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Abstract. This paper makes a twofold contribution to the study of expressivity. First,
we introduce and study the novel concept of conditional expressivity. Taking a universal
logic perspective, we characterize conditional expressivity both syntactically and semantically.
We show that our concept of conditional expressivity is related to, but different from, the
concept of explicit definability in Beth’s definability theorem. Second, we use the concept to
explore inferential relations between collective deontic admissibility statements for different
groups. Negative results on conditional expressivity are stronger than standard (unconditional)
inexpressivity results: we show that the well-known inexpressivity results from epistemic logic
on distributed knowledge and on common knowledge only concern unconditional expressivity.
By contrast, we prove negative results on conditional expressivity in the deontic logic of
collective agency. In particular, we consider the full formal language of the deontic logic of
collective agency, define a natural class of sublanguages of the full language, and prove that
a collective deontic admissibility statement about a particular group is conditionally expressible
in a sublanguage from the class if and only if that sublanguage includes a collective deontic
admissibility statement about a supergroup of that group. Our negative results on conditional
expressivity may serve as a proof of concept for future studies.

§1. Introduction. We introduce and study a novel variant of the standard concept
of expressivity. Standardly, a statement φ from a given language is expressible in a
sublanguage of that language if and only if there is a statement � in the sublanguage
such that φ and � are logically equivalent.1 We say that a statement φ from a given
language is conditionally expressible in a sublanguage of that language if and only
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1 See, for instance, [35, definition 8.2]. In the literature, the terms ‘expressible’ and ‘definable’
are often used interchangeably. To distinguish the concept of expressibility from the related
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2 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

if there are subsets Γ and Δ of the sublanguage such that Γ non-trivially implies
that φ and Δ are logically equivalent (Definition 1 below).2 In the first part of this
paper, we take the perspective of universal logic and characterize our novel concept
of conditional expressivity both syntactically and semantically. In particular, we show
that if φ non-trivially implies or is non-trivially implied by any of the statements of the
sublanguage, then φ is conditionally expressible in that sublanguage.3 Consequently,
if φ is not conditionally expressible in the sublanguage, then there is no statement in
that sublanguage that non-trivially implies or is non-trivially implied by φ.

Although the universal logic perspective shows it to be widely applicable, our concept
of conditional expressivity was originally motivated by the philosophical debate on
collective agency, collective obligations, and collective responsibility.4 That debate has
been focused almost exclusively on the question whether and how statements about
groups are inferentially related to statements about individuals. It has thereby prevented
another question from being asked: whether and how statements about a given group
are inferentially related to statements about other groups. In the second part of this
paper, we rephrase the latter question using our concept of conditional expressivity,
focusing on collective deontic admissibility statements of the form “Group G of agents
performs a deontically admissible group action” (formalized as �G). Such statements
are a key component of a well-established deontic logic of collective agency that models
actions, omissions, abilities, and obligations of finitely many individuals and groups
of individuals.5

In the present study, we assess the inferential relations between, on the one hand, the
collective deontic admissibility statement �G about a groupG of agents and, on the other
hand, collective deontic admissibility statements about G’s subgroups, supergroups,
outgroups, and partially overlapping groups. In particular, we define a natural class
of sublanguages of the full language of the deontic logic of collective agency and
assess, for each sublanguage in that class, whether �G is conditionally expressible in
that sublanguage, that is, whether �G non-trivially implies or is non-trivially implied
by any of the statements in that sublanguage.

but different concept of definability in Beth’s definability theorem (see the discussion in §2),
throughout this paper, we stick to ‘expressible’ and its variants.

2 In fact, there are at least four variants of expressivity: we could weaken the standard definition
of (unconditional) expressivity by requiring that there be a possibly infinite set Δ of the
sublanguage such that φ and Δ are logically equivalent. Likewise, we could strengthen our
definition of conditional expressivity by requiring that there be statements � and � in the
sublanguage such that � non-trivially implies that φ and � are logically equivalent. In
this paper, we use the standard finitary variant of (unconditional) expressivity to discuss
well-known examples from epistemic logic and the infinitary (and thus weaker) variant of
conditional expressivity to state our central theorem, as the latter allows us to present our
negative result in its strongest form.

3 A statement φ trivially implies a statement � if � is a logical truth. A statement φ is trivially
implied by a statement � if � is a logical falsity.

4 Key contributors to the debate include Kutz [19], Isaacs [16], List and Pettit [20], Tollefsen
[31], Collins [7], and Schwenkenbecher [25].

5 The deontic logic of collective agency [29] is a deontic logic in the tradition of stit (‘sees
to it that’) logics of agency. See [2] and [14] for textbook presentations of stit logics and
historical references. Collective actions and/or obligations have been studied using stit-like
frameworks in [11], [32], [2, chap. 10], [14, chap. 6], [18], [5], [15], [9], [26], and [8].
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CONDITIONAL EXPRESSIVITY AND COLLECTIVE DEONTIC ADMISSIBILITY 3

Our central theorem on collective deontic admissibility establishes that the collective
deontic admissibility statement �G is conditionally expressible in a given sublanguage
from the natural class of sublanguages of the full language of the deontic logic
of collective agency if and only if that sublanguage contains a collective deontic
admissibility statement �H for some supergroup H of G (Theorem 10). The right-to-
left direction of our central theorem is new. Its left-to-right direction is a considerable
strengthening, in various ways, of an earlier result from [9]. Phrased differently, it says
that if the sublanguage does not contain a collective deontic admissibility statement �H
for some supergroup H of G, then there are no non-trivial inferential relations between
�G and any statement of that sublanguage.6

Our paper proceeds as follows. In §2, we first take the perspective of universal logic
to define conditional expressivity and establish necessary and sufficient conditions
for it. This is followed by a comparison of our concept of conditional expressivity
with the concept of explicit definability in Beth’s definability theorem. To illustrate the
concept of conditional expressivity, we discuss two well-known inexpressivity results
from epistemic logic and show that these impossibility results on (unconditional)
expressivity do not generalize to conditional expressivity. We then study the concept
of conditional expressivity semantically and give a semantic criterion for proving that
a statement is not conditionally expressible in a given formal language. In §3, we recall
the full formal language and the semantics of the deontic logic of collective agency. We
define a natural class of sublanguages that differ with respect to (a) the included deontic
admissibility statements and (b) the included stit operators for individual and group
agency. We then give conditions under which two models are bisimilar with respect to
one of the sublanguages in the class and prove a general Hennessy–Milner theorem that
covers every sublanguage in the class. In §4, building on the previous steps, we generalize
the impossibility result on conditional expressivity from [9] to much more expressive
sublanguages. In §5, we prove that the collective deontic admissibility statement �G is
conditionally expressible in a sublanguage from the natural class of sublanguages if
and only if that sublanguage contains a collective deontic admissibility statement �H
for some supergroup H of G. Lastly, in §6, we compare our new impossibility result
with the earlier result from [9] and discuss two straightforward applications.

§2. Conditional and unconditional expressivity. When can a particular statement
be expressed in a particular formal language? To answer this question, we must do at
least three things. First, we must specify the formal language Le that is supposed to do
the expressing. Second, we must specify a semantics that gives truth-conditions for the
statement to be expressed and for the statements of the language Le .7 Third—and this

6 Favoring a particular type of ontological reductionism about groups, Collins [7, p. 75]
argues that to believe otherwise “would be to suggest that groups are somehow free-floating,
independent, or self-sustaining entities that are not in a closed causal system with the rest of
the world.” Nonetheless, when it comes to explanatory reductionism (where we should think
of inference relations rather than of causal ones), these words aptly describe the predicament
of collective deontic admissibility.

7 Compare [30, p. 152]: “The question how a certain concept is to be defined is correctly
formulated only if a list is given of the terms by means of which the required definition is
to be constructed. If the definition is to fulfil its proper task, the sense of the terms in this
list must admit of no doubt.” and [22, p. 196]: “indefinability [...] is relative to a set of ideas;
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4 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

is a point that seems to have gone unnoticed thus far—we must be fully explicit about
what counts as an expression of a statement in the language Le , because expressivity
can be either conditional or unconditional.

We take the perspective of universal logic [3] to study expressivity. First, we give
formal definitions of conditional and unconditional expressivity. Second, we state two
conditions on the relation between the statement to be expressed and the language
that is supposed to do the expressing. We show that a statement is not conditionally
expressible in a given formal language if and only if both conditions are met. Third, we
use the two conditions to illustrate the difference between standard (unconditional)
expressivity and conditional expressivity with three varieties of group knowledge from
epistemic logic. Lastly, we give semantic counterparts to the two conditions. These
counterparts amount to a semantic criterion for proving that a statement is not
conditionally expressible in a given formal language. This criterion will be at the
basis of our negative and positive conditional expressivity results on collective deontic
admissibility statements—see §4 and §5, respectively.

2.1. Expressivity and universal logic. Let L and Le be two fixed non-empty formal
languages such that Le ⊂ L. (We think of the language Le as the language that is
supposed to do the expressing.) We use φ and � as variables for statements in L, and
Γ and Δ as variables for subsets of L. Let � be a fixed consequence relation from
subsets of L to statements in L. (Note that � may be specified proof-theoretically or
model-theoretically.) We write Γ � Δ if for all � in Δ it holds that Γ � �.8 We say that
Γ is L-trivial if Γ � L. We assume the consequence relation � to have two properties.
Our first assumption is that if Δ and Σ are logically equivalent on the condition that Γ,
then Γ ∪ Δ is Le-trivial if and only if Γ ∪ Σ is Le-trivial. That is, for all Γ,Δ,Σ ⊆ L, we
have:9

UL1: if both Γ,Δ � Σ and Γ,Σ � Δ, then Γ,Δ � Le if and only if Γ,Σ � Le .

Our second assumption is that Le is L-trivial:

UL2: Le � L.

The properties UL1 and UL2 are very weak. UL1 holds if the consequence relation �
is Tarskian, that is, if it is reflexive, transitive, and monotonic (note that the converse
does not hold).

Given the consequence relation �, we can state the standard definition of
(unconditional) expressivity as follows: a statement φ is expressible in a language Le if
and only if there is a statement � in Le such that � and φ are logically equivalent, that
is, if and only if there is a statement � ∈ Le such that � � φ and φ � �. Accordingly,
a statement φ is not expressible in a language Le if and only if for every� ∈ Le it holds
that � �� φ or φ �� �.

If a statement φ is not (unconditionally) expressible in a language Le , then it is
impossible to state necessary and sufficient conditions for φ in that language. This

and an idea which is indefinable relative to one set of primitives may be definable relative to
another.”

8 Note that Γ � Δ if Δ = ∅. An empty set on the right-hand side does not imply triviality.
9 We adopt standard notational conventions and write ‘Γ,Δ’ instead of ‘Γ ∪ Δ’, and ‘Γ, φ’

instead of ‘Γ ∪ {φ}’. Note that we do not use commas to the right of the consequence
relation �.
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CONDITIONAL EXPRESSIVITY AND COLLECTIVE DEONTIC ADMISSIBILITY 5

does not, however, exclude that there are certain conditions that can be stated in Le

under which φ is logically equivalent to a statement or set of statements in Le . If that is
indeed possible, φ is conditionally expressible in Le . Formally, we say that a statement
φ is conditionally expressible in a language Le if and only if there is a pair of subsets Γ
and Δ of Le such that Γ is not Le-trivial and φ and Δ are logically equivalent on the
condition that Γ.10

Definition 1 (Conditional Expressivity). Let φ ∈ L – Le . Then φ is conditionally
expressible in Le if and only if there are Γ,Δ ⊆ Le such that

(i) Γ �� Le ;
(ii) Γ,Δ � φ;
(iii) Γ, φ � Δ.

Accordingly, a statement φ is not conditionally expressible in a language Le if and
only if for every Γ,Δ ⊆ Le it holds that if Γ �� Le , then Γ,Δ �� φ or Γ, φ �� Δ. Or,
equivalently, if and only if for every Γ,Δ ⊆ Le it holds that if Γ,Δ � φ and Γ, φ � Δ,
then Γ � Le .

Our concept of conditional expressivity is related to, but different from, the concept
of explicit definability that is characterized in Beth’s definability theorem.11 Let us state
Beth’s theorem and compare both concepts. If Le and L are first-order languages such
that Le ⊆ L and M is an L-model, then M |Le is the Le-submodel of M that only
interprets the symbols that are in both Le and L. Using a for n-tuples of constants and
x for n-tuples of variables, Beth’s theorem can now be stated as follows.

Theorem (Beth’s Definability Theorem). Let Le and L be first-order languages such
that Le ⊆ L. Let Γ ⊆ L and φ(x) ∈ L. Then the following are equivalent:

(i) IfM1 |= Γ andM2 |= Γ andM1|Le =M2|Le , then for all a inM1 it holds that
M1 |= φ(a) iffM2 |= φ(a);

(ii) There is a �(x) ∈ Le such that Γ |= �(x) ↔ φ(x).

To connect conditional expressivity and explicit definability, we assume a classical
setting in which Le and L are first-order languages such that Le ⊆ L. Let Γ ⊆ L and
φ ∈ L. We say that φ is explicitly definable modulo Γ in terms of Le if condition (ii) of
Beth’s definability theorem holds. Roughly,12 we have thatφ is conditionally expressible
inLe if and only if there is a Γ ⊆ Le such thatφ is explicitly definable modulo Γ in terms
of Le . Accordingly, if φ is not conditionally expressible in Le , then for every Γ ⊆ Le

that is not Le-trivial it holds that φ is not explicity definable modulo Γ in terms of Le .
Note that conditional expressivity requires that Γ be a subset of Le , not just of L.13

10 The concept of conditional expressivity can be seen as a generalization of Carnap’s concept
of a bilateral reduction sentence [6, §5–§10]. A bilateral reduction sentence for a term ‘Cx’ is
of the form ‘Sx → (Cx ≡ Rx)’. It “is not a full definition (which would have to be of the
form ‘Cx ≡ ...’, with ‘Cx’ constituting the definiendum); it specifies the meaning of ‘Cx’,
not for all cases, but only for those that satisfy the condition S. In this sense, it constitutes
only a partial, or conditional, definition for C” [12, pp. 129–130].

11 See, for instance, [13, Theorem 5.5.4]. We thank an anonymous reviewer for pointing out
this relation.

12 To be precise, the equivalence holds if we require on the left-hand side that Δ be a singleton
and on the right-hand side that Γ not be Le-trivial.

13 Given the current state of the research, two differences between conditional expressivity and
explicit definability come to mind. First, our definition of and our results on conditional
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6 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

Our first theorem gives an analysis of conditional expressivity. We state two
conditions, (C1) and (C2), on the relation between the statement φ that is to be
expressed and the language Le that is supposed to do the expressing. Informally, (C1)
says that every subset of Le that proves φ is trivial, and (C2) says that every subset of
Le that disproves φ is trivial. It holds that a statement φ is not conditionally expressible
in a language Le if and only if both conditions are met.

Theorem 1. Let φ ∈ L – Le and let � be a consequence relation that has the properties
UL1 and UL2. Then φ is not conditionally expressible in Le if and only if both

(C1) for every Γ ⊆ Le , it holds that if Γ � φ, then Γ � Le , and
(C2) for every Γ ⊆ Le , it holds that if Γ, φ � Le , then Γ � Le .

Proof. (⇒) Assume that (C1) or (C2) does not hold. If (C1) does not hold, there
must be a Γ ⊆ Le such that Γ � φ and Γ �� Le . Hence, (i) Γ �� Le , (ii) Γ, ∅ � φ, and (iii)
Γ, φ � ∅. Hence, φ is conditionally expressible in Le . If (C2) does not hold, there must
be a Γ ⊆ Le such that Γ, φ � Le and Γ �� Le . Because of UL2, we have that Γ,Le � L

and hence Γ,Le � φ. Hence, (i) Γ �� Le , (ii) Γ,Le � φ, and (iii) Γ, φ � Le . Hence, φ
is conditionally expressible in Le .

(⇐) Assume that φ is conditionally expressible in Le . Then there are Γ,Δ ⊆ Le such
that (i) Γ �� Le , (ii) Γ,Δ � φ, and (iii) Γ, φ � Δ. We consider two cases. Case (a):
suppose that Γ, φ � Le . Then Γ, φ � Le and Γ �� Le . Hence, (C2) does not hold. Case
(b): suppose that Γ, φ �� Le . Because Γ,Δ � φ and Γ, φ � Δ and UL1, we have that
Γ,Δ �� Le . Then, Γ,Δ � φ and Γ,Δ �� Le . Hence, (C1) does not hold. Either way, (C1)
or (C2) does not hold.

Generally, positive results on conditional expressivity are easy to obtain. From
Theorem 1, it follows that if we wish to show that φ is conditionally expressible in
Le , it suffices to find a non-trivial Γ ⊆ Le such that Γ � φ or a non-trivial Γ ⊆ Le such
that Γ, φ � Le . In the first case, by setting Δ = ∅, we have Γ �� Le and Γ,Δ � φ and
Γ, φ � Δ. In the second case, by setting Δ = Le , we have Γ �� Le and Γ,Δ � φ and
Γ, φ � Δ.

2.2. Expressivity in epistemic logic. We illustrate the concept of conditional
expressivity by way of three different varieties of group knowledge. These varieties have
been studied in epistemic logic, in which epistemic statements about individuals like
“Agent i knows that φ” are formalized as Kiφ. The individualistic epistemic language
L� is given by the following Backus–Naur form:

φ := p | ¬φ | (φ ∧ φ) | Kiφ,
where p ranges over a fixed countable set P of atoms and i ranges over a fixed finite set
N of individual agents.

Truth-conditions for the statements in the individualistic epistemic language L� are
specified in terms of epistemic modelsM = 〈W, (Ri)i∈N , V 〉, where W is a non-empty
set of possible worlds, every Ri is an equivalence relation on W that captures the pairs
of worlds that individual agent i cannot distinguish epistemically, and V is a valuation
function that assigns to each atom a set of possible worlds where that atom is true. The

expressivity are restricted neither to first-order languages nor to classical logic. Second, our
present results on conditional expressivity only concern 0-ary predicates, whereas Beth’s
definability theorem concerns n-ary predicates.
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CONDITIONAL EXPRESSIVITY AND COLLECTIVE DEONTIC ADMISSIBILITY 7

truth-condition for individual knowledge that φ is as follows: Kiφ is true at a world w
in an epistemic model M if and only if for all w′ in W such that Riww

′ it holds that φ
is true at w′. In this subsection, let � be the consequence relation associated with these
epistemic models.

The individualistic epistemic language L� has been extended by adding different
modalities that characterize different varieties of group knowledge [10, §2.2]. We discuss
three of these modalities to illustrate our concept of conditional expressivity. First, L�
can be extended by adding a new modality EG to formalize statements of general
knowledge among the members of G. Let REG be the union

⋃
i∈G Ri of all of the group

members’ equivalence relations. The truth-condition for general knowledge among the
members of G that φ is as follows: EGφ is true at a world w in an epistemic model M
if and only if for all w′ in W such that REGww

′ it holds that φ is true at w′. It is easy to
see that the general knowledge statement EGp is logically equivalent to the statement∧
i∈G Kip from L� . We have:

EGp �
∧
i∈G
Kip and

∧
i∈G
Kip � EGp.

Hence, EGp is (unconditionally) expressible in L� .
Second, L� can be extended by adding a new modality DG to formalize statements

of distributed knowledge among the members of G. LetRDG be the intersection
⋂
i∈G Ri

of all of the group members’ equivalence relations. The truth-condition for distributed
knowledge among the members of G that φ is as follows: DGφ is true at w in M if
and only if for all w′ in W such that RDGww

′ it holds that φ is true in w′. It is known
that the statement DGp is not (unconditionally) expressible in L� [34]. Nonetheless, if
i ∈ G, then the distributed knowledge statement DGp is implied by the statement Kip
from L� . We have:

Kip � DGp, if i ∈ G.
Because Kip ∈ L� and Kip � DGp and Kip �� L� , condition (C1) does not hold

for distributed knowledge. By Theorem 1, DGp is conditionally expressible in L� . We
have:14

Kip, p ∨ ¬p � DGp and Kip,DGp � p ∨ ¬p, if i ∈ G.
Third, L� can be extended by adding a new modality CG to formalize statements of

common knowledge among the members of G. Let RCG be the transitive closure of the
union REG of all of the group members’ equivalence relations.15 The truth-condition
for common knowledge among the members of G that φ is as follows: CGφ is true at

14 Not all cases of conditional expressivity are ‘degenerate’ in the sense that they involve
tautologies or contradictions. We have p → Kip,Kip � DGp and p → Kip,DGp � Kip
if i ∈ G, although p → Kip �� DGp and DGp �� p → Kip. It is an open problem how to
make a sharp and principled distinction between ‘degenerate’ and ‘non-degenerate’ cases of
conditional expressivity. Such a distinction would presumably require additional conditions
on conditional expressivity. Whatever such additional conditions might be, negative results
on conditional expressivity—like the ones in §4 of this paper—imply negative results on
‘non-degenerate’ conditional expressivity.

15 The transitive closure of a relation R is the smallest relation R+ (in terms of set-theoretical
inclusion) such that (i) R ⊆ R+ and (ii) ∀w∀w′∀w′′((R+ww′ ∧R+w′w′′) → R+ww′′).
Note that R+ is reflexive if R is reflexive.
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8 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

w in M if and only if for all w′ in W such that RCGww
′ it holds that φ is true in w′.

Again, it is known that the statement CGp is not (unconditionally) expressible in L�

[35, theorem 8.34].16 Nonetheless, if i is in G, the common knowledge statement CGp
implies the statement Kip from L� . We have:

CGp � Kip, if i ∈ G.
Because ¬Kip ∈ L� and ¬Kip,CGp � L� and ¬Kip �� L� , condition (C2) does not

hold for common knowledge. By Theorem 1, CGp is conditionally expressible in L� .
We have:

¬Kip, p ∧ ¬p � CGp and ¬Kip,CGp � p ∧ ¬p, if i ∈ G.
In summary, the two inexpressivity results from epistemic logic on distributed

knowledge and on common knowledge only concern unconditional expressivity. As
we have seen, both varieties of group knowledge are conditionally expressible in the
individualistic epistemic language L� . This observation might give the impression that
any statement about groups is conditionally expressible in terms of statements about
individuals. This is not the case. In §4, we study the conditional expressivity of collective
deontic admissibility statements and prove that they are not even conditionally
expressible in a wide range of sublanguages of the deontic logic of collective action.
To do so, we first develop a semantic method for proving that a given statement is not
conditionally expressible in a given language.

2.3. How to disprove conditional expressivity? To prove that a statement φ from
a language L is not conditionally expressible in a non-empty sublanguage Le of L,
we must show that conditions (C1) and (C2) of Theorem 1 hold. In this subsection,
we state a semantic counterpart to each of the two conditions and prove that the
counterparts capture the conditions neatly. The two counterparts amount to a semantic
criterion for proving that a statement is not conditionally expressible in a given formal
language. In §4, we use that criterion to prove that collective deontic admissibility
statements are not conditionally expressible in a range of sublanguages of the deontic
logic of collective agency. Our semantic counterparts to the conditions rely on two
assumptions.

First, we assume that the consequence relation � is fixed by a model-theoretical
semantics, that is, we assume that

Sem1: There is a class C of indices of evaluation in terms of which the truth-
conditions for the statements in L are given. The consequence relation � is
defined from C in the standard, Tarskian way.

We write ‘x |= �’ if the statement � from L is true at the evaluation index x from C.
We write ‘x |= Γ’ if for every � in the set of statements Γ from L it holds that x |= �.
The consequence relation � from subsets of L to statements of L is standardly defined
as follows: Γ � � if and only if for every x in C it holds that if x |= Γ, then x |= �.

Second, we assume that every statement in the sublanguage Le of L has a companion
statement in Le that acts as its classical negation. More formally,

16 Note that if Δ is the infinite set {p,
∧
i∈G Kip,

∧
i∈G Ki (

∧
i∈G Kip), ...} ⊆ L� , then it holds

that CGp � Δ and Δ � CGp. Accordingly, CGp is (unconditionally) expressible in L� if we
opt for the infinitary variant—see footnote 1.
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CONDITIONAL EXPRESSIVITY AND COLLECTIVE DEONTIC ADMISSIBILITY 9

Sem2: For every � ∈ Le , there is a � ∈ Le such that for every x in C, it holds that
x |= � if and only if x �|= �.

The assumption Sem1 implies that the consequence relation � is Tarskian: it is
reflexive, transitive, and monotonic. Hence, Sem1 also implies UL1. The assumptions
Sem1 and Sem2 jointly imply UL2.

We say that x and y in C are equivalent on Le (notation: x ≡Le y) if for all � ∈ Le

it holds that x |= � if and only if y |= �. Note that Sem2 ensures that the following
property holds.

Lemma 1. Let (C, |=) be such that Sem1 and Sem2 are satisfied. Then

If {� ∈ Le : x |= �} ⊆ {� ∈ Le : y |= �}, then x ≡Le y.

Proof. Assume {� ∈ Le : x |= �} ⊆ {� ∈ Le : y |= �}. Then for all� ∈ Le it holds
that if x |= �, then y |= �. Suppose there is a � ∈ Le such that y |= � and x �|= �.
By Sem2, there is a � ∈ Le such that for every z ∈ C, it holds that z |= � if and only
if z �|= �. Hence, x |= � and y �|= �. From our assumption, it follows that y |= �.
Contradiction. Hence, for all � ∈ Le it holds that if y |= �, then x |= �. Therefore,
x ≡Le y.

Given a semantics for � that satisfies Sem1 and Sem2, we can state semantic
counterparts to conditions (C1) and (C2) of Theorem 1 and show that the counterparts
characterize these conditions.

Definition 2. Let φ ∈ L – Le and let (C, |=) be such that Sem1 and Sem2 are satisfied.
Then the semantic conditions (C′

1) and (C′
2) are the following:

(C1
′
) for every x ∈ C with x |= φ there is a y ∈ C with y �|= φ and x ≡Le y;

(C2
′
) for every x ∈ C with x �|= φ there is a y ∈ C with y |= φ and x ≡Le y.

Note that the semantic counterparts (C′
1) and (C′

2) are much stronger than what
is required for disproving (unconditional) expressivity: to prove that a statement φ is
not expressible in a language Le , it suffices to show that there is one pair of evaluation
indices x and y such that x |= φ and y �|= φ and x ≡Le y.

Theorem 2. Let φ ∈ L – Le and let (C, |=) be such that Sem1 and Sem2 are satisfied.
Then

(C1) of Theorem 1 holds iff (C′
1) of Definition 2 holds.

Proof. (⇒) Assume that (C′
1) does not hold. Then there is an x ∈ C such that

(a) x |= φ and (b) for every y ∈ C it holds that if x ≡Le y, then y |= φ. Let Γ =
{� ∈ Le : x |= �}. It holds that Γ ⊆ Le and x |= Γ. By Sem2, it must be that Γ �� Le .
Suppose that Γ �� φ. By Sem1, there is a y ∈ C such that y |= Γ and y �|= φ. Note that
{� ∈ Le : x |= �} ⊆ {� ∈ Le : y |= �}. By Lemma 1, it must be that x ≡Le y. By (b),
it must be that y |= φ. Contradiction. Hence, Γ � φ. Therefore, (C1) of Theorem 1
does not hold.

(⇐) Assume that (C′
1) holds. Suppose that (C1) does not hold. Then there is a

Γ ⊆ Le such that (a) Γ �� Le and (b) Γ � φ. By (a) and Sem1, there is an x ∈ C such
that x |= Γ. By (b) and Sem1, it must be that x |= φ. By (C′

1), there is a y ∈ C with
y �|= φ and x ≡Le y. Because Γ ⊆ Le and x |= Γ and x ≡Le y, it must be that y |= Γ.
By (b) and Sem1, it must be that y |= φ. Contradiction. Hence, (C1) of Theorem 1
holds.
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10 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

Theorem 3. Let φ ∈ L – Le and let (C, |=) be such that Sem1 and Sem2 are satisfied.
Then

(C2) of Theorem 1 holds iff (C′
2) of Definition 2 holds.

Proof. (⇒) Assume that (C′
2) does not hold. Then there is an x ∈ C such that (a)

x �|= φ and (b) for every y ∈ C it holds that if x ≡Le y, then y �|= φ. Let Γ = {� ∈ Le :
x |= �}. By Sem2 and because Le is non-empty, Γ is non-empty. It holds that Γ ⊆ Le

and x |= Γ. By Sem2, it must be that Γ �� Le . Suppose that Γ, φ �� Le . Then there is a
y ∈ C such that y |= Γ and y |= φ. Note that {� ∈ Le : x |= �} ⊆ {� ∈ Le : y |= �}.
By Lemma 1, it must be that x ≡Le y. By (b), it must be that y �|= φ. Contradiction.
Hence, Γ, φ � Le . Therefore, (C2) of Theorem 1 does not hold.

(⇐) Assume that (C′
2) holds. Suppose that (C2) does not hold. Then there is a

Γ ⊆ Le such that (a) Γ �� Le and (b) Γ, φ � Le . By (a) and Sem1, there is an x ∈ C
such that x |= Γ and x �|= Le . By (b) and Sem1, it must be that x �|= φ. By (C′

2), there
is a y ∈ C with y |= φ and x ≡Le y. Because Γ ⊆ Le and x |= Γ and x ≡Le y, it must
be that y |= Γ and y �|= Le . By (b) and Sem1, it must be that y �|= φ. Contradiction.
Hence, (C2) of Theorem 1 holds.

§3. The deontic logic of collective agency. In the remainder of the paper, we study
conditional expressivity within the context of the deontic logic of collective agency.
First, we recall its full language, its sublanguages, and its semantics ([29] provides an
accessible introduction to the semantics). Second, we give the structural conditions
under which two deontic game models are bisimilar with respect to a particular
sublanguage. Third, we prove a general Hennessy–Milner theorem for this concept
of bisimulation: two deontic game models are bisimilar with respect to a particular
sublanguage if and only if the two models validate exactly the same set of statements
from that sublanguage.

3.1. Languages and semantics. We fix a countable set P of atoms and a finite set N
of individual agents. We use p, q, and r as variables for atoms, φ, �, and � as variables
for statements, i, j, and k as variables for individual agents, andF , G, andH as variables
for non-empty sets of individual agents. We use – G to refer to the complement N – G.
We use N to refer to the set of all non-empty subsets of N , and we use X, Y, and Z as
variables for subsets of N. Lastly, we use G, N, and I to refer to particular subsets of N
that will be defined along the way.

Every formal language LX

Y
to be studied in this paper is given by the following

Backus–Naur form:

φ := p | �F | ¬φ | (φ ∧ φ) | �φ | [H]φ,

where p ranges over P and F ranges over X and H ranges over Y.
The operators ∨, →, ↔, �, and 〈G〉 abbreviate the usual constructions. Brackets

and braces are omitted if no ambiguities arise by leaving them out.
The language LN

N
is the full language of our deontic logic of collective agency. Note

that every language LX

Y
is a sublanguage of LN

N
, that is, for all X and Y, it holds that

LX

Y
⊆ LN

N
.

We specify a semantics that gives truth-conditions for the statements of the full
language LN

N
(and hence for the statements of every sublanguage LX

Y
) in terms of

deontic game models [29].
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CONDITIONAL EXPRESSIVITY AND COLLECTIVE DEONTIC ADMISSIBILITY 11

Definition 3 (Deontic Game Model). A deontic game model M is a quadruple
〈N , (Ai), d, v〉 such that for each agent i in N it holds that Ai is a non-empty and
finite set of actions available to agent i, such that d : A→ {0, 1} is a deontic ideality
function, where A = ×i∈NAi and where there is at least one a in A with d (a) = 1, and
such that v : P → ℘(A) is a valuation function.

The set AG of group actions that are available to a non-empty set G of individual
agents is given by AG = ×i∈GAi . We use aG and bG to refer to elements of AG . (Given
an action profile a ∈ A and a non-empty set G of individual agents, we also use aG
to refer to the combination of individual actions of G’s members in a.) We order the
group actions that are available to any (possibly singleton) set G of individual agents
by way of a dominance relation.

Definition 4 (Simple Dominance). LetM = 〈N , (Ai), d, v〉 be a deontic game model.
Let G ⊆ N be a non-empty set of individual agents. Let aG , bG ∈ AG . Then aG �M bG if
and only if for all c–G ∈ A–G it holds that d (aG , c–G) ≥ d (bG , c–G).

As per usual, aG weakly dominates bG (notation: aG �M bG) if and only if aG �M bG
and bG ��M aG .

A group action that is available to any (possibly singleton) set G of individual agents
is deontically admissible if and only if it is not weakly dominated by any of G’s available
group actions.17

Definition 5 (Deontic Admissibility). Let M = 〈N , (Ai), d, v〉 be a deontic game
model. Let G ⊆ N be a non-empty set of individual agents. Then the set of G’s deontically
admissible actions in M, denoted by AdmM (G), is given by

{aG ∈ AG : there is no bG ∈ AG such that bG �M aG}.

We can now give the truth-conditions for the statements of LN

N
.

Definition 6 (Truth-Conditions). Let M = 〈N , (Ai), d, v〉 be a deontic game model.
Let G ⊆ N be a non-empty set of individual agents. Let a ∈ A be an action profile. Let
p ∈ P be an atom and let φ,� ∈ LN

N
be arbitrary statements. Then

(M,a) |= p iff a ∈ v(p)

(M,a) |= �G iff aG ∈ AdmM (G)

(M,a) |= ¬φ iff (M,a) �|= φ
(M,a) |= φ ∧ � iff (M,a) |= φ and (M,a) |= �

(M,a) |= �φ iff (M,b) |= φ for all b ∈ A
(M,a) |= [G]φ iff (M,b) |= φ for all b ∈ A with bG = aG .

An argument from premises Γ to a conclusion φ is valid (notation Γ � φ) if for all
deontic game models M and for all action profiles a inM, it holds that if (M,a) |= Γ,
then (M,a) |= φ.

17 On admissibility in decision and game theory, see [1], [21], [24], [17], [23], and [4]. Deontic
admissibility is used in [14, p. 130] to define collective obligations and in [27, pp. 200–
201 and 207–209] to analyse collective rationality and backward-looking collective moral
responsibility.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020325100798
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 10 Nov 2025 at 13:51:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020325100798
https://www.cambridge.org/core


12 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

3.2. X/Y-Bisimulations and Hennessy–Milner theorems.

Definition 7 (X/Y-Bisimulation). Let X,Y ⊆ N. Let M = 〈N , (Ai), d, v〉 and
M ′ = 〈N , (A′

i), d
′, v′〉 be deontic game models. A relation R ⊆ A× A′ is an X/Y -

bisimulation between M and M ′ if for all b ∈ A and b′ ∈ A′ with (b, b′) ∈ R it holds
that

(i) for all p ∈ P it holds that b ∈ v(p) iff b′ ∈ v′(p);
(ii) for all F ∈ X it holds that bF ∈ AdmM (F) iff b′F ∈ AdmM ′(F);
(iii) for all c ∈ A there is a c′ ∈ A′ such that (c, c′) ∈ R;
(iv) for all c′ ∈ A′ there is a c ∈ A such that (c, c′) ∈ R;
(v) for all H ∈ Y and c ∈ A it holds that if cH = bH, then there is a c′ ∈ A′ such

that c′H = b′H and (c, c′) ∈ R;
(vi) for all H ∈ Y and c′ ∈ A′ it holds that if c′H = b′H, then there is a c ∈ A such

that cH = bH and (c, c′) ∈ R.

We write (M,a) �X

Y
(M ′, a′) if there is an X/Y-bisimulation R between M and M ′

such that (a, a′) ∈ R.

Definition 8 (X/Y-Equivalence). Let X,Y ⊆ N. Let M = 〈N , (Ai), d, v〉 and
M ′ = 〈N , (A′

i), d
′, v′〉 be deontic game models. Then (M,a) and (M ′, a′) are

X/Y-equivalent (notation: (M,a) ≡X

Y
(M ′, a′)) if for all � ∈ LX

Y
, it holds that

(M,a) |= � if and only if (M ′, a′) |= �.

We first prove a lemma, making use of a technique from [33, §3].

Lemma 2. Let X,Y ⊆ N. Let M = 〈N , (Ai), d, v〉 and M ′ = 〈N , (A′
i), d

′, v′〉 be
deontic game models. Let b ∈ A and b′ ∈ A′. If (M,b) ≡X

Y
(M ′, b′), then for every

c ∈ A, there is a c′ ∈ A′ such that (M, c) ≡X

Y
(M ′, c′).

Proof. Assume (M,b) ≡X

Y
(M ′, b′). Take an arbitrary c ∈ A. For every d ∈ A, let

φc,d = p ∨ ¬p if (M, c) ≡X

Y
(M,d ); otherwise, let φc,d = � for some � ∈ LX

Y
for which

it holds that (M, c) |= � and (M,d ) �|= �. Let φc =
∧
d∈A φc,d . The finiteness of

A ensures that φc is well defined. Note that (†) for every d ∈ A, it holds that if
(M,d ) |= φc , then (M, c) ≡X

Y
(M,d ).

Because (M, c) |= φc , it holds that (M,b) |= �φc . By our assumption,
(M ′, b′) |= �φc . Then there is a c′ ∈ A′ such that (M ′, c′) |= φc . Suppose
(M, c) �≡X

Y
(M ′, c′). Then there is a � ∈ LX

Y
such that (M, c) |= � and (M ′, c′) �|= �.

Then (M ′, c′) |= φc ∧ ¬� and hence (M ′, b′) |= �(φc ∧ ¬�). By our assumption,
(M,b) |= �(φc ∧ ¬�). Then there is a d ∈ A such that (M,d ) |= φc ∧ ¬�. By (†),
the first conjunct entails that (M, c) ≡X

Y
(M,d ). However, we have (M, c) |= � and

(M,d ) �|= �. Contradiction. Hence, (M, c) ≡X

Y
(M ′, c′). Therefore, because c ∈ A was

arbitrary, for every c ∈ A there is a c′ ∈ A′ such that (M, c) ≡X

Y
(M ′, c′).

With the above in place, we can now prove the promised, generic Hennessy–Milner
Theorem.18

18 In modal logic, Hennessy–Milner theorems are typically proved for image-finite models,
that is, for models in which any world is related to at most finitely many worlds. In our
deontic game models, the set of ‘worlds’ is given by the set A = ×i∈NAi of action profiles.
The set of action profiles that are related to an action profile a for a group G is given by
RG(a) = {b ∈ A : aG = bG}. Because we require that eachAi be finite, our models are finite
and hence image-finite. Note that if we were to allow for only one infinite Ai , the image
RG(a) would be infinite for every G such that i �∈ G and every a ∈ A.
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Theorem 4. LetX,Y ⊆ N. Then for all pointed deontic game models (M,a) and (M ′, a′),
it holds that

(M,a) �X

Y
(M ′, a′) iff (M,a) ≡X

Y
(M ′, a′).

Proof. The left-to-right implication is proved by a straightforward structural
induction on φ. For the right-to-left implication, assume (M,a) ≡X

Y
(M ′, a′). Let

R = {(b, b′) ∈ A× A′ : (M,b) ≡X

Y
(M ′, b′)}. Note that (a, a′) ∈ R. We prove that R

is an X/Y-bisimulation between M andM ′, and hence, (M,a) �X

Y
(M ′, a′).

Clause (i) of Definition 7 follows from the definition of R. Clauses (iii) and (iv)
of Definition 7 follow from Lemma 2. Next, we show that R satisfies clauses (ii), (v),
and (vi).

(ii) Suppose (b, b′) ∈ R andF ∈ X. SupposebF ∈ AdmM (F). Then (M,b) |= �F .
By the definition of R, we have (M ′, b′) |= �F . Hence, b′F ∈ AdmM ′(F). The
proof of the converse is analogous.

(v) Suppose (b, b′) ∈ R and H ∈ Y and c ∈ A. Suppose cH = bH. Define φc as
in the proof of Lemma 2. Then (M, c) |= φc . Because cH = bH, we have
(M,b) |= 〈H〉φc . By the supposition and the definition of R, it must be that
(M ′, b′) |= 〈H〉φc . Then there is a c′ ∈ A′ such that c′H = b′H andM ′, c′ |= φc .
By the same reasoning as in the proof of Lemma 2, we have (M, c) ≡X

Y
(M ′, c′).

Hence (c, c′) ∈ R. Because (b, b′) and H and c were arbitrary, it follows that
for all (b, b′) ∈ R and all H ∈ Y and all c ∈ A, it holds that if cH = bH, then
there is a c′ ∈ A′ such that c′H = b′H and (c, c′) ∈ R.

(vi) Analogous to the proof of clause (v).

Therefore, (M,a) �X

Y
(M ′, a′).

§4. A necessary condition for the expressibility of �G . In this section, we give
a necessary condition for the conditional expressibility of the deontic admissibility
statement �G . Throughout the section, we hold fixed a non-empty subset G of N . Let
G = {F ∈ N : G �⊆ F} be the set of all non-empty subsets of N that are not supersets
of G. We prove that �G is not conditionally expressible in LG

N
. By Theorems 1–3, it

suffices to show that (C′
1) and (C′

2) hold for Le = LG
N

and φ = �G . To do so, we tweak
the two transformations of deontic game models from [9] and establish some of their
key properties.

To define the two transformations, in the next two sections, we use x and y as
variables for the elements of {+, –}N . Following the notational conventions for action
profiles, we use xi to denote the projection of x onto i, and we use xF to denote the
projection of x onto F . Accordingly, we can write the 2n-tuple (a1, x1, ... , an, xn) as an
ordered pair (a, x) of two n-tuples, where a = (a1, ... , an) and x = (x1, ... , xn). Given
an x ∈ {+, –}N and an F ∈ N, we say that xF is even if the number of i’s in F such
that xi = + is even. Otherwise, we say that xF is odd. We make the following modest
observation that crucially depends on G �⊆ F .

Observation. Let F ∈ G and let xF ∈ {+, –}F . Then

(i) there is a y–F ∈ {+, –}N –F such that (xF , y–F )G is even;
(ii) there is a y–F ∈ {+, –}N –F such that (xF , y–F )G is odd.
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14 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

4.1. The unit G-transform. Given our non-empty subset G of N , we transform any
given deontic game model M into a larger deontic game modelM 1

G . We first duplicate
the individual actions that are available to the individual agents in the given model by
indexing each individual action in the given model with either + or –. This results in
new sets A∗

i of available individual actions, one for each individual agent i. The new
set A∗ of action profiles is defined as the Cartesian product ×i∈NA

∗
i . The new deontic

ideality function d 1 copies the 0s of the given model but tinkers with its 1s (depending
on whether xG is even). The new valuation function v∗ copies the valuation function
of the given model.

Definition 9. Let M = 〈N , (Ai), d, v〉 be a deontic game model and let G ∈ N. Then
the unit G -transform of M isM 1

G = 〈N , (A∗
i ), d

1, v∗〉, where

A∗
i = Ai × {+, –} for every individual agent i ∈ N

d 1(a, x) =
{
d (a), if xG is even
0, if xG is odd

(a, x) ∈ v∗(p) iff a ∈ v(p).

It is easy to check that M 1
G is a deontic game model. The transformation of M into

M 1
G preserves admissibility for every group F in G, that is, for every group F in G we

have that aF is admissible for F in M if and only if for all xF ∈ {+, –}F it holds that
(aF , xF ) is admissible for F inM 1

G . This follows from the following lemma.

Lemma 3. Let M = 〈N , (Ai), d, v〉 be a deontic game model. Let F ∈ G and let
aF , bF ∈ AF and x, y ∈ {+, –}N . Then

(i) if both xF∩G and yF∩G are even, then aF �M bF iff (aF , xF ) �M1
G

(bF , yF );

(ii) if both xF∩G and yF∩G are odd, then aF �M bF iff (aF , xF ) �M1
G

(bF , yF );

(iii) if (aF , xF ) �M1
G

(bF , yF ), then aF �M bF .

Proof. (i) Assume that both xF∩G and yF∩G are even.
(⇒) Suppose aF �M bF . Take an arbitrary c∗–F ∈ A∗

–F . Then there is a c–F ∈
A–F and a z–F ∈ {+, –}N –F such that c∗–F = (c–F , z–F ). Note that (xF , z–F ) ∈
{+, –}N and (yF , z–F ) ∈ {+, –}N . Moreover, (xF , z–F )G = (xF∩G , zG–F ) and
(yF , z–F )G = (yF∩G , zG–F ). Because both xF∩G and yF∩G are even, there are
only two cases:

(a) Both (xF , z–F )G and (yF , z–F )G are even. By Definition 9, it must be
that d 1(aF , xF , c–F , z–F ) = d (aF , c–F ) and d 1(bF , yF , c–F , z–F ) =
d (bF , c–F ). By supposition, d (aF , c–F ) ≥ d (bF , c–F ). Hence,
d 1(aF , xF , c

∗
–F ) ≥ d 1(bF , yF , c

∗
–F ).

(b) Both (xF , z–F )G and (yF , z–F )G are odd. By Definition 9, it must
be that d 1(aF , xF , c–F , z–F ) = 0 and d 1(bF , yF , c–F , z–F ) = 0. Hence,
d 1(aF , xF , c

∗
–F ) ≥ d 1(bF , yF , c

∗
–F ).

Because c∗–F was arbitrary, it holds that d 1(aF , xF , c
∗
–F ) ≥ d 1(bF , yF , c

∗
–F )

for all c∗–F ∈ A∗
–F . Therefore, (aF , xF ) �M1

G
(bF , yF ).

(⇐) Suppose (aF , xF ) �M1
G

(bF , yF ). Take an arbitrary c–F ∈ A–F . By

assumption and by our Observation, there must be a z–F ∈ {+, –}N –F such
that (xF , z–F )G and(yF , z–F )G are even. Note that (c–F , z–F ) ∈ A∗

–F . By
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Definition 9, we have d (aF , c–F ) = d 1(aF , xF , c–F , z–F ) and d (bF , c–F ) =
d 1(bF , yF , c–F , z–F ). By supposition, it holds that d 1(aF , xF , c–F , z–F ) ≥
d 1(bF , yF , c–F , z–F ) and hence d (aF , c–F ) ≥ d (bF , c–F ). Since c–F was
arbitrary, it holds that d (aF , c–F ) ≥ d (bF , c–F ) for all c–F ∈ A–F . Therefore,
aF �M bF .

(ii) Analogous to the proof of clause (i).
(iii) Assume (aF , xF ) �M1

G
(bF , yF ). If xF∩G and yF∩G are both even or both

odd, then by (i) and (ii) of this lemma, it must be that aF �M bF . Suppose,
then, that only one of them is even.

First, we prove aF �M bF . Take an arbitrary c–F ∈ A–F . By our Observa-
tion, there must be a z–F ∈ {+, –}N –F such that (xF , z–F )G is odd, and hence
(yF , z–F )G is even. By Definition 9, we have d 1(aF , xF , c–F , z–F ) = 0. By
assumption,d 1(bF , yF , c–F , z–F ) = 0. By Definition 9 and because (yF , z–F )G
is even, it must be that d (bF , c–F ) = 0. Hence, d (aF , c–F ) ≥ d (bF , c–F ). Since
c–F was arbitrary, it holds that d (aF , c–F ) ≥ d (bF , c–F ) for all c–F ∈ A–F .
Therefore, aF �M bF .

Second, we prove bF ��M aF . Because (bF , yF ) ��M1
G

(aF , xF ), there is a

c′–F ∈ A–F and a z ′–F ∈ {+, –}N –F such that d 1(aF , xF , c
′
–F , z

′
–F ) = 1 and

d 1(bF , yF , c
′
–F , z

′
–F ) = 0. By Definition 9, we have d (aF , c

′
–F ) = 1.

Suppose d (bF , c
′
–F ) = 1. By our Observation, there must be a z ′′–F ∈

{+, –}N –F such that (yF , z
′′
–F )G is even, and hence (xF , z

′′
–F )G is odd. By

Definition 9, d 1(bF , yF , c
′
–F , z

′′
–F ) = 1 and d 1(aF , xF , c

′
–F , z

′′
–F ) = 0. This

contradicts the assumption. Hence, d (bF , c
′
–F ) = 0. We already showed that

d (aF , c
′
–F ) = 1. Therefore, bF �� aF .

Theorem 5. LetM = 〈N , (Ai), d, v〉 be a deontic game model and letR = {(a, (a, x)) :
a ∈ A and x ∈ {+, –}N }. Then R is a G/N-bisimulation between M andM 1

G .

Proof. Assume that b ∈ A and b′ ∈ A∗ and (b, b′) ∈ R. Then b′ = (b, y) for some
b ∈ A and y ∈ {+, –}N . Note that b′i = (bi , yi) for every i ∈ N . We prove clauses
(i) through (vi) of Definition 7.

(i) By Definition 9.
(ii) Suppose F ∈ G. (⇒) Suppose b′F �∈ AdmM1

G
(F). Then (bF , yF ) �∈

AdmM1
G

(F). Then there is a (cF , zF ) ∈ A∗
F such that (cF , zF ) �M1

G
(bF , yF ).

By Lemma 3(iii), it must be that cF �M bF . Therefore, bF �∈ AdmM (F).
(⇐) Suppose bF �∈ AdmM (F). Then there is a cF ∈ AF such that cF � bF ,

that is, cF � bF and bF �� cF . By Lemma 3, it must be that (cF , yF ) �M1
G

(bF , yF ) and (bF , yF ) ��M1
G

(cF , yF ). Hence, (bF , yF ) �∈ AdmM1
G

(F). There-

fore, b′F �∈ AdmM1
G

(F).

(iii) By definition of R.
(iv) By definition of R.
(v) Suppose H ∈ Y and c ∈ A. Suppose cH = bH. Let c′ = (c, y). Then c′ ∈ A∗

and (c, c′) ∈ R. Because cH = bH, it holds that c′H = b′H. Therefore, there is
a c′ ∈ A∗ such that c′H = b′H and (c, c′) ∈ R.

(vi) Suppose H ∈ Y and c′ ∈ A∗. Suppose c′H = b′H. Then c′ = (c, z) for some
c ∈ A and z ∈ {+, –}N . Then (c, c′) ∈ R. Because c′H = (cH, zH) and
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b′H = (bH, yH), it must be that cH = bH and yH = zH. Therefore, there is
a c ∈ A such that cH = bH and (c, c′) ∈ R.

Therefore, R is a G/N-bisimulation between M andM 1
G .

4.2. The zero G-transform. Again, given our non-empty subset G of N , we
transform any given deontic game model M into a larger deontic game model M 0

G .
The model M 0

G is exactly like M’s unit G-transform, except that the deontic ideality
function d 0 copies the 1s of the given model but tinkers with its 0s (depending on
whether xG is even).

Definition 10. LetM = 〈N , (Ai), d, v〉 be a deontic game model and let G ∈ N. Then
the zero G -transform of M isM 0

G = 〈N , (A∗
i ), d

0, v∗〉, where

A∗
i = Ai × {+, –} for every individual agent i ∈ N

d 0(a, x) =
{
d (a), if xG is even
1, if xG is odd

(a, x) ∈ v∗(p) iff a ∈ v(p).

Again, it is easy to check that M 0
G is a deontic game model. Just as the unit

G-transform of M does, the transformation of M into M 0
G preserves admissibility

for every group F in G.

Lemma 4. Let M = 〈N , (Ai), d, v〉 be a deontic game model. Let F ∈ G and let
aF , bF ∈ AF and x, y ∈ {+, –}N . Then

(i) if both xF∩G and yF∩G are even, then aF �M bF iff (aF , xF ) �M0
G

(bF , yF );

(ii) if both xF∩G and yF∩G are odd, then aF �M bF iff (aF , xF ) �M0
G

(bF , yF );

(iii) if (aF , xF ) �M0
G

(bF , yF ), then aF �M bF .

Proof. The proof of (i) and (ii) is analogous to the proof of Lemma 3(i) and
Lemma 3(ii), respectively.

(iii) Assume (aF , xF ) �M0
G

(bF , yF ). If xF∩G and yF∩G are both even or both

odd, then by (i) and (ii) of this lemma, it must be that aF �M bF . Suppose,
then, that only one of them is even.

First, we prove aF �M bF . Take an arbitrary c–F ∈ A–F . By our Obser-
vation, there must be a z–F ∈ {+, –}N –F such that (xF , z–F )G is even, and
hence (yF , z–F )G is odd. By Definition 10, we have d 0(bF , yF , c–F , z–F ) = 1.
By assumption, d 0(aF , xF , c–F , z–F ) = 1. By Definition 10 and because
(yF , z–F )G is odd, it must be that d (aF , c–F ) = 1. Hence, d (aF , c–F ) ≥
d (bF , c–F ). Since c–F was arbitrary, it holds that d (aF , c–F ) ≥ d (bF , c–F )
for all c–F ∈ A–F . Therefore, aF �M bF .

Second, we prove bF ��M aF . Because (bF , yF ) ��M0
G

(aF , xF ), there is a

c′–F ∈ A–F and a z ′–F ∈ {+, –}N –F such that d 0(aF , xF , c
′
–F , z

′
–F ) = 1 and

d 0(bF , yF , c
′
–F , z

′
–F ) = 0. By Definition 10, we have d (bF , c

′
–F ) = 0.

Suppose d (aF , c
′
–F ) = 0. By our Observation, there must be a

z ′′–F ∈ {+, –}N –F such that (xF , z
′′
–F )G is even, and hence (yF , z

′′
–F )G is odd.

By Definition 10, d 0(aF , xF , c
′
–F , z

′′
–F ) = 0 and d 0(bF , yF , c

′
–F , z

′′
–F ) = 1.
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This contradicts the assumption. Hence, d (aF , c
′
–F ) = 1. We already showed

that d (bF , c
′
–F ) = 0. Therefore, bF �� aF .

Theorem 6. LetM = 〈N , (Ai), d, v〉 be a deontic game model and letR = {(a, (a, x)) :
a ∈ A and x ∈ {+, –}N }. Then R is a G/N-bisimulation between M andM 0

G .

Proof. Analogous to the proof of Theorem 5. Use Lemma 4.

4.3. The semantic conditions (C′
1) and (C′

2) revisited. We are now in a position
to prove that the collective deontic admissibility statement �G is not conditionally
expressible in LG

N
. Given the groundwork we did in §2.3, it suffices to show that both

(C′
1) and (C′

2) of Definition 2 hold for Le = LG
N

and φ = �G . We do just that using the
two model transformationsM 1

G andM 0
G .

Theorem 7. For every pointed deontic game model (M,a) with (M,a) |= �G, there is a
pointed deontic game model (M ′, a′) such that (M ′, a′) �|= �G and (M,a) ≡G

N
(M ′, a′).

Proof. LetM = 〈N , (Ai), d, v〉 and a ∈ A be such that (M,a) |= �G . LetM ′ =M 1
G

and let a′ = (a, x) for some x ∈ {+, –}N such that xG is odd. By Theorem 5, we have
(M,a) �G

N
(M ′, a′). By Theorem 4, we have (M,a) ≡G

N
(M ′, a′). By Definition 9 and

becausexG is odd, for all c′–G ∈ A∗
–G, it holds that d 1(aG , xG , c

′
–G) = 0. Because d (b) = 1

for some b ∈ A, there is a b′ ∈ A∗ such that d 1(b′) = 1. Hence, (aG , xG) �∈ AdmM1
G

(G),

that is, a′ �∈ AdmM ′(G). Therefore, (M ′, a′) �|= �G .

Theorem 8. For every pointed deontic game model (M,a) with (M,a) �|= �G, there is a
pointed deontic game model (M ′, a′) such that (M ′, a′) |= �G and (M,a) ≡G

N
(M ′, a′).

Proof. Analogous to the proof of Theorem 7. LetM ′ =M 0
G and let a′ = (a, x) for

some x ∈ {+, –}N such that xG is odd. Use Theorem 6 and Definition 10 to show that
a′ ∈ AdmM ′(G).

Theorem 9. �G is not conditionally expressible in LG
N

.

Proof. By Theorems 1, 2, 3, 7, and 8.

Corollary. Let X,Y ⊆ N. Let G ∈ N be such that G �∈ X. Then

If �G is conditionally expressible in LX

Y
, then there is an H ∈ X such that G ⊂ H.

Proof. By contraposition. Suppose that there is no H ∈ X such that G ⊂ H. Then
X ⊆ G and Y ⊆ N. Hence LX

Y
⊆ LG

N
. By Theorem 9, it holds that �G is not conditionally

expressible in LX

Y
.

§5. A sufficient condition for the expressibility of �G . We have just seen that
Theorem 9 gives a necessary condition for the conditional expressibility of the deontic
admissibility statement �G . In this short section, we give a sufficient condition, starting
from the observation that if G is a proper subset of H, then the collective admissibility
statement �G is implied by the statement ��H. We have the following lemma.

Lemma 5. Let G,H ∈ N. Then

��H � �G , if G ⊂ H.
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18 FREDERIK VAN DE PUTTE, HEIN DUIJF AND ALLARD TAMMINGA

Proof. Let G,H ∈ N be such that G ⊂ H. Let M = 〈N , (Ai), d, v〉 and a ∈ A be
such that (M,a) �|= �G . We prove that (M,a) �|= ��H. Because aG �∈ AdmM (G) and by
Definition 5, there is a b ∈ A such that bG �M aG . Then (a) for all c–G ∈ A–G, it holds
that d (bG , c–G) ≥ d (aG , c–G) and (b) there is a c∗–G ∈ A–G such that d (bG , c

∗
–G) = 1 and

d (aG , c
∗
–G) = 0. Let a′ = (aG , c

∗
–G) and b′ = (bG , c

∗
–G). Note that a′H = (aG , c

∗
H–G) and

b′H = (bG , c
∗
H–G). We prove that b′H �M a′H, that is, (i) b′H �M a′H and (ii) a′H ��M b′H.

(i) Take an arbitrary c–H ∈ A–H. Then (c∗H–G , c–H) ∈ A–G . By (a), we have
d (b′H, c–H) = d (bG , c

∗
H–G , c–H) ≥ d (aG , c

∗
H–G , c–H) = d (a′H, c–H). Because

c–H was arbitrary, it holds that d (b′H, c–H) ≥ d (a′H, c–H) for all c–H ∈ A–H.
Hence, b′H �M a′H.

(ii) By (b) and the definitions of a′ and b′, d (b′H, c
∗
–H) = d (bG , c

∗
H–G , c

∗
–H) =

d (bG , c
∗
–G) = 1 and d (a′H, c

∗
–H) = d (aG , c

∗
H–G , c

∗
–H) = d (aG , c

∗
–G) = 0. Hence,

a′H ��M b′H.

Hence, a′H �∈ AdmM (H) and (M,a′) �|= �H. Therefore, (M,a) �|= ��G .

Finally, we can now fulfill the promise made in the introduction and give a necessary
and sufficient condition for the conditional expressibility of �G in a sublanguage LX

Y
of

the full language LN

N
.

Theorem 10. Let X,Y ⊆ N. Let G ∈ N be such that G �∈ X. Then

�G is conditionally expressible in LX

Y
iff there is an H ∈ X such that G ⊂ H.

Proof. (⇒) This is the Corollary from Theorem 9.
(⇐) Suppose that there is anH ∈ X such that G ⊂ H. Then ��H ∈ LX

Y
. By Lemma 5,

��H � �G . Note that ��H �� LX

Y
. Hence, condition (C1) of Theorem 1 does not hold.

Therefore, �G is conditionally expressible in LX

Y
.

§6. Comparison and two applications. Let us compare this new result with the result
from [9] on the conditional expressibility of collective deontic admissibility statements.
Let G ∈ N be a group that consists of at least two agents and let I = {{i} : i ∈ N}.
Then LI

I is the individualistic sublanguage that, next to the standard operators ¬, ∧,
and �, only contains, for every agent i ∈ N , agentive modalities of the type [i ] and
individual deontic admissibility statements of the type �i . Duijf et al. [9] showed that �G
is not conditionally expressible in LI

I. With Theorem 10, we now know that this result
holds in much stronger languages. First, it does not make a difference if we add toLI

I all
agentive modalities [H] with H ∈ N: the statement �G is not conditionally expressible
in LI

N
. Second, it does not make a difference if we add to LI

N
all collective deontic

admissibility statements �F with F ∈ N and either (a) F ⊂ G, or (b) F ∩ G = ∅, or (c)
F – G �= ∅ and G – F �= ∅: again, the statement �G is not conditionally expressible in
LG
N

. Third, only if there is an H ∈ X such that G ⊂ H is the statement �G conditionally
expressible in LX

Y
.

Lastly, we discuss two straightforward applications of our impossibility result on
conditional expressivity. A proof that a statement φ is not conditionally expressible in
a language Le can be used to show that a particular model-theoretic property cannot
be expressed in Le . The argument is as follows: suppose that the statement φ is not
conditionally expressible in a language Le and suppose that there is a non-empty class
of models C = {M :M has property F } and a subset Δ of Le such that φ and Δ are
logically equivalent in every model M in the class C. Because φ is not conditionally
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CONDITIONAL EXPRESSIVITY AND COLLECTIVE DEONTIC ADMISSIBILITY 19

expressible in Le it follows that no (non-trivial) sufficient condition for the model-
theoretic property F can be given by any subset Γ of Le . Therefore, F cannot be
expressed in Le . We give two examples.19

First, let Le be LG
N

and let C′ be the class of pointed deontic game models that
have exactly one deontically ideal action profile. For every (M,a) in C′ it holds that
(M,a) |= �G ↔

∧
i∈G �i . If a sufficient condition for the model-theoretic property of

having exactly one deontically ideal action profile could be given by some subset Γ
of LG

N
, then �G would be conditionally expressible in LG

N
, contradicting Theorem 9.

Therefore, the model-theoretic property of having exactly one deontically ideal action
profile cannot be expressed by any subset Γ of LG

N
.

Second, let N = {F ∈ N : F �= N}. Let Le be LN
N

and let C′′ be the class of pointed
deontic game models that only have deontically ideal action profiles. For every (M,a)
in C′′ it holds that (M,a) |= �N ↔

∧
F∈N �F . Again, if a sufficient condition for

the model-theoretic property of having only deontically ideal action profiles could
be given by some subset Γ of LN

N
, then �N would be conditionally expressible in

LN
N

, contradicting Theorem 9. Therefore, the model-theoretic property of having only
deontically ideal action profiles cannot be expressed by any subset Γ of LN

N
.

Nonetheless, the model-theoretic property of having only deontically ideal action
profiles can be expressed by the statement ��N , because for every pointed deontic
game model (M,a), it holds that (M,a) ∈ C′′ if and only if (M,a) |= ��N . But, of
course, ��N is not in LN

N
.

§7. Conclusion. In this paper, we located collective deontic admissibility statements
within the inferential network of the deontic logic of collective agency. We introduced
the novel concept of conditional expressivity and gave necessary and sufficient
conditions for it from a universal logic perspective and from a semantic perspective.
We proved that the collective deontic admissibility statement �G about a particular
group G is conditionally expressible in a given sublanguage of the full language of the
deontic logic of collective agency if and only if that sublanguage includes a collective
deontic admissibility statement �H for some supergroup H of G. Accordingly, there are
no non-trivial inferential relations between the statement �G and the statements in the
sublanguage that not only contains all individual deontic admissibility statements for
ingroup and outgroup individuals but also contains all collective deontic admissibility
statements for G’s subgroups, outgroups, and partially overlapping groups. We submit
that our results on conditional expressivity serve as a proof of concept for future studies
of expressivity.
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19 Note that if we define a deontic game frame as a triple 〈N , (Ai ), d 〉, including a deontic
ideality function d but excluding a valuation function v, our two examples concern frame
conditions.
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