M9(x)= (3.35173, 3.35173, 3.35223, 3.35249, 3.35363);
M10(x)= (3.35173, 3.35173, 3.35189, 3.35198, 3.35236);
M11(x)= (3.35173, 3.35173, 3.35178, 3.35181, 3.35194);
M12(x)= (3.35173, 3.35173, 3.35175, 3.35175, 3.35180);
M13(x)= (3.35173, 3.35173, 3.35173, 3.35174, 3.35175);
M14(x)= (3.35173, 3.35173, 3.35173, 3.35173, 3.35173);

. . .

Therefore the consensus would be approximately 3.35173. Note that this value was first established
(with this precision) for the first two agents (already in the third iteration!) and then spread to the
remaining ones. It is visible that only the first two agents have an impact on the consensus. It is
important to emphasize that the beliefs of all agents differ, however, the difference between them is
getting so small that it goes beyond the precision presented in this numerical example. Nevertheless,
we could observe two processes: establishing the consensus between the first two agents, and spreading
it to the remaining ones. We see that establishing consensus is a much faster process than spreading
it, which faithfully reflects real situations; see for example Yamaguchi (1994).A relatively small value
of the consensus is due to the position of the first agent in the social graph and the high risk aversion
of the first two agents.

Here we used a mean type mapping where the coordinate functions are not weighted-arithmetic
means, so this situation cannot fit into the DeGroot model.

So, the calculation of the consensus can not be executed by a single matrix iteration. We used here
a computer program to get the exact result, which exists for an arbitrary starting belief because of
our main theorem (Theorem 5.1), since the root in this case is irreducible.

Example 3.6. Let’s assume that an agent (agent 1) wants to form a belief about a washing powder,
for which he takes into account the beliefs of two other agents (agent 2 and agent 3). One (agent 2)
is an employee of the washing powder company in question, and the other (agent 3) works for a
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competing washing powder company. In this case, the weights of the beliefs taken into account are
influenced not only by the agent, but also by the belief itself. For example, if an employee (agent 1) of
the washing powder companymakes a negative statement about their own product, agent 1 considers
it with more weight than if she makes a positive statement about it. For the belief of the competing
company, the weighting is exactly the opposite, with the negative belief having a lower weight and
the positive one having a higher weight. This simple model can be made even more realistic if the
weights of the beliefs in question also depend on each other. For example, suppose employees (agent
2 and agent 3) of both companies make a positive statement about the washing powder. In that case,
the positive statement of agent 3 strengthens the statement of agent 2, so in this case it is worth using
a weight function that depends on all the beliefs in the network.

The above situation does not fit the deGroot model because the aggregation function is nonlinear.
In this case we can use the following aggregation function:

p1(x1, x2, x3)x1 + p2(x1, x2, x3)x2 + p3(x1, x2, x3)x3
p1(x1, x2, x3)+ p2(x1, x2, x3)+ p3(x1, x2, x3)

,

where I is an interval and

pi : I3 →R+, i= 1, 2, 3

are weight functions.

4. Neededmathematical tools
We proceed now with the description of the mathematical toolkit which is used in our
investigation.

It has two main groups. The first contains tools from the theory of graphs and the second
contains tools from the theory of means.

4.1 Graph theory and the concept of the root
Now we recall some elementary facts concerning graphs. For details, we refer the reader to the
classical book Graham et al. (1989).

A digraph is a pair G= (V , E), where V is a finite (possibly empty) set of vertices, and
E⊂V ×V is a set of edges. For each v ∈V we denote by N−

G (v) and N+
G (v) sets of in-neighbors

and out-neighbors, respectively. More precisely N−
G (v)= {w ∈V : (w, v) ∈ E} and N+

G (v)= {w ∈
V : (v,w) ∈ E}. The edges of the form (v, v) for v ∈V are called loops. Let us observe that in view
of the above definition the null graph (empty graph)∅ := (∅, ∅) is a well-defined digraph.

A sequence (v0, . . . , vn) of elements in V such that (vi−1, vi) ∈ E for all i ∈ {1, . . . , n} is called a
walk from v0 to vn. The number n is a length of the walk. If for v,w ∈V there exists a walk from v
to w in G, then we denote it by v�G w (abbreviated to v�w whenever G is known). A graph G
is called irreducible provided v�w for all v,w ∈V .

A cycle in a graph is a nonempty walk in which only the first and last vertices are equal. A
directed graph is said to be aperiodic if there is no integer k> 1 that divides the length of every
cycle of the graph. A graph that is nonempty, irreducible, and aperiodic is called ergodic.

A topological ordering of a digraph G= (V , E) is a linear ordering of its vertices such that for
every directed edge (v,w) ∈ E, v precedes w in the ordering. It is known that if G has no cycles,
then there exists its topological ordering (see, for example Cormen et al. (2009, Section 22.4)).
Obviously, it is not uniquely determined.

We also need a lemma which will be useful in the remaining part of this paper.
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Figure 2. A directed graph G and the corresponding GSCC.

Lemma 4.1 (Pasteczka (2023), Lemma 1). Let G= (V , E) be an ergodic digraph. Then there exists
q0 ∈N such that for all q ∈N with q≥ q0, and v,w ∈V there exists a walk from v to w of length
exactly q.

Let us now introduce the decomposition of a directed graph into a directed acyclic graph of
its strongly connected components (see, for example (Cormen et al. (2009, section 22.5)). More
precisely, for a directed graphG= (V , E) we define a relation∼ on its vertices in the followingway:
v∼w if and only if they are both in the same strongly connected component (that is v=w or there
is a walk from v tow and fromw to v). Obviously∼ is an equivalence relation onV , thus we define
the quotient graph GSCC := G/∼. In more details GSCC = (VSCC, ESCC), where VSCC =V/∼ and

ESCC = {
(P,Q) ∈VSCC ×VSCC : P �=Q and (p, q) ∈ E

for some p ∈ P and q ∈Q
}
.

It can be shown that GSCC has no cycles. Now we define the set of sources of a directed graph
G= (V , E) as follows

source(G) := {v ∈V : there is no edge in E which ends in v}
= {v ∈V : N−

G (v)= ∅}.
Obviously, there are no edges between elements in the source. Furthermore, since GSCC is

acyclic, that is, it has no cycles, we know that source(GSCC) is nonempty. In fact, it contains the
first element of (any) topological ordering of GSCC (see the definition above). In the next step, we
go backward (to the initial graph G) and define the root of G by

R(G) :=
⋃

source(GSCC)⊂V . (4.1)

Example 4.2. Let

G= (V , E), V = {a, b, c, d, e, f },
E= {(a, d), (d, a), (b, c), (c, b), (d, e), (b, e), (e, f ), (c, f )}.

Then
GSCC = (VSCC, ESCC), VSCC = {P,Q, R, S},
ESCC = {(P, R), (Q, R), (Q, S), (R, S)},

where the equivalence classes P,Q, R, S correspond to the sets {a, d}, {b, c}, {e}, {f } respectively (see
Figure 2).

So, the source of GSCC = {P,Q}, which entails that the root of G is

R(G)= {a, b, c, d}.
Here the root is not ergodic.
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I II

Figure 3. Graph Gα related to Example 4.3.

Example 4.3. Let G be the graph presented in Figure 3, that is

G= (V , E), V = {1, 2, 3, 4},
E= {(1, 1), (2, 2), (4, 4), (1, 2), (2, 1), (2, 3), (3, 4), (4, 3)}.

Then

GSCC = (VSCC, ESCC), VSCC = {I, II}, ESCC = {(I, II)},
where the equivalence classes I, II correspond to the sets {1, 2}, {3, 4} respectively (see Figure 3).

So, the source of GSCC equals to {I}, which entails that the root of G is

R(G)= {1, 2}.
Here the root is ergodic.

Now we show the equivalent definition of the root.

Theorem 4.4. (Characterization theorem of R(G)). Let G= (V , E) be a directed graph. Then R(G)
is the smallest subset S⊂V such that the following conditions are valid:

(i) For all v ∈V such that there exists a path w�G v for some w ∈ S;
(ii) if v ∈ S and there is an edge (wv) ∈ E for some w ∈V , then w ∈ S.

Proof. see Appendix A.1.

Now, we define a root graphR(G) as the graph induced by the root ofG. Thus, purely formally,
R(G) := (R(G), E∩ (R(G)× R(G)).

We underline a few easy observations related to this definition.

Observation 1.
(1) Since source(GSCC) is nonempty, we get that R(G) is nonempty if V is nonempty.
(2) A graph G is irreducible if, and only if, all its vertices belong to the root, that isR(G)=G.
(3) There are no edges in G that start outside the root and end inside it.
(4) R(G) is a union of irreducible graphs. Consequently, R(G) is irreducible if, and only if,

source(GSCC) is a singleton.

A subset of the roots for which the generated graph is irreducible is called a component of the
root.

The simplest situation is when the root graph is ergodic. In particular, there is only one com-
ponent of the root set. We will see later, that in this case the effect of the common belief of the
root elements, which exists in this case, will be the common belief of the whole network (see
Theorem 5.1).

A more challenging case is, when there is more than one component ofR(G). This can happen
when the root contains more than one independent group that are not aware of each other (that
is belief is not spreading between the groups). This issue is illustrated in Example 5.6.
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4.2 Means, mean-typemappings, and invariant means
Before we proceed further recall that, for a given p ∈N and an interval I ⊂R, a p-variable mean
on I is an arbitrary functionM : Ip → I satisfying the inequality

min (x)≤M(x)≤max (x) for all x ∈ Ip. (4.2)

Property (4.2) is referred as amean property. If the inequalities in (4.2) are strict for every noncon-
stant vector x, then we say that a mean M is strict. Moreover, for such objects, we define natural
properties like continuity, symmetry (when the value of a mean does not depend on the order of
its arguments), monotonicity (which states that M is nondecreasing in each of its variables), etc.
A meanM on R+ is positively homogeneous provided cM(x)=M(cx) for all c ∈R+ and x ∈R

p
+.

A mean-type mapping is a self-mapping of Ip which has a p-variable mean on each of its coor-
dinates. More precisely,M : Ip → Ip is called amean-type mapping ifM= (M1, . . . ,Mp) for some
p-variable meansM1, . . . ,Mp on I. In this framework, a functionK : Ip →R is calledM-invariant
if it solves the functional equation K ◦M=K. Usually, we restrict solutions of this equation to the
family of means and say aboutM-invariant means. Several authors studied invariant means dur-
ing years, let us just mention the book Borwein and Borwein (1987), a comprehensive survey
paper Jarczyk and Jarczyk (2018) and the references therein.

Example 4.5. Let M : R2+ →R
2+ be given by

M(x, y)=
(
x+ y
2

,
2xy
x+ y

)
,

then it is easy to see that

K : R2+ →R+, K(x, y)= √xy

will beM-invariant. Indeed,

K ◦M(x, y)=
√
x+ y
2

· 2xy
x+ y

= √xy=K(x, y).

We get a more sophisticated example, when

M(x, y)=
(
x+ y
2

,√xy
)
.

Then the corresponding invariant mean (see for example Borwein and Borwein (1987)) is

K(x, y)= π

2

⎛
⎜⎝

π
2∫

0

dθ√
x2 cos2 θ + y2 sin2 θ

⎞
⎟⎠

−1

.

For a given d, p ∈N, a sequence

α := (α1, . . . , αd) ∈ {1, . . . , p}d,
and a d-variable meanM : Id → I we define the meanM(p;α) : Ip → I by

M(p;α)(x1, . . . , xp) := M(xα1 , . . . , xαd ) for all (x1, . . . , xp) ∈ Ip. (4.3)

Example 4.6. Let d = 2 and A : R2 →R be the bivariate arithemetic mean, p≥ 3 and α = (2, 3)
then A (p;α) : Ip → I is given by

A (p;α)(x1, . . . , xp)= A (p;2,3)(x1, . . . , xp)= x2+x3
2 for all (x1, . . . , xp) ∈ Ip.
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For the sake of completeness, let us introduce formally N := {1, . . .}, and Np := {1, . . . , p}
(where p ∈N). Then, for p ∈N and a vector d= (d1, . . . , dp) ∈N

p, let Nd
p := N

d1
p × . . .×N

dp
p .

Definition 4.7. Using this notations, a sequence of means M= (M1, . . . ,Mp) is called
d-averaging mapping on I if each Mi is a di-variable mean on I.

For a d-averaging mapping (for an example see Example 5.3) M and a vector of indexes α =
(α1, . . . , αp) ∈N

d1
p × . . .×N

dp
p =N

d
p define a mean-type mappingMα : Ip → Ip by

Mα :=
(
M(p;α1)

1 , . . . ,M(p;αp)
p

)
;

recall thatM(p,αi)
i -s were defined in (4.3). In the more explicit form we have

Mα(x1, . . . , xp)=
(
M(p,αi)

i (x1 . . . , xp)
)p
i=1

=
(
Mi

(
xαi,1 , . . . , xαi,di

))p
i=1

=
(
M1

(
xα1,1 , . . . , xα1,d1

)
, . . . ,Mp

(
xαp,1 , . . . , xαp,dp

))
.

For a given p ∈N, d= (d1, . . . , dp) ∈N
p, and α ∈N

d
p , we define the α-incidence graph Gα =

(Vα , Eα) as follows: Vα := Np and Eα := {(αi,j, i) : i ∈Np and j ∈Ndi}.
For the readers’ convenience and for the better understandability of the paper we recall two

results from Pasteczka (2023) and Matkowski and Pasteczka (2021), which will be used later.

Theorem 4.8 (Pasteczka (2023), Theorem 2 (a)-(d)). Let I ⊂R be an interval, p ∈N, d ∈N
p, α ∈

N
d
p , and M= (M1, . . . ,Mp) be a d-averaging mapping on I. Assume that Gα is an ergodic graph,

and Mi-s are continuous and strict for all i ∈ {1, . . . , p}.
There exists the unique, continuous, and strict Mα-invariant mean Kα : Ip → I. Moreover

lim
n→∞ Mn

α =Kα , where Kα : Ip → Ip is defined as Kα = (Kα , . . . ,Kα).

Let us now recall (Matkowski and Pasteczka, 2021, Theorem 1) which provides the necessary
and sufficient condition of the uniqueness of the invariant mean.

Proposition 4.9 (Invariance principle). LetM : Ip → Ip be a mean-type mapping and K : Ip → I be
an arbitrary mean. K is a uniqueM-invariant mean if and only if the sequence of iterates (Mn)n∈N
of the mean-type mapping M converges to K := (K, . . . ,K) pointwise on Ip.

5. Main result
The message of Theorem 4.8 is if everybody takes into account everybody’s belief (at least implic-
itly, that is, in the generated graph by the aggregation function of the network all the agents are
available from all the agents by a directed path), then there will be a unique consensus at the end
of the limit process. However, this assumption is not realistic.

So, our aim is to generalize Theorem 4.8. The most significant advantage over Theorem 4.8 is
that only the rootR(Gα) is assumed to be ergodic (instead of the whole graph Gα).

Clearly, if Gα is ergodic, then the root coincides with the whole graph which means that this
case is also covered by the result below.

There arises a natural question, how far is this assumption being necessary. As we show
in Theorem 5.4, this assumption is optimal in some sense. Namely, the existence of a unique
consensus can be ensured only in the case when the root is ergodic (see Theorem 5.4).

The outcome of this theorem (and the forthcoming corollary) from the point of view of
aggregating the beliefs is very understandable. It says that:

https://doi.org/10.1017/nws.2025.10012 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2025.10012


Network Science 15

2 3

41

Figure 4. Graph Gα related to Example 5.3.

(1) the consensus is obtained if and only if the set of influencers (roots) is ergodic;
(2) the consensus depends only on the influencers’ beliefs.

Theorem 5.1. Let I ⊂R be an interval, p ∈N, d ∈N
p, α ∈N

d
p , and M= (M1, . . . ,Mp) be a

d-averaging mapping on I. Assume that R(Gα) is an ergodic graph, and Mi-s are continuous
and strict for all i ∈ {1, . . . , p}. Then, there exists a unique and continuous Mα-invariant mean
Kα : Ip → I such that

lim
n→∞ Mn

α =Kα , (existence of a consensus) (5.1)

where

Kα : Ip → Ip, Kα = (Kα , . . . ,Kα),

which depends on the root elements only. That is to say, there exists a mean K∗
α : I|R(Gα)| → I such

that

Kα(x1, . . . , xp)=K∗
α(xi : i ∈ R(Gα)).

(The consensus depends only on the beliefs of the root agents).

Proof. see Appendix A.2.

Some properties are inherited during the limiting process, which can be useful if we cannot
guess the resulting invariant mean. However, we would like to get some belief related to the
consensus.

For example, if the aggregation functions are nondecreasing with respect to each variable, then
so is the corresponding consensus (if it exists). Translated into the language of spreading belief
in networks with ergodic roots, if the root members give a higher value to something, then this
occurs with a higher value in the consensus (part (b) of Corollary 5.2).

Corollary 5.2. Let I ⊂R be an interval, p ∈N, d ∈N
p, α ∈N

d
p , and M= (M1, . . . ,Mp) be a d-

averaging mapping on I. Assume thatR(Gα) is an ergodic graph, and Mi-s are continuous and strict
for all i ∈ {1, . . . , p}. Define Kα and Kα according to Theorem 5.1. Then

(a) Kα : Ip → Ip isMα-invariant, that is Kα =Kα ◦Mα ;
(b) if M1, . . . ,Mp are nondecreasing with respect to each variable, then so is Kα ;
(c) if I = (0,+∞) and M1, . . . ,Mp are positively homogeneous, then every iterate of Mα and

Kα are positively homogeneous.

Proof. see Appendix A.3.

We continue with an application of our main theorem. This example was already mentioned
in Pasteczka (2023) and, in some sense, was the motivation for this investigation. Since all means
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in the example below are positively homogeneous, we obtain the homogeneous invariant mean,
which is implied by the above corollary.

Example 5.3. (Pasteczka (2023), Example 5). Let p= 4, d= (2, 2, 2, 2),

α = (
(1, 2), (1, 2), (2, 4), (3, 4)

) ∈N
d
4 and M= (P−1,P1,P−1,P1),

where Pr are r-th Hölder (power) means. ThenMα is of the form

Mα(x, y, z, t)=
(

2xy
x+ y

,
x+ y
2

,
2yt
y+ t

,
z + t
2

)
.

Clearly R(Gα) is ergodic as it is shown on Figure 4. Thus, by Theorem 5.1, we obtain that there
exists the uniqueMα-invariant mean Kα : R4+ →R+, and it is of the form Kα(x, y, z, t)=K∗

α(x, y),
where K∗

α : R2+ →R+. By Kα ◦Mα =Kα for all x, y, z, t ∈R+ we obtain,

K∗
α(x, y)=Kα(x, y, z, t)=Kα ◦Mα(x, y, z, t)

=Kα
( 2xy
x+y ,

x+y
2 , 2yt

y+t ,
z+t
2

) =K∗
α

( 2xy
x+y ,

x+y
2

)
.

Now we can use the folklore result stating that the arithmetic-harmonic mean is the geometric mean
(see for example Schoenberg (1982), p. 156) to obtain K∗

α(x, y)= √xy for x, y ∈R+. Finally

Kα(x, y, z, t)=K∗
α(x, y)= √xy.

Therefore, we have shown that the consensus is the geometric mean of the initial beliefs of the first
two agents. This is not surprising because only the first two agents are in the root of this network.

So, we have a complete description if the root is ergodic. An immediate question is implied by
this situation: Is something similar true if the root is not connected? In other words, it has more
than one component, more precisely, what happens if the root is not ergodic.

The following theorem says, that the nice characterization (see Theorem 5.1) is available if and
only if the root is ergodic.

Theorem 5.4. Let I ⊂R be an interval, p ∈N, d ∈N
p, α ∈N

d
p , and M= (M1, . . . ,Mp) be a

d-averaging mapping on I such that all Mi-s are continuous and strict. Then there exists the unique
Mα-invariant mean (the consensus) if and only if R(Gα) is ergodic.

Proof. see Appendix A.4.

Now we justify what happens if R(Gα) is not connected. Then the iteration of elements in
the root can be split into (at least two) independent iteration processes. There appears a natural
problem: if convergence of elements in the root yields the convergence in the whole graph.

Example 5.5. We assume that the involved means are weighted arithmetic means (trivial weights,
so projections are allowed). In this case, our model reduces to the DeGroot model.

Even, if the root is not ergodic, the limit of the iteration is unique; however, there is no unique
invariant mean in this case (see Theorem 5.4).

Let’s consider the following numerical example.
Let d = 4 and the d-averaging mapping M : R4 →R

4 given by

M(x1, x2, x3, x4)=
(
x1, x2,

x1 + 2x2 + 3x3 + 3x4
9

,
2x1 + x2 + x3 + 2x4

6

)
.
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Figure 5. Graph Gα related to Example 5.5.

Then the corresponding graph of incidence is presented at Figure 5, and the corresponding row
stochastic matrix is

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0
1
9

2
9

3
9

3
9

2
6

1
6

1
6

2
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then we can see that M(x)=Ax for all x ∈R
4. The limit of the iteration process is

lim
n→∞ An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0
10
21

11
21

0 0

13
21

8
21

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This means that the consensus of the agents will be the mixtures of the beliefs of the two components
of the root with weights 10

21 ,
11
21 and

13
21 ,

8
21 respectively.

We would like to emphasize again the fact that the resulted limit is a possible consensus (invariant
mean) and surely not the only one (see Theorem 5.2). Indeed, all means K : R4 →R of the form

K(x1, x2, x3, x4)=K∗(x1, x2), (5.2)

where K∗ : R2 →R is a bivariate mean areMα-invariant. However, the description of the structure
and properties of the remaining set of invariant means (common narratives, which are not the limit
of the iteration process) in the general case could be a nice goal of further research.

This problem can be formulated in the following way. Do the non-root vertices impact the final
consensus in a case when we have no final consensus in the root?

In the next example, we show that this is not the case. This example is much different from the
previous approaches. Namely, we are going to study the iterations (and invariant means) only for
two vectors. Furthermore, in this example, the mean-type mapping contains a mean (denoted by
F) which is not given explicitly.

Example 5.6. Let I ⊂R be an interval and a, b, c, d ∈ I with a< b< c< d.There exists a symmetric,
continuous, and strict mean F : I3 → I such that F(a, d, b)= c and F(a, d, c)= b.

Set d := (1, 1, 3, 3), d-averaging mapping M := (id, id, F, F) (here id : I → I stands for the
identical function) and set

α := (
(1), (2), (1, 2, 4), (1, 2, 3)

) ∈N
d
4 ,
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2 3

41

Figure 6. Graph Gα related to Example 5.6.

which corresponds to the graph shown on Figure 6. Then we have
Mα(x, y, z, t)=

(
x, y, F(x, y, t), F(x, y, z)

)
.

In particular for v1 := (a, d, b, c) and v2 := (a, d, c, b) we haveMα(vi)= v3−i (i ∈N2).
Observe that R(Gα)= {1, 2} and thus [Mn

α]i is convergent for all i ∈ R(Gα), although it is (in
general) not convergent for indexes which do not belong to the root.

Now we define means Li,Ui : I4 → I (i ∈N4) by
Li(v)= lim inf

n→∞ [Mn
α(v)]i and Ui(v)= lim sup

n→∞
[Mn

α(v)]i.

Clearly, for all i ∈N4, we have Li ◦Mα = Li and Ui ◦Mα =Ui, that is Li-s and Ui-s are Mα-
invariant. For vectors vi (i ∈N2) these means are

L1(vi)=U1(vi)= a, L2(vi)=U2(vi)= d,
L3(vi)= L4(vi)=min(b, c), U3(vi)=U4(vi)=max(b, c).

We can also manually verify that all these means areMα-invariant.

6. Conclusion and further research
Wegave a general model of the spread of beliefs on networks, which contains the classical DeGroot
model (DeGroot, 1974) as a particular case. The key concept in our investigation was the notion
of invariant means of certain averaging mappings. The root in the network has a special role, as
we proved. Actually, the accepted narrative of the network depends on the belief of root agents
only.

Pasteczka (2023) proved that the Mα-invariant mean is uniquely determined whenever each
coordinate of M is a continuous, strict mean and Gα is an ergodic graph. Here we improved this
statement to the case whenR(Gα) is ergodic (Theorem 5.1). Clearly, this generalizes the previous
setup, since the root of an irreducible graph contains all vertices. We were also able to show some
related properties of this invariant mean (Corollary 5.2). It is also worth mentioning that the
ergodicity of the root is unavoidable due to the uniqueness of the invariant mean (Theorem 5.4).

To the best of our knowledge, this general approach is new in the literature. So, several open
problems can be posed concerning this new approach.

Let us mention just a few. One of the most important questions in our belief is the better under-
standing of the case when the root is not ergodic. There is no unique invariant mean in this case
(see Theorem 5.4). However, the iteration process results in a unique limit, which can be consid-
ered as a possible consensus at the end. It is not clear what the role of the other invariant means
are in this case.

A good start for the investigation of this would be d-averaging mappings containing only
weighted arithmetic means (see Example 5.5).

Another important question, which can simplify further investigations, is the following. If
the root contains k different components with αi, i= 1, . . . , k variables. And the correspond-
ing invariant means are K1, . . . ,Kk, then do we get the same situation or not, if we substitute
the aggregation process of root elements with the corresponding invariant mean at the very
beginning?
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Furthermore, based on Example 5.6, we know that the convergence on sequence of iterates on
the root set (in general) does not imply that it is convergent on remaining elements. On the other
hand, we conjecture that it would be the case under some additional assumptions. For example, if
we additionally assume that all means are monotone in their parameters.

Another possible direction to make the model more realistic is to assume that the agents and
the influencers change their aggregation process in time. A possible approach to grab this is to use
random means defined by Barczy and Burai (2022).

Finally, it is not known how amodification of the mean in one vertex impacts to the whole iter-
ation process. More precisely, is it true that if a single agent slightly changes the way of aggregating
the belief then it will not have a big impact to the remaining part of the graph?
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Appendix A. Proofs
A.1 Proof of Theorem 4.4
This proof is split into three steps.

A.1.1
We prove that the root set is a set of minimal elements with respect to a certain ordering in V.

Let us introduce the relation on V as follows
p≺ q: ⇐⇒ p �= q, p�G q and q ��G p.

First, observe that ≺ is a strict partial ordering of elements in V .
Second, if p and q are in the same SCC then p �≺ q. Whence each element of R(G) is minimal

with respect to ≺ in V .
Conversely, if p is not a minimal element (with respect to ≺) then there exists a p̄ such that

p̄≺ p. Then p̄ is in the different SCC than p and there exists a path p̄� p. Consequently [p]∼ /∈
source(GSCC), and whence p /∈ R(G). That is, R(G) is exactly the set of minimal elements in the
ordering ≺.

A.1.2
We show that conditions (i) and (ii) hold for S= R(G).

Indeed, for every v ∈V there exists w ∈ R(G) such w≺ v, which implies that condition (i) holds
for S= R(G).

Now assume that v ∈ R(G) and (wv) ∈ E for some w ∈G \ {v}. Then, since v is minimal we
have w �≺ v. Whence one of three cases hold: w= v (which we can exclude), w ��G v (which is
impossible since (wv) ∈ E) or v�G w which implies that v and w are in the same SCC. Whence
w ∈ R(G), which implies that (ii) holds for S= R(G).

A.1.3
Now take any set S⊂V such that conditions (i) and (ii) hold. Observe that if v ∈ S and w≺ v then
w�G v and (applying condition (ii) inductively) we get w ∈ S.

Now take any v ∈ R(G). Applying condition (i), there exists v∗ ∈ S such that v∗�G v. Then,
since v∗ �≺ v we have that v= v∗ or v�G v∗, and therefore v ∈ S. Thus R(G)⊆ S.

A.2 Proof of Theorem 5.1
Let us assume without loss of generality that R(Gα)= (1, . . . , q) for some q ∈ {1, . . . , p}.

If q= p then all vertices of Gα belong to the root. Whence Gα is irreducible, and Gα =R(Gα)
is aperiodic. So, Gα is ergodic and this theorem is implied by Theorem 4.8. For the remaining part
of the proof we assume that q ∈ {1, . . . , p− 1}.

For v ∈V define rank(v) as the distance of v from the closest vertex in R(Gα). If v ∈ R(Gα) then
we set rank(v) := 0.

For k≥ 0 define Vk := {v ∈V : rank(v)≤ k}. Obviously, R(Gα)=V0 ⊆V1 ⊆V2 ⊆ · · · and
there exists k0 such that V =Vk0 .

A.2.1 Means with coordinates in V0
Since V0 = (1, . . . , q) is the root of Gα , we obtain that all means [Mα]1, . . . , [Mα]q depend on the
first q variables only. Therefore let π : Ip → Iq be the projection to the first q variables.

Thus, if we defineM∗ = (M1, . . . ,Mq) and α∗ = (α1, . . . , αq) we get

[Mα]s(x)= [Mα]s(x1, . . . , xp)=M(p;αs)
s (x1, . . . , xp)=M(q;αs)

s (x1, . . . , xq)
= [M∗

α∗]s(x1, . . . , xq)= [M∗
α∗]s ◦ π(x1, . . . , xp)= [M∗

α∗]s ◦ π(x)
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for all s ∈V0 and x= (x1, . . . , xp) ∈ Ip. If we apply this equality to all admissible swe get π ◦Mα =
M∗
α∗ ◦ π . This, by easy induction, yields

π ◦Mn
α = (M∗

α∗)n ◦ π for all n ∈N. (A.1)

However Gα∗ is a graph Gα restricted to V0, whence we obtain Gα∗ =R(Gα). Since R(Gα) is
ergodic, by Theorem 4.8, there exists the uniqueM∗

α∗-invariant meanK : Iq → I and the sequence
of iterates ((M∗

α∗)n)∞n=1 converges to K∗ := (K, . . . ,K) : Iq → Iq. Then, by (A.1), (π ◦Mn
α)∞n=1

converges to K∗ ◦ π . In other words
([Mn

α]i)
∞
n=1 converges to K ◦ π on Ip for all i ∈V0. (A.2)

A.2.2 General case
Take x ∈ Ip arbitrary and set ui := lim supn→∞ [Mn

α]i(x) (i ∈ {1, . . . , p}). Property (A.2) implies
ui =K ◦ π(x) for all i ∈V0. (A.3)

Let i0 ∈ {1, . . . p} be a number that satisfies ui0 =max{ui : i ∈ {1, . . . , p}} with the minimal
rank. We show that rank(i0)= 0.

A.2.3 rank(i0)= 0.
Assume to the contrary that k := rank(i0)> 0. Then i0 ∈Vk \Vk−1 and, since i0 have a minimal
rank, we get ρ := max{ui : i ∈Vk−1}< ui0 . Whence for all ε ∈ (0,+∞) there exists nε such that

[Mn
α]i(x)≤ ρ + ε for all n≥ nε and i ∈Vk−1.

Then we have that
[Mn

α]i(x) ∈ [min x, ρ + ε]∩ I =:Aε for all n≥ nε and i ∈Vk−1.
Moreover, there existsmε such that

[Mn
α]i(x) ∈ [min x, ui + ε]∩ I ⊂ [min x, ui0 + ε]∩ I = :Bε

for all n≥mε and i ∈V .
Clearly Aε ⊆ Bε for all ε > 0. Now for ε≥ 0, let us define the set�ε := ∏p

i=1 Hε(i)⊂ Ip, where

Hε(i)=
{
Aε for i ∈Vk−1;
Bε for i ∈V \Vk−1.

ThenMn
α(x) ∈�ε for all n≥max (nε ,mε). Moreover for all i ∈ {1, . . . , p} the mapping [0,+∞) �

ε �→Hε(i) is topologically continuous. Thus, so is [0,+∞) � ε �→�ε . Therefore, the function
ϕ : [0,+∞) � ε �→ sup

{
[Mα]i0 (y) : y ∈�ε

} ∈ [ min (x),∞)
is also continuous. But, since rank(i0)= k, there exists j ∈Vk−1 such that (j, i0) ∈ E. Equivalently,
the mean [Mα]i0 depends on the j-th variable, say αi0,q = j for some q ∈ {1, . . . , di0}.

Therefore, for all ε > 0, we have
ϕ(ε)= sup

{
[Mα]i0 (y) : y ∈�ε

}
= sup

{
Mi0 (yαi0,1 , . . . , yαi0,di0 ) : (y1, . . . , yp) ∈�ε

}
= sup

{
Mi0 (yαi0,1 , . . . , yαi0,di0 ) : y1 ∈Hε(1), . . . , yp ∈Hε(p)

}
≤ sup

{
Mi0 (yαi0,1 , . . . , yαi0,di0 ) : yj ∈Aε , and yi ∈ Bε for i �= j

}
≤ sup

{
Mi0 (z1, z2, . . . , zdi0 ) : zq ∈Aε , and zk ∈ Bε for k �= q

}
= sup

{
Mi0 (z) : z ∈ Bdi0ε , zq ∈Aε

} = :ψ(ε).
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However, since it is a supremum of a continuous function over a compact set, it attaches
its maximum. Thus, for all ε > 0, there exists z(ε) ∈ Cε := {z ∈ Bdi0ε : zq ∈Aε} such that ψ(ε)=
Mi0 (z(ε)). SinceMi0 is continuous, we obtain that ψ is nondecreasing and continuous.

Let z̄ be any accumulation point of the set {z(1/n) : n ∈N}. Clearly z̄ belongs to the topological
limit of Cε , that is z̄ ∈ {z ∈ [ min x, ui0 ]di0 : zq ∈ [ min x, ρ]}.

Since Mi0 is a strict mean and ρ < ui0 , we get Mi0 (z̄)< ui0 . Whence, since ϕ and ψ are
nonincreasing and ϕ ≤ψ we get

lim
ε→0+ ϕ(ε)≤ lim

ε→0+ ψ(ε)= lim inf
n→∞ ψ( 1n )= lim inf

n→∞ Mi0 (z(1/n))≤Mi0 (z̄)< ui0 .

Consequently, there exists ε0 such that ϕ(ε0)< ui0 . Then, for all n≥max (nε0 ,mε0 ) we have
Mn
α(x) ∈�ε0 , that is [Mn

α]i0 (x)≤ ϕ(ε0). Therefore
lim sup
n→∞

[Mn
α]i0 (x)≤ ϕ(ε0)< ui0 = lim sup

n→∞
[Mn

α]i0 (x),

a contradiction. Thus rank(i0)= 0.

A.2.4 Conclusion
Since rank(i0)= 0 we have i0 ∈V0. Whence, by (A.3), we get

lim sup
n→∞

[Mn
α]i(x)= ui ≤ ui0 =K ◦ π(x) for any i ∈V .

Analogously, we can show the property
lim inf
n→∞ [Mn

α]i(x)≥K ◦ π(x) for any i ∈V ,

Whence (5.1) holds with Kα =K ◦ π(x). If we set K∗
α := K then, for all i ∈V and x ∈ Ip, we have

lim
n→∞ [Mn

α]i(x)=K ◦ π(x)=K∗
α ◦ π(x)=

=K∗
α(xi : i ∈ R(Gα))=Kα(x1, . . . , xp),

which completes the proof.

A.3 Proof of Corollary 5.2
Applying Theorem 5.1 twice, for all x ∈ Ip we have

Kα(x)= lim
n→∞ Mn

α(x)= lim
n→∞ Mn

α

(
Mα(x)

) =Kα ◦Mα(x),

which yields (a).
Properties (b) and (c) are consequences of Theorem 5.1 too. Indeed, if allMi-s are nondecreas-

ing (resp. homogenous) then so are all entries in Mα . Then all entries in the sequence of iterates
Mn
α also possess this property. Since it is inherited by the limit procedure, in view of (5.1) we

obtain that K is nondecreasing (resp. homogenous).

A.4 Proof of Theorem 5.4
If R(Gα) is ergodic then, as an immediate consequence of Theorem 5.1, we obtain that Mα-
invariant mean is uniquely determined.

For the converse implication, let us take p ∈N, d ∈N
p, and α ∈N

d
p so that R(Gα) is not con-

nected or periodic. Moreover, let M= (M1, . . . ,Mp) be an arbitrary d-averaging mapping on I
such that allMi-s are continuous and strict. This splits our proof into two parts.

https://doi.org/10.1017/nws.2025.10012 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2025.10012


Network Science 23

A.4.1
IfR(Gα) is not connected then for all v ∈V there exists v̄ ∈V such that there is no path from v to
v̄. Let us define, for all v ∈V , sets

succ(v) := {v} ∪ {w ∈V : v�w}; prec(v) := {v} ∪ {w ∈V : w� v}.
Clearly, for every v ∈V we have succ(v)∩ prec(v̄)= ∅. Moreover prec(v) �= ∅ for all v ∈V .

Moreover, each vertex has an in-neighbor and

succ(w)⊇ succ(v) for all w ∈N−
G (v). (A.4)

Now let V0 be the maximal element of {succ(v) : v ∈V}. Then, in view of (A.4) we have
succ(w)=V0 for all w ∈N−

G (v). This implies that there are no edges from V0 to V \V0 (that is,
E∩ (V0 × (V \V0))= ∅).

Moreover, by simple induction, we have succ(w)=V0 for all w ∈ prec(v0). Since v ∈ succ(v) for
all v ∈V we get prec(v)⊂V0 for all v ∈V0 (that is, E∩ ((V \V0)×V0)= ∅).

Finally, we have E⊂V2
0 ∪ (V \V0)2. Therefore every vector x ∈ Ip of the form

xi =
{
γ if i ∈V0
δ if i ∈V \V0

(where γ , δ ∈ I) is a fixed point of Mα . By Proposition 4.9 we obtain that Mα-invariant mean is
not unique.

A.4.2
IfR(Gα)= (V0, E0) is nonempty and periodic then there exists c≥ 2 and a partitionW0, . . .Wc−1
of V0 such that E0 ⊆ ⋃c−1

i=0 Wi ×Wi+1 (we setWc+i := Wi for all i ∈Z). Take γ , δ ∈ I with γ �= δ

and define x ∈ Ip as follows

xi =
{
γ if i ∈W0,
δ if i ∈V0\W0.

But for all i ∈Wk means [Mα]i depends only on arguments with indexes Wk−1. By the simple
introduction, for all n ∈N we get

[Mn
α]i(x)=

{
γ if i ∈Wn,
δ if i ∈V0\Wn.

Whence
lim
n→∞ max

i∈{1,...,p} [M
n
α(x)]i =max (γ , δ); lim

n→∞ min
i∈{1,...,p} [M

n
α(x)]i =min (γ , δ).

By Proposition 4.9, this yields that theMα-invariant mean is not uniquely determined.
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