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Abstract We show the Harris–Viehmann conjecture under some Hodge–Newton reducibility condition for
a generalisation of the diamond of a non-basic Rapoport–Zink space at infinite level, which appears as a
cover of the non-semi-stable locus in the Hecke stack. We show also that the cohomology of the non-semi-
stable locus with coefficients coming from a cuspidal Langlands parameter vanishes. As an application,
we show the Hecke eigensheaf property in Fargues’ conjecture for cuspidal Langlands parameters in the
GL2-case.

Introduction

In [Far25], Fargues formulated a conjecture on a geometrisation of the local Langlands
correspondence motivated by a formulation of the geometric Langlands conjecture in

[FGV02].

Let E be a p-adic number field with residue field Fq. Let G be a quasi-split reductive

group over E. Then we can define a moduli stack BunG of G-bundle on the Fargues–
Fontaine curve, and a moduli Div1X of Cartier divisors of degree 1 on the Fargues–Fontaine

curve. Further, we have a diagram

Hecke≤μ

←−
h

����
��
��
��
�� −→

h

����
���

���
���

�

BunG BunG×Div1X,
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2 I. Gaisin and N. Imai

where Hecke≤μ is a moduli stack of modifications of G-bundle on the Fargues–Fontaine

curve with some condition determined by a cocharacter μ of G, which is called a Hecke

stack. For a discrete Langlands parameter ϕ : WE → LG, Fargues’ conjecture predicts the
existence of a sheaf Fϕ on BunG satisfying some conditions, the most intriguing one of

which is the Hecke eigensheaf property

−→
h �(

←−
h ∗Fϕ⊗ IC′

μ) = Fϕ � (rμ ◦ϕ),

where rμ is a representation of LG determined by μ, and IC′
μ is an object of the derived

category of sheaves determined by μ via the geometric Satake correspondence. The
conjecture is stated based on some conjectural objects. However, in the case ϕ is cuspidal

and μ is minuscule, we can define every object in the conjecture assuming only the local

Langlands correspondence, which is constructed in many cases.
Assume that ϕ is cuspidal and μ is minuscule. Then the support of the sheaf Fϕ is

contained in the semi-stable locus BunssG of BunG. The Hecke eigensheaf property then

predicts that

supp
−→
h �(

←−
h ∗Fϕ⊗ IC′

μ)⊂ BunssG×Div1X .

This is non-trivial since the inclusion

←−
h −1

(
BunssG

)
⊂−→

h −1
(
BunssG×Div1X

)

does not hold. The vanishing of
−→
h �(

←−
h ∗Fϕ⊗ IC′

μ) outside the semi-stable locus involves

geometry of a non-semi-stable locus of the Hecke stack Hecke≤μ.

One aim of this paper is to give a partial result in this direction. Assume that ϕ is
cuspidal, but μ can be general in the following. Let B(G) be the set of σ-conjugacy

classes in G(Ĕ), where Ĕ is the completion of the maximal unramified extension of E.

Then we have a decomposition

BunG =
∐

[b]∈B(G)

Bun
[b]
G

into strata, where the strata corresponding to basic elements of B(G) form the semi-stable

locus. Let [b],[b′] ∈B(G). We define Hecke≤μ
[b],[b′] by the fibre products

Hecke≤μ
[b],[b′]

��

��

Hecke≤μ
[b]

��

��

Bun
[b]
G ×Div1X

��
Hecke≤μ

−→
h ��

←−
h

��

BunG×Div1X

Bun
[b′]
G

�� BunG.
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Non-semi-stable loci in Hecke stacks and Fargues’ conjecture 3

We assume that [b] is not basic, and [b′] is basic. Let Heckeμ[b],[b′] be an open substack of

Hecke≤μ
[b],[b′], where the modifications have type μ. We find that a generalisation Mμ

b,b′ of

a diamond of a non-basic Rapoport–Zink space at infinite level covers Heckeμ[b],[b′].

We can define a Levi subgroup Lb of G such that [b] is an image of a basic element

[b00] of B(Lb). Take a proper Levi subgroup L of G containing Lb. Let [b0] be the image

of [b00] in B(L). We assume that [b′] is in the image of an element [b′0] ∈ B(L). Further,
we assume that ([b],[b′],μ) satisfies a twisted analogue of Hodge–Newton reducibility. Our

main theorem is the following:

Theorem. The compactly supported cohomology of Mμ
b,b′ is a parabolic induction of the

compactly supported cohomology of Mμ
b0,b′0

with some degree shift and twist.

See Theorem 4.26 for the precise statement. This theorem is a generalisation of the

Harris–Viehmann conjecture on cohomology of non-basic Rapoport–Zink spaces in [RV14,

Conjecture 8.5] (cf. [Har01, Conjecture 5.2]) up to a character twist under the Hodge–
Newton reducibility condition. We also show that the compactly supported cohomology of

Mμ
b,b′ does not contain any supercuspidal representation. These results can be viewed as

generalisation of results in [Man08]. Using the above theorem, we can show the following:

Theorem. The compactly supported cohomology of Heckeμ[b],[b′] with coefficient in
←−
h ∗Fϕ

vanishes.

See Theorem 4.30 for the precise statement. This result is partial, since we are assuming
Hodge–Newton reducibility. On the other hand, the assumption is automatically satisfied

if Hecke≤μ
[b],[b′] is not empty in the case where G = GL2 and μ(z) = diag(z,1). As an

application, we can show the following:

Theorem. Assume that G = GL2 and μ(z) = diag(z,1). Then the Hecke eigensheaf
property for a cuspidal Langlands parameter holds.

During the course of this work, Hansen put a related preprint [Han21a] on his

webpage, which shows the Harris–Viehmann conjecture for GLn under the Hodge–
Newton reducibility condition. We learned his result on canonical filtrations and some

consequences of Scholze’s work [Sch17] on cohomology of diamonds from [Han21a]. Note

that the result of [Han21a] is enough for the application to Fargues’ conjecture in GL2-

case. Our main points are proving the Harris–Viehmann conjecture under the Hodge–
Newton reducibility condition for general reductive groups and making the relation to

Fargues’ conjecture clear. After this work was done, Fargues’ conjecture for cuspidal

Langlands parameters in the GLn-case was proved in [ALB21] and [Han21b] by a different
method.

In Section 1, we recall a definition of the stack of G-bundle on the Fargues–Fontaine

curve, and its structure. In Section 2, we recall a definition of the Hecke stack and explain
a cohomological formula. In Section 3, we construct a sheaf which satisfies properties

(1), (2) and (3) of [Far25, Conjecture 4.4] and explain the Hecke eigensheaf property in

Fargues’ conjecture for cuspidal Langlands parameters.
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4 I. Gaisin and N. Imai

In Section 4, we study a non-semi-stable locus in the Hecke stack. We find that a
generalisation of a diamond of a non-basic Rapoport–Zink space at infinite level covers

the non-semi-stable locus in the Hecke stack. We show that the cohomology of the

generalised space can be written as a parabolic induction of the cohomology of smaller
space associated with a Levi subgroup under the Hodge–Newton reducibility condition. In

particular, we see that the cohomology does not contain any supercuspidal representation

in each degree. As a result, we show that the cohomology of the non-semi-stable locus in

the Hecke stack with a coefficient coming from a cuspidal Langlands parameter vanishes.
In Section 5, we see that we can recover Hecke eigensheaf property on some part of

the semi-stable locus from non-abelian Lubin–Tate theory in the GLn-case. In Section 6,

we show that the Hecke eigensheaf property in the GL2-case, using the results in the
preceding sections.

1. Stack of G-bundles

In this section we recall various results regarding the stack of G-bundles on the curve.
Let p be a prime number. Fix E a finite extension of Qp with residue field Fq. We follow

the definition of perfectoid algebra in [Fon13, 1.1] (cf. [Sch12, Definition 5.1]). For an

algebraic extension k of Fq, let Perfk be the category of perfectoid spaces over k equipped

with v-topology (cf. [Sch17, Definition 8.1(iii)]). For S ∈ PerfFq
, we have the relative

Fargues–Fontaine curve XS = YS/ϕ
Z as in [FS21, Definition II.1.15]. For an affinoid

perfectoid Spa(R,R+) ∈ PerfFq
, we have also the schematic relative Fargues–Fontaine

curve Xsch
Spa(R,R+) as defined just after [FS21, Remark II.2.8]. The schematic version

Xsch
Spa(R,R+) only depends on R and so we denote it by Xsch

R . We have an equivalence

between categories of vector bundles on XSpa(R,R+) and Xsch
R by [KL15, Theorem 8.7.7].

Let G be a connected reductive group over E. Let BunG be the fibred category in

groupoids whose fibre at S ∈ PerfFq
is the groupoid of G-bundles on XS . Then BunG has

a reasonable geometry. Let us just mention that, in particular, it is a small v-stack (cf.

[FS21, Proposition III.1.3]).
Let Ĕ be the completion of the maximal unramified extension of E. Let σ be the

continuous automorphism of Ĕ lifting the q-th power Frobenius on the residue field. For

b ∈G(Ĕ), we have an associated G-isocrystal

Fb : Rep(G)−→ ϕ-ModĔ ; (V ,ρ) �→ (V ⊗E Ĕ,ρ(b)σ).

Let B(G) be the set of σ-conjugacy classes in G(Ĕ). Then we have a bijection

B(G)−→ {the isomorphism classes of G-isocrystals over Ĕ}; [b] �→ [Fb]

by [RR96, Remarks 3.4 (i)].

Let S ∈ PerfFq
. We have a functor

ϕ-ModĔ −→ BunXS
; (D,ϕ) �→ E (D,ϕ),

where E (D,ϕ) is given by

YS ×ϕD −→ YS/ϕ
Z =XS .
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Non-semi-stable loci in Hecke stacks and Fargues’ conjecture 5

The composite

Rep(G)
Fb−→ ϕ-ModĔ

E (−)−−−→ BunXS

gives a G-bundle Eb,XS
on XS . We simply write Eb for Eb,XS

sometimes. If b′ = gbσ(g)−1,

then we have an isomorphism

tg : Eb,XS
−→ Eb′,XS

(1.1)

induced by the multiplication by g. The isomorphism class of Eb,XS
depends only on the

class of b in B(G). Moreover by [FS21, Theorem III.2.2], this gives a complete description

of the points of BunG.

Let π1(G) be an algebraic fundamental group of G defined in [Bor98, 1.4]. Let E be a

separable closure of E and let Γ = Gal(E/E) be its absolute Galois group. Let

κ : B(G)−→ π1(G)Γ

be the Kottwitz map in [RR96, Theorem 1.15] (cf. [Kot90, Lemma 6.1]). Then [FS21,

Theorem III.2.7]) provides a decomposition

BunG =
∐

α∈π1(G)Γ

BunαG

into open and closed substacks.

Let D be the split pro-algebraic torus over E such that X∗(D) = Q. For b ∈ G(Ĕ), we

have an associated homomorphism

ν̃b : DĔ −→GĔ

constructed in [Kot85, 4.2]. This gives a well-defined map

ν : B(G)−→
(
Hom(DĔ,GĔ)/G(Ĕ)

)σ
; [b] �→ [ν̃b],

which is called the Newton map. We say that b ∈G(Ĕ) is basic, if ν̃b factors through the

centre of GĔ . We say that [b] ∈B(G) is basic if it consists of basic elements in G(Ĕ). Let
B(G)basic denote the basic elements in B(G). We recall that the Kottwitz map induces

a bijection

κ : B(G)basic
∼−→ π1(G)Γ.

Assume that G is quasi-split in the sequel. We fix subgroups A ⊂ T ⊂ B of G, where

A is a maximal split torus, T is a maximal torus and B is a Borel subgroup. We write

X∗(A)
+ for the dominant cocharacters of A. Then we have a natural isomorphism

X∗(A)
+
Q

∼−→
(
Hom(DĔ,GĔ)/G(Ĕ)

)σ
.

Let b ∈G(Ĕ). We write νb ∈X∗(A)
+
Q for the representative of [ν̃b]. Let w be the maximal

length element in the Weyl group of G with respect to T. Then the map

HN: B(G)→X∗(A)
+
Q ; [b] �→ w · (−νb)
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6 I. Gaisin and N. Imai

is called the Harder–Narasimhan map. After equipping X∗(A)
+
Q with the natural order

topology, as discussed in [RR96, Section 2], the map HN is upper semicontinuous by

[FS21, Theorem III.2.3].
We define an algebraic group Jb over E by

Jb(R) = {g ∈G(R⊗E Ĕ) | gbσ(g)−1 = b}

for any E -algebra R. Then we have Jb(E) = Aut(Fb). We define a v-sheaf J̃b on PerfFq

by

J̃b(S) = Aut(Eb,S)

for an S ∈ PerfFq
. We note that the isomorphism class of Jb and J̃b depends only on

[b] ∈B(G).

For a locally profinite group H, we write H for v-sheaf on PerfFq
associated to H. Then

we have an inclusion

Jb(E)⊂ J̃b.

Let J̃0
b be the connected component of the unit section of J̃b. Then we have

J̃b = J̃0
b �Jb(E)

and J̃0
b is of dimension 〈2ρ,νb〉 by [FS21, Proposition III.5.1]. In particular Jb(E) = J̃b if

and only if b is basic.

Let BunssG be the semi-stable locus of BunG. Then BunssG is an open substack of BunG by
[FS21, Theorem III.4.5]. Let α ∈ π1(G)Γ. Then the upper semicontinuity of HN provides

a stratification

BunαG =
∐

ν∈X∗(A)+
Q

Bunα,HN=ν
G .

Take ν ∈ X∗(A)
+
Q and assume that Bunα,HN=ν

G is not empty. Then we have a unique
[b] ∈ B(G) such that κ([b]) = α and HN([b]) = ν. Take any representative b of [b]. Then

by [FS21, Proposition III.5.3] we have an isomorphism

xb : [Spa(Fq)/J̃b]
∼−→ Bunα,HN=ν

G

defined by Eb. If b is basic, then Bunα,HN=ν
G is equal to the semi-stable locus Bunα,ssG of

BunαG by [FS21, Theorem III.4.5]].

The J̃b-torsor Tb over Bun
α,HN=ν
G given by xb is the torsor defined by the functor which

sends S ∈ PerfFq
to

(
f : S −→ Bunα,HN=ν

G ,φ : Eb,S
∼−→ Ef

)
,

where Ef is the G-bundle on XS determined by f, and g ∈ J̃b(S) acts on Tb(S) (on the
right) by

(f,φ) �→ (f,φ◦g). (1.2)
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Non-semi-stable loci in Hecke stacks and Fargues’ conjecture 7

Then we have Frob∗xb = xσ(b) and Frob∗Tb = Tσ(b). Since we have σ(b) = b−1bσ(b), we

have a Weil descent datum

wb : Frob
∗Tb −→ Tb (1.3)

induced by tb−1 : Eb,S → Eσ(b),S in (1.1). Explicitly at the level of S -points, (1.3) sends
(f,φ) to (f,φ◦ tb−1). If b′ = gbσ(g)−1, then t−1

g induces an isomorphism Tb → Tb′ , which

is compatible with the Weil descent data wb and wb′ . Hence the isomorphism class of

(Tb,wb) depends only on [b] ∈B(G).

2. The global Hecke stack

Let Div1X,Fq
be the moduli space of degree 1 closed Cartier divisors defined in [FS21,

Definition II.1.19], which sends S ∈ PerfFq
to the set of isomorphism classes of degree

1 closed Cartier divisors on XS . By [FS21, Proposition II.1.21], Div1X,Fq
→ Spa(Fq) is

representable in spatial diamonds and we have an isomorphism

Spa(E)	/ϕZ
E�

∼−→Div1X,Fq
,

where ϕE� is a q-th power Frobenius action on E	. We put Div1X =Div1X,Fq
×Fq

Fq.

We write X∗(T )
+ for the set of dominant cocharacters of T. Let μ ∈ X∗(T )

+/Γ. We
define a Hecke stack Hecke≤μ as the fibred category in groupoids whose fibre at an affinoid

perfectoid Spa(R,R+) ∈ PerfFq
is the groupoid of quadruples (E ,E ′,D,f), where

• E and E ′ are G-bundles on Xsch
R ,

• D is an effective Cartier divisor of degree 1 on Xsch
R given by some untilt of R,

• the isomorphism

f : E |Xsch
R \D

∼−→ E ′|Xsch
R \D

is a modification, which is bounded by μ geometric fibrewisely.

Then we have morphisms

Hecke≤μ

←−
h

����
��
��
��
�� −→

h

����
���

���
���

�

BunG BunG×Div1X

defined by
←−
h (E ,E ′,D,f) = E ′ and

−→
h (E ,E ′,D,f) = (E ,D).

In the sequel, a diamond means a diamond on PerfFq
. Let 
 be a prime number different

from p. As we will need the natural functor (i.e. relative homology) constructed in

[FS21], let us briefly review it. For X a small v-stack, the derived category of solid

Q�-sheaves D�(X,Q�) is constructed in [FS21, Definition VII.1.17]. For what follows all

tensor products are solid tensor products as constructed in [FS21, Proposition VII.2.2].
For a map f : X → Y of small v-stacks, there is a functor

f� : D�(X,Q�)→D�(Y ,Q�)
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8 I. Gaisin and N. Imai

constructed in [FS21, §VII.3]. See [FS21, Proposition VII.3.1] for basic properties of this

functor. For an 
-cohomologically smooth morphism f : X → Y of diamonds, we put

f !Q� = lim←−
n

Rf !(Z/
nZ)⊗Z�
Q� ∈D�(X,Q�).

For an Artin v-stack X, let Dlis(X,Q�)⊂D�(X,Q�) be the subcategory defined in [FS21,

Definition VII.6.1].
Let D∞ be a diamond over C	

p with an action of a profinite group K0. Let f∞ : D∞ →
Spa(C	

p) be the structure morphism. Assume that the action of K0 on geometric points

of D∞ is free and the quotient diamond D∞/K0 is an 
-cohomologically smooth diamond

over C	
p. For an open subgroup K of K0, we put DK =D∞/K, and let fK : DK → Spa(C	

p)
be the induced morphism. Then we put

Hi
c(D∞,Q�) = lim−→

K⊂K0

RifK,�((f
!
KQ�)

∨)

for i ≥ 0. Let f : D → Spa(C	
p) be an 
-cohomologically smooth morphism of diamonds.

For F ∈D�(D,Q�) and i≥ 0, we put

Hi
c(D,F ) =Rif�(F ⊗ (f !Q�)

∨).

Let h : M→D be a G0-torsor such that

lim−→
K⊂G0

RfK,�((f
!
KQ�)

∨) ∈Dlis(Spa(C
	
p),Q�),

where G0 is a locally profinite group, K runs along compact open subgroups of G0 and
fK : M/K → Spa(C	

p). Then we can regard Hj
c (M,Q�) as a smooth representation of

G0. Let π be a smooth representation of G0 over Q�. We define Fπ ∈Dlis(D,Q�) as the

pushforward of M by π. Then we have a spectral sequence

Hi

(
G0,H

j
c (M,Q�)⊗π

)
⇒Hj−i

c (D,Fπ). (2.1)

This follows from [FS21, Proposition VII.3.1] as in the proof of [Ima19, Lemma 1.4].

3. Fargues’ conjecture

We recall the Hecke eigensheaf property in Fargues’ conjecture in the case where the
Langlands parameter is cuspidal and μ is minuscule. Up to some technicalities which were

worked out in [FS21], we refer the reader to [Far25, Conjecture 4.4(4)] for the general

case.
Let Ĝ and LG be the dual group and L-group of G over Q�. Let ϕ : WE → LG be a

cuspidal 
-adic L-parameter for G (cf. [Ima24a, Definition 1.15], [Far25, Definition 4.1]).

Let Sϕ be the centraliser of ϕ in Ĝ. We fix a Whittaker datum. For b ∈ B(G)basic, let
{πϕ,b,ρ}ρ∈̂Sϕ

be the L-packet corresponding to ϕ by the local Langlands correspondence

for the extended pure inner form Jb of G (cf. [Kal14, Conjecture 2.4.1]). We recall that
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Non-semi-stable loci in Hecke stacks and Fargues’ conjecture 9

we have a decomposition

BunssG =
∐

α∈π1(G)Γ

Bunα,ssG

into open and closed substacks. Let Fϕ be the object of Dlis(BunG,Q�) with an action

of Sϕ determined by the following conditions:

• The support of Fϕ is contained in BunssG.

• Let α∈ π1(G)Γ. Take a basic element b∈G(Ĕ) such that α= κ([b]). Let ρ∈ Ŝϕ. Let
ρ be the constant Q�-sheaf with action of Sϕ on Bunα,ssG associated to ρ. Let πϕ,b,ρ

be the object of Dlis(Bun
α,ss
G ,Q�) obtained as the pushforward of the Jb(E)-torsor

Tb under πϕ,b,ρ. Then we have

Fϕ|Bunα,ss
G

=
⊕

ρ∈̂Sϕ, ρ|Z( ̂G)Γ=α

ρ⊗πϕ,b,ρ, (3.1)

where we view α as an element of X∗(Z(Ĝ)Γ) under the canonical isomorphism

π1(G)Γ 
X∗(Z(Ĝ)Γ). The isomorphism class of the right-hand side of (3.1) does
not depend on the choice of b, since the same is true for Tb.

Then properties (1), (2) and (3) of [Far25, Conjecture 4.4] are immediate.
Take a representative μ′ ∈X∗(T )

+ of μ. Let Γ′ be the stabiliser of μ′ in Γ. We put

rμ = Ind
LG
̂G�Γ′rμ′,

where rμ′ is the highest-weight-μ′ irreducible representation of Ĝ�Γ′.
As in [FS21, IX.2], we can construct a functor

RepQ�
(LG)→D�(Hecke≤μ,Q�); V �→ S ′

V (3.2)

via the geometric Satake equivalence (cf. [Ima24b, §10]). Let IC′
μ be the image of rμ under

the functor (3.2).
Now we can state the Hecke eigensheaf property in Fargues’ conjecture:

Conjecture 3.1. We have

−→
h �(

←−
h ∗Fϕ⊗Q�

IC′
μ)

∼= Fϕ � (rμ ◦ϕ)

as objects of D�(BunG×Div1X,Q�) with actions of Sϕ.

4. Non-semi-stable locus

Let b,b′ ∈G(Ĕ). We have a natural morphism

yb : [Div1X/J̃b]
 [Spa(Fq)/J̃b]×Div1X
(xb,id)−−−−→ BunG×Div1X .
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10 I. Gaisin and N. Imai

We consider the cartesian diagram (i.e. every sub-square is cartesian)

Hecke≤μ
b,b′

��

←−
h b,b′

��

Hecke≤μ
b

��

��

[Div1X/J̃b]

yb

��
Hecke≤μ

−→
h ��

←−
h

��

BunG×Div1X

[Spa(Fq)/J̃b′ ]
xb′ �� BunG.

By the construction, for a perfectoid affinoid Fq-algebra (R,R+), the groupoid

Hecke≤μ
b,b′(R,R

+) consists of quadruples (E ,E ′,D,f), where

• E and E ′ are G-bundles on Xsch
R which are isomorphic to Eb and Eb′ fibrewisely

over Spa(R,R+).
• D is an effective Cartier divisor of degree 1 on Xsch

R ,
• f : E |Xsch

R \D → E ′|Xsch
R \D is a modification bounded by μ geometric fiberwisely

over Spa(R,R+).

Let T ≤μ
b,b′ be the J̃b-torsor over Hecke

≤μ
b,b′ obtained by considering an isomorphism φ : Eb

∼−→
E . Let Gr≤μ

b,b′ and M≤μ
b,b′ be the J̃b′ -torsors over Hecke≤μ

b,b′ and T ≤μ
b,b′ obtained by considering

an isomorphism φ′ : Eb′
∼−→ E ′, respectively. Then M≤μ

b,b′ is a J̃b′ -equivariant J̃b-torsor over

Gr≤μ
b,b′ . We have commutative diagrams

M≤μ
b,b′

��

��

T ≤μ
b,b′

��

��

Spa(Ĕ)	

��
Gr≤μ

b,b′
�� Hecke≤μ

b,b′
�� [Div1X/J̃b],

where the sub-squares are cartesian.
By [Far25, Proposition 3.20], T ≤μ

b,b′ is a diamond. Furthermore by [Sch17, Lemma 10.13,

Proposition 11.5], M≤μ
b,b′ is a diamond if b′ is basic.

Remark 4.1. The maps M≤μ
b,b′ → Gr≤μ

b,b′ and M≤μ
b,b′ → T ≤μ

b,b′ appearing in the above

diagram are generalised versions of the Hodge–Tate period map and the Gross–Hopkins
period map. Indeed if b′ = 1 and μ is minuscule then M≤μ

b,b′ →Gr≤μ
b,b′ is the usual Hodge–

Tate period map of a Rapoport–Zink space at infinite level associated to the isocrystal

b and M≤μ
b,b′ →T ≤μ

b,b′ is the usual Gross–Hopkins period map. On the other hand if b= 1

and μ is minuscule then M≤μ
b,b′ → Gr≤μ

b,b′ is the Gross–Hopkins map and M≤μ
b,b′ → T ≤μ

b,b′ is

the Hodge–Tate map associated to the isocrystal b′.
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For a finite-dimensional algebraic representation V of G and a rational number α, we
put

Filαb V =
⊕

α′≤−α

Vα′,

where

V =
⊕
α∈Q

Vα

is the slope decomposition given by νb ∈ X∗(A)
+
Q . This gives a filtration Filb on the

forgetful fibre functor ω : Rep(G) → VectE (cf. [SR72, IV, 2.1]). The stabiliser of Filbω

gives a parabolic subgroup P b of G. Let Lb be the centraliser of νb ∈X∗(A)
+
Q . Take a Levi

subgroup L of G containing Lb. We put P = LP b. Then, P is a parabolic subgroup of G

and [b]∈B(G) is the image of an element b00 ∈Lb(Ĕ). Let b0 be the image of b00 in L(Ĕ).
We take a cocharacter λ ∈X∗(A) so that P is associated to λ in the sense of [Spr98,

13.4.1]. Then we have a filtration Filλ on ω associated to λ.

We assume that [b′] is in the image of B(L)→B(G). Then Filλω induces the filtrations
FilλEb and FilλEb′ as fibre functors by the construction, because [b],[b′] are in the image

of B(L)→B(G) and L is the centraliser of λ in G.

We define a closed subspace C≤μ
b,b′ of Gr≤μ

b,b′ as a functor that sends a perfectoid affinoid

Fq-algebra (R,R+) to the isomorphism classes of (E ,E ′,D,f,φ′), where

• (E ,E ′,D,f) is as in Hecke≤μ
b,b′(R,R

+),

• φ′ : Eb′
∼−→ E ′ and f are compatible with FilλEb and FilλEb′ geometric fibrewisely in

the sense that following holds for any geometric point Spa(F,F+) of Spa(R,R+):
Take an isomorphism Eb

∼−→ E over Xsch
F . Let DF be a Cartier divisor of Xsch

F

determined by D. Then the composite

Eb|Xsch
F \DF

∼−→ E |Xsch
F \DF

f−→ E ′|Xsch
F \DF

φ′−1

−−−→ Eb′ |Xsch
F \DF

respects the filtrations FilλEb|Xsch
F \DF

and FilλEb′ |Xsch
F \DF

.

Remark 4.2. The condition that φ′ and f are compatible with FilλEb and FilλEb′ is

independent of choice of an isomorphism Eb
∼−→ E , because the automorphism group J̃b

of Eb respects the filtration FilλEb.

For μ ∈X∗(T ), we put

μ=
1

[Γ : Γμ]

∑
τ∈Γ/Γμ

τ(μ),

where Γμ is a stabiliser of μ in Γ, and let μ� denote the image of μ in π1(G)Γ.

Definition 4.3. (cf. [RV14, Definition 2.5]) We say that [b] ∈ B(G) is acceptable for
(μ,[b′]) if νb−νb′ ≤μ. We say that [b]∈B(G) is neutral for (μ,[b′]) if κG([b])−κG([b

′]) =μ�.

Let B(G,μ,[b′]) be the set of acceptable neutral elements in B(G) for (μ,[b′]).
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12 I. Gaisin and N. Imai

Remark 4.4. The set B(G,μ,[b′]) is a twisted analogue of the set B(G,μ), the latter due

to Kottwitz. We refer the reader to [Kot97, §6.2] for this definition.

To state our main results we need the notion of Hodge–Newton reducibility.

Definition 4.5 (cf. [RV14, Definition 4.28]). A triple ([b],[b′],μ) such that [b]∈B(G,μ,[b′])
and b′ is basic is called Hodge–Newton reducible, if there is a standard proper Levi

subgroup L of G and [b0],[b
′
0] ∈B(L) such that [b] and [b′] are the images of [b0] and [b′0],

respectively, μ factors through L, [b0] ∈ B(L,μ,[b′0]) and the action of νb0 on Ru(B) is

non-negative.

Lemma 4.6. Let R be a DVR with maximal ideal m, and M be an R-module such that

M 

⊕

1≤i≤nR/mki , where k1 ≥ ·· · ≥ kn is a sequence of non-negative integers. Let N be

a quotient of M generated by j elements, where j ≤ n. Then we have l(N)≤ k1+ · · ·+kj.

Further, if the equality holds, then N is a direct summand of M.

Proof. This follows from [Han21a, Lemma 3.2] by taking the Pontryagin dual.

The following proposition is a slight generalisation of [Han21a, Theorem 3.1], where the

slope of a semi-stable bundle is assumed to be zero.

Proposition 4.7. Assume that G=GLn. Let (k1 ≥ ·· · ≥ kn) be the sequence of integers

corresponding to μ ∈X∗(T )
+. Let (R,R+) be a perfectoid affinoid Fq-algebra. Let

f : E |Xsch
R \D

∼−→ E ′|Xsch
R \D

be a modification between G-bundles E and E ′ over Xsch
R along an effective Cartier divisor

of degree 1 which is equal to μ geometric fibrewisely. We view E and E ′ as vector bundles
of rank n. Let E + be a saturated sub-vector bundle of E such that

deg(E +
x )+

∑
1≤j≤rk(E +)

kn+1−j = rk(E +)s (4.1)

for every point x of Spa(R,R+).

Assume that E ′ is semi-stable of slope s geometric fibrewisely. Let j : Xsch
R \D →Xsch

R

be the open immersion. We put

E ′+ = j∗f(j
∗E +)∩E ′.

Then E ′+ is a semi-stable vector bundle of slope s such that rk(E ′+) = rk(E +).

Proof. We follow arguments in the proof of [Han21a, Theorem 3.1].

Take a modification f1 : O|Xsch
R \D

∼−→O(1)|Xsch
R \D of degree 1 along D. For a large N,

changing E ′, f and (k1, . . . ,kn) by E ′(N),

(idE ′ ⊗f⊗N
1 )◦f : E |Xsch

R \D
∼−→ E ′(N)|Xsch

R \D

and (k1 +N,. . . ,kn +N), respectively, we may assume that f extends to an injective

morphism f : E → E ′, which induces a morphism f+ : E + → E ′+. We put E − = E /E +

and E ′− = E ′/E ′+. Let f− : E − → E ′− be the morphism induced by f.
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First, we treat the case where R is a perfectoid field. In this case, E ′+ and E ′− are

vector bundles such that rk(E ′+) = rk(E +) and rk(E ′−) = rk(E −). Let Q+ and Q− be

the cokernel of f+ and f−, respectively. Then we have

l(Q−)≤
∑

1≤i≤rk(E −)

ki

by Lemma 4.6, since Q− is generated by rk(E −)-elements. Hence we have

l(Q+)≥
∑

1≤j≤rk(E +)

kn+1−j .

By this and (4.1), we have

deg(E ′+) = deg(E +)+ l(Q+)≥ rk(E +)s.

On the other hand, we have deg(E ′+)≤ rk(E +)s, since E ′ is semi-stable. Therefore, E ′+

is a semi-stable vector bundle of slope s.

The general case is reduced to the above case by the same argument as in [Han21a,
§3.2].

Lemma 4.8. Let (R,R+) be a perfectoid affinoid Fq-algebra. For any element α of
H1

et(X
sch
R ,O), there is a pro-etale extension (R′,R′+) of (R,R+) such that the image of α

in H1
et(X

sch
R′ ,O) is zero.

Proof. Any extension of O by O on Xsch
R splits after a pro-etale extension of (R,R+) by

[FF14, 6.3.1] and [Far25, Theorem 2.26] (cf. [KL15, Corollary 8.7.10]). This implies the

claim, since H1
et(X

sch
R ,O) parametrises the extensions of O by O on Xsch

R .

Assume that b′ is basic. Let U be the unipotent radical of P. Note that we have a

surjection

P −→ P/U 
 L,

where the second isomorphism is given by L ↪→ P → P/U .

Lemma 4.9. Let (R,R+) be a perfectoid affinoid Fq-algebra. Let EP be a P-bundle on

Xsch
R such that EP ×P L 
 Eb′0

. Then we have an isomorphism EP 
 Eb′0
×L P after a

pro-etale extension of (R,R+).

Proof. We follow arguments in the proof of [Far20, Proposition 5.16]. Let P act on U by

the conjugation. We put

U = EP ×P U.

Then H1
et(X

sch
R ,U ) parametrises the fibre of

H1
et(X

sch
R ,P )−→H1

et(X
sch
R ,L)

over the image of EP . Hence, it suffices to show that H1
et(X

sch
R ,U ) is trivial after a pro-

etale extension of (R,R+). This follows from Lemma 4.8, since U has a filtration whose

graded subquotients are semi-stable vector bundles of slope zero.

https://doi.org/10.1017/S1474748025101308 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101308


14 I. Gaisin and N. Imai

Lemma 4.10. Let μ1,μ2 ∈X∗(T )
+ such that μ1 ≤ μ2. Then Hecke≤μ1 ⊂ Hecke≤μ2 is a

closed substack.

Proof. By [Far25, Proposition 3.20], it is enough to prove Gr≤μ1

G ⊂ Gr≤μ2

G is closed

substack. The latter follows from the semi-continuity of the map |Gr| → X∗(T )
+/Γ in

[Far25, 3.3.2] (cf. [SW20, Proposition 19.2.3]).

We define a substack Heckeμ of Hecke≤μ by requiring the condition that modifications

are equal to μ geometric fibrewisely. Then Heckeμ is an open substack of Hecke≤μ by

Lemma 4.10. We use similar definitions and notations also for other spaces.
Let X be a scheme over E. Let FilVectX be the category of filtered vector bundles on

X. We consider the functor

ωλ : Rep(G)−→ FilVectX ; V �→ (V ⊗E OX,(FilλV )⊗E OX).

Let FilλBun
G
X be the category of functors ω : Rep(G)→ FilVectX which are isomorphic

to ωλ fpqc locally on X. Let BunPX be the category of P -bundles on X.

Lemma 4.11. There is an equivalence of categories

FilλBun
G
X −→ BunPX ; ω �→ Isom⊗

X(ωλ,ω),

where Isom⊗
X(ωλ,ω) is a functor from the category of schemes over X to the category of

sets which sends X ′ to the set of isomorphisms ωλ|X′ → ω|X′ as filtered tensor functors.

Proof. This follows from [Zie15, Theorem 4.42 and Theorem 4.43].

Proposition 4.12. Assume that ([b],[b′],μ) is Hodge–Newton reducible for L. Let (R,R+)

be a perfectoid affinoid Fq-algebra, and (E ,E ′,D,f) ∈Heckeμb,b′(R,R
+). Then, after taking

a pro-etale extension of (R,R+), there is a reduction

fP : EP |Xsch
R \D

∼−→ E ′
P |Xsch

R \D

of f to P such that EP 
 Eb0 ×LP and E ′
P 
 Eb′0

×LP .

Proof. By taking a pro-etale extension of (R,R+), we can take an isomorphism Eb 
 E .

We put EP = Eb0 ×LP . Then EP and the isomorphism

EP ×P G∼= Eb0 ×LG∼= Eb
∼−→ E

give a reduction of E to P. We put φP = idEb0
×LP . Then φP is a reduction of φ to P.

For any irreducible V ∈ Rep(G), the vector bundle E ′(V ) is semi-stable geometric
fibrewisely. By Proposition 4.7, we have a functorial construction of a filtration of E ′(V )

that is compatible under f(V ) with the filtration of E (V ) coming from EP by Lemma 4.11.

Since the category Rep(G) is semi-simple, the construction extends to all V ∈Rep(G) in
a functorial way. Hence, by Lemma 4.11, we have a reduction

fP : EP |Xsch
R \D

∼−→ E ′
P |Xsch

R \D

of f to P for some P -bundle E ′
P . By Lemma 4.9, E ′

P is isomorphic to Eb′0
×LP after taking

a pro-etale extension of (R,R+).
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Let P̃b′ be the stabiliser of FilλEb′ in J̃b′ . Then P̃b′ = Pb′(E) for a parabolic subgroup

Pb′ of Jb′ .

Proposition 4.13. Assume that ([b],[b′],μ) is Hodge–Newton reducible for L. Then the

action of P̃b′ on Grμb,b′ stabilises C
μ
b,b′ , and we have a natural J̃b′-equivariant isomorphism

Cμ
b,b′ ×

˜Pb′ J̃b′
∼−→Grμb,b′ .

Proof. The first claim follows from the definitions of P̃b′ and Grμb,b′ . The morphism

Cμ
b,b′ ×

˜Pb′ J̃b′ −→Grμb,b′

induced by the action of J̃b′ on Grμb,b′ is an epimorphism by Proposition 4.12.

We show the injectivity. Let g ∈ J̃b′(R,R
+) for a perfectoid affinoid Fq-algebra (R,R+).

Assume that g sends a point of Cμ
b,b′(R,R

+) to a point of Cμ
b,b′(R,R

+). Then g stabilises

FilλEb′ outside the Cartier divisor corresponding to R�. This implies g stabilises FilλEb′

on Xsch
R , since g stabilises Eb′ itself. Hence, we have g ∈ P̃b′(R,R

+).

Let Pμ
b,b′ be the inverse image of Cμ

b,b′ under M
μ
b,b′ →Grμb,b′ .

Corollary 4.14. Assume that ([b],[b′],μ) is Hodge–Newton reducible for L. Then the

action of P̃b′ on Mμ
b,b′ stabilises Pμ

b,b′ , and we have a natural (J̃b × J̃b′)-equivariant

isomorphism

Pμ
b,b′ ×

˜Pb′ J̃b′
∼−→Mμ

b,b′ .

Proof. This follows from Proposition 4.13.

We define a subsheaf J̃U
b of J̃b by

J̃U
b (S) =

{
g ∈ J̃b(S)

∣∣∣ g|FiljλEb
≡ idFiljλEb

mod Filj+1
λ Eb for all j

}

for S ∈ PerfFq
.

Let Ub′ be the unipotent radical of Pb′ . The inner form of L determined by b′ gives a

Levi subgroup Lb′ of Pb′ .

We use a notation that

griλ = Filiλ/Fil
i+1
λ

for any integer i. Let ρU be the half-sum of the positive roots α of T such that −α occurs

in the adjoint action of T on Lie(U). We put NU,b = 〈2ρU,νb〉.

Definition 4.15. Let F be a non-archimedean field with a valuation subring F+.

Let f : D → Spa(F,F+)	 be an 
-cohomologically smooth morphism of locally spatial
diamonds (cf. [Sch17, Definition 23.8]). We say that D is 
-contractible of pure dimension

d if f !F� = F�(d)[2d] and the trace morphism Rf!f
!F� → F� is a quasi-isomorphism.

Remark 4.16. In the situation of Definition 4.15, we have f�F�
∼= Rf!f

!F� by [FS21,

Proposition VII.5.2].
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Let � be a uniformiser of E. Let B denote the v-sheaf on PerfFq
given by B(S) =O(YS)

(cf. [FS21, Proposition II.2.1]).

Lemma 4.17. Let d and h be positive integers. Let fd,h : B
ϕd=�h ×Spa(Ĕ)	 → Spa(Ĕ)	

be the natural morphism.

(1) The v-sheaf Bϕd=�h ×Spa(Ĕ)	 is an 
-cohomologically smooth 
-contractible locally

spatial diamond of pure dimension h over Spa(Ĕ)	.

(2) The action of E× on fd,h,!Z� is given by || · ||−d.

(3) Let F be a perfectoid field over Ĕ and a ∈ Bϕd=�h

(F 	). Let fd,h,F � : Bϕd=�h ×
Spa(F 	) → Spa(F 	) denote the base change of fd,h. Then the action of a on

fd,h,F �,!Z� induced by the addition on Bϕd=�h

is trivial.

Proof. Replacing E by the unramified extension of degree d, we may assume that d= 1

(cf. [FF18, Remarque 4.2.2]). We proceed by induction on h≥ 1. For h= 1, the diamond
Bϕ=�×Spa(Ĕ)	 is isomorphic to Spa(Fq[[x

1/p∞
]])×Spa(Ĕ)	 by [Far25, 1.5.3]. The action

of � on Spa(Fq[[x
1/p∞

]])×Spa(Ĕ)	 is induced from the morphism

Spa(Fq[[x
1/qm ]])→ Spa(Fq[[x

1/qm ]]); x1/qm �→ x1/qm−1

of degree q by taking limit with respect to m≥ 0. On the other hand, the action of O×
E

on Spa(Fq[[x
1/p∞

]])× Spa(Ĕ)	 is induced from an isomorphism on Spa(Fq[[x
1/qm ]]) by

taking limit with respect to m ≥ 0. Further the addition of a ∈ Spa(Fq[[x
1/p∞

]])(F 	) on

Spa(F 	[[x1/p∞
]]) is induced from an isomorphism on Spa(Fq[[x

1/qm ]]) by taking limit with

respect to m≥ 0. Hence the claims hold for h= 1 by [Ima19, Lemma 1.3].

Assume that the result is true for Bϕ=�h−1

. We have an exact sequence

0−→ Bϕ=�h−1 ×Spa(Ĕ)	 −→ Bϕ=�h ×Spa(Ĕ)	 −→ A
1,	
Ĕ

−→ 0 (4.2)

of diamonds which splits pro-etale locally on A
1,	
Ĕ

as in [SW20, Example 15.2.9

(4)]. Therefore Bϕ=�h × Spa(Ĕ)	 satisfies the claims (1) and (2), since A
1,	
Ĕ

is an 
-

cohomologically smooth 
-contractible diamond of pure dimension 1 over Spa(Ĕ)	 and

the action of c ∈ E× on A
1,	
Ĕ

is induced from the isomorphism A1
Ĕ
→ A1

Ĕ
; x �→ cx.

The action of a ∈ Bϕ=�h

(F 	) on fd,h,F �,!Z� depends only on the image a ∈ A
1,	
Ĕ

(F 	) of

a under (4.2) since the claim (3) is true for Bϕ=�h−1

. Hence it suffices to show that the

action of a on fA,!Z� is trivial, where fA : A
1,	
F → Spa(F 	) is the natural morphism. This

follows from the fact that the addition by a on A
1,	
F is induced from an automorphism on

A1
F by [SW20, Proposition 10.2.3].

Let δP : P (E)→Q
×
� be the modulus character of P (E). Let Ab be the split centre of Jb.

Since Jb is an inner form of Lb, we can view Ab as an algebraic subgroup of Lb. We put

δP,Ab
= δP |Ab(E). Let g ∈ Jb(E) act on J̃U

b by the conjugation right action u �→ g−1ug.
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Lemma 4.18. Let fJ : J̃
U
b ×Spa(Ĕ)	 → Spa(Ĕ)	 be the natural morphism.

(1) The functor J̃U
b ×Spa(Ĕ)	 is an 
-cohomologically smooth 
-contractible diamond

of pure dimension NU,b over Spa(Ĕ)	.

(2) Let κ : Jb(E)→Q
×
� be the character of the action of Jb(E) on fJ,!Q� induced by the

conjugation right action of Jb(E) on J̃U
b . Then we have κ|Ab(E) = δ−1

P,Ab
.

(3) Let F be a perfectoid field over Ĕ. Then the action of J̃U
b (F 	) on fJ,!Q� induced by

the addition on J̃U
b is trivial.

Proof. For i≥ 0, we define an algebraic subgroup Ui of P by

Ui(R) =
{
g ∈ P (R)

∣∣∣ g|FiljλVR
≡ idFiljλVR

mod Filj+i+1
λ VR for all j and V ∈ Rep(G)

}

for any E -algebra R, where VR = V ⊗E R. Then U0 = U , and Ui are normal in P for all
i. Similarly, we define a subsheaf J̃U

b,i of J̃b for i≥ 0 by

J̃U
b,i(S) =

{
g ∈ J̃b(S)

∣∣∣ g|FiljλEb
≡ idFiljλEb

mod Filj+i+1
λ Eb for all j

}

for S ∈PerfFq
. Then J̃U

b,0 = J̃U
b . Let ϕ act on GĔ and its subgroup Ui,Ĕ by g �→ b0σ(g)b

−1
0 .

Let S be a perfectoid space over Spa(Ĕ)	. By the internal definition of a G-torsor on the
Fargues–Fontaine curve, we see that J̃U

b,i(S) is equal to the sections of

YS ×ϕUi,Ĕ −→XS .

Hence, (J̃U
b,i/J̃

U
b,i+1)(S) is equal to the sections of

YS ×ϕ (Ui,Ĕ/Ui+1,Ĕ)−→XS .

Let L act on Ui by the conjugation. Let Lie(G) be the adjoint representation of G. Then
the action of L on Lie(G) induces an action of L on Lie(Ui/Ui+1). We have an isomorphism

Ui/Ui+1 
 Lie(Ui/Ui+1)

as representations of L, since Ui/Ui+1 is isomorphic to Gdi
a for some di as linear algebraic

groups. We have the equality

Lie(Ui) = FiliλLie(G)

by the definition of the both sides. Hence we have an isomorphism

Lie(Ui/Ui+1)
 griλLie(G)

as representations of L. As a result we have an isomorphism

Ui/Ui+1 
 griλLie(G) (4.3)

as representations of L. The element b0 ∈ L gives an L-bundle Eb0,S : Rep(L)→ BunXS
.

Then we have

YS ×ϕ (Ui,Ĕ/Ui+1,Ĕ)
 Eb0,S(gr
i
λLie(G))
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by (4.3). Hence, (J̃U
b,i/J̃

U
b,i+1)(S) is equal to the sections of

Eb0,S(gr
i
λLie(G))−→XS .

Then D acts on griλLie(G) via νb and the conjugation. This action gives a slope

decomposition

griλLie(G) =
⊕

1≤j≤mi

V−αi,j

where αi,j are positive rational numbers, since L contains the centraliser Lb of νb. Then

we have an isomorphism

Eb0(gr
i
λLie(G))


⊕
1≤j≤mi

O(αi,j). (4.4)

Hence (J̃U
b,i/J̃

U
b,i+1)×Spa(Ĕ)	 is an 
-cohomologically smooth 
-contractible diamond by

(4.4) and Lemma 4.17.
We show that J̃U

b,i×Spa(Ĕ)	 is an 
-cohomologically smooth 
-contractible diamond by

a decreasing induction on i. The claim is trivial for enough large i, since J̃U
b,i×Spa(Ĕ)	 is

one point for such i. We see that Ui,Ĕ is isomorphic to Ui+1,Ĕ× (Ui,Ĕ/Ui+1,Ĕ) as schemes

over Ui,Ĕ/Ui+1,Ĕ with actions of ϕ by [SGA70, XXVI Proposition 2.1] and its proof.

Hence, J̃U
b,i×Spa(Ĕ)	 is isomorphic to J̃U

b,i+1× (J̃U
b,i/J̃

U
b,i+1)×Spa(Ĕ)	 as diamonds over

(J̃U
b,i/J̃

U
b,i+1)×Spa(Ĕ)	. Therefore, we see that J̃U

b,i×Spa(Ĕ)	 → (J̃U
b,i/J̃

U
b,i+1)×Spa(Ĕ)	

is an 
-cohomologically smooth morphism with 
-contractible geometric fibre, since

J̃U
b,i+1×Spa(Ĕ)	 is an 
-cohomologically smooth 
-contractible diamond by our induction

hypothesis. Then we see that J̃U
b,i×Spa(Ĕ)	 is an 
-cohomologically smooth 
-contractible

diamond, since we know that (J̃U
b,i/J̃

U
b,i+1)×Spa(Ĕ)	 is an 
-cohomologically smooth 
-

contractible diamond. The claim on the dimension follows from the above arguments.

The claim (2) follows from the arguments above, Lemma 4.17 (2) and a calculation of δP
(cf. [Ren10, V.5.4]). The claim (3) follows from Lemma 4.17 (3) by induction on i for J̃U

b,i

in the same way as the proof of Lemma 4.17 (3).

Remark 4.19. Some integral version of J̃b is studied in [CS17, Proposition 4.2.11]. The

character κ in Lemma 4.18 (2) is explicitly determined in [HI25, Corollary 4.6].

Let X∗(T )
L+ be the set of L-dominant cocharacters in X∗(T ). We put

Ib0,b′0,μ,L =
{
[μ′] ∈X∗(T )

L+/Γ
∣∣∣ μ′ is G-conjugate to μ and [b0] ∈B(L,μ′,[b′0])

}
.

We claim the set Ib0,b′0,μ,L consists of a single element. To prove this we begin with a

preliminary lemma.

Lemma 4.20. Given two cocharacters μ,μ′ ∈X∗(T ) which are G-conjugate, then there

exists an element w of the absolute Weyl group of T in G such that w ·μ= μ′.

Proof. Let Lμ be the centraliser of the cocharacter Gm
μ−→ T → G and define similarly

Lμ′ . Then, since μ′ = gμg−1 for some g ∈ G(E), it follows that Lμ′ = gLμg
−1. Since
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gTg−1 ⊆ Lμ′ is a maximal torus, there exists l ∈ Lμ′ such that gTg−1 = lT l−1. This

means that l−1g normalises T and gives an element w in the absolute Weyl group of T
in G. Then we have w ·μ= μ′.

Lemma 4.21. Ib0,b′0,μ,L consists of a single element.

Proof. By the definition of Hodge–Newton reducibility, we have [μ]∈ Ib0,b′0,μ,L. Let [μ
′]∈

Ib0,b′0,μ,L be another element. Let Δ(G,T ) be the set of simple roots of G with respect to

T, where the positivity of roots is given by B. Since μ is G-dominant, μ′ is G-conjugate
to μ and μ �= μ′, we have that μ′ is not G-dominant and

μ−μ′ =
∑

α∈Δ(G,T )

nαα
∨, (4.5)

where nα ≥ 0 by Lemma 4.20, [Hum78, 10.3 Lemma B] and [Bou81, VI §1 Proposition

18]. Since μ′ is not G-dominant, but L-dominant, there is α0 ∈ Δ(G,T ) \Δ(L,T ) such
that 〈μ′,α0〉< 0. Then we have

〈μ−μ′,α0〉> 0. (4.6)

Substituting (4.5) to (4.6), we have∑
α∈Δ(G,T )

nα〈α∨,α0〉> 0.

This implies nα0
> 0, since we have 〈α∨,α0〉 ≤ 0 for α �= α0 by [Hum78, 10.1 Lemma].

Recall that

π1(L) =X∗(T )
/∑

α∈Δ(L,T )Zα
∨, (4.7)

by the proof of [Bor98, Proposition 1.10] (cf. [RR96, §1.13]). Let μ� and μ′� be the images

in π1(L)
Γ
Q of μ and μ′ in X∗(T )

Γ
Q.

We show that μ� �= μ′�. We write

μ−μ′ =
∑

α∈Δ(G,T )

mαα
∨,

where mα ∈Q. Then the equation

μ−μ′ = [Γ : Γμ∩Γμ′ ]−1

⎛
⎝(μ−μ′)+

∑
1 �=τ∈Γ/(Γμ∩Γμ′ )

τ(μ−μ′)

⎞
⎠

implies mα0
> 0, since nα0

> 0 and nα ≥ 0 for all α ∈ Δ(G,T ). Thus when passing to

π1(L)
Γ the term α∨

0 is not killed according to (4.7) and so μ� �= μ′� as claimed. This

implies

μ� �= μ′� ∈ π1(L)Γ,
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since μ� and μ′� are images of μ� and μ′� under the map

π1(L)Γ → π1(L)
Γ
Q; [g] �→

1

[Γ : Γg]

∑
τ∈Γ/Γg

τ(g),

where g ∈ π1(L) and Γg is the stabiliser of g in Γ. This contradicts that [μ′] ∈ Ib0,b′0,μ,L,
because we have

μ′� = κL([b0])−κL([b
′
0]) = μ� ∈ π1(L)Γ

by [b0] ∈B(L,μ′,[b′0]) and [b0] ∈B(L,μ,[b′0]).

Definition 4.22. Let R be a DVR with uniformiser π, and quotient field F. Let k1 ≥
·· · ≥ kn be a sequence of integers. We say that the type of g ∈ GLn(F ) is (k1, . . . ,kn) if

we have

g ∈GLn(R)

⎛
⎜⎝
πk1

. . .

πkn

⎞
⎟⎠GLn(R).

Lemma 4.23. Let R be a DVR with uniformiser π, and quotient field F. We consider

the subgroups

L=

⎛
⎜⎝
GLn1

. . .

GLnm

⎞
⎟⎠⊂ P =

⎛
⎜⎝
GLn1

0
. . .

∗ GLnm

⎞
⎟⎠⊂GLn

of GLn. Let g ∈ P (F ), and gL be the image of g in the Levi quotient. We regard gL as an
element of L(F ). We put Nl = n1+ · · ·+nl for 0≤ l ≤m.

Let k1 ≥ ·· · ≥ kn be a sequence of integers. Assume that the type of

(gij)Nl+1≤i,j≤n ∈GLn−Nl
(F )

is (kNl+1, . . . ,kn) for 0≤ l ≤m−1. Then we have g−1
L g ∈ P (R).

Proof. By multiplying a power of π to g, we may assume that kn ≥ 0. By the assumption,
we see that the type of

(gij)Nl+1≤i,j≤Nl+1
∈GLnl+1

(F )

is (kNl+1, . . . ,kNl+1
) for 0 ≤ l ≤ m− 1 using Lemma 4.6. Hence, we may assume that

gL = diag(πk1, . . . ,πkn).
Let v be a normalised valuation of F. Then, it suffices to show that v(gij) ≥ ki for all

1≤ j < i≤ n. Assume it does not hold, and take the biggest i0 such that there is j0 < i0
satisfying v(gi0j0)< ki0 . Then the type of

(gij)i0+1≤i,j≤n ∈GLn−i0(F )

is (ki0+1, . . . ,kn). Using this and Lemma 4.6, we can show that the type of

(gij)1≤i,j≤i0 ∈GLi0(F )
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is (k1, . . . ,ki0). This implies that v(gij)≥ ki0 for all 1≤ i,j ≤ i0. This contradicts the choice

of i0.

In the sequel, we simply write (R�,f) for

(Eb,Eb′,R
�,f,idEb

,idEb′ ) ∈Mμ
b,b′(R,R

+).

Every point of Mμ
b,b′(R,R

+) is represented by a datum of the above form, since we have

an isomorphism of data

(E ,E ′,R�,f,φ,φ′)
 (Eb,Eb′,R
�,φ′−1 ◦f ◦φ,idEb

,idEb′ )

for

(E ,E ′,R�,f,φ,φ′) ∈Mμ
b,b′(R,R

+).

We write DR� for the degree-1 Cartier divisor given by R�.
We define a morphism

Φ: Mμ
b0,b′0

× J̃U
b −→Pμ

b,b′

by sending

(
(R�,fL),g

)
∈
(
Mμ

b0,b′0
× J̃U

b

)
(R,R+)

to (
R�,(fL×LP )◦g

)
∈ Pμ

b,b′(R,R
+)

for a perfectoid affinoid Fq-algebra (R,R+).

Proposition 4.24. The morphism

Φ: Mμ
b0,b′0

× J̃U
b −→Pμ

b,b′

is an isomorphism.

Proof. Let (R,R+) be a perfectoid affinoid Fq-algebra, and

(
(R�,fL),g

)
∈
(
Mμ

b0,b′0
× J̃U

b

)
(R,R+).

Then we have Φ
(
(R�,fL),g

)
×P L = (R�,fL). Further, (R

�,fL) and Φ
(
(R�,fL),g

)
recover

g. Hence, we have the injectivity of Φ.

Let

(R�,f) ∈ Pμ
b,b′(R,R

+).

By the definition of Pμ
b,b′ , we have a reduction

fP : (Eb0 ×LP )|Xsch
R \D

R�

∼−→ (Eb′0
×LP )|Xsch

R \D
R�

of f to P. We put fL = fP ×P L.
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We show that

(fL×LP )−1 ◦fP ∈ J̃U
b (R,R+). (4.8)

For this, it suffices to show (4.8) after taking realisations for all V ∈ Rep(G). Hence, we
may assume that G=GLn.

We view GLn-bundles as vector bundles. We take the diagonal torus and the upper-half

Borel subgroup as T and B. Then we have

L=

⎛
⎜⎝
GLn1

. . .

GLnm

⎞
⎟⎠⊂ P =

⎛
⎜⎝
GLn1

0
. . .

∗ GLnm

⎞
⎟⎠⊂GLn.

We write

b0 = (b1, . . . ,bm), b′0 = (b′1, . . . ,b
′
m) ∈GLn1

(Ĕ)×·· ·GLnm
(Ĕ).

Then we have a decomposition

Eb =
⊕

1≤i≤m

Ebi, Eb′ =
⊕

1≤i≤m

Eb′i

as vector bundles. We put

FiljEb =
⊕

j≤i≤m

Ebi, FiljEb′ =
⊕

j≤i≤m

Eb′i

for 1≤ j ≤m+1. Then f : Eb|Xsch
R \D

R�
→ Eb′ |Xsch

R \D
R�

respects these filtrations. We can

write

f =
⊕

1≤i≤j≤m

fij : Eb|Xsch
R \D

R�
−→ Eb′ |Xsch

R \D
R�
,

where fij : Ebi |Xsch
R \D

R�
→ Eb′j

|Xsch
R \D

R�
. Then the morphism

f−1
jj ◦fij : Ebi |Xsch

R \D
R�

−→ Ebj |Xsch
R \D

R�

extends to a morphism Ebi → Ebj by Lemma 4.23. Hence we have (4.8) (cf. the proof of
[Han21a, Theorem 4.1]).

It remains to show that (R�,fL) ∈Mμ
b0,b′0

(R,R+). It suffices to show that the type of

the modification fL is equal to μ geometric fibrewisely. Let μ′ be the type of fL at a

geometric point of Spa(R,R+). The type of fL ×L G is equal to μ by (4.8). Hence, we

have μ′ = μ by Lemma 4.21.

For a diamond D over Spa(Ĕ)	, let DC�
p
denote D×Spa(Ĕ)� Spa(C

	
p). Let κ : Jb(E)→Q

×
�

be the character in Lemma 4.18.

Lemma 4.25.

(1) We have

lim−→
K′⊂Jb′ (E)

RfK′,�((f
!
K′Q�)

∨) ∈Dlis(Spa(C
	
p),Q�), (4.9)
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where K ′ runs along compact open subgroups of Jb′(E) and fK′ : Mμ
b,b′,C�

p
/K ′ →

Spa(C	
p). Further we can regard this as an object of the derived category of smooth

representations of Jb(E)×Jb′(E).

(2) We have an isomorphism

Hi
c

(
Mμ

b0,b′0,C
�
p
,Q�

)
⊗κ

∼−→H
i+2NU,b
c

(
Pμ
b,b′,C�

p
,Q�

)
as smooth representations of Jb(E)×Lb′(E).

Proof. We can define RΓc(Mμ
b,K,b′,C�

p
) and RΓc(Mμ

b,b′,K′,C�
p
) in the same way as [Ima19,

§3] replacing IC′
μ by jμ,�j

∗
μIC

′
μ, where jμ : Hecke

μ →Hecke≤μ. Then (4.9) coincides with

lim−→
K′⊂Jb′ (E)

RΓc(Mμ
b,b′,K′,C�

p
)

up to shift and Tate twist. By the proof of [FS21, Proposition IX.2.1] and [FS21, Corollary

VI.6.6], we can show that

lim−→
K⊂Jb(E)

RΓc(Mμ
b,K,b′,C�

p
), lim−→

K′⊂Jb′ (E)

RΓc(Mμ
b,b′,K′,C�

p
) ∈Dlis(Spa(C

	
p),Q�).

In the same way as [Ima19, Proposition 3.16], we can show that

lim−→
K⊂Jb(E)

RΓc(Mμ
b,K,b′,C�

p
)∼= lim−→

K′⊂Jb′ (E)

RΓc(Mμ
b,b′,K′,C�

p
).

Hence the claims in (1) follow.
By (1), we can regard Hi

c

(
Mμ

b0,b′0,C
�
p
,Q�

)
as a smooth representation of Jb0(E)×Jb′0(E).

Then claim (2) follows from Lemma 4.18 and Proposition 4.24.

Theorem 4.26. Assume that ([b],[b′],μ) is Hodge–Newton reducible for L. Then we have

an isomorphism

H
i+2NU,b
c

(
Mμ

b,b′,C�
p
,Q�

)

 Ind

Jb′ (E)
Pb′ (E)H

i
c

(
Mμ

b0,b′0,C
�
p
,Q�

)
⊗κ

as smooth Jb(E)×Jb′(E)-representations.

Proof. This follows from Corollary 4.14 and Lemma 4.25.

Lemma 4.27. Let (R,R+) be a perfectoid affinoid Fq-algebra. Let

(E ,E ′,R�,f,φ,φ′) ∈Mμ
b,b′(R,R

+).

For any g ∈ Ub′(E)(R,R+), there exists h ∈ J̃U
b (R,R+) such that g ◦f ′ = f ′ ◦h, where we

put

f ′ = φ′−1 ◦f ◦φ : Eb|Xsch
R \D

R�
→ Eb′ |Xsch

R \D
R�
.

Proof. Let j : Xsch
R \DR� →Xsch

R be the open immersion. Let V ∈ Rep(G). We have an

embedding

Eb(V ) ↪→ j∗j
∗Eb(V )

∼−→ j∗j
∗Eb′(V ),
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where the second isomorphism is induced by f ′. We have an action of g on j∗j
∗Eb′(V ). It

suffices to show that g stabilises FiliλEb(V ) and induces the identity on griλEb(V ) for all i.

We show this claim by a decreasing induction on i. For enough large i, we have
FiliλEb(V ) = 0 and the claim is trivial for such i. Assume that the claim is true for i+1.

We have the natural embedding

griλEb(V ) ↪→ j∗j
∗griλEb(V )

∼−→ j∗j
∗griλEb′(V )

where the second isomorphism is induced by f ′. We have a commutative diagram

griλEb(V )
� � ��

g

��

j∗j
∗griλEb′(V )

j∗j
∗griλg

��(
gFiliλEb(V )

)
/Fili+1

λ Eb(V ) �
� �� j∗j∗griλEb′(V ),

where the bottom morphism is induced by the natural inclusion

gFiliλEb(V )⊂ g
(
j∗j

∗FiliλEb′(V )
)
= j∗j

∗FiliλEb′(V ).

By this diagram, we see that gFiliλEb(V ) = FiliλEb(V ), since griλg is the identity on

griλEb′(V ). Hence, g stabilises FiliλEb(V ). Further, g induces the identity on griλEb(V )

again by the above diagram, since griλg is the identity.

Lemma 4.28. The action of Ub′(E) on Hi
c

(
Pμ
b,b′,C�

p
,Q�

)
is trivial.

Proof. Let pM : Pμ
b,b′

∼= Mμ
b0,b′0

× J̃U
b → Mμ

b0,b′0
be the projection, where the first

isomorphism is given by Proposition 4.24. It suffices to show that the action of Ub′(E)

on pM,!Q� is trivial. It suffices to show this after the pullback to each geometric point of
Mμ

b0,b′0
. It follows from Lemma 4.18 (3) and Lemma 4.27.

Proposition 4.29. Let π be a smooth representation of Jb′(E). Assume that ([b],[b′],μ)
is Hodge–Newton reducible for L and that the Jacquet module of π with respect to Pb′

vanishes. Then we have

HomJb′ (E)

(
π,Hi

c

(
Mμ

b,b′,C�
p
,Q�

))
= 0.

Proof. This follows from Theorem 4.26 and Lemma 4.28.

We define tb,b′ : T μ
b,b′,C�

p
→ [Spa(Fq)/Jb′(E)] as the composites

T μ
b,b′,C�

p
−→ T μ

b,b′ −→Heckeμb,b′ −→ [Spa(Fq)/Jb′(E)].

We put
←−
t b,b′ = xb′ ◦ tb,b′ .

Theorem 4.30. Assume that b is not basic and ([b],[b′],μ) is Hodge–Newton reducible

for L. Then we have

Hi
c

(
T μ
b,b′,C�

p
,
←−
t
∗
b,b′Fϕ

)
= 0.
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Proof. We have

←−
t
∗
b,b′Fϕ = t∗b,b′x

∗
b′Fϕ = t∗b,b′

⎛
⎜⎝ ⊕

ρ∈̂Sϕ, ρ|Z( ̂G)Γ=κ(b′)

ρ⊗πϕ,b′,ρ

⎞
⎟⎠

by (3.1). We take ρ ∈ Ŝϕ such that ρ|Z( ̂G)Γ = κ(b′). Then it suffices to show that

Hi
c

(
T μ
b,b′,C�

p
,t∗b,b′πϕ,b′,ρ

)
= 0.

The pullback of πϕ,b′,ρ to Mμ
b,b′ is a constant sheaf, since the map Mμ

b,b′ →
[Spa(Fq)/Jb′(E)] factorises via Spa(Fq). Hence, there is a Hochschild–Serre spectral
sequence

Hi

(
Jb′(E),Hj

c

(
Mμ

b,b′,C�
p
,Q�

)
⊗πϕ,b′,ρ

)
⇒Hj−i

c

(
T μ
b,b′,C�

p
,t∗b,b′πϕ,b′,ρ

)

by (2.1) and Lemma 4.25. We show that

Hi

(
Jb′(E),Hj

c

(
Mμ

b,b′,C�
p
,Q�

)
⊗πϕ,b′,ρ

)
= 0

for all i and j. Take a projective resolution

· · · −→ V1 −→ V0 −→Hj
c

(
Pμ
b,b′,C�

p
,Q�

)
as smooth Lb′(E)-representations. By Lemma 4.25 and Theorem 4.26 we have

Hj
c

(
Mμ

b,b′,C�
p
,Q�

)

 Ind

Jb′ (E)
Pb′ (E)H

j
c

(
Pμ
b,b′,C�

p
,Q�

)
as smooth Jb′(E)-representations. Moreover, the induction on the right-hand-side is

parabolic by Lemma 4.28. Parabolic induction preserves projective objects, since it has

a Jacquet functor as the right adjoint functor by Bernstein’s second adjoint theorem (cf.
[Bus01, Theorem 3]) and the Jacquet functor is exact. Note also that parabolic induction

is exact. Thus we obtain the projective resolution

· · · −→ Ind
Jb′ (E)
Pb′ (E)V1 −→ Ind

Jb′ (E)
Pb′ (E)V0 −→Hj

c

(
Mμ

b,b′,C�
p
,Q�

)
as smooth Jb′(E)-representations. Finally the right adjoint of −⊗πϕ,b′,ρ in the category
of smooth Jb′(E)-representations is −⊗π∗

ϕ,b′,ρ, where π
∗
ϕ,b′,ρ is the smooth dual of πϕ,b′,ρ.

Both functors are exact and so in particular −⊗πϕ,b′,ρ preserves exact sequences and

projective objects. Thus we obtain the projective resolution

· · · −→ Ind
Jb′ (E)
Pb′ (E)V1⊗πϕ,b′,ρ −→ Ind

Jb′ (E)
Pb′ (E)V0⊗πϕ,b′,ρ −→Hj

c

(
Mμ

b,b′,C�
p
,Q�

)
⊗πϕ,b′,ρ.

Note that Pb′ is a proper parabolic subgroup of Jb′ , since b is not basic. For i ≥ 0, we

have (
πϕ,b′,ρ⊗ Ind

Jb′ (E)
Pb′ (E)Vi

)
Jb′ (E)

= 0,

since πϕ,b′,ρ is cuspidal. Hence we have the claim.
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5. Non-abelian Lubin–Tate theory

Assume that G=GLn and μ(z) = diag(z,1, . . . ,1). In this case, Sϕ =Gm and Hecke≤μ =
Heckeμ. We simply write πϕ,b for πϕ,b,1 for any [b] ∈B(GLn)basic. We put

b1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 �
1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

∈GLn(E).

Then we have a bijection

Z
∼−→B(GLn)basic; N �→ bN1 .

The following proposition is a consequence of non-abelian Lubin–Tate theory.

Proposition 5.1. We put b = bN1 for an integer N. Assume that N ≡ 0,1 mod n. Then

we have

y∗b
−→
h �(

←−
h ∗Fϕ⊗ IC′

μ) = y∗b (Fϕ �ϕ). (5.1)

Proof. We show the claim in the case where N ≡ 1 mod n using arguments in [MFO16,

Chapter 23]. See arguments in [Far25, 8.1] for the case where N ≡ 0 mod n. Suppose that
N =mn+1 for some m ∈ Z. The following lemma provides an explicit description of the

stack Hecke≤μ
b .

Lemma 5.2. Let Spa(F,F+) be a geometric point in PerfFq
. Let E be a vector bundle of

rank n on Xsch
F having a degree-one modification fibrewise by Eb

0→ Eb → E → F → 0,

where F is a torsion coherent sheaf of length 1. Then E is isomorphic to O(−m)n.

Proof. This follows from [FF14, Theorem 2.94] by dualising the modification and twisting
by O(−m).

We put b′ = bnm1 . Then, we have isomorphisms

Hecke≤μ
b,b′ 
Hecke≤μ

b

by Lemma 5.2.

Lemma 5.3. Let M∞
LT be the Lubin–Tate space over Ĕ at infinite level. Then we have

an isomorphism M≤μ
b,b′ 
M∞,	

LT , that is compatible with actions of GLn(E)×Jb(E) and
Weil descent data.

Proof. For a perfectoid affinoid Fq-algebra (R,R+), the set M≤μ
b,b′(R,R

+) consists of 6-

tuples (E ,E ′,R�,f,φ,φ′), where

https://doi.org/10.1017/S1474748025101308 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101308


Non-semi-stable loci in Hecke stacks and Fargues’ conjecture 27

• (E ,E ′,DR�,f) ∈Hecke≤μ
b(0)

• φ : Eb
∼−→ E and φ′ : Eb′

∼−→ E ′ are isomorphisms.

Hence, the claim follows from [SW13, Proposition 6.3.9] by dualising the modification

and twisting by O(−m).

Let

pb : Spa(C
	
p)−→ Spa(Ĕ)	 −→ [Div1X/J̃b] (5.2)

be the natural projection. The equality (5.1) is equivalent to the equality

p∗by
∗
b

−→
h �(

←−
h ∗Fϕ⊗ IC′

μ) = p∗by
∗
b (Fϕ �ϕ) (5.3)

with action of Jb(E)×WE . Then the right-hand side of (5.3) is πϕ,b⊗ϕ as a representation

of Jb(E)×WE . Hence it suffices to show that the cohomology of the left-hand side of (5.3)

vanishes outside degree zero, and is equal to πϕ,b⊗ϕ in degree zero as representations of

Jb(E)×WE .
The i -th cohomology of the left-hand side of (5.3) is equal to

Hi+n−1
c

(
T ≤μ
b,b′,C�

p
,
←−
t ∗
b,b′Fϕ

)(n−1

2

)
.

We have

←−
t ∗
b,b′Fϕ = t∗b,b′πϕ,1

by (3.1), since πϕ,b′ = πϕ,1 in our case. We have a Hochschild–Serre spectral sequence

Hi

(
GLn(E),Hj

c

(
M≤μ

b,b′,C�
p
,Q�

)
⊗πϕ,1

)
⇒Hj−i

c

(
T ≤μ
b,b′,C�

p
,t∗b,b′πϕ,1

)

by (2.1) and Lemma 4.25. We put

GLn(E)0 = {g ∈GLn(E) | det(g) ∈ O×
E}.

Then we have

Hj
c

(
M∞,	

LT,C�
p
,Q�

)
= c-Ind

GLn(E)
GLn(E)0H

j
c

(
M∞,(0),	

LT,C�
p
,Q�

)

for a connected component M∞,(0)
LT of M∞

LT (cf. [Far04, 4.4.2]). By Lemma 5.3, we have

Hj
c

(
M≤μ

b,b′,C�
p
,Q�

)
⊗πϕ,1 =

(
c-Ind

GLn(E)
GLn(E)0H

j
c

(
M∞,(0),	

LT,C�
p
,Q�

))
⊗πϕ,1

= c-Ind
GLn(E)
GLn(E)0

(
Hj

c

(
M∞,(0),	

LT,C�
p
,Q�

)
⊗πϕ,1|GLn(E)0

)
.

Therefore one has

Hi

(
GLn(E),Hj

c

(
M≤μ

b,b′,C�
p
,Q�

)
⊗πϕ,1

)
=Hi

(
GLn(E)0,Hj

c

(
M∞,(0),	

LT,C�
p
,Q�

)
⊗πϕ,1|GLn(E)0

)

by Shapiro’s Lemma. Now πϕ,1|GLn(E)0 is a compact representation and thus it is a

projective object in the category of smooth GLn(E)0-representations. Hence no higher
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homology groups appear and so(
Hj

c

(
M∞,	

LT,C�
p
,Q�

)
⊗πϕ,1

)
GLn(E)

=Hj
c

(
T ≤μ
b,b′,C�

p
,t∗b,b′πϕ,1

)
.

Hence, the claim follows from the non-abelian Lubin–Tate theory.

6. Hecke eigensheaf property

Assume that G=GL2 and μ(z) = diag(z,1) in this section.

Lemma 6.1. Let Spa(F,F+) be a geometric point in PerfFq
. Let

0−→ E −→ E ′ −→ F −→ 0

be an exact sequence of coherent sheaf over Xsch
F , where E and E ′ are vector bundles of

rank 2 and F is a torsion coherent sheaf of length 1. Assume that E is not semi-stable and

E ′ is semi-stable. Then E 
 O(m)⊕O(m− 1) and E ′ 
 O(m)⊕O(m) for some integer
m.

Proof. The vector bundle E ′ is isomorphic to O(m+ 1
2 ) or O(m)⊕O(m) for some integer

m, since it is semi-stable.

If E ′ is isomorphic to O(m+ 1
2 ), then E is isomorphic to O(m)⊕O(m) by [FF14,

Theorem 2.9]. This contradicts the condition that E is not semi-stable.

Assume E ′ is isomorphic to O(m)⊕O(m). Then E is isomorphic to O(m1)⊕O(m2)

with m1,m2 ≤m or O(n+ 1
2 ) with n≤m−1 by [FF14, 6.3.1]. By considering deg(E )+1=

deg(E ′), the possible cases are O(m)⊕O(m− 1) or O(m− 1
2 ). However, the latter case

does not happen, since E is not semi-stable.

Proposition 6.2. Then we have

supp
−→
h �(

←−
h ∗Fϕ⊗ IC′

μ)⊂ BunssG×Div1X .

Proof. Take a non-basic element [b] ∈ B(G). Then it suffices to show that p∗by
∗
b

−→
h �

←−
h ∗

Fϕ = 0, where pb is defined at (5.2). We consider the following cartesian diagram:

T ≤μ,ss
b,C�

p

��

←−
h b,ss

��

T ≤μ
b,C�

p

��

��

Spa(C	
p)

yb◦pb

��
Hecke≤μ

−→
h ��

←−
h

��

BunG×Div1X

BunssG
jss �� BunG.

Let
←−
h b : T ≤μ

b,C�
p
→ BunG be the morphism which appears in the above diagram. Then it

suffices to see that

Hi
c

(
T ≤μ
b,C�

p
,
←−
h

∗
bFϕ

)
= 0.
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On the other hand, we have

Hi
c

(
T ≤μ
b,C�

p
,
←−
h

∗
bFϕ

)
=Hi

c

(
T ≤μ,ss
b,C�

p
,
←−
h

∗
b,ssj

∗
ssFϕ

)
by Fϕ = jss,�j

∗
ssFϕ. We have a decomposition

T ≤μ,ss
b,C�

p
=

∐
N∈2Z

T ≤μ

b,bN1 ,C�
p

by Lemma 6.1. Hence, we have

Hi
c

(
T ≤μ,ss
b,C�

p
,
←−
h

∗
b,ssj

∗
ssFϕ

)
= 0

by Theorem 4.30.

Theorem 6.3. Then we have
−→
h �(

←−
h ∗Fϕ⊗ IC′

μ)
∼= Fϕ �ϕ.

Proof. By Proposition 6.2, it suffices to show the equality on BunssG×Div1X . The equality

on the semi-stable locus follows from Proposition 5.1, since we have N ≡ 0,1 mod 2 for
any integer N.
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