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Abstract We show the Harris—Viehmann conjecture under some Hodge—Newton reducibility condition for
a generalisation of the diamond of a non-basic Rapoport—Zink space at infinite level, which appears as a
cover of the non-semi-stable locus in the Hecke stack. We show also that the cohomology of the non-semi-
stable locus with coefficients coming from a cuspidal Langlands parameter vanishes. As an application,
we show the Hecke eigensheaf property in Fargues’ conjecture for cuspidal Langlands parameters in the
GLa-case.

Introduction

In [Far25], Fargues formulated a conjecture on a geometrisation of the local Langlands
correspondence motivated by a formulation of the geometric Langlands conjecture in
[FGV02].

Let E be a p-adic number field with residue field F,. Let G' be a quasi-split reductive
group over E. Then we can define a moduli stack Bung of G-bundle on the Fargues—
Fontaine curve, and a moduli Divk of Cartier divisors of degree 1 on the Fargues—Fontaine
curve. Further, we have a diagram

Hecke=*

Bung Bung x Div,
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2 L. Gaisin and N. Imai

where Hecke=* is a moduli stack of modifications of G-bundle on the Fargues-Fontaine
curve with some condition determined by a cocharacter p of G, which is called a Hecke
stack. For a discrete Langlands parameter ¢: Wr — LG, Fargues’ conjecture predicts the
existence of a sheaf .#, on Bung satisfying some conditions, the most intriguing one of
which is the Hecke eigensheaf property
ﬁh(%*y\@ ®IC;L) =T, M (rpop),

where 7, is a representation of LG determined by p, and IC;L is an object of the derived
category of sheaves determined by p via the geometric Satake correspondence. The
conjecture is stated based on some conjectural objects. However, in the case ¢ is cuspidal
and p is minuscule, we can define every object in the conjecture assuming only the local
Langlands correspondence, which is constructed in many cases.

Assume that ¢ is cuspidal and g is minuscule. Then the support of the sheaf %, is
contained in the semi-stable locus Bung; of Bung. The Hecke eigensheaf property then
predicts that

= ‘
supp hy(h*.7,®IC]) C Bung x Div.
This is non-trivial since the inclusion
— -
h~'(Buny) C h ' (Bung x Divy)

does not hold. The vanishing of 7“%*5@ ®IC),) outside the semi-stable locus involves
geometry of a non-semi-stable locus of the Hecke stack Hecke=S*,

One aim of this paper is to give a partial result in this direction. Assume that ¢ is
cuspidal, but p can be general in the following. Let B(G) be the set of o-conjugacy
classes in G(E), where E is the completion of the maximal unramified extension of E.
Then we have a decomposition

Bung = H Bun[g
[bleB(G)

into strata, where the strata corresponding to basic elements of B(G) form the semi-stable

locus. Let [b],[0'] € B(G). We define Hecke[%f[b,] by the fibre products

Hecke[%]“[b,] — Hecke[%}“ — Bun[g] x Div}

L

[ .
Hecke=* —% > Bung x Divk

|+

—— > Bung.

Bung]
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We assume that [b] is not basic, and [b'] is basic. Let Hecke’[z] 1 be an open substack of

Hecke[sb]’_‘ v where the modifications have type . We find that a generalisation M}, of
a diamond of a non-basic Rapoport—Zink space at infinite level covers Heckeﬁ)] ]

We can define a Levi subgroup L’ of G such that [b] is an image of a basic element
[boo] of B(L"). Take a proper Levi subgroup L of G containing L°. Let [by] be the image
of [boo] in B(L). We assume that [V'] is in the image of an element [b}] € B(L). Further,
we assume that ([b],[b], ) satisfies a twisted analogue of Hodge-Newton reducibility. Our
main theorem is the following:

Theorem. The compactly supported cohomology of M}, is a parabolic induction of the
compactly supported cohomology of Mffo p With some degree shift and twist.
»00

See Theorem 4.26 for the precise statement. This theorem is a generalisation of the
Harris—Viehmann conjecture on cohomology of non-basic Rapoport—Zink spaces in [RV 14,
Conjecture 8.5] (¢f. [Har01, Conjecture 5.2]) up to a character twist under the Hodge—
Newton reducibility condition. We also show that the compactly supported cohomology of
MY, does not contain any supercuspidal representation. These results can be viewed as
genéralisation of results in [Man08]. Using the above theorem, we can show the following:

%
Theorem. The compactly supported cohomology of Heckeﬁ)] ] with coefficient in h*Z,
vanishes.

See Theorem 4.30 for the precise statement. This result is partial, since we are assuming
Hodge-Newton reducibility. On the other hand, the assumption is automatically satisfied
if Hecke[gbf[b,} is not empty in the case where G = GLy and pu(z) = diag(z,1). As an
application, we can show the following:

Theorem. Assume that G = GLy and u(z) = diag(z,1). Then the Hecke eigensheaf
property for a cuspidal Langlands parameter holds.

During the course of this work, Hansen put a related preprint [Han2la] on his
webpage, which shows the Harris—Viehmann conjecture for GL, under the Hodge-
Newton reducibility condition. We learned his result on canonical filtrations and some
consequences of Scholze’s work [Sch17] on cohomology of diamonds from [Han21a]. Note
that the result of [Han21a] is enough for the application to Fargues’ conjecture in GLo-
case. Our main points are proving the Harris—Viehmann conjecture under the Hodge—
Newton reducibility condition for general reductive groups and making the relation to
Fargues’ conjecture clear. After this work was done, Fargues’ conjecture for cuspidal
Langlands parameters in the GL,,-case was proved in [ALB21] and [Han21b] by a different
method.

In Section 1, we recall a definition of the stack of G-bundle on the Fargues—Fontaine
curve, and its structure. In Section 2, we recall a definition of the Hecke stack and explain
a cohomological formula. In Section 3, we construct a sheaf which satisfies properties
(1), (2) and (3) of [Far25, Conjecture 4.4] and explain the Hecke eigensheaf property in
Fargues’ conjecture for cuspidal Langlands parameters.
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In Section 4, we study a non-semi-stable locus in the Hecke stack. We find that a
generalisation of a diamond of a non-basic Rapoport—Zink space at infinite level covers
the non-semi-stable locus in the Hecke stack. We show that the cohomology of the
generalised space can be written as a parabolic induction of the cohomology of smaller
space associated with a Levi subgroup under the Hodge-Newton reducibility condition. In
particular, we see that the cohomology does not contain any supercuspidal representation
in each degree. As a result, we show that the cohomology of the non-semi-stable locus in
the Hecke stack with a coefficient coming from a cuspidal Langlands parameter vanishes.

In Section 5, we see that we can recover Hecke eigensheaf property on some part of
the semi-stable locus from non-abelian Lubin—Tate theory in the GL,-case. In Section 6,
we show that the Hecke eigensheaf property in the GLs-case, using the results in the
preceding sections.

1. Stack of G-bundles

In this section we recall various results regarding the stack of G-bundles on the curve.
Let p be a prime number. Fix F a finite extension of Q, with residue field F,. We follow
the definition of perfectoid algebra in [Fonl3, 1.1] (¢f. [Sch12, Definition 5.1]). For an
algebraic extension k of Fy, let Perf;, be the category of perfectoid spaces over k equipped
with v-topology (cf. [Sch17, Definition 8.1(iii)]). For S € Perfr,, we have the relative
Fargues—Fontaine curve Xg = Yg/¢? as in [FS21, Definition I1.1.15]. For an affinoid
perfectoid Spa(R,RT) € Perfp,, we have also the schematic relative Fargues—Fontaine
curve X;‘;};(R’ r+) as defined just after [FS21, Remark II1.2.8]. The schematic version
ng;( R.R+) only depends on R and so we denote it by szch. We have an equivalence
between categories of vector bundles on Xgp.(r, r+) and Xj’;gh by [KL15, Theorem 8.7.7].

Let G be a connected reductive group over E. Let Bung be the fibred category in
groupoids whose fibre at S € Perfﬁq is the groupoid of G-bundles on Xg. Then Bung has
a reasonable geometry. Let us just mention that, in particular, it is a small v-stack (cf.
[F'S21, Proposition I11.1.3]).

Let E be the completion of the maximal unramified extension of E. Let o be the
continuous automorphism of E lifting the g-th power Frobenius on the residue field. For
be G(E), we have an associated G-isocrystal

F: Rep(G) — ¢-Modz; (V,p) = (V @ g E,p(b)o).
Let B(G) be the set of o-conjugacy classes in G(E). Then we have a bijection
B(G) — {the isomorphism classes of G-isocrystals over E}; [b] s [Fy]

by [RR96, Remarks 3.4 (i)].
Let S € Perqu. We have a functor

¢-Mod z — Bunx; (D,p) — &(D,p),
where &(D,p) is given by
Ys %o D — Ys/p? = Xs.
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The composite

Rep(G) KN ¢o-Mod & Bunx,
gives a G-bundle &, x, on Xg. We simply write &, for &, x, sometimes. If b = gbo(g) !,

then we have an isomorphism
tg: éab’xs —)éab/’xs (11)

induced by the multiplication by g. The isomorphism class of &, x, depends only on the
class of b in B(G). Moreover by [F'S21, Theorem III.2.2], this gives a complete description
of the points of Bung.

Let 71 (G) be an algebraic fundamental group of G defined in [Bor98, 1.4]. Let E be a
separable closure of E and let I' = Gal(E/E) be its absolute Galois group. Let

k: B(G) — m1(G)r
be the Kottwitz map in [RR96, Theorem 1.15] (cf. [Kot90, Lemma 6.1]). Then [FS21,
Theorem II1.2.7]) provides a decomposition
Bung = H Bung,
aem (G)r

into open and closed substacks.
Let D be the split pro-algebraic torus over E such that X, (D) =Q. For b € G(E), we
have an associated homomorphism

Uy: Dy — GE‘
constructed in [Kot85, 4.2]. This gives a well-defined map
v: B(G) — (Hom(D;,G)/G(E))7; [b] = [,

which is called the Newton map. We say that b e G(E) is basic, if & factors through the
centre of G' . We say that [b] € B(G) is basic if it consists of basic elements in G(F). Let
B(G)pasic denote the basic elements in B(G). We recall that the Kottwitz map induces
a bijection

K: B(G)basic ;> T (G)F

Assume that G is quasi-split in the sequel. We fix subgroups A C T C B of G, where
A is a maximal split torus, T is a maximal torus and B is a Borel subgroup. We write
X.(A)T for the dominant cocharacters of A. Then we have a natural isomorphism

X, (A)§ = (Hom(Dy,G )/G(E))°.

Let b e G(E). We write v, € X, (A)a for the representative of []. Let w be the maximal
length element in the Weyl group of G with respect to 7. Then the map

HN: B(G) = X.(A)§; [b] = w-(—w)
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is called the Harder—Narasimhan map. After equipping X, (A)(g with the natural order
topology, as discussed in [RR96, Section 2|, the map HN is upper semicontinuous by
[FS21, Theorem II1.2.3].

We define an algebraic group J, over E by

Jy(R)={g€ G(R®EE) | gbo(g)~* = b}

for any E-algebra R. Then we have J,(E) = Aut(F;). We define a v-sheaf .J, on Perfy,
by

Jp(S) = Aut(&,5)

for an S € Perfﬁq. We note that the isomorphism class of J, and jb depends only on
[b] € B(G).

For a locally profinite group H, we write H for v-sheaf on Perfi associated to H. Then
we have an inclusion ’

Jp(E) C Jp.

Let jl? be the connected component of the unit section of jb. Then we have

Jo = Jg) % Jy(E)

and jl? is of dimension (2p,vp) by [FS21, Proposition I11.5.1]. In particular J,(E) = Jp if
and only if b is basic.

Let Bung be the semi-stable locus of Bung. Then Bung is an open substack of Bung by
[['S21, Theorem III1.4.5]. Let « € w1 (G)r. Then the upper semicontinuity of HN provides
a stratification

Bung, = H Bung "=
veEX.(A)]
Take v € X*(A)a and assume that BunaG’HN:" is not empty. Then we have a unique
[b] € B(G) such that k([b]) = o and HN([b]) = v. Take any representative b of [b]. Then
by [F'S21, Proposition II1.5.3] we have an isomorphism

y: [Spa(F,)/Jy) = BungMN="

defined by &,. If b is basic, then BunaG’HN:” is equal to the semi-stable locus Bung™ of

Bung; by [FS21, Theorem II1.4.5]].

The Jy-torsor 7, over Bungy HN=v given by zj is the torsor defined by the functor which

sends S € Perfﬁq to
(f: S — Bun®™=" 60 8,5 > gf),

where & is the G-bundle on Xg determined by f, and g € Jo(S) acts on Z,(S) (on the
right) by

(f.0) = (f.009). (1.2)
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Then we have Frob*z, = 2, and Frob™ %, = 7, ;. Since we have o(b) = b=tbo(b), we
have a Weil descent datum

wy: Frob* %, — %, (1.3)

induced by t,-1: &, 5 — &,@4),s in (1.1). Explicitly at the level of S-points, (1.3) sends
(f,9) to (f,poty—1). If b/ = gbo(g)~!, then t;l induces an isomorphism 9, — 9}/, which
is compatible with the Weil descent data w, and wp . Hence the isomorphism class of
(T, wp) depends only on [b] € B(G).

2. The global Hecke stack

Let DinFq be the moduli space of degree 1 closed Cartier divisors defined in [FS21,
Definition I1.1.19], which sends S € Perfr, to the set of isomorphism classes of degree
1 closed Cartier divisors on Xg. By [FS21, Proposition I1.1.21], Div}(’mZ — Spa(F,) is
representable in spatial diamonds and we have an isomorphism

Spa(E)° /¢he — Divi g,

where g is a g-th power Frobenius action on E°. We put Divy = Divy p X, Fy.

We write X, (T)" for the set of dominant cocharacters of T. Let pu € X, (T)T/T. We
define a Hecke stack Hecke=* as the fibred category in groupoids whose fibre at an affinoid
perfectoid Spa(R,R™) € Perfg,_ is the groupoid of quadruples (&,&”,D, f), where

e & and &' are G-bundles on X0,
e D is an effective Cartier divisor of degree 1 on X5 given by some untilt of R,
e the isomorphism

f: éa|X?§l1\D l)éa/|X}<—{ch\D

is a modification, which is bounded by p geometric fibrewisely.

Then we have morphisms

HeckeSH

/ R\
Bung Bung x Divﬁ(

defined by T (&,,D,f) = & and T (£,6,D,f) = (&,D).

In the sequel, a diamond means a diamond on Perf@q. Let £ be a prime number different
from p. As we will need the natural functor (i.e. relative homology) constructed in
[FS21], let us briefly review it. For X a small v-stack, the derived category of solid
Q-sheaves Dg(X,Q) is constructed in [F'S21, Definition VII.1.17]. For what follows all
tensor products are solid tensor products as constructed in [F'S21, Proposition VII.2.2].
For a map f: X — Y of small v-stacks, there is a functor

fh: Dl(Xv@Z) — DI(Yv@Z)
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constructed in [FS21, §VIL3]. See [FS21, Proposition VII.3.1] for basic properties of this
functor. For an ¢-cohomologically smooth morphism f: X — Y of diamonds, we put

Q= 1'glRfl(Z/énZ) ®z, Qp € Du(X,Qy).

For an Artin v-stack X, let Dyis(X,Q,) C Du(X,Q,) be the subcategory defined in [FS21,
Definition VIIL.6.1].

Let Do, be a diamond over (Czb) with an action of a profinite group Ky. Let foo: Do —
Spa((CZb,) be the structure morphism. Assume that the action of Ky on geometric points
of Do is free and the quotient diamond D, /Ky is an ¢-cohomologically smooth diamond
over (C;. For an open subgroup K of Ky, we put D =Dy /K, and let fi: Dx — Spa((C;)
be the induced morphism. Then we put

H{(Doo, Q) = lim R fics((£Q0)Y)

Kck,

for : > 0. Let f: D — Spa((C;) be an /-cohomologically smooth morphism of diamonds.
For .# € Du(D,Q,) and i >0, we put

HY(D,F) = R fy( Fo (f'Q)").
Let h: M — D be a Gy-torsor such that

Kl%lg;o RfK’h((f}(@e)v) S Dlis(Spa(C;)a@€)>

where Gy is a locally profinite group, K runs along compact open subgroups of Gy and
fr: M/K — Spa((C;). Then we can regard HI(M,Q,) as a smooth representation of
Gy. Let 7 be a smooth representation of G over Q,. We define .%, € Dy(D,Q,) as the
pushforward of M by m. Then we have a spectral sequence

Hz(GOaHg('A/L@Z)@ﬂ-) ngil(DﬂgZﬂ') (21)

This follows from [FS21, Proposition VIL.3.1] as in the proof of [Imal9, Lemma 1.4].

3. Fargues’ conjecture

We recall the Hecke eigensheaf property in Fargues’ conjecture in the case where the
Langlands parameter is cuspidal and p is minuscule. Up to some technicalities which were
worked out in [FS21], we refer the reader to [Far25, Conjecture 4.4(4)] for the general
case.

Let G and LG be the dual group and L-group of G over Q,. Let p: Wg — LG be a
cuspidal f-adic L-parameter for G (cf. [Ima24a, Definition 1.15], [Far25, Definition 4.1]).
Let S, be the centraliser of ¢ in G. We fix a Whittaker datum. For b € B(G)pasic, let
{me, P}pe 3, be the L-packet corresponding to ¢ by the local Langlands correspondence
for the extended pure inner form J, of G (¢f. [Kall4, Conjecture 2.4.1]). We recall that
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we have a decomposition

Ss __ a,ss
Bung = H Bung;
aem (G)r

into open and closed substacks. Let %, be the object of Dyis(Bung,Q,) with an action
of S, determined by the following conditions:

e The support of %, is contained in Bung.

e Let a€m(G)r. Take a basic element b € G(E) such that o= k([b]). Let p e §<p. Let
p be the constant Q,-sheaf with action of S, on Bung;™ associated to p. Let 7,3, ,

be the object of Dys(Bungy*,Q,) obtained as the pushforward of the J,(E)-torsor
Ty under 7, p, ,. Then we have

ag L —
L%90|Buno‘G’SS = @ B®7T<P,b,p7 (31)
pEA’S’\@, P‘Z(@)F:a

where we view « as an element of X*(Z(G)") under the canonical isomorphism
1 (G)r ~ X*(Z(G)"). The isomorphism class of the right-hand side of (3.1) does
not depend on the choice of b, since the same is true for .7;,.

Then properties (1), (2) and (3) of [Far25, Conjecture 4.4] are immediate.
Take a representative p/ € X,.(T)t of u. Let I be the stabiliser of 1/ in T'. We put

La

rp =Indg] 0

where 7,/ is the highest-weight-y irreducible representation of GxI'.
As in [FS21, IX.2], we can construct a functor

Repg, (“G) — Du(Hecke=,Qy); V = Sy, (3.2)

via the geometric Satake equivalence (cf. [[ma24b, §10]). Let IC}, be the image of 7, under
the functor (3.2).
Now we can state the Hecke eigensheaf property in Fargues’ conjecture:

Conjecture 3.1. We have

% %* ~Y

h h( h y¢®@ZICL> = yg} X (Tu %)
as objects of Da(Bung x Divk,Q,) with actions of Sy.
4. Non-semi-stable locus

Let b,b' € G(E). We have a natural morphism

yp: [Divi/Jy] ~ [Spa(Fq)/jb] x Divy Lovid), Bung x Div.
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We consider the cartesian diagram (i.e. every sub-square is cartesian)

Heckeb%{f, —— Hecke " ——— [Divk /Jy]

Lk

— < h .
oy Hecke=" —— Bung x Dlvﬁ(

k

[Spa(F,)/Jy] —~— Bung.

By the construction, for a perfectoid affinoid F,-algebra (R,R*), the groupoid
Heckefff/ (R,R™) consists of quadruples (&,&',D, f), where

e & and &' are G-bundles on X! which are isomorphic to &, and &, fibrewisely
over Spa(R,R™).

e D is an effective Cartier divisor of degree 1 on X?fh,

o [ &lxsamp = [ xsn\p Is a modification bounded by p geometric fiberwisely

over Spa(R,R™).

Let 7?” be the jb torsor over Heckebggt, obtained by considering an isomorphism ¢: &, —
&. Let Grb p and ./\/lb be the .J, -torsors over Heckeb b, and 7; . obtained by considering
an isomorphism ¢’: &, — &, respectively. Then MEH by 1S a Jb/—equlvarlant Jb—torsor over

< . .
Gr;,. We have commutative diagrams

Mb b 7;%# Spa(.é‘)<>

. |

< < 17
Grypy — Heckey, —— [Divk /),

where the sub-squares are cartesian.
By [Far25, Proposition 3.20], 7;<b‘f is a diamond. Furthermore by [Sch17, Lemma 10.13,

Proposition 11.5], M,f,‘f, is a diamond if ¥’ is basic.

Remark 4.1. The maps ./\/lb b Grb p and ./\/lb b 7;17, appearing in the above
diagram are generalised versions of the Hodge Tate perlod map and the Gross—Hopkins
period map. Indeed if ¥ =1 and g is minuscule then /\/lb b Grb p 15 the usual Hodge—
Tate period map of a Rapoport—Zink space at infinite level associated to the isocrystal
b and M;gﬁ — 7;%/ is the usual Gross—Hopkins period map. On the other hand if b =1

and g is minuscule then Mb b Grb p is the Gross—Hopkins map and /\/lb by '7; W is
the Hodge—Tate map associated to the isocrystal b'.
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For a finite-dimensional algebraic representation V of G and a rational number «, we
put
FilpV = Va,

a’'<—a

where

V=PV,

acQ

is the slope decomposition given by v}, € X*(A)a . This gives a filtration Fil, on the
forgetful fibre functor w: Rep(G) — Vectg (cf. [SR72, IV, 2.1]). The stabiliser of Filyw
gives a parabolic subgroup P? of G. Let L be the centraliser of v, € X, (A)a . Take a Levi
subgroup L of G containing L?. We put P = LP®. Then, P is a parabolic subgroup of G
and [b] € B(G) is the image of an element by € Lb(E). Let bg be the image of by in L(E)

We take a cocharacter A € X, (A) so that P is associated to A in the sense of [Spr98,
13.4.1]. Then we have a filtration Fily on w associated to A.

We assume that [b'] is in the image of B(L) — B(G). Then Filyw induces the filtrations
Fily &, and Filyé&y as fibre functors by the construction, because [b],[0'] are in the image
of B(L) — B(G) and L is the centraliser of A in G.

We define a closed subspace legf of Grlf{;, as a functor that sends a perfectoid affinoid

F,-algebra (R,R*") to the isomorphism classes of (&,&”,D, f,¢'), where
o (£,&',D,f)is as in Heckey /s (R, R"),
o ¢': & = & and f are compatible with Fily &}, and Fily&, geometric fibrewisely in
the sense that following holds for any geometric point Spa(F,F ) of Spa(R,R™):
Take an isomorphism &, — & over X;Ch. Let Dg be a Cartier divisor of X}Ch
determined by D. Then the composite
~ 7 ¢
£b|X;\Ch\DF — £|X;‘C}1\DF — (g)/|X;§IA\DF — éab’|X;,Ch\DF
respects the filtrations Filxép|xsen\ p,. and Filaéy | xsen\ p,. -
Remark 4.2. The condition that ¢’ and f are compatible with Fily&, and Fil\& is

independent of choice of an isomorphism &, — &, because the automorphism group .J,,
of &, respects the filtration Fily&3.

For pe X.(T), we put

1
= > ),

K rer/r,
where T',, is a stabiliser of y in ', and let u* denote the image of p in m (G)r.

Definition 4.3. (¢f. [RV14, Definition 2.5]) We say that [b] € B(G) is acceptable for
(11,[0]) if vy — vy < 7. We say that [b] € B(G) is neutral for (p,[0']) if kg ([b]) — e ([V']) = pb.

Let B(G,u,[b']) be the set of acceptable neutral elements in B(G) for (u,[b']).
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Remark 4.4. The set B(G,u,[V']) is a twisted analogue of the set B(G,u), the latter due
to Kottwitz. We refer the reader to [Kot97, §6.2] for this definition.

To state our main results we need the notion of Hodge-Newton reducibility.

Definition 4.5 (¢f. [RV14, Definition 4.28]). A triple ([b],[b'], ) such that [b] € B(G,u,[b'])
and b’ is basic is called Hodge-Newton reducible, if there is a standard proper Levi
subgroup L of G and [bg),[by] € B(L) such that [b] and [b'] are the images of [bg] and [bj],
respectively, p factors through L, [bo] € B(L,u,[b)]) and the action of vy, on R,(B) is
non-negative.

Lemma 4.6. Let R be a DVR with mazimal ideal m, and M be an R-module such that
M~ -, R/mk: where ky > --- >k, is a sequence of non-negative integers. Let N be
a quotient of M generated by j elements, where j <n. Then we have [(N) < ky +oo 4k
Further, if the equality holds, then N is a direct summand of M.

Proof. This follows from [Han21a, Lemma 3.2] by taking the Pontryagin dual. O

The following proposition is a slight generalisation of [Han21a, Theorem 3.1}, where the
slope of a semi-stable bundle is assumed to be zero.

Proposition 4.7. Assume that G = GL,,. Let (ky > --- > k;,) be the sequence of integers
corresponding to p € X, (T)T. Let (R,R") be a perfectoid affinoid F,-algebra. Let

f: éa|XECh\D ;>(§/|X%:}\\D

be a modification between G-bundles & and &' over Xf’i?h along an effective Cartier divisor

of degree 1 which is equal to u geometric fibrewisely. We view & and &' as vector bundles
of rank n. Let & be a saturated sub-vector bundle of & such that

deg(EN)+ > kngio; =1k(&T)s (4.1)
1<j<rk(6+)
for every point x of Spa(R,RT).
Assume that &' is semi-stable of slope s geometric fibrewisely. Let j: X3\ D — X350
be the open immersion. We put
£ =G EINE
Then &'F is a semi-stable vector bundle of slope s such that tk(&'1) =rk(&T).

Proof. We follow arguments in the proof of [Han21a, Theorem 3.1].
Take a modification fi: O|X;ch\D = O(l)|X%‘,h\D of degree 1 along D. For a large N,
changing &', f and (ky,...,k,) by &'(N),

(ide ® fPV)o f: &

and (k1 + N,...,k, + N), respectively, we may assume that f extends to an injective
morphism f: & — &, which induces a morphism fT: &t — &', We put &~ = &/£+
and &~ =&"/&F. Let f~: & — &' be the morphism induced by f.

X3\ D - Cg)/(N) X350\ D
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First, we treat the case where R is a perfectoid field. In this case, &’'T and &'~ are
vector bundles such that rk(&'") =1k(&1) and rk(&7) =1k(€ 7). Let QT and Q~ be
the cokernel of fT and f—, respectively. Then we have

Q™) < Z ki
1<i<rk(&-)
by Lemma 4.6, since Q~ is generated by rk(&~)-elements. Hence we have
QN> > kuprye
1<j<rk(&T)
By this and (4.1), we have
deg(&'") =deg(&T) +1(QT) > 1k(6T)s.

On the other hand, we have deg(&'") <rk(&1)s, since &” is semi-stable. Therefore, &'*
is a semi-stable vector bundle of slope s.

The general case is reduced to the above case by the same argument as in [Han2la,
§3.2]. O

Lemma 4.8. Let (R,RT) be a perfectoid affinoid Fy-algebra. For any element o of
HL(X35M,0), there is a pro-etale extension (R',R'") of (R,R*) such that the image of «
in HY (X5,0) is zero.

Proof. Any extension of O by O on X" splits after a pro-etale extension of (R,R*) by
[FF14, 6.3.1] and [Far25, Theorem 2.26] (cf. [KL15, Corollary 8.7.10]). This implies the

claim, since HL (X1, 0) parametrises the extensions of O by O on X5, O

Assume that o’ is basic. Let U be the unipotent radical of P. Note that we have a
surjection

P— P/U~L,
where the second isomorphism is given by L — P — P/U.

Lemma 4.9. Let (R,R*") be a perfectoid affinoid F,-algebra. Let &p be a P-bundle on
X351 such that &p xT' L ~ &y, . Then we have an isomorphism &p ~ &y x' P after a
pro-etale extension of (R, R™).

Proof. We follow arguments in the proof of [Far20, Proposition 5.16]. Let P act on U by
the conjugation. We put

U =&pxP U
Then H} (X351, %) parametrises the fibre of
Hyy (XE", P) — Hey(XF",L)

over the image of &p. Hence, it suffices to show that HL (X¥" %) is trivial after a pro-

etale extension of (R, R™1). This follows from Lemma 4.8, since % has a filtration whose
graded subquotients are semi-stable vector bundles of slope zero. O
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Lemma 4.10. Let 1,9 € X, (T) such that py < . Then HeckeS** C Hecke='? is a
closed substack.

Proof. By [Far25, Proposition 3.20], it is enough to prove Gré“1 C Glré“2 is closed
substack. The latter follows from the semi-continuity of the map |Gr| = X, (7)"/I" in
[Far25, 3.3.2] (cf. [SW20, Proposition 19.2.3]). O

We define a substack Hecke” of Hecke=" by requiring the condition that modifications
are equal to u geometric fibrewisely. Then Hecke!” is an open substack of HeckeSH by
Lemma 4.10. We use similar definitions and notations also for other spaces.

Let X be a scheme over E. Let FilVectyx be the category of filtered vector bundles on
X. We consider the functor

wyx: Rep(G) — FilVectx; V= (Veg Ox,(FiV)®g Ox).

Let Fil)\Bung;( be the category of functors w: Rep(G) — FilVectx which are isomorphic
to wy fpqc locally on X. Let Bun§ be the category of P-bundles on X.

Lemma 4.11. There is an equivalence of categories

FilyBun§ — Bun¥; w — Isom% (wy,w),
where Isom}e} (wa,w) is a functor from the category of schemes over X to the category of
sets which sends X' to the set of isomorphisms wy|x — w|x as filtered tensor functors.

Proof. This follows from [Ziel5, Theorem 4.42 and Theorem 4.43]. O

Proposition 4.12. Assume that ([b],[V'],11) is Hodge-Newton reducible for L. Let (R, R*)
be a perfectoid affinoid Fy-algebra, and (&,6",D, f) € Heckegb, (R,RY). Then, after taking
a pro-etale extension of (R,R™), there is a reduction

. ~ /
fp: Ep|xsen\p — Eplxsen\p

of f to P such that &p ~ &y, x* P and &p ~ &y x* P.

Proof. By taking a pro-etale extension of (R,R™"), we can take an isomorphism &, ~ &.
We put &p = &, x P. Then &p and the isomorphism

(ngPGg(o@bO XLG%(fbéé’

give a reduction of & to P. We put ¢p = idgbUXLp. Then ¢p is a reduction of ¢ to P.

For any irreducible V' € Rep(G), the vector bundle &’(V) is semi-stable geometric
fibrewisely. By Proposition 4.7, we have a functorial construction of a filtration of (V)
that is compatible under f(V') with the filtration of & (V') coming from &p by Lemma 4.11.
Since the category Rep(G) is semi-simple, the construction extends to all V' € Rep(G) in
a functorial way. Hence, by Lemma 4.11, we have a reduction

~ /
fP: éaP|X;.:§h\D — (DQP XELh\D

of f to P for some P-bundle &5. By Lemma 4.9, &% is isomorphic to Epy, x T P after taking
a pro-etale extension of (R,R™). O
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Let ]31,/ be the stabiliser of Fil, &} in jb,_ Then 131,/ be( ) for a parabolic subgroup
Pb/ of Jb/.

Proposition 4.13. Assume that ([b],[0'], ) is Hodge-Newton reducible for L. Then the
action of Py on Gr{:b, stabilises Céfb,, and we have a natural Jy -equivariant isomorphism

CléL,b' x P Jpy — Grgb,.

Proof. The first claim follows from the definitions of 155/ and Grg‘) p- The morphism

f) ~
C{;:b/ X b/ Jb/ — Grg‘;b/

induced by the action of jb, on Grg p 1s an epimorphism by Proposition 4.12.

We show the injectivity. Let g € Jy (R, R™) for a perfectoid affinoid F,-algebra (R,R*).
Assume that g sends a point of Cyy, (R,R") to a point of Cy',, (R, R*). Then g stabilises
Fily\&, outside the Cartier divisor corresponding to Rf. This implies g stabilises Fily&y
on X1 since g stabilises & itself. Hence, we have g € Py (R,RT). O

Let P}, be the inverse image of Cy, under My, — Gry .

Corollary 4.14. Assume that ([b],[b'],n) is Hodge-Newton reducible for L. Then the
action of Pb/ on /\/lb p Stabilises Pb y» and we have a natural (Jb X Jb/) equivariant
isomorphism

Py <P Ty 5 MY,
Proof. This follows from Proposition 4.13. O
We define a subsheaf ij of J, by

TE(S) = {9 € (S) | 9leig s, =iy s, mOd Fill™ 6 for all j}

for S € Perfg

Let Uy be the unipotent radical of P,. The inner form of L determined by b’ gives a
Levi subgroup Ly of Py.

We use a notation that

grh = Fil} /il
for any integer i. Let py be the half-sum of the positive roots a of T such that —a occurs

in the adjoint action of T on Lie(U). We put Ny, = (2pu,vs).

Definition 4.15. Let F be a non-archimedean field with a valuation subring F7.
Let f: D — Spa(F,F*)° be an {-cohomologically smooth morphism of locally spatial
diamonds (cf. [Sch17, Definition 23.8]). We say that D is ¢-contractible of pure dimension
d if f'Fy =TF,(d)[2d] and the trace morphism Rf,f'F, — Fy is a quasi-isomorphism.

Remark 4.16. In the situation of Definition 4.15, we have f;F, = Rf,f'F, by [FS21,
Proposition VIIL.5.2].
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Let @ be a uniformiser of E. Let B denote the v-sheaf on Perfr, given by B(S) = O(Ys)
(¢f. [FS21, Proposition I1.2.1]).

Lemma 4.17. Let d and h be positive integers. Let fqp: B#' =" x Spa(E)° — Spa(E)°
be the natural morphism.

(1) The v-sheaf Be'==" x Spa(E)® is an l-cohomologically smooth (-contractible locally
spatial diamond of pure dimension h over Spa(E)®.

(2) The action of EX on fqn1Z¢ is given by ||-||~%.

(3) Let F be a perfectoid field over E and a € Be'==" (F*). Let Janr: B#'==" x
Spa(F”) — Spa(F®) denote the base change of fan. Then the action of a on
Jan oL induced by the addition on B#'==" s trivial.

Proof. Replacing E by the unramified extension of degree d, we may assume that d =1
(¢f. [FF18, Remarque 4.2.2]). We proceed by induction on h > 1. For h =1, the diamond
B¥== x Spa(E)°® is isomorphic to Spa(F,[[z'/?™]]) x Spa(E)° by [Far25, 1.5.3]. The action
of @ on Spa(F,[[z}/P7]]) x Spa(E)° is induced from the morphism

m—1

Spa(F,[[e/" 1)) - Spa(E, [/ )); /7" > 2/

of degree ¢ by taking limit with respect to m > 0. On the other hand, the action of O}
on Spa(F,[[z/?7]]) x Spa(E)° is induced from an isomorphism on Spa(F,[[z'/4"]]) by
taking limit with respect to m > 0. Further the addition of a € Spa(F,[[z'/?™]])(F’) on
Spa(F*[[z/?™]]) is induced from an isomorphism on Spa(F,[[z'/9"]]) by taking limit with
respect to m > 0. Hence the claims hold for A =1 by [Imal9, Lemma 1.3].

Assume that the result is true for B¥=%""". We have an exact sequence

0— B~ xSpa(E)° — B*~" xSpa(E)° — AL —0 (4.2)

of diamonds which splits pro-etale locally on AEO as in [SW20, Example 15.2.9
(4)]. Therefore B#==" x Spa(E)° satisfies the claims (1) and (2), since Ago is an (-

i

cohomologically smooth ¢-contractible diamond of pure dimension 1 over Spa(E) and

the action of ¢ € E* on Ag’o is induced from the isomorphism Alé — Ag; T cx.

The action of a € B¥==" (F®) on fa.n r»1Z¢ depends only on the image @ € AE’O(Fb) of
a under (4.2) since the claim (3) is true for B#==""". Hence it suffices to show that the
action of @ on fa1Zy is trivial, where f4: A},’o — Spa(F?) is the natural morphism. This

follows from the fact that the addition by @ on A;’O is induced from an automorphism on
AL by [SW20, Proposition 10.2.3]. O

Let p: P(E) — @Z be the modulus character of P(E). Let A, be the split centre of Jp.
Since J, is an inner form of L®, we can view A, as an algebraic subgroup of L. We put

dp, A, = 0p|a,(p)- Let g € Jy(E) act on ij by the conjugation right action u +— g~ ug.
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Lemma 4.18. Let f;: ij X szau(l:?)o — Spau(l*uj)o be the natural morphism.

(1) The functor ij x Spa(E)° is an (-cohomologically smooth (-contractible diamond
of pure dimension Ny, over Spa(E)°.

(2) Let k: Jy(E) %@ZX be the character of the action of J,(E) on f;.1Q, induced by the
conjugation right action of J,(E) on J{'. Then we have k|4, (p) = (5;’1&.

(3) Let F be a perfectoid field over E. Then the action of ij(Fb) on f7.Qy induced by
the addition on JY is trivial.

Proof. For i > 0, we define an algebraic subgroup U; of P by
Us(R) = {9 € P(R) | gl v,y =iy, mod Fill™ Vi for all j and V € Rep(G) |

for any E-algebra R, where Vg =V ®@g R. Then Uy = U, and U; are normal in P for all
1. Similarly, we define a subsheaf Jgi of Jy, for i >0 by

~ ~ . il ;

TES) = {9 € T(S) | gles s, =iy s, MO FIT, for all 5|
for S € Perqu. Then jb% = ij. Let ¢ act on G, and its subgroup U, by g+ boa(g)bal.
Let S be a perfectoid space over Spa(E)°. By the internal definition of a G-torsor on the
Fargues—Fontaine curve, we see that Jgi(S ) is equal to the sections of

YS X Ui 1o — Xs.
Hence, (ijl/iUHl)(S) is equal to the sections of

Ys %o (U; 5/U;

K2

y18) — Xs.

Let L act on U; by the conjugation. Let Lie(G) be the adjoint representation of G. Then
the action of L on Lie(G) induces an action of L on Lie(U; /U;11). We have an isomorphism

Ui/Ui+1 >~ Lie(Ui/UiJrl)

as representations of L, since U; /U, is isomorphic to G% for some d; as linear algebraic
groups. We have the equality

Lie(U;) = Fili Lie(G)
by the definition of the both sides. Hence we have an isomorphism
Lie(U;/Ui41) =~ griLie(G)
as representations of L. As a result we have an isomorphism
Ui /Uit ~ griLie(Q) (4.3)

as representations of L. The element by € L gives an L-bundle &, s: Rep(L) — Bunx,.
Then we have

Ys X (Ui,E/Ui+1,E) ~ éabms(grg\LiG(G))
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by (4.3). Hence, (Z,UZ/%UZ_H)(S) is equal to the sections of
.5 (griLie(G)) — Xs.

Then D acts on grﬁ\Lie(G) via 1, and the conjugation. This action gives a slope
decomposition

griLie(G) = @ Voo,
1<j<m;
where a; ; are positive rational numbers, since L contains the centraliser L? of v,. Then
we have an isomorphism

o (eryLie(G) ~ D O(ai ;). (4.4)

1<j<m;

Hence (ij i/ ijl 1) X Spa(E)° is an f-cohomologically smooth (-contractible diamond by
(4.4) and Lemma 4.17.

We show that ijZ X Spa(E)<> is an ¢-cohomologically smooth ¢-contractible diamond by
a decreasing induction on i. The claim is trivial for enough large i, since j U- X Spa(E)<> is
one point for such . We see that U, j is isomorphic to U, % (U, /U, ;. E) as schemes
over U, E/ 11,5 With actions of ¢ by [SGAT0, XXVI Propomtlon 2.1] and its proof.
Hence, Jb x Spa(F ) is isomorphic to Jb,i+1 X (Jb,i/Jb,i-i-l) x Spa(E)° as diamonds over
(Jb,i/Jb,i+1) x Spa(E)°. Therefore, we see that ijl x Spa(E)° — (ﬁ{i/jgiﬂ) x Spa(E)°
is an f-cohomologically smooth morphism with /-contractible geometric fibre, since
jb[,]i 41 X Spa(E)<> is an /-cohomologically smooth ¢-contractible diamond by our induction

hypothesis. Then we see that ijz X Spa(E)<> is an £-cohomologically smooth ¢-contractible

diamond, since we know that (jb[{i / ijZ 41) X Spa(E)° is an (-cohomologically smooth (-

contractible diamond. The claim on the dimension follows from the above arguments.
The claim (2) follows from the arguments above, Lemma 4.17 (2) and a calculation of §p
(¢f. [Renl0, V.5.4]). The claim (3) follows from Lemma 4.17 (3) by induction on ¢ for ijl
in the same way as the proof of Lemma 4.17 (3). O

Remark 4.19. Some integral version of jb is studied in [CS17, Proposition 4.2.11]. The
character x in Lemma 4.18 (2) is explicitly determined in [HI25, Corollary 4.6].

Let X.(T)L* be the set of L-dominant cocharacters in X, (7). We put

Tyo vy, = {[;/] € X.(T)"/T | i/ is G-conjugate to p and [b] € B(L,uﬂ[bé])}.

0,

We claim the set I, 3 , 1 consists of a single element. To prove this we begin with a
preliminary lemma.

Lemma 4.20. Given two cocharacters p,p’ € X, (T) which are G-conjugate, then there
exists an element w of the absolute Weyl group of T in G such that w-pu=p'.

Proof. Let L, be the centraliser of the cocharacter G, £ T — G and define similarly
L,. Then, since y' = gug=' for some g € G(E), it follows that L, = gL,g'. Since
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gTg~' C L,y is a maximal torus, there exists [ € L, such that g7g~* ={TI~'. This
means that [~!'g normalises 7" and gives an element w in the absolute Weyl group of T
in G. Then we have w-p = p'. O

Lemma 4.21. Iy, 1 consists of a single element.

Proof. By the definition of Hodge-Newton reducibility, we have [u] € Iy, 1, ., .- Let [u'] €
Iyy, by, 1,z be another element. Let A(G,T) be the set of simple roots of G with respect to
T, where the positivity of roots is given by B. Since u is G-dominant, y’ is G-conjugate
to u and p # i, we have that p/ is not G-dominant and

p—p' = Z naea, (4.5)
a€A(G,T)
where n, >0 by Lemma 4.20, [Hum78, 10.3 Lemma B] and [Bou81, VI §1 Proposition
18]. Since p is not G-dominant, but L-dominant, there is oy € A(G,T)\ A(L,T) such
that (u/,cp) < 0. Then we have
(p— ) > 0. (4.6)
Substituting (4.5) to (4.6), we have

Z ne{a”,ag) > 0.
A(G

aE ,T)

This implies n,, > 0, since we have (a¥,ap) <0 for a # ap by [Hum?78, 10.1 Lemma].
Recall that

m(L) = Xo(T) ) S genpr Lo, (4.7)

by the proof of [Bor98, Proposition 1.10] (¢f. [RR96, §1.13]). Let 7" and ﬁh be the images
in Wl(L)& of i and g/ in X*(T)(Fl).
We show that 7if # ﬁh. We write

Nfﬁ: Z maava
a€A(G,T)

where m, € Q. Then the equation
E—p =[:T,NTu) | (n—p)+ > T(u—p')
1;67'61_‘/(1‘,4,01_‘“/)

implies mq, > 0, since ny, > 0 and n, > 0 for all & € A(G,T). Thus when passing to
71 (L)' the term oy is not killed according to (4.7) and so 7 # ﬁu as claimed. This
implies

pt# p® € m (L)r,
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since 7' and Wu are images of uf and /% under the map

m(L)e > m(LE: o]~ g > )

where g € m1(L) and Iy is the stabiliser of g in T'. This contradicts that [u'] € Iy, 4 1,
because we have

% =k ([bo]) — kL (b)) = p* € M (L)r
by [bo] € B(L,',[bp]) and [bo] € B(L, p, [by))- O
Definition 4.22. Let R be a DVR with uniformiser 7, and quotient field F. Let k; >
-+« >k, be a sequence of integers. We say that the type of g € GL,(F) is (k1,...,k,) if

we have

7k

g€ GL,(R) GL.(R).

7Tk"

Lemma 4.23. Let R be a DVR with uniformiser 7, and quotient field F. We consider
the subgroups

GL,, GL,, 0
L= . CP= . c GL,
GL,,, * GL,,,

of GL,,. Let g € P(F), and gy, be the image of g in the Levi quotient. We regard g;, as an
element of L(F). We put Ny=ny+---+n; for 0 <l <m.
Let ky > -+ >k, be a sequence of integers. Assume that the type of

(9i5)Ni+1<i,j<n € GLy— N, (F)
is (kNy415- -+ kn) for 0 <1<m—1. Then we have g;'g € P(R).

Proof. By multiplying a power of 7 to g, we may assume that k, > 0. By the assumption,
we see that the type of

(gij)Nz+1§i’j§Nz+1 € GLm+1(F)

is (kny+1,---,kn, ;) for 0 <1 <m—1 using Lemma 4.6. Hence, we may assume that
gr = diag(7h, ... 7hn).
Let v be a normalised valuation of F. Then, it suffices to show that v(g;;) > k; for all
1 <j <i<n. Assume it does not hold, and take the biggest iy such that there is jy < ig
satisfying v(gs,j,) < kio- Then the type of
(9ij)igr1<i,j<n € GLy_io (F)
is (kig+1,---,kn). Using this and Lemma 4.6, we can show that the type of

(9i5)1<i,j<io € GLgo (F)
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is (k1,...,ki,). This implies that v(g;;) > ki, for all 1 <¢,j <i¢. This contradicts the choice
of io. O

In the sequel, we simply write (Rf, f) for
(gb,gb/,Rﬁ,f,idgb,idgb,) S Mé}:b' (R7R+)

Every point of M}',,(R,R") is represented by a datum of the above form, since we have
an isomorphism of data

(g’gl’Rﬁ7f’¢’¢/) = (£b7(§b,7Rﬁ7¢/_1 Of0¢,idgb,idgb,)
for
(6,6 R f,0,¢') € My, (R.RT).

We write Dg: for the degree-1 Cartier divisor given by R
We define a morphism

@: M{:o,bé X Jgj — Pll)/fb'

by sending
FU
((RﬁafL)mg) S (Mgmbé X ‘]b )(R7R+)
to
(R*,(fL x" P)og) € P}, (R,R")

for a perfectoid affinoid F,-algebra (R, RT).
Proposition 4.24. The morphism

O My Jy — P,
is an isomorphism.

Proof. Let (R,RT) be a perfectoid affinoid F,-algebra, and
((R:.f1).9) € (MG, x TV ) (RRY).

Then we have ®((R% f1),g) x© L = (R*, f). Further, (R*, f) and ®((R? f1),g) recover
g. Hence, we have the injectivity of .
Let

(R*,f) € Py (R,RT).
By the definition of P,ff p» we have a reduction

fr: (&, x* P)

Xj\Dyy — (6 ¥ P)

X56"\D s

of f to P. We put fr = fp x L.
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‘We show that
(fox"P)~ o fp e JY(R,RY). (4.8)

For this, it suffices to show (4.8) after taking realisations for all V' € Rep(G). Hence, we
may assume that G = GL,,.

We view GL,-bundles as vector bundles. We take the diagonal torus and the upper-half
Borel subgroup as T and B. Then we have

GL,, GL,, 0
L= cP= C GL,,.
GL,,, * GL,,,
We write

bo = (br,...,bm), by = (b,...,0.) € GL,, (E) x ---GL,,, (F).

Then we have a decomposition
b= D G &= D &
1<i<m 1<i<m
as vector bundles. We put
FiVs, = €D &, FiVéy= P &
j<i<m j<i<m

for 1 <j<m+1. Then f: £b|X§;h\DRu — 5’1,/|X§$h\DRﬁ respects these filtrations. We can
write

f = @ fij : £b|Xf§h\DRu — éab/

1<i<j<m

XEM\Dps

where f;;: &, |XE°1’\DRu — &y ‘X?{ch\DRu. Then the morphism

fi' o fi: &,

extends to a morphism &, — &, by Lemma 4.23. Hence we have (4.8) (cf. the proof of
[Han2la, Theorem 4.1]).

It remains to show that (RF, f) € MZO’% (R,R™). It suffices to show that the type of
the modification fr, is equal to u geometric fibrewisely. Let u’ be the type of fr at a
geometric point of Spa(R,R*). The type of fr x* G is equal to p by (4.8). Hence, we
have i/ = p by Lemma 4.21. O

X%:h\DRn — é’abj XEC])\DR”

For a diamond D over Spa(E)°, let Dg; denote D X, )0 Spa(C)). Let k: Jy(E) — Q,
be the character in Lemma 4.18.

Lemma 4.25.
(1) We have
lim  Rfx,s((fi:Q@0)Y) € Diis(Spa(C}), Qy), (4.9)

K'CJy (E)
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where K' runs along compact open subgroups of Jy (E) and fr: M}, o, /K" —
b,

Spa((C;). Further we can regard this as an object of the derived category of smooth
representations of Jp(E) X Jy (E).

(2) We have an isomorphism
i i+2N oy
He (My, b, cbv@€)®’€—>H Ub(lejb' c;’(@é)
as smooth representations of Jy(E) x Ly (E).

Proof. We can define RT.(M* ) and R[.(M* ) in the same way as [Imal9,

b K, b,C, bb K',Ch,
§3] replacing ICL by ju,hj;ICu, where j,: Hecke! — Hecke<“. Then (4.9) coincides with
hg RFC (Ms,b/,K’,Cb )
K'CJy (E) r

up to shift and Tate twist. By the proof of [FS21, Proposition IX.2.1] and [FS21, Corollary
VI1.6.6], we can show that

H_H>1 RF (MZLK b,C ) 1£>Il RF (Mbbb/ K’,C ;) € D]iS<Spa(C;)7@f)'

KCJy(E) K'CJy (E)
In the same way as [Imal9, Proposition 3.16], we can show that
lim  RT'c (Mb Kb, cb) lim (Mljb’ K’ cb)
KCJy(E) K'CJy (E)
Hence the claims in (1) follow.

7 I
By (1), we can regard H{ (M} "

Then claim (2) follows from Lemma 4.18 and Proposition 4.24. O

c;,’@f) as a smooth representation of Jy, (E) x Jy, (E).

Theorem 4.26. Assume that ([b],[b'],u) is Hodge-Newton reducible for L. Then we have
an isomorphism

HEPN0 (MY 0 Q) = Ind g (D HE (MG, o0 Q) O
as smooth Jy(E) X Jy (E)-representations.
Proof. This follows from Corollary 4.14 and Lemma 4.25. O
Lemma 4.27. Let (R,R") be a perfectoid affinoid F,-algebra. Let

(&, R f,0,0)) € My, (R,RY).

For any g € Uy (E)(R,R"), there exists h € ij(R,RJF) such that go f' = f'oh, where we
put

1 -1 .
[f=9¢""0ofog: gb|X§;"\DRﬁ - gb'|X§§h\DRn~

Proof. Let j: X5\ Dgp: — X1 be the open immersion. Let V € Rep(G). We have an
embedding

E(V) = 4" E(V) = ju "y (V),
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where the second isomorphism is induced by f’. We have an action of g on j,j*& (V). It
suffices to show that g stabilises Fil}&, (V) and induces the identity on gri &,(V) for all 4.

We show this claim by a decreasing induction on . For enough large i, we have
Fil}&,(V) = 0 and the claim is trivial for such 7. Assume that the claim is true for i+ 1.
We have the natural embedding

i (V) = Gug " grh (V) = i eriéi (V)
where the second isomorphism is induced by f’. We have a commutative diagram

gri & (V) ———— jij griéy (V)

gi lj*j*grig
(gFilA&(V)) /FiliH &, (V) j.j*ari & (V),
where the bottom morphism is induced by the natural inclusion
gFiN&(V) C g(jud Filié&y (V) = ju i Fili & (V).
By this diagram, we see that gFili&, (V) = Fili&,(V), since grig is the identity on

gri & (V). Hence, g stabilises Fily&, (V). Further, g induces the identity on gri&, (V)
again by the above diagram, since gri g is the identity. O

Lemma 4.28. The action of Uy (E) on H (’Pl’fb, @,@4) is trivial.

Proof. Let pa: Phy = My, % ij — My, be the projection, where the first
i Y0 20
isomorphism is given by Proposition 4.24. It suffices to show that the action of Uy (E)

on pa1Qy is trivial. It suffices to show this after the pullback to each geometric point of

My, - 1t follows from Lemma 4.18 (3) and Lemma 4.27. O

Proposition 4.29. Let w be a smooth representation of Jy (E). Assume that ([b],[b], 1)
is Hodge—Newton reducible for L and that the Jacquet module of m with respect to Py
vanishes. Then we have

Hom,, (g (W,Hci (Mg"b,’q’@é)) =0.

Proof. This follows from Theorem 4.26 and Lemma 4.28. O

We define ty1: T, o, — [Spa(F,)/Ji (E)] as the composites

T ) — Ty — Heckey ,, — [Spa(F,)/ Jy (E)].

bb/,C
%
We put ¢y = zpr oty pr.

Theorem 4.30. Assume that b is not basic and ([b],[b'],1) is Hodge—Newton reducible
for L. Then we have

. 4%
H! (7;{‘17,}@;, tpFp) =0.
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Proof. We have

%* * * *
Loy Fo =ty ptyFp =ty D PRTpb,p
pES\@,p\Z(@)F:K(b’)
by (3.1). We take p € S’lp such that p|Z(@)F = k(b'). Then it suffices to show that
Hl (T’u (Clﬂtb b’ﬂ-(ﬂ v, ) = 0

The pullback of 7, , to Mj',, is a constant sheaf, since the map M}, —

[Spa(F,)/Jy (E)] factorises via Spa(F,). Hence, there is a Hochschild-Serre spectral
sequence

(Jb’( ), HY LMy c, Qo) @, ) = HE™ (7;71;/,@’15;”/%)
by (2.1) and Lemma 4.25. We show that
Hi(Jb/( ), H] (Mb v, Cb’@f) ®7T%b’,/&) 0
for all 4 and j. Take a projective resolution
Vi — Vo — H] (ngb,ycz,@g)
as smooth Ly (E)-representations. By Lemma 4.25 and Theorem 4.26 we have

HY (M/L c;a@é) = Indéb,,((?)Hj (szb/ C;’@Z)

b,b/
as smooth Jy (E)-representations. Moreover, the induction on the right-hand-side is
parabolic by Lemma 4.28. Parabolic induction preserves projective objects, since it has
a Jacquet functor as the right adjoint functor by Bernstein’s second adjoint theorem (cf.
[Bus01, Theorem 3]) and the Jacquet functor is exact. Note also that parabolic induction
is exact. Thus we obtain the projective resolution

(E)

.~ In d‘]b'(

Vi — Ind () Vo — HZ (M}, ¢, Q)

as smooth Jy (E)-representations. Finally the right adjoint of —® 7, 4, , in the category
of smooth Jy (E)-representations is —®77 ;, . where 7% ;,  is the smooth dual of 7y, v,
Both functors are exact and so in partlcular — ®Ty,pr,p Preserves exact sequences and
projective objects. Thus we obtain the projective resolution

i Ind{?zl/((?) Vi@mpp,p — Ind{?b/((? Vo®mppr,p — Hg (Mg,b/,@;,’@f) @ Te,b',p-

Note that P, is a proper parabolic subgroup of Jy, since b is not basic. For i > 0, we

have
Sy (E) v, —
(”%b/’p ®IndPu(E>VZ) B
since 7, 3., is cuspidal. Hence we have the claim. O
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5. Non-abelian Lubin—Tate theory

Assume that G = GL,, and p(z2) = diag(z,1,...,1). In this case, S, = G,, and Hecke=" =
Hecke". We simply write m,, , for 7, 51 for any [b] € B(GLy,)pasic. We put

00 - 0 =
10 - 0 0

b=|0 1 - 0 0)cqL,(p).
00 10

Then we have a bijection
Z - B(GLy)pasic; N +— bY.
The following proposition is a consequence of non-abelian Lubin—Tate theory.

Proposition 5.1. We put b= bY for an integer N. Assume that N =0,1 mod n. Then
we have

G

*_> *
yp hy(h*Z,®1C,) =y (F, Ho). (5.1)

Proof. We show the claim in the case where N =1 mod n using arguments in [MFO16,
Chapter 23]. See arguments in [Far25, 8.1] for the case where N =0 mod n. Suppose that
N =mn+1 for some m € Z. The following lemma provides an explicit description of the
stack HeckebS“ .

Lemma 5.2. Let Spa(F,F") be a geometric point in Perfﬁq. Let & be a vector bundle of

rank n on X5 having a degree-one modification fibrewise by &,

06 —&—F —0,

where F is a torsion coherent sheaf of length 1. Then & is isomorphic to O(—m)™.

Proof. This follows from [FF14, Theorem 2.94] by dualising the modification and twisting
by O(—m). O

We put v/ = b}P™. Then, we have isomorphisms
Heckebggﬁ ~ HeckebS“
by Lemma 5.2.

Lemma 5.3. Let MP5. be the Lubin—Tate space over E at infinite level. Then we have
an isomorphism /\/llfl’f/ ~ Mx°, that is compatible with actions of GL,(E) x Jy(E) and
Weil descent data.

Proof. For a perfectoid affinoid F,-algebra (R,R*), the set ./\/lbél‘f, (R,R™) consists of 6-
tuples (&,&",R%, f,¢,¢'), where
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o (&,8" Dpi,f)€ Heckeb(o)
o ¢:& = & and ¢: & — & are isomorphisms.

Hence, the claim follows from [SW13, Proposition 6.3.9] by dualising the modification
and twisting by O(—m). O

Let
po: Spa(Cp) — Spa(E)® — [Divi /] (5.2)
be the natural projection. The equality (5.1) is equivalent to the equality
* *_> <_* K%
pyyp hy(h*F,@1C,) = pyy; (F, M) (5.3)

with action of J,(E) x Wg. Then the right-hand side of (5.3) is 7, ; ® ¢ as a representation
of Jp(E) x Wg. Hence it suffices to show that the cohomology of the left-hand side of (5.3)
vanishes outside degree zero, and is equal to m, , ® ¢ in degree zero as representations of
Jb(E) X WE.

The i-th cohomology of the left-hand side of (5.3) is equal to

+n—1 n—1
HE TS T 70) (P4 ):

We have

E>k *

t b,b"?@ = tb,b'ﬂ-#’;]-
by (3.1), since g,y =y 1 in our case. We have a Hochschild-Serre spectral sequence

Hi (GLn( ). HY (Mb v, @”Qé) ® Ty, 1) = HI™ (Eilfic;vtz,bm%l)
by (2.1) and Lemma 4.25. We put
GL,(E)° = {g € GL,(E) | det(g) € Of}.
Then we have
GL,, ( oo, (0),0
(Mi%ocb vQL’) c-Indgy” (E)OHJ( LT,C}, 7(@1’)
for a connected component M7y © of M5 (cf. [Far04, 4.4.2]). By Lemma 5.3, we have
HL (M3t 0.Q0) @71 = (endgy (Do H (M QT ) @
(0
= cIndG (), (Ha (MLT(c3 ° Q) ®W¢,1|GLH(E)U).

Therefore one has

H, (GLn( JHL (M3 ) Q) ®7rw) — H, (GLn(E)O’Hg (Ma(ggo’@e) @Wl\GLn(E)O)

by Shapiro’s Lemma. Now 7, 1|gr, (g)o is a compact representation and thus it is a
projective object in the category of smooth GL, (E)%representations. Hence no higher
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homology groups appear and so
(HJ (MLT c v@[) ®7Tgp 1>GLn(E) = HJ <T b (Cb atb b T, 1)

Hence, the claim follows from the non-abelian Lubin—Tate theory. O

6. Hecke eigensheaf property
Assume that G = GLg and u(z) = diag(z,1) in this section.

Lemma 6.1. Let Spa(F,FT) be a geometric point in Perfr, . Let
0—&—& —F—0

be an exact sequence of coherent sheaf over X5, where & and &' are vector bundles of
rank 2 and F is a torsion coherent sheaf of length 1. Assume that & is not semi-stable and
&' is semi-stable. Then & ~O(m)®O(m—1) and & ~ O(m)®O(m) for some integer
m.

Proof. The vector bundle & is isomorphic to O(m+ 1) or O(m)® O(m) for some integer
m, since it is semi-stable.

If & is isomorphic to O(m+ 3), then & is isomorphic to O(m) & O(m) by [FF14,
Theorem 2.9]. This contradicts the condition that & is not semi-stable.

Assume &” is isomorphic to O(m) @ O(m). Then & is isomorphic to O(my) ® O(ms)
with my,ms <mor O(n+ 1) withn <m—1by [FF14, 6.3.1]. By considering deg(&)+1 =
deg(&”), the possible cases are O(m)® O(m—1) or O(m — 5). However, the latter case
does not happen, since & is not semi-stable. O

Proposition 6.2. Then we have
-
supp hy(h*.F,®1C),) C Bung x Div.
. ) —
Proof. Take a non-basic element [b] € B(G). Then it suffices to show that pjy; hy h*

F, =0, where p; is defined at (5.2). We consider the following cartesian diagram:

<p,ss <p b
7;),«:; 7;,@; Spa(Cy)
i iybopb
<u B
B oo Hecke=" —"= Bung x DivY

b

Jos
Bung ——— Bung.

Let h b T , — Bung be the morphism which appears in the above diagram. Then it

suffices to see that

<u o

H(T . 1y F ) = 0.
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On the other hand, we have

P

Hl(T hbgl/’) :H;(T<M * hbbb]ssy )

(Cba

by Z, = jss tisF o We have a decomposition

<
v 117

Ne2Z

by Lemma 6.1. Hence, we have
H(Z: (T<“,SS h b QQJSGJ@) 0
by Theorem 4.30. O

Theorem 6.3. Then we have
-
By ( h*ﬂip@IC:L) = F,Mep.
Proof. By Proposition 6.2, it suffices to show the equality on Bung x Div} % - The equality
on the semi-stable locus follows from Proposition 5.1, since we have N = 0,1 mod 2 for
any integer N. O
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