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Abstract

Background. Little is known regarding the shared genetic architecture underlying the pheno-
typic associations between depression and preterm birth (PTB). We aim to investigate the
genetic overlap and causality of depression with PTB.

Methods. Leveraging summary statistics from the largest genome-wide association studies for
broad depression (Nio; = 807,533), major depression (N = 173,005), bipolar disorder
(Niotas = 414,466), and PTB (Nio, = 226,330), we conducted a large-scale genome-wide
cross-trait analysis to assess global and local genetic correlations, identify pleiotropic loci, and
infer potential causal relationships

Results. Positive genetic correlations were observed between PTB and broad depression
(rg = 0.242), major depression (7, = 0.236), and bipolar disorder (r, = 0.133) using the linkage
disequilibrium score regression, which were further verified by the genetic covariance analyzer.
Local genetic correlation was identified at chromosome 11q22.3 (harbors NCAM1-TTCI12-
ANKKI-DRD?2) for PTB with depression. Cross-trait meta-analysis identified two loci shared
between PTB and broad depression, two loci shared with major depression, and five loci shared
with bipolar disorder, among which three were novel (rs7813444, rs3132948 and rs9273363).
Mendelian randomization demonstrated a significantly increased risk of PTB for genetic liability
to broad depression (odds ratio [OR]=1.30; 95% confidence interval [CI]: 1.11-1.52) and major
depression (OR=1.27; 95%CI: 1.08-1.49), and the estimates remained significant across the
sensitivity analyses.

Conclusions. Our findings demonstrate an intrinsic link underlying depression and PTB and
shed novel light on the biological mechanisms, highlighting an important role of early screening
and effective intervention of depression in PTB prevention, and may provide novel treatment
strategies for both diseases.

Introduction

Individuals suffering from depression, especially among women of reproductive age, are fre-
quently at an elevated risk of various subsequent health issues (Faravelli et al., 2013). Depressive
episodes that occur during pregnancy have devastating effects, including preterm birth (PTB),
which is the leading cause of perinatal morbidity and mortality with a global prevalence of 11.1%
(da Fonseca et al., 2020; Miller et al., 2022; Pearlstein, 2015). Hypothesized biological mechan-
isms underlying the observed association between depression and PTB include dysregulation in
the hypothalamic—pituitary—adrenal axis and the immune system (Miller et al, 2022). Yet,
observational evidence concerning the association between depression and PTB remains incon-
clusive. Despite a meta-analysis of 26 studies involving 402,375 individuals suggested a signifi-
cantly increased risk of PTB among depression patients [odds ratio (OR): 1.20; 95% confidence
interval (CI): 1.10-1.40], the effect attenuated to null when restricted to women without
antidepressant use (OR: 1.20; 95%CI: 0.90-1.70) (Vlenterie et al., 2021). Inversely, a longitudinal
study of 1,824 individuals with a follow-up of approximately 30 years suggested a notably
elevated risk of depression among those who experienced preterm delivery (OR: 2.88; 95%CI:
1.15-7.22) (Loret de Mola et al., 2014). These evidence indicate phenotypic associations derived
from traditional epidemiological research may be influenced by bias, confounders, and reverse
causality owing to their observational nature.
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To address these contradictory findings, one approach is to
explore the genetic basis of co-morbid conditions. Twin studies
or family studies have demonstrated the genetic component in
both depression and PTB, with heritability estimates of around
35.0% (Otte et al., 2016) and 15.0% (Wadon et al., 2020), respect-
ively. Recent extensive genome-wide studies have suggested sub-
stantial genetic links between depression and several female
reproductive characteristics, such as age at menarche and age
of first childbirth, both of which are risk factors for PTB (Howard
etal.,2019; Wray et al., 2018). Candidate gene-based studies have
further identified multiple loci that influence both traits [i.e., IL-
1B, TNF-a, IL-6 (Bufalino et al., 2013, Moore et al., 2004), and
DEFBI (Athreya et al., 2019, Strauss et al., 2018)]. These findings
imply a potential shared genetic foundation between depression
and PTB; however, the precise nature and scope of these associ-
ations remain ambiguous.

Recent progress in statistical genetics and genome-wide associ-
ation studies (GWASs) has introduced various methods for con-
ducting comprehensive genome-wide cross-trait analysis. This
strategy is particularly useful in disentangling associations between
complex traits that are difficult to investigate through observational
studies due to confounding or reverse causation (Zhu et al., 2021).
First, genetic correlation analysis (both global and local) helps
identify whether two traits share common genetic influences, which
suggests a biological rather than purely environmental connection.
Second, cross-trait meta-analysis allows for the discovery of pleio-
tropic genetic loci that simultaneously influence both traits, pro-
viding clues about shared molecular pathways. Third, Mendelian
randomization (MR) enables causal inference by using genetic
variants as instrumental variables, thereby minimizing confound-
ing and establishing the directionality of effect. Together, these
approaches allow us to investigate the genetic basis of the observed
phenotypic association between depression and preterm birth in a
rigorous and unbiased manner. However, as far as we understand,
no genome-wide cross-trait analysis has been performed to inves-
tigate the common and unique etiological factors underlying
depression and PTB.

Thus, in this study, we conducted a comprehensive genome-
wide cross-trait analysis to systematically evaluate the genetic over-
lap and causality between PTB and depression, as well as its related
phenotypes, major depression (MDD) and bipolar disorder
(BIPD). The overall design of this large-scale genome-wide cross-
trait analysis is illustrated in Figure 1.

Methods and materials
Data sources of PTB and depression

This study is a secondary analysis of existing GWASs. All the
summary statistics were obtained from publicly available GWASs
conducted for PTB, broad depression, MDD, and BIPD. Compre-
hensive details on the characteristics of each included data source
are presented in Supplementary Table S1.

Broad depression

GWAS summary statistics for broad depression (Howard et al.,
2019) was sourced from a meta-analysis involving 807,553 par-
ticipants of European ancestry (with 246,363 depressive cases,
561,190 healthy controls), which meta-analyzed data from the
three biggest genetic researches of depression including UK
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Biobank, Psychiatric Genomics Consortium (PGC), and
23andMe (Supplementary Table S1). In this GWAS, the con-
firmation of depression was based on self-reports from individ-
uals who had experienced a diagnosis or treatment due to clinical
depressive symptoms (30.7%), having seen a general practitioner
or psychiatrist due to anxiety, neurological, tension, or depres-
sive symptoms (51.8%), or clinically-derived phenotypes for
MDD (17.5%). Independent genome-wide significant SNPs were
identified at a P-threshold of 5.0 x 107%. In total, 97 broad-
depression associated index variants were associated with the
outcome and subsequently utilized as genetic instrumental vari-
ables (IVs). The relevant information was extracted. The relevant
information on broad depression IVs is shown in Supplementary
Table S2.

Major depressive disorder

GWAS summary data for MDD (Wray et al., 2018) was sourced
from a meta-analysis of seven European-ancestry cohorts including
PGC29, 23andMe, deCODE, GenScotland, GERA, iPSYCH, and
UK Biobank comprising 173,005 participants (with 59,851 MDD
cases, 113,154 healthy controls) (Supplementary Table S1). Cases
were diagnosed with MDD according to the international consen-
sus criteria (DSM-1V, ICD-9, or ICD-10) through structured diag-
nostic instruments, interviews conducted by trained professionals,
clinician-administered checklists, or review of medical records. The
MDD cases excluded patients with lifetime BIPD or schizophrenia.
In total, 40 independent MDD-associated genome-wide significant
(5.0 x 10~%) index variants were identified as associating with the
outcome, and subsequently used as genetic IVs for MDD in the final
MR analyses (Supplementary Table S3).

Bipolar disorder

GWAS summary data for BIPD (also known as manic depression)
(Mullins et al., 2021) was obtained from a meta-analysis involving
57 cohorts from Australia, Europe, and North America comprising
414,466 individuals of European descent (with 41,917 BIPD cases,
371,549 healthy controls) (Supplementary Table S1). Cases were
diagnosed with BIPD according to the international consensus
criteria (DSM-IV, ICD-9, or ICD-10) through structured diagnos-
tic instruments, interviews conducted by trained professionals,
clinician-administered checklists, or review of medical records.
Sixty-four independently BIPD-associated genome-wide signifi-
cant (5.0 x 10™®) index variants were identified associating with
the outcome and subsequently used as genetic IVs for BIPD in the
final MR analysis (Supplementary Table S4).

Preterm birth

GWAS summary data for PTB was obtained from FinnGen release
12 (https:/finngen.gitbook.io/documentation/data-download), con-
sisting of 226,330 individuals (11,405 PTB cases and 214,924 con-
trols) (Supplementary Table S1). Preterm deliveries are those that
occur at less than 37 weeks of gestational age for pregnant women
(Kurki et al, 2023). A total of 118 independent index variants were
obtained associating with the outcome with a P-threshold of
5.0 x 10 (clumped in EUR with r* = 0.001 and kb = 10000) and
subsequently used as genetic IVs as no genome-wide significant
variants (5.0 x 10~%) were identified. The relevant information on
PTB-associated IVs is shown in Supplementary Table S5.
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Figure 1. Overall study design of the genome-wide cross-trait analysis. GWAS summary statistics for each trait of interest were retrieved from publicly available GWAS(s). Global and
local genetic correlation analyses between PTB and depression were conducted. Cross-trait meta-analysis was applied to identify pleiotropic loci and a bidirectional two-sample
Mendelian randomization analysis was used to infer putative causal relationship. Note: PTB, ‘preterm birth’; MDD, ‘major depressive disorder’; GWAS, ‘genome-wide association

study’.

Statistical analysis
Global genetic correlation analysis

To quantify the genome-wide genetic correlations across PTB and
broad depression (as well as MDD and BIPD), which are not biased
by environmental factors, we employed the methods of linkage
disequilibrium score regression (LDSC) (Bulik-Sullivan et al.,
2015) and genetic covariance analyzer (GNOVA) (Lu et al,
2017a). The global genetic correlation coefficients (represented by
ry) range between —1 and + 1, where —1 represents an entirely
negative correlation, and + 1 represents a wholly positive correl-
ation. In conducting these analyses, we applied a Bonferroni-
adjusted P-value (P < 0.017 = 0.05/3, number of depression-related
symptoms) to establish statistical significance.

Local genetic correlation analyses

Specific genetic variants within a particular genomic area also play a
role in linking two traits. We further investigated the local genetic
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correlation using the SUPERGNOVA tool (Zhang et al., 2021b).
This method divides the entire genome into about 2,353 linkage
disequilibrium (LD)-independent segments, offering an accurate
measure of the genetic similarity across trait pairs influenced
by genetic loci at each segment. To establish statistical significance,
we used a Bonferroni-adjusted P-value threshold (P < 2.12
x 107° = 0.05/2,353 number of LD-independent segments).

Cross-trait meta-analysis

Using the cross-phenotype association (CPASSOC) (Li and Zhu,
2017), a cross-trait meta-analysis was performed to pinpoint pleio-
tropic loci that influence both PTB and broad depression, as well as
its two subtypes. CPASSOC amalgamates multiple traits’ associ-
ation evidence from various GWAS summary statistics, thereby
uncovering cross-phenotype connections. It is equipped to conduct
both Sgye¢ and Syyop, tests. The definitions of Sy, and Sy are listed
in Supplementary Materials. Briefly, Sgom can be viewed as a fixed-
effect inverse variance weighted meta-analysis. Sy, assumes that
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genetic effects are homogeneous and is suitable when the effect
size is the same for all traits and populations. Sy, is an extension
of Syom, which allows for varying effect sizes and directions
across traits and cohorts. Sy addresses heterogeneity by intro-
ducing a truncated signed-weight statistic that assigns more
weight to larger effect values for specific traits. As Sy is more
robust to heterogeneity, we adopted Sy, rather than Sy, in our
analyses.

Subsequent to CPASSOC analysis, PLINK’s clumping function
was utilized to isolate independent shared loci for both traits, by
using settings like “--clump-p1 5e-8 --clump-p2 le-5 --clump-r2 0.2
--clump-kb 1000’. A variant was deemed significantly pleiotropic if
it had a Pgpgje-traie Of less than 1.0 x 10 for both traits and a
PCPASSOC of less than 5.0 x 1078.

Every substantial pleiotropic SNP was categorized into one of
the four distinct groups. Initially, a ‘known’ SNP is characterized as
one having a Pgingie_raic Of less than 5.0 x 1078, shared among both
traits. Next, a ‘single-trait-driven’ SNP is one where the Pgingie.trait i
less than 5.0 x 10~° for just one out of the two traits. Third, an ‘LD-
tagged” SNP is described as a variant linked through linkage dis-
equilibrium (LD) to index SNPs pinpointed by single-trait GWAS.
(LD #* > 0.1). Lastly, a novel SNP is identified as one that is not
influenced by any individual trait and does not correlate through
LD with any index SNPs pinpointed by single-trait GWAS.

Functional annotation

To elucidate the biological significance of the shared SNPs dis-
covered through CPASSOC, we linked these SNPs with specific
genes and performed functional annotation using the variant effect
predictor (VEP) (McLaren et al., 2016), Haploreg4.2 (Ward and
Kellis, 2012), and 3DSNP (Lu et al., 2017b). VEP and Haploreg4.2
identify potential genes by considering their physical closeness to
the SNPs, whereas 3DSNP examines the regulatory role of variants
by analyzing their three-dimensional chromatin interactions with
the genes mediated through chromatin loops.

Fine-mapping credible set analysis

We subsequently pinpointed a 99% credible set of causal loci using
the FM-summary tool which is a streamlined Bayesian fine-
mapping algorithm, given that an index SNP might not directly
indicate causal loci (Schaid et al., 2018). In summary, for each of the
nine variants pinpointed collectively by CPASSOC, we extracted
variants within a 1000 kb radius of the index SNP to serve as input
for the FM-summary. This method primarily detects the chief
signal and employs a flat prior alongside the steepest descent
approximation, thereby generating a posterior inclusion probabil-
ity (PIP) for each variant. The 99% credible set of loci is determined
by ordering the variants based on descending PIPs and accumulat-
ing the PIPs until reaching at least 99%.

Min Zhang et al.

Mendelian randomization analyses

To make a causal inference, a two-sample MR was finally con-
ducted using specific packages in R with version 4.1.2 (Burgess
etal.,2015). We calculated R* to estimate the variance proportion in
an ‘exposure’ interpreted by the genetic IVs and calculated F-
statistics to assess these genetic IVs’ strength. The statistical power
for MR was calculated using an online calculator (https://sb452.shi
nyapps.io/power/). We employed the inverse-variance weighted
(IVW) model as the main method. Additionally, we employed
the MR-Egger regression and weighted median models to affirm
the credibility of our findings, accommodating less stringent model
assumptions (Bowden et al., 2015). We set a P-value of less than 0.05
to define statistical significance.

Additional sensitivity analyses were carried out to verify the
credibility of our MR findings. Initially, genetic IVs that were
palindromic — where alleles match on both the forward and the
reverse strands — were omitted. Then, a leave-one-out analysis was
performed by sequentially removing each SNP, employing the VW
model with the remaining SNPs. Additionally, the MR-Pleiotropy
Residual Sum and Outlier (MR-PRESSO) tool was applied to assess
horizontal pleiotropy and revise the causal estimates after outlier
exclusion (Verbanck et al., 2018). Fourth, a reverse-directional MR
was also performed to explore the potential causal impact of PTB on
depression with ruling out reverse causality. Horizontal pleiotropy
and heterogeneity were further assessed using the MR-Egger inter-
cept and Cochran’s Q test, respectively, with significance noted for
P-values less than 0.05 (Bowden et al, 2018). Lastly, multivariate
MR (MVMR) was applied to incorporate SNP associations with
multiple phenotypes in a single model, addressing the influence of
major confounding factors (Burgess and Thompson, 2015), such as
antidepressants (Wu et al, 2019), body mass index (BMI) (Pulit
etal.,2019), type 2 diabetes mellitus (T2DM) (Mahajan et al., 2018),
current smoking (Liu et al., 2019), alcohol consumption per day
(Liu et al., 2019), and sleep duration (Dashti et al., 2019).

Results
Global and local genetic correlation

Using the method of LDSC (Table 1), we found a notable global
genetic correlation between broad depression and PTB (r,: 0.242,
P: 2.89 x 10”%), and this genetic correlation estimated by the
GNOVA method was consistent in direction, although the effect
size was about half smaller (r,: 0.147, P: 3.35 x 107%). As to the
subtypes, similar significant genetic correlations were observed for
both MDD (r,: 0.236, P: 2.89 x 10~%) and BIPD (r,: 0.133, P:
5.80 x 10~°%) with PTB by using LDSC. These estimates of MDD-
PTB (rg: 0.150, P: 4.06 x 10~ °*) and BIPD-PTB (r,: 0.086, P:
1.45 x 10~ °%) remained significant in GNOVA. All the estimates
withstood Bonferroni correction (P < 1.67 x 102).

Table 1. Global genetic correlations between preterm birth and depression based on LDSC and GNOVA

LDSC GNOVA
Trait 1 Trait 2 rg P rg P
PTB Broad Depression 0.242 0.047 2.89 10" 0.147 335x107%
Major Depression 0.236 0.061 1.00 x 107%* 0.150 4,06 x 107
Bipolar Disorder 0.133 0.048 5.80x10 % 0.086 1.45 x 102

Note: rg, genetic correlation; SE, standard error; PTB, preterm birth.

https://doi.org/10.1017/50033291725100718 Published online by Cambridge University Press
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Figure 2. Local genetic correlation between preterm birth and broad depression identified by SUPERGNOVA.

When segmenting the entire genome into LD-independent
areas (2,353 blocks), a single notable region was pinpointed for broad
depression and PTB at 11q22.3 (chromosome 11:113105405—
113958177) with a P value of 9.58 x 10", which harbors
NCAM1I-TTCI12-ANKKI-DRD?2 gene cluster (Figure 2). In addition,
a significant local signal was observed for BIPD and PTB at 22q13.2
(chromosome 43,187,900-43,645,335) with a P value of 3.81 x 10~ ",
No significant local genetic correlations were identified between
MDD and PTB in any genetic regions.

Cross-trait meta-analysis

As shown in Table 2, a total of nine SNPs were pinpointed that were
shared between depression-related traits and PTB, among which
two loci were shared between broad depression and PTB
(rs2734837 and rs13220522), two loci were shared between MDD
and PTB (rs149543464 and rs57440165), and five loci were shared
between BIPD and PTB (rs3132948, rs1264349, rs7813444,
rs9273363, and rs60476972). Notably, these loci had not been
previously identified at genome-wide significance for PTB,
although most were associated with depression-related symptoms
(five out of nine loci) which were classified as ‘single-trait-driven’
shared loci. Interestingly, the single-trait-driven variant, rs2734837,
shared between broad depression and PTB, is mapped to chromo-
some 11q22.3 (DRD2 gene region), which is also consistent with the
results of the local genetic analysis. In addition, rs13220522 (shared
between broad depression and PTB) and rs57440165 (shared
between MDD and PTB) were located in an LD block (+*: 0.86),
which mapped to chromosome 6p22.2. This chromosome region
contains a large histone gene cluster (e.g. HISTIHIA), a subset of
the immunoglobulin gene superfamily clusters (e.g. BTN2A2), and
other genes, which are related to neuronal development [e.g. SCGN
(Liu et al., 2023), ABT1 (Oda et al., 2000)] and innate immunity
[e.g. TRIM38 (Xue et al., 2012), BTN2A2 (Sarter et al., 2016),
BTN3A1 (Payne et al., 2020)]. Another two ‘single-trait-driven’
pleiotropic loci (rs149543464 and rs1264349) were also in an LD
block (7*: 0.80). These variants mapped to HLA-B, a gene that also
plays a central role in adaptive immunity (Di et al., 2021).

In addition to ‘single-trait-driven’ pleiotropic SNPs, we identi-
fied three novel SNPs shared by BIPD and PTB, among which
rs7813444 (Pcpassoc: 4.01x1077) mapped to BHLHE22,rs9273363

https://doi.org/10.1017/50033291725100718 Published online by Cambridge University Press

(Pcpassoc: 5.79x10°) mapped to HLA-DQBI, and rs3132948
(PCPASSOC: 165)(1078) mapped to NOTCH4.

Functional annotation

To gain a potential biological understanding of the shared variants
pinpointed by CPASSOC, functional annotations were conducted
through VEP, Haploreg4.2, and 3DSNP. Functional annotation by
Haploreg4.2 indicated that these shared SNPs fall within potential
functional regions (Supplementary Table S6). For example,
1s9273363, located in 971 bp 3’ of HLA-DQBI, overlaps with an
enhancer activity cluster in five major tissue types, is bound by
POL24HS and four altered motifs, and is DN Ase hypersensitive in
two cell types (BLD, BLD). Functional analysis by VEP also showed
that these shared SNPs have potential regulatory features
(Supplementary Table S7). In addition, functional annotations by
3DSNP identified many genes that interact with the shared SNPs
through 3D chromatin loops in different cell types (Supplementary
Tables S8-510), and many eQTLs that were significantly associated
with the shared SNPs in 44 human tissues obtained from GTEx
Portal (Supplementary Tables S11-S13). For example, for
rs1264349, which was shared between BIPD and PTB, 15 three-
dimensional interacting genes (FLOT1 and other 14) in six tissues
had been identified, among which FLOTI was identified as a risk
gene for neurological diseases, such as depressive disorder (Zhan
et al., 2023) and also expressed in term villous placental cytotro-
phoblasts and endothelial cells (Walton et al., 2013).

Fine-mapping credible set analysis

Fine-mapping analyses by the method of FM-summary evaluated
the 99% credible set of causal SNPs at each shared locus identified
by CPASSOC, pinpointing targets for subsequent experimental
investigations. The credible set variants for each locus related to
the three depressive symptoms and PTB derived from this fine
mapping are shown in Tables S14-S16. A total of 104 potential
causal variants were pinpointed for broad depression and PTB
(Supplementary Table S14), 135 potential causal variants were
pinpointed for MDD and PTB (Supplementary Table S15), and
180 potential causal variants were pinpointed for BIPD and PTB
(Supplementary Table S16).
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Table 2. Genome-wide significant loci shared between preterm birth and depression (Pcpassoc < 5 * 1078, single trait P-value <1 x 1073)

Depression Preterm birth Linear
A1/ closest
SNP Chr:Position A2 P.cpassoc Beta P Beta P Genes within clumping area genes® Interacting genes” Class
Preterm birth and broad depression
rs2734837 Chr11:1132868291 T/-C  223x107% —0.02 249x10°%® —0.04 234x10%  ANKKI, DRD2, TTC12 DRD2 ANKK1, DRD2, MIR4301, Single-trait
TTC12
rs13220522 Chr6:25514179 A/G  615x10°* —0.05 3.15x10°* 013  296x10 %  BTN2A2, HIST1H1A, SCGN, HFE, HIST1H4H HIST1H1D and other 26 Single-trait
SLC17A1 and other 41
Preterm birth and major depression
rs149543464  Chr6:302877773 A/G  391x107 —0.07 451x107%° 007 2.99x10"%  HLA-B, HLA-C and other 40 HLA-E GNL1, HLA-E, PRR3 Single-trait
rs57440165  Chr6:25848025 A/C  667x107° 008 252x10%® 008 7.40x10 "  ABTI, BTN1Al, HCG11, HFE, GUSBP2 - Single-trait
HIST1H1A, and other 59
Preterm birth and bipolar disorder
rs60476972 Chr16:9152663 G/A  398x10°°® —0.04 165x10% —0.05 7.62x10%" - RP11-47311.6  Cl6orf72, USP7 LD-tagged
rs7813444 Chr8:65437506 A/G  401x10°%° 004 355x10°%° 006 841x10 °  BHLHE22, LOC401463 RP11-21C4.1  BHLHE22, LOC401463 Novel
rs3132948 Chr6:32191730 T/G  165x10°%® —005 192x10°° 005 290x10* NOTCH4 FKBPL and other 17 Novel
rs9273363 Chr6:32626272 C/A  576x107%° 005 394x10°%® 008 377x10°% - HLA-DQB1 HLA-DQAIL, HLA-DQA2, HLA-  Novel
DQB1, HLA-DQB2
rs1264349 Chr6:30566407 A/G  272x107" 010 430x10 "  —0.07 4.85x10 °  HLA-B, HLA-C and other 40 BTN2A1 FLOT1 and other 14 Single-trait

Note: A1/A2: effect-allele/other-allele.

“Linear closest genes of index SNP was mapped by VEP or Heploreg.
53D interacting genes of index SNP was mapped by 3DSNP.
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Mendelian randomization

At last, a two-sample MR analysis was conducted utilizing
89 depression-associated, 36 MDD-associated, and 56 BIPD-
associated variants as genetic IVs to infer the causal relationships.
F-statistics for these IVs were listed in Tables S2—S4 and all of the F-
statistics were no less than 10, suggesting no existence of weak
instruments.

As shown in Figure 3a, genetic predisposition to broad depres-
sion significantly correlated with an elevated PTB risk (ORpyw:
1.30, 95%CI: 1.11-1.52). This estimate did not alter in the weighted
median model with an OR of 1.33 (95%CI: 1.06-1.65) and
remained stable in the sensitivity analyses by excluding palin-
dromic variants with an OR of 1.27 (95%CI: 1.08-1.49) and outliers
in MR-PRESSO with an OR of 1.30 (95%CI: 1.11-1.52). No evi-
dence of horizontal pleiotropy (P for MR-Egger intercept is 0.58)
was detected. After adjusting for T2DM, BMI, smoking, alcohol,
sleep duration, and antidepressant use in the MVMR, the effect also
remained significant (Figure 3a).

As for the other two phenotypes, a similarly significant associ-
ation was observed for MDD with PTB with an ORyyw of 1.27 (95%
CI: 1.08-1.49), as depicted in Figure 3b. This causality was sup-
ported further using the weighted median model with an OR of 1.33
(95%CI: 1.05-1.67), and sensitivity analyses after excluding palin-
dromic SNPs (OR: 1.28, 95%CI: 1.08-1.52) and outliers (OR: 1.25,
95%CI: 1.05-1.47), and further adjustment for the potential con-
founders (Figure 3b). No causal impact of genetic predisposition to
BIPD on the risk of PTB was pinpointed in the IVW model (OR:
1.02, 95%CI: 0.96-1.09), consistent across all the sensitivity ana-
lyses (Figure 3¢). No evidence of horizontal pleiotropy (MDD: P for
MR-Egger intercept is 0.49; BIPD: P for MR-Egger Q is 0.27) and

A

Qutcome: PTB OR (95% CI) P-value

Exposure: broad depression

All SNPs
VW — 1.30 (1.1, 1.52) 1.06x107*
MR Egger . - 108(0.56,2.11) 082
Weighted median - 1.33(1.06, 1.85) 0.01
MR-PRESSO = 1.30(1.11,1.52) 1.47x10-3
Excluding palindromic SNPs
VW = . 1.27 (1.08, 1.49) 4.27x107
MVMR
Adjusted for T2DM — 1.23(1.07, 1.41) 3.89x10*
Adjusted for BMI = 1.24(1.10, 1.40) 3.63x107*
Adjusted for smoking 1.27 (1.10, 1.48) 9.20x107%

125 (108, 1.43) 2.18x10°%
1.26 (1.10, 1.45) 1.18x10%
126(105,150) 001

Adjusted for alcohol -
Adjusted for sleep duration -
Adjusted for antidepressant use

T

0.5 1 1.8 2

Cc

Outcome: PTB OR (95% CI) P-value

Exposure: bipolar disease

All SNPs
VW - 1.02 (0.96, 1.09) 0.46
MR Egger © 1.22(0.89,1.68) 022
Weighted median 1.01 (0.93, 1.11) 0.75
MR-PRESSO — 1.02 (0.96, 1.09) 0.46
Excluding palindromic SNPs
VW ——— 1.05 (0.98, 1.12) 0.18

r T
0.5 1 15

heterogeneity (MDD: Pyg-ggger @ = 0.12, Pypr-ggger @ = 0.22) were
detected.

No apparent influence of genetic liability to PTB was found on
the risk of broad depression, MDD, or BIPD in the reverse direc-
tional MR analyses (Figure 3d).

Discussion

As far as we understand, this genome-wide cross-trait analysis is the
first one that comprehensively investigated the common genetic
foundations underlying depression and PTB, supporting a substan-
tial genetic link between PTB and both broad depression and its
major subtypes. When the entire genome was divided into inde-
pendent regions, a significant correlation at 11q22.3 was further
identified. In addition, nine pleiotropic loci with joint associations
with both PTB and depression were pinpointed using cross-trait
meta-analysis. Finally, a causal role of depression and its major
subtype on PTB risk was observed.

Through both LDSC and GNOVA, a strong global genetic
similarity was pinpointed for broad depression and PTB, under-
scoring shared genetic biology between the two conditions. A
pronounced local genetic correlation was also pinpointed at
chromosome 11q22.3. This genetic region harbors a gene cluster
NCAMI-TTCI2-ANKKI-DRD2 (also known as NTAD cluster),
which was previously reported to be independently linked to
depressive symptoms, neuropsychiatric disorders (Kimbrel et al,
2023; Mota et al., 2012, 2015) and brain function (Liu et al., 2022;
Petrovska et al., 2017; Xu et al., 2023). In addition, functional
studies also suggested that the NTAD cluster had a potential role
in pregnancy-related conditions. Silencing of the NCAMI gene as a

B

Outcome: PTB OR (95% CI) P-value

Exposure: MDD

All SNPs
VW L= 1.27 (1.08,1.49) 4.27=x107%
MR Egger = - 1.08 (0.55,2.12)  0.82
Weighted median = 1.33 (1.05, 1.87) 0.01
MR-PRESSO = 1.25(1.05, 1.47) 1.47=x102
Excluding palindromic SNPs
VW = . 1.28 (1.08, 1.52) 4.27=1073
MVMR
Adjusted for T2DM = 1.12(0.98, 1.28) 0.09
Adjusted for BMI —— 1.14 (1.03, 1.26) 0.01
Adjusted for smoking - d 1.21 (1.02, 1.43) 0.02
Adjusted for alcohol " 118(1.00,139) 004
Adjusted for sleep duration = 1.13(0.97,1.33)  0.12
Adjusted for antidepressant use = 1.17 (1.00, 1.37) 0.05
T T T 1
0.5 1 1.5 2
D
Exposure: preterm birth OR (95% CI) P-value

Outcome: broad depression 1.000 (0.991, 1.009) 0.94

0.999 (0.995, 1.003)  0.57

Qutcome: major depression

QOutcome: bipolar disease 0.989 (0.966, 1.011) 0.32

T T 1
0.95 1 1.05

Figure 3. Bidirectional causal relationship between depression and preterm birth. Estimates represent causal effects for broad depression (a), major depression (b), and bipolar
disease (c) with preterm birth. (d) Estimates of causal effects for preterm birth with depression and its subtypes. Note: PTB, ‘preterm birth’; MDD, ‘major depression’; BIPD, ‘bipolar
disease’; IVW, ‘inverse-variance weighted’; T2DM, ‘type 2 diabetes mellitus’; BMI, ‘body mass index’.
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potential therapeutic target in preeclampsia by suppressing oxida-
tive stress and activating migration and invasion of umbilical vein
endothelial cells (Zhang et al., 2019). The DRD2 gene regulates the
decidualization of the human endometrial stromal cell (Bilibio
etal.,2015; Schoorlemmer et al., 2020; Yu et al., 2021). A significant
signal at chromosome 22q13.2 was observed for BIPD and PTB.
GWAS and functional genomics have revealed that genetic variants
at the 22q13.2 risk locus (rs1801311 in NDUFA6 gene) were
robustly associated with schizophrenia (Li et al., 2021, Schizophre-
nia Working Group of the Psychiatric Genomics, 2014). However,
the specific mechanism of these genes in depression-related PTB
needs to be further explored.

While our results suggest a potential shared biological etiology
underlying depression and PTB, it could be due to pleiotropic
impact (namely a loci influences both phenotypes) and/or causal
impact (namely a loci influences one phenotype by its genetic
effects on an intermediate phenotype). In the subsequent analyses
aimed to explore these alternatives, a total of nine shared varjants
were pinpointed, among which two LD blocks (rs13220522-
rs57440165 and rs149543464-rs1264349, both R?* > 0.80) were
identified, suggesting the similarity of pathogenic mechanisms.
These loci harbor genes that were previously linked to the devel-
opment of nerve and the functions of the brain (SCGN, ABT1I) (Liu
et al., 2023; Oda et al., 2000), or biological processes related to the
function of the placenta (HLA-B) (Hutter et al., 1996). In addition,
several pleiotropic variants were mapped to genes that play import-
ant roles in inflammatory responses and immune (e.g. TRIM38,
BTN2A2, BIN3A1, and HLA-B) (Di et al., 2021; Payne et al., 2020;
Sarter et al., 2016; Xue et al., 2012), which were significantly related
to both depression and PTB. Thus, dysregulation of the immune
system may serve as the biological basis for both the evolution of
depression as well as its connection to PTB.

Through combining evidence of association from different
studies, the meta-analysis of GWASs for multiple phenotypes can
additionally uncover signals that are not detected as genome-wide
significance in each single-phenotype analysis. Notably, three novel
loci shared between BIPD and PTB (rs7813444 mapped to
BHLHE22, rs9273363 mapped to HLA-DQBI, and rs3132948
mapped to NOTCH4) were identified. NOTCH4 gene encodes a
member of the NOTCH family of proteins, which play a role in
vascular, especially brain arteriovenous malformation. In addition,
convergent lines of evidence support that NOTCH4 is a risk gene for
schizophrenia (Zhang et al., 2021a). Furthermore, altered NOTCH4
in the human placenta is significantly inversely associated with low
baby birth weight (Tiwari et al., 2023). Further experimental
researches were required for a more detailed functional annotation
of these shared loci, especially concerning the onset of PTB and
depression.

In addition to findings from the cross-trait meta-analyses
(by CPASSOC) indicating biological pleiotropy (namely horizon-
tal pleiotropy), results from MR analyses suggest causal relation-
ships (namely vertical pleiotropy). Despite much epidemiological
research regarding the association between depression and PTB
had been performed, the findings remain inconclusive. For
example, a previous meta-analysis consisting of 20 cohort studies
which involved 29,295 participants showed a significantly
increased risk of PTB among depression during pregnancy
patients (ORs ranges: 1.01-4.90, pooled OR: 1.13; 95%CI: 1.06—
1.21), however, this positive relationship attenuated to null when
the study quality less than six (n = 5, pooled OR: 1.70; 95%CI:
0.99-2.92) and the effect size that without adjustment (n = 4,
pooled OR: 1.46; 95%CI: 0.84-2.25) in the subgroup analyses
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(Grote et al., 2010). A cohort study involving 7,267 individuals
suggested pregnant women with depressive symptoms had a
significantly evaluated risk of PTB (OR: 1.27, 95%CI: 1.04—
1.55), however, those women who were treated for depression
with an antidepressant medication did not (OR: 1.44, 95%CI:
0.86-2.43) (Venkatesh et al., 2016), suggesting the positive asso-
ciation may be biased by confounding factors. We performed the
first MR that provided evidence for a putative causal impact of
depression on PTB, and this causal effect remained consistent
when further adjusting for important confounders such as anti-
depressant use in the MVMR, indicating the independent role of
depression in PTB. In the inverse direction, we did not observe a
causal association between PTB and depression risk, which may
be due to the selection of IVs for PTB (we set the threshold to
5.0 x 10~°). Further GWASs of PTB with extended study popu-
lations are warranted to verify the findings.

Our results hold significant implications for the field of public
health. First, our research underscores the adverse impact of
depression on PTB at the genetic level. Despite evidence-based
guidelines for the prevention and treatment of depression or peri-
natal depression, they are often underutilized (Cox et al., 2016;
Force et al., 2019; Siu et al., 2016). This study further emphasizes
that obstetric clinicians should pay more consideration to the
screening, prevention, and treatment of perinatal depression. Sec-
ond, the mechanism by which depression causes premature birth
remains unknown. Our study identified several shared loci, pro-
viding a biological basis for further functional research into the
pathogenesis of depression and PTB.

There are several limitations. First, all the results were limited to
Europeans, limiting generalizability to other ethnicities. Second, it
is hard to obtain publicly available women-specific GWASs statis-
tics for depression with large sample size, which limits our analyses.
We attempted to conducted sex-specific genetic analyses using sex-
specific GWASs summary data of depression from the UK Biobank
generated by the Neale Lab with 17,922 women cases and 9,358 men
cases. The LDSC analysis suggested a potential genetic correlation
between PTB and women-specific depression (rg = 0.193, P=0.056)
but not men-specific depression (r, = 0.184, P = 0.136)
(Supplementary Table S17). In addition, MR analysis yielded a
suggestive association between genetic liability to women-
depression and increased risk of PTB (B = 2.92, P = 0.072)
(Supplementary Table S18). These findings are consistent in direc-
tion with the primary analyses, although the potential reduction in
statistical power due to the smaller sample size in the women-
specific GWAS (17,922 cases versus 246,363 cases in the primary
GWAS). Using adequately powered women-specific data in future
research would be beneficial. Third, despite utilizing the hitherto
largest GWAS for PTB, the case number remains relatively small,
and future larger-scale GWASs are warranted to validate the results.
Fourth, the lack of GWAS data for different PTB subclinical
phenotype (spontaneous and medical-induced) precludes analysis
of depression’s effects on these clinical subtypes, which warrants
further clarification. Fifth, although shared loci (genes) were iden-
tified for depression and PTB, they rely on functional datasets and
algorithms. Experimental studies are warranted to further uncover
the physiopathological mechanisms. Finally, although we adjusted
for antidepressant use in the MVMR, we acknowledge that
medication-related confounding cannot be completely excluded.
The GWAS summary statistics we used do not provide individual-
level data on the timing, dosage, or duration of antidepressant
exposure. Therefore, residual confounding due to unmeasured or
misclassified medication use remains possible and may have
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influenced the observed associations. Future studies with
individual-level data are needed to further validate and refine these
findings.

In conclusion, this research advances our understanding of the
phenotypic link between depression and PTB by providing genetic
evidence of intrinsic correlation, disclosing shared genetic compo-
nents, and drawing a causal inference between these two complex
traits. Our findings highlight an intrinsic link between depression
and PTB, shedding novel light on the physiological mechanisms
and emphasizing the essential role of early screening and effective
intervention of depression in PTB prevention, and may provide
novel treatment strategies for both diseases.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725100718.
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