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Abstract
Before a binary system enters into a common envelope (CE) phase, accretion from the primary star onto the companion star through
Roche Lobe overflow (RLOF) will lead to the formation of an accretion disk, which may generate jets. Accretion before and during the CE
may alter the outcome of the interaction. Previous studies have considered different aspects of this physical mechanism. Here we study
the properties of an accretion disk formed via 3D hydrodynamic simulations of the RLOF mass transfer between a 7 M�, red supergiant
star and a 1.4 M�, neutron star companion. We simulate only the volume around the companion for improved resolution. We use a 1D
implicit MESA simulation of the evolution of the system during 30 000 yr between the on-set of the RLOF and the CE to guide the binary
parameters and the mass-transfer rate, while we simulate only 21 yr of the last part of the RLOF in 3D using an ideal gas quasi-isothermal
equation of state. We expect that a pre-CE disk under these parameters will have a mass of ∼ 5× 10−3 M� and a radius of ∼ 40 R� with a
scale height of ∼ 5 R�. The temperature profile of the disk is shallower than that predicted by the formalism of Shakura and Sunyaev, but
more reasonable cooling physics would need to be included. We stress test these results with respect to a number of physical and numerical
parameters, as well as simulation choices, and we expect them to be reasonable within a factor of a few for the mass and 15% for the radius.
We also contextualise our results within those presented in the literature, in particular with respect to the dimensionality of simulations and
the adiabatic index. We discuss the measured accretion rate in the context of the Shakura and Sunyaev formalism and debate the viscous
mechanisms at play, finishing with a list of prospects for future work.
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1. Introduction

Massive stars (M� 8 M�) are almost always in binary and mul-
tiple systems with ∼70 % of them involved in various forms of
interaction, including tidal interactions and mass transfer, leading
eventually to close binaries and mergers (Moe & Di Stefano 2017).
These interacting binary systems can give rise to high-energy phe-
nomena, such as cataclysm variables (e.g. Warner 1995), type Ia
supernovae (e.g. Iben & Tutukov 1984; Chevalier 2012), short
and long gamma-ray bursts (e.g. Fryer & Woosley 1998; Brown,
Lee, & Moreno Méndez 2007; Ramirez-Ruiz & Lee 2009), and
gravitational wave emission (e.g. Abbott et al. 2016).

For a certain range of binary and stellar parameters, the mas-
sive binary becomes a high-mass X-ray binary, where a red giant
or red supergiant (RGS) feeds mass through the inner Lagrangian
point, L1, to a neutron star (or sometimes a black hole) com-
panion in a phase of wind accretion and, possibly, Roche lobe
overflow (RLOF). These systems form an accretion disk around
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the compact companion, which is X-ray bright and may develop
jets. If the mass ratio is large, as is the case if the compact object
is a neutron star, mass transfer reduces the orbital separation.
In addition, the RGSs expand upon loss of mass, further accel-
erating the mass transfer. For neutron star–RGS systems, it is
likely that unstable mass transfer and a common envelope (CE)
phase may result (Ivanova et al. 2013; Tauris et al. 2017). The out-
come of this phase depends on whether or not the CE can be
ejected before the neutron star merges with the helium core of
the RGS.

Most observed X-ray binaries are undergoing a long-lived
phase of stable wind accretion with timescales that depend on the
parameters of the system. Some systemsmay be undergoing RLOF,
in which case the evolution timescales are likely much shorter with
a possibility of unstable mass transfer and CE (e.g. highmass X-ray
binaries may remain in the RLOF state for only 10 000 yr; Savonije
1977, see also Tauris et al. 2017). Although, presumably, X-ray
binaries in the stable wind accretion phase are more frequently
observed (e.g. Cygnus X-1), it is possible that some may be caught
in the faster phase of unstable mass transfer. Dickson (2024) pre-
sented a model of X-ray binary M 33 X-7, that they believe to be
in an unstable mass transfer phase based on a measurement by
Ramachandran et al. (2022) of the donor substantially overfilling
its Roche lobe.
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One open question in the study of massive CE interactions is
the impact of the energetic feedback due to accretion of envelope
gas onto the compact companion, before and during the in-spiral
in the CE. For neutron stars and black hole companions, this could
be critically important for the outcome of the interaction. Shiber
et al. (2019) simulated an ad hoc jet, emanating from a companion
in a low mass CE interaction to conclude that the jet would aid in
unbinding envelope mass with consequences for the binary sep-
aration of the post-CE binary. On the other hand López-Cámara
et al. (2022), using a self-regulated jet, powered by a fraction of
the mass accretion rate that reached the inner boundary, showed
that the jet would likely be quenched, even if it existed before the
companion entered the CE.

A disk that forms during wind accretion and RLOF could sur-
vive inside the CE, be destroyed, or be destroyed and reform, as
a result of accretion of envelope material on the secondary star
(MacLeod & Ramirez-Ruiz 2015; MacLeod et al. 2017; Moreno
Méndez, López-Cámara, & De Colle 2017; Chamandy et al. 2018;
López-Cámara et al. 2019; Shiber et al. 2019; López-Cámara,
Moreno Méndez, & De Colle 2020; Moreno Méndez 2022). So far
previous studies have found that the formation of the accretion
disk inside a CE depends on the thermal properties of the envelope
(adiabatic index of �1.2). Murguia-Berthier et al. (2017) pointed
out that this phase is only a transitory phase, due to the lack of stel-
lar regions (zones of partial ionisation where γ is small enough)
where the envelope is compressible enough to form a disk.

In this work, we study the formation of the disk around a
1.4 M� neutron star, caused by RLOF mass transfer from a 7 M�
RGS, undergoing unstable mass transfer. We attempt to gain a
quantitative idea of the parameters of an accretion disk to, even-
tually, determine its fate inside the CE. This work is also intended
to contribute to the literature by studying accretion disks in 3D
hydrodynamics. The goal is to determine when and how accre-
tion disks form in response to mass accretion through L1 and as a
function of a number of physical and numerical parameters to set
this study in the broader context of disk formation (e.g. Makita,
Miyawaki, & Matsuda 2000).

This paper is structured as follows. In Section 2, we outline
the overall methodology with Sections 2.1 and 2.2 presenting the
governing equations and simulation parameters. In Section 3 we
give details of the formation and evolution of the disk and, in
Section 3.1 the disk parameters. In Section 4, we discuss the sen-
sitivity of our results to some physical and numerical parameters,
while in Section 5 we present our conclusions.

2. Methods

To study the mass transfer phase through the L1 point, we con-
sider a binary system consisting of a 7 M� red supergiant as the
donor star and a 1.4 M� neutron star as the companion star (see
Fig. 1 for a cartoon of the setup). We model the evolution of
this binary system, between the RLOF phase and the CE phase,
using the 1D implicit code MESA (Modules for Experiments in
Stellar Astrophysics; version r21.12.1; Paxton et al. 2011, 2013,
2015, 2018, 2019).

We then use use the 3D hydrodynamic numerical code
MEZCAL (De Colle et al. 2012) to simulate the formation of the
accretion disk around the companion star using the mass trans-
fer rate given by the MESA model as boundary condition to inject
material into the computational domain. The 3D computational
domain is represented by a dotted line in Fig. 1.

Figure 1. Setup cartoon. The donor star is a red super giant of 7 M� with a radius of
139 R�, orbiting a compact object of 1.41 M�, with a separation of 270 R�. The dotted
line (centred on the compact object) represents the computational domain in our 3D
simulations.

To only simulate the region around the accreting star, the 3D
simulation is performed in a co-rotating system of reference, cen-
tred on the companion which is represented by a point mass
particle encircled by an inflow boundary of radius Rin. Mass is
injected through a nozzle that represents the L1 point, located at
the centre of the left boundary face. Belowwemotivate themethod
and the setup and explain the specific assumptions.

2.1 The hydrodynamic code and its governing equations

To study the formation and stability of accretion disks dur-
ing the RLOF phase, we run a series of 3D numerical simu-
lations employing the adaptive mesh refinement code MEZCAL
(De Colle et al. 2012). The code integrates the hydrodynamic equa-
tions in a rotating frame. Self-gravity is not included in these
simulations.

We solve the three-dimensional Euler equations for an inviscid
gas (see, e.g. Makita et al. 2000), that is,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

∂(ρv)
∂t

+ ∇ · (ρvv+ PI) = −ρf , (2)

∂e
∂t

+ ∇ · [(e+ p
)
v
] = −ρv · f , (3)

representing the evolution of mass density, ρ, gas momentum, ρv,
and gas energy density, e (for additional details see Pringle & King
2014). The variable P represents the pressure, I is the identity ten-
sor, v is the velocity vector, and f is the specific force vector. The
specific force vector f= (

fx, fy, fz
)
represents the gravity forces and

fictitious forces associated with the rotating frame.
The binary system consists of a donor star of mass M1, and an

accreting star of massM2, with a mass ratio defined as q=M1/M2
during their mass transfer phase. Our simulations are conducted
in Cartesian coordinates in three dimensions with different levels
of resolution. The binary system has an orbital separation a, with
an orbital frequency � = (G(M1 +M2)/a3)1/2. Then, the orbital
period is given by P = 2π/�. The origin of the rotating frame is
the accreting star; the donor star is positioned on the left of the
accretor (donor position is (−a,0,0)). We perform the simulation
in dimensionless units using a as the length scale and a�/2π as
the velocity scale. The time unit is the initial period of the binary.
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Table 1. Description of units, rescaling factors to physical sys-
tems, in terms of the binary separation (a), orbital frequency (�),
and totalmass (Mtot =Mdon +Macc, whereMdon is themass of the
donor star andMacc is the mass of the companion star).

Code unit Value in cgs

Length a 1.85× 1013 cm

Velocity a�/2π 7.75× 106 cm s−1

Mass Mtot 1.67× 1034 g

Time 2π/� 0.48 yr

Mass transfer rate Mtot�/2π 6.97× 1027 g s−1

Density Mtot/a3 2.62× 10−6 g cm−3

Pressure Mtot�2/4π2a 3.89× 108 dyne cm−2

This means that quantities can be rescaled based on these units to
physical units. In Table 1, we list the scaling factors between code
and physical units.

With these assumptions, we can now write out the force vector
in dimensionless form at each point in the computational domain,
remembering that there is no self-gravity, but that we are operating
in the rotating frame:

fx = −2vy−
(
x+ q

1+ q

)
+1/(1+ q)

|r1|3 (x− a)+q/(1+ q)
|r2|3 x, (4)

fy = 2vx − y+ 1/(1+ q)
|r1|3 y+ q/(1+ q)

|r2|3 y, (5)

fz = 1/(1+ q)
|r1|3 z + q/(1+ q)

|r2|3 z, (6)

where r1 and r2 are the distances from the point considered r=
(x, y, z) to the centre of each star. In Equations (4) and (5), on the
right-hand side, the first term represents the Coriolis force and the
second term represents the centrifugal force. The last two terms
in Equations (4) and (5), as well as the terms in Equation (6),
represent the gravity force of each star.

2.2 Initial conditions

2.2.1 Calculation of the mass transfer rate through L1 using a 1D
implicit code

To determine the mass transfer rate in a binary system between a
massive red supergiant donor star and a compact accretor, we use
MESA to simulate the evolution of a binary system comprising a
7 M�, solar metallicity main sequence star with a radius of 57 R�
and a 1.4 M� point mass companion, initially located at an orbital
separation of a= 270 R�. The Roche lobe radius of the primary
star (RL1 ) is calculated according to the prescription by Eggleton
(1983):

RL1

a
= 0.49q2/3

0.6q2/3 + ln
(
1+ q1/3

) , (7)

where a is the orbital separation, and q=M1/M2 is the mass ratio
between the donor star (M1) and the accreting star (M2).

We let the MESA simulation run for ∼ 4.0× 107 yr until the
primary expands to fill its Roche lobe and starts to transfer mass
to the companion. At this time, called time zero in Fig. 2, the red
supergiant has a helium-burning core surrounded by a shell that
experiences hydrogen burning (primarily through the CNO cycle),

Table 2. Initial (start of RLOF) and final (the time of CE) binary parame-
ters for 30 000 yr of Roche lobe mass transfer, modelled with the MESA
code.

Quantity Initial value Final value

Donor star 7.0 M� 6.88 M�
Accretor star 1.4 M� 1.49 M�
Orbital separation 270 R� 243 R�
Mass transfer rate 1.6×10−9 M� yr−1 9.7×10−2 M� yr−1

Figure 2. Temporal evolution of the mass transfer rate from the primary to the sec-
ondary star in our long-term, MESA simulation of the binary system. The initial masses
of the stars are 7M� and 1.4M�; they have an initial orbital separation of 270 R� and an
orbital period of 177 days. We indicate with the orange box themass transfer evolution
that we are simulating in 3D.

along with a massive convective hydrogen envelope. The orbital
separation is 270.4 R�, the red supergiant has a mass of 6.98 M�, a
radius of 134 R�, an effective temperature of 3 981 K, and a lumi-
nosity of 3 645 L�. The companion star has a mass of 1.4 M�, and
the mass transfer rate at time zero is 1.4× 10−8 M� yr−1.

We then continue the MESA simulation for an additional
∼30 000 yr, during which the mass transfer rate increases to a
maximum value of 9.7×10−2 M� yr−1 (as we can see in Fig. 2).
After 30 000 yr the mass of the red supergiant is 6.88 M� its radius
is 143 R� and its effective temperature is ∼ 5 012 K, while the
companion star mass has increased to 1.49 M�, having accreted
some mass. The orbital separation is 243 R�. After this point we
assume that the mass transfer leads to a CE in a short timescale.
See Table 2 for a summary of the initial and final parameters of the
MESA simulation.

The 3D simulation described next (Section 2.2.2) instead spans
only 21 yr. This period of time is taken between 29 500 yr
and 29 521 yr of the 30 000 yr stretch of the 1D simulation.
Hence, the mass transfer rate in the 3D simulation, is prescribed
from the 1D simulation to be between 2.3×10−4 M� yr−1 and
9.7×10−2 M� yr−1. In Section 4.1, we will explore the impact
that this mass-transfer rate choice has on the the accretion disk
parameters.

2.2.2 Calculation of disk formation using a 3D explicit code

In the 3D simulations, a 1.4 M� point mass particle represents the
neutron star companion, at the centre of the domain. We assume
that the donor star, with a mass of 7.0 M�, is located outside the
computational domain at a position (−a, 0, 0) from the compan-
ion star, where a= 266 R� is the binary separation at the start of
the hydrodynamic simulation. In this way, the position of L1 is
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Table 3. Simulation summary: inputs are varied to understand the resilience of the accretion disk parameters
to numerical and physical input parameter changes. We vary the initial mass transfer rate (sim-dot-#), injection
velocity through L1 (sim-vel-#), and background temperature and density (sim-bgT-#). We compare each simula-
tion to the reference simulation (sim-0). The majority of the simulations were carried out for 21 yr and start with
a donor star of 7 M�, a companion star of 1.4 M�, an orbital separation of 266.34 R�, and� of 4.18×10−7 s−1.

Model Ṁini Ṁfin ρbg Pbg Tbg vL1
(M� yr−1) (M� yr−1) (g cm−3) (dyne cm−2) (K) (cm s−1)

sim-0 2.3× 10−4 9.7×10−2 2.6×10−22 8.9×10−11 1.0×105 7.7×104
sim-mdot-1 1.4×10−8 1.4×10−8 2.6×10−22 8.9×10−11 1.0×105 7.7×104
sim-mdot-2 1.1×10−5 6.4×10−5 2.6×10−22 8.9×10−11 1.0×105 7.7×104
sim-mdot-3 3.7×10−3 9.7×10−2 2.6×10−22 8.9×10−11 1.0×105 7.7×104
sim-vel-1 2.3×10−4 9.7×10−2 2.6×10−22 8.9×10−11 1.0×105 5.7×105
sim-vel-2 2.3×10−4 9.7×10−2 2.6×10−22 8.9×10−11 1.0×105 6.2×105
sim-bgT-1 2.3×10−4 9.7×10−2 2.6×10−22 8.9×10−12 1.0×104 7.7×104
sim-bgT-2 2.3×10−4 9.7×10−2 2.6×10−22 8.9×10−10 1.0×106 7.7×104

at 83.1 R� (5.79× 1012 cm) from the companion star. The gas is
injected through the L1 point, represented in the simulations by a
small rectangular boundary with a variable size given by the cross
section of the mass transfer stream, as explained in the following.
The setup scheme is shown in Fig. 1.

The point-mass companion sits inside a spherical inflow
boundary of radius Rin =1.3 R� (9.3× 1010 cm). Since cells can-
not be empty, we set the density of gas within this inner boundary
to ρin = 1.0×10−20 g cm−3 and the pressure to 1.0×10−8 dyne
cm−2. The cells inside the inner boundary are rewritten at every
time step to have these values. Outside of the inner boundary
we set a low background density ρbg = 2.6×10−22 g cm−3, a tem-
perature Tbg = 1.0×105 K, and a pressure Pbg = 8.9× 10−11 dyne
cm−2. These initial conditions were chosen to have the lowest den-
sity possible before the simulation stops being able to calculate
gas advection. The sensitivity of our simulations to different val-
ues of the background conditions is tested in Section 4.3. The gas
adiabatic index is fixed to γ = 1.1 during the whole simulation,
based on Makita et al. (2000), MacLeod & Ramirez-Ruiz (2015)
and Murguia-Berthier et al. (2017). See Section 4.5 for further
discussion about the adiabatic index in simulations of accretion
disks.

Following the Jackson et al. (2017) prescription for optically
thin mass transfer, we define an elliptical area centred on L1, where
most of the material escapes L1, referred from now on as the ‘noz-
zle’. The nozzle area is defined by SL1 = π�z�y, where the two
dimensions are related to the pressure scale height in the y- and
z-directions, and vary as

�y=
√
2cT

�
√
A− 1

, �z =
√
2cT

�
√
A
, (8)

where cT = √
γkBT/μ is the isothermal sound speed, kB is the

Boltzmann constant, μ is the mean mass of a gas particle, � is
the orbital frequency and A is a dimensionless coefficient that
depends on the mass ratio, q, (equivalently M2/M1 or M1/M2 in
this equation), defined as

A(q)= 4+ 4.16
−0.96+ q1/3 + q−1/3 . (9)

We set the length of the nozzle on the x-axis to be two
cells thick at the coarsest level of refinement, or �x= 1.30 R�

(9.05× 1010 cm). The initial mass injection rate is Ṁini = 2.31×
10−4 M� yr−1, and it has a subsonic velocity in the x direction
with value vL1 = 77.7× 103 cm s−1 (Lubow & Shu 1975; Jackson
et al. 2017; Cehula & Pejcha 2023). The mass injection rate (Ṁ)
is interpolated at each time step (�t), using the values given by
the MESA simulation (see Section 2.2.1). Using the interpolated
values, we calculate the nozzle volume (VL1 ), nozzle density as
ρL1 = Ṁ�t/VL1 , and the pressure of the nozzle as PL1 = ρL1c2T,
using the effective temperature of the donor star to calculate cT.

We start the hydrodynamic simulation at tini = 29 500 yr after
the start of the mass transfer in the MESA simulation and let
the hydrodynamic simulation run for 21 yr, with a final mass
transfer rate of Ṁfin = 9.7× 10−2 M� yr−1. We also performed
eight different simulations, altering different physical and numer-
ical parameters (see Table 3). We will justify the need for these
additional simulations in Section 4.

The size of the computational domain depends on the distance
between the first Lagrange point and the accreting star, initially
at −dL1 = 83.1 R� (5.79×1012 cm). Hence, the computational
box has dimensions dL1 ≤ x≤ 1.25dL1 , −1.5dL1 ≤ y≤ 1.5dL1 and
−0.5dL1 ≤ z ≤ 0.5dL1 with outflow boundary conditions at each of
the six faces (except for the location of the nozzle that is techni-
cally an inflow boundary). The grid was modified to have better
resolution surrounding the companion star and around the noz-
zle, avoiding numerical problems. We employ (72, 96, 32) cells at
the coarsest refinement level, with three levels of refinement (see
Section 4.4 for convergence tests), corresponding to a maximum
resolution of �x= �y= �z = 0.65 R� (4.53× 1010 cm).

3. Results: Formation and evolution of the disk

In what follows, we give details of the simulation whose input
parameters are explained in Section 2.2. We refer to this simula-
tion as the ‘Reference simulation’ (sim-0 in Table 3). Later, we test
the results against changes in the input parameters.

In Fig. 3 we show a volumetric density rendering that shows
the accretion disk forming over 21 yr. At the start of the sim-
ulation, the injected material with velocity in the x-direction
(into the computational domain) effectively free falls towards the
companion star under its own gravity, but due to its angular
momentum, it sweeps around forming a disk. The injected mate-
rial moves towards the companion, taking ≈ 0.12 yr to reach
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Figure 3. Volumetric density rendering showing the accretion disk at four times (t =
0.3 yr, 1.5 yr, 10.5 yr, and 21 yrs). We can appreciate the 3D structure of the accretion
disk, surrounding the companion star (represented by the white area in the middle of
the accretion disk).

the internal boundary, and is deflected around the central poten-
tial toward the lower density medium. The interaction between
the deflected material and the injection stream creates the accre-
tion disk’s base structure, seen after 0.3 yr (upper left panel of
Fig. 3). One year later, the accumulated deflected material forms
two high density spiral arms on the orbital plane (see upper right
panel).

After 10.5 yr the shock between the spiral arms has created
a high density structure with a disk-like shape, surrounding the
companion star (see bottom left panel). The material in the disk is
orbiting around the companion star, forming bow shocks with the
injected material, showing a higher density on the left side of the
computational domain than on the right side, consistent with the
results of Makita et al. (2000).a By the end of the simulation at 21
yr (see bottom right panel of Fig. 3) the accretion disk has main-
tained its approximate structure for 10.5 yr, albeit while growing
somewhat in radius and scale height, due to the accumulation of
mass.

In the next section, we quantify what we have just described
qualitatively.

3.1 Accretion disk parameters

In Fig. 4, we present orbital and perpendicular density slices of the
accretion disk at the same four times shown in Fig. 3. Along the
orbital plane we see the formation of spiral arms, the injected mass
leaves the nozzle and is deflected towards the companion star, due
to its gravitational pull, Coriolis force, and centrifugal force. With
an increase in the rate of mass transfer, a high density structure
can be seen in the last panel of the top row of Fig. 4.

The edge-on panels in Fig. 4, bottom row, show the formation
of the aforementioned bow shocks, due to the interaction between
the injection stream and the accretion disk. Also, the edge-on
view shows the presence of small, low density outflows along the

aSince much of this work is based on the work of Makita et al. (2000) we will continue
the comparison throughout this paper and bring it to bear in a discussion in Section 4.5.

polar axes, and may suggest the formation of hydrodynamically
collimated jets in the future; however, our simulation ends too
early to follow their development. These outflows are not visible
in the rendered plots as a result of the choice of the colour bar
limits.

In Fig. 5 we plot density profiles along the z-axis of the accre-
tion disk, measured at 26.5 R� (1.85×1012 cm) from the compan-
ion star along the positive and negative side of the x- and y-axes,
at t = 10.5 yr (blue line), and t = 21 yr (red line). The upper pan-
els of Fig. 5 show the density profiles measured on the positive
y-axis and x-axis, panels (a) and (b), respectively. Panels (c) and
(d) show the density profiles measured on the negative sides of
the y-axis and x-axis, respectively (these labels are also marked
in Fig. 4).

Panel (d) shows the material to be more extended in the
z-direction because the incoming material from the nozzle is con-
stantly interacting with the disk material. Meanwhile, panel (b)
presents a clear description of the disk thickness, with a sharply
decreasing density above and below the midplane, just as we can
see in the density maps (Fig. 4). At 10.5 yr the disk has an average
thickness of 15.6 R� (1.09× 1012 cm). By the end of the simula-
tion (21 yr) the disk has reached an average thickness of 20.4 R�
(1.42× 1012 cm). We also measure the scale height of the disk at
10.5 yr to be H= 6.7 R� (0.47×1012 cm), while at the end of the
simulation (21 yr) the disk scale height has slightly decreased to
4.9 R� (0.34× 1012 cm).

Panels (b) and (d) in Fig. 5 show that the thickness of the disk
perpendicular to the line that joins the two stars is thicker and less
defined. Panel (d), includes the interaction of the deflected mate-
rial that has left the nozzle and encounters the accretion disk, just
as we can appreciate in the density maps of the orbital plane. The
shape of the vertical density profiles at each of the four locations
does not change significantly over 10 yr; only the density increases
over time due to the constant injection of material.

We measured the mass inside one hundred radial points
(Fig. 6), measured from the inner boundary (encircling the com-
panion star) to the edge of the computational domain. We
repeat this calculation for the same times as in Fig. 4. At t =
0.3 yr (orange line panel) the injected material has just reached
the internal boundary, but the disk has not formed yet. Once
the disk has formed, at 1.5 yr (maroon line panel in Fig. 6),
the enclosed mass increases with radius until it reaches the edge
of the disk. At this point, we see a flattening of the slope of
the enclosed mass. The nozzle is located at a radius of 74.4 R�
(5.18× 1012 cm) from the inner boundary, and it manifests itself
in the steepening of the gradient at the largest radius, particularly
evident at the last time (bottom right panel in Fig. 6). We deter-
mine the radius of the disk by locating the first inflection point
(black filled circle in all panels). The cumulative mass profile and
hence the inferred mass and radius of the disk, depend some-
what on assumed parameters such as injection velocity. We will
explore these dependencies in Sections 4.1 and 4.2. In Table 4, we
summarise the disk characteristics discussed so far.

Using the inner inflow boundary, wemeasure the accretion rate
onto the companion as a function of time (plotted in Fig. 7). We
identify a cubic volume, 2Rin on a side, which contains the inflow
boundary sphere. The total accretion rate is measured by calcu-
lating the mass flux through the cubic boundary, by taking the
projection of the velocity of each cell surrounding the boundary
onto the normal direction to the boundary (solid line in Fig. 7).
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Figure 4. Density slices of the accretion disk on the orbital plane (top row) and perpendicular plane (bottom row) of sim-0 at times t= 0.3 yr, 1.5 yr, 10.5 yr, and 20.9 yr (from left
to right). The letters in the third and fourth upper panels represent the positions used to calculate the density profiles (see text).

(a) (b)

(c) (d)

Figure 5. Density profile of the accretion disk versus height at a radius of 26.7 R�
(1.86×1012 cm). Two times are shown: t= 10.5 yr (blue line) and 21 yr (red line). The
readingswere taken at four symmetric points around the companion indicated in Fig. 4
star along the x- and y-axis (panel (a):+y-axis, (b):+x-axis, (c):−y-axis, (d):−x-axis).

Table 4. Disk properties at different moments in time in sim-0.

Time (yr) Rdisk (R�) Mdisk (M�) Hdisk (R�) Ṁacc (M�/yr)
0.3 5.3 2.3× 10−7 – –

1.5 41 4.3× 10−5 – –

10.5 41 5.1× 10−4 6.7 3.6×10−4

20.9 39 5.5× 10−3 4.9 3.7×10−3

If the projected velocity of a cell is pointing inside the fixed box, we
assume that the material in that cell is accreted and deleted from
the simulation in the next timestep, or

Ṁ =
N∑
i=1

ρiAi	vi · n̂, (10)

Figure 6. Cumulative mass as a function calculated from the companion star, at dif-
ferent times: t= 0.3 yr (top left panel, orange line), t= 1.5 yr (top right panel, maroon
line), t= 10.5 yr (bottom left panel, purple line), t= 21 yr (bottom right panel, blue
line). The black symbol in each panel indicates the adopted radius of the disk.

where ρi is the density of the cell, 	vi is the velocity vector of the cell,
Ai represents the area of the cell face through which the material
will cross in the next time step, and n̂ is the vector perpendicular to
that face directed into the cubic boundary. We also carry out the
same measurement with a slightly different approach: we project
the velocity vector of each cell as well as the area of the face that
the gas crosses, along the radial direction to the companion – this
method results in somewhat smaller values for the accretion rate
by a factor of 0.6 (dashed line in Fig. 7).

The values of the accretion rate determined with the first
method above are listed in Table 4. The accreted mass does not
contribute significantly to the mass of the companion, which
increases only by 8.4× 10−3 M� during 21 yr.
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Figure 7. Mass accretion rate onto the companion (traversing the inner, inflow bound-
ary) as a function of time. The solid line represents the mass accretion rate assuming
the inner boundary is a cubewith edge length 2Rin and the dashed line shows themass
accretion rate calculated projecting the area and velocity of the cell over the spherical
inner boundary.

The accretion rate into the inner boundary in our simulations
may be affected by numerical viscosity. However, the fact that the
accretion rate values are approximately 100 times smaller than the
injection rate at L1, argues that numerical viscosity does not play
a substantial role. We later also show that the accretion rate is
well converged (Section 4.4), in agreement with this conclusion. It
would therefore be reasonable to state that viscosity in our simula-
tions is provided by disk turbulence and possibly the effect of spiral
shocks. We can therefore compare the numerically-derived accre-
tion rates to those theoretically predicted by Shakura & Sunyaev
(1973):

Ṁ = 3π�αcsHdisk, (11)

where � is the surface density of the disk, α is an efficiency factor
and where we assume � =Mdisk/R2

disk. For thin disks, we arbi-
trarily assume α = 0.1. The variable cs is the speed of sound at
Rdisk and Hdisk is the scale height of the disk. Using the aforemen-
tioned results at the 10.5 and 21 yr, we predict accretion rates of
5.0× 10−4 M� yr−1 and 3.7× 10−3 M� yr−1, respectively, consis-
tent with the accretion rate measured at the same two points in the
simulation (Table 4).

The material in the nozzle has density (ρL1 ) and pressure (PL1 )
defined in terms of the mass injection rate, the volume of the noz-
zle, and the velocity, as explained in Section 2.2. Assuming an ideal
gas, we show, in Fig. 8, temperature slices in the orbital and per-
pendicular planes at the end of the simulation (21 yr). Thematerial
inside the nozzle has an average temperature of ∼ 5 000 K, once
the material leaves the nozzle its temperature drops to ∼ 3 000 K,
due to the pressure difference between the nozzle and the mate-
rial just outside the nozzle. Inside the inflow boundary around the
accretor, the high temperature (∼ 107 K) is due to the imposed low
density. We observe a gradient of temperature decreasing radially
away from the inner boundary, we can also observe on the perpen-
dicular plane (x-z plane) the interaction between the injected mass
and the mass that circles around the companion.

In Fig. 9, we plot a temperature profile along the positive x-
axis at 21 yr, with the internal boundary shown as a black vertical
line and the radius of the disk as a dashed grey line. In the mid-
plane along the positive x-direction, the cells closer to the inner

Figure 8. Temperature slices for sim-0 in the orbital (top panel) and perpendicular
(bottom panel) planes of the disk at t= 21 yr.

Figure 9. Temperature profile for sim-0 in the mid plane along the positive x-axis at
t= 21 yr. The disk’s radius is indicated with a vertical grey dashed line, while the inner
boundary’s radius is marked with a vertical black line. The solution for steady disks
is indicated by the green curve (T ∝ r−3/4) and the best fit (α = 1.12± 0.02) is indi-
cated by the red curve and red shaded area. The average percentage error between
the temperature profile and the fit line is 15%.

boundary have a temperature of 1.1× 106 K, their location corre-
sponds with the region where the pressure gradients is the highest;
the cells located at the edge of the disk have lower temperatures of
∼ 60 000 K.

Following the prescription of Shakura & Sunyaev (1973)
for steady disks, the effective temperature profile should follow
T ∝ r−0.75 (green line in Fig. 9). This function fits our data with
an average percentage error of 38%. The best fit is obtained using
a steeper T ∝ r−1.12±0.02 (red line and shaded area in Fig. 9) with
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Figure 10. Slices of Mach number in the orbital plane (top panels) and perpendicular
plane (bottom panels) of the disk at t= 10.5 yr (left panels) and t= 21 yr (right panels)
for sim-0.

an average percentage error of 15%. Mineshige et al. (1994) stated
that a value of α < −0.75 characterises X-ray binary systems in the
flaring branch on the X-ray hardness-intensity diagram.

However, our simulation does not have explicit cooling, so
we may expect it to diverge from the prediction of Shakura &
Sunyaev (1973). Instead, our adopted equation of state implies
that T ∝ (γ − 1)e, and as the energy dissipated per unit mass in
an accretion disk scales as 1/r, it is natural for the temperature to
scale similarly.

The material is injected through the nozzle with a subsonic
velocity of 7.7× 104 cm s−1 in the x direction (note that the sound
speed value near the nozzle ranges between 6 and 8 kms−1). In
the upper panels of Fig. 10, we show the Mach number at 10.5 yr
and at the end of the simulation (21 yr), with slices in the orbital
and perpendicular planes. The nozzle is on the left of the domain,
seen as a short vertical bar with subsonic velocity. Just outside the
nozzle, the velocity becomes highly supersonic (M= 27 at 21 yr).
When the injected material approaches the centre of the domain,
it circles it and collides with the material that was already in orbit
around the companion star, slowing down.

In Fig. 11, we plot the gas velocity profile in the mid-plane
along the positive and negative x-axes at t = 10.5 yr, normalised to
the Keplerian velocity (vk = √

GM/r). We note that normalising
velocities to the Keplerian values is appropriate because gas veloc-
ity vectors are effectively entirely in the azimuthal direction, except
for a few cells near the centre that have a 20% radial component.
The inner boundary radius, Rin, is marked with a black line, while
a grey line indicates the radius of the disk, Rdisk. The cell velocities
around the inner boundary are Keplerian on average, though there
is quite a bit of scatter in individual cells due to the gas there not
moving entirely azimutally. Cells at the edge of the disk move with
velocities approximately 80%–90% of the Keplerian value. This is
likely due to the pressure support of the gas in the disk.

We further study the disk by examining the locus of the gas
cells in the specific energy vs. specific angular momentum plane
(Hayashi et al. 2021, Fig. 12.b) We calculate the specific orbital

bThe time evolution of the specific angular momentum versus energy plot is available
at https://drive.google.com/file/d/10Kh7uXEJaRr8zY5GNmyQr24Vy9wC−G-/view?usp=
sharing.

Figure 11. Velocity profile in the mid-plane along the positive and negative axes at
10.5 yr. The velocity is normalised to the Keplerian velocity (vk). The inner boundary is
marked by the black vertical solid line and the radius of the disk by the vertical grey
dashed line.

energy as

eorb = 1
2
v2 − GM

r
, (12)

where v is the magnitude of the velocity in the centre of the cell,
r is the position of each cell with respect to the companion star,
and M is the mass of the companion star. The magnitude of the
specific angular momentum for each cell is:

jorb = r · v. (13)

Each cell is colour-coded by density (with the same colour bar
as in Fig. 4), where the cells that compose the high density accre-
tion disk are marked in red, and dark blue points represent the low
density medium cells. The black line in Fig. 12 represents the ana-
lytical solution of a particle moving on a circular Keplerian orbit,
while the black dashed line and the back dash-dotted line indicate
orbits with eccentricity 0.9 and ∼ 1, respectively.

The majority of the high-density cells have negative orbital
energy, which means that the material is bound to the com-
panion star. On the other hand, the insert plot, showing a
zoom-in near the origin, shows that some of the material has
positive orbital energy, hence it is unbound. Some of the gas
dropped by the nozzle onto the companion star is not initially
bound to the system but slows down upon colliding with gas
ahead of it. The cells in the high-density region are dispersed
between the black line and the grey dashed line, which means
that they move in closed orbits with eccentricities less than
0.9. The gas behaviour in this diagram is consistent with disk
formation.

We finally determine whether the viscosity that enacts such
large accretion rates is consistent with reasonable magnetic fields
(noting that our simulations do not have magnetic fields and that
in the simulations the viscosity is enacted by turbulent gas motion
and possibly shocks). Using 1015 G at the surface of the neutron
star (Rea & De Grandis 2025), one would find that the field at
1.3 R� is of the order of a Gauss, following magnetic flux con-
servation for a dipole (B∼ r−3). Such lowmagnetic flux is unlikely
to be responsible for the accretion rates that we measure (or that
we infer using the formalism of Shakura & Sunyaev 1973). In fact
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Figure 12. Specific angular momentum versus specific orbital energy for every cell in the computational domain once the disk has formed (sim-0). The integra-
tion time corresponds to t= 10.5 yr. The density colour table is the same as in Fig. 4. The black line is the solution for a circular orbit. The black dashed
line and the black dash-dotted line represent orbits with higher eccentricity (e= 0.9 and 0.9999, respectively). The time evolution of this plot is available at
https://drive.google.com/file/d/10Kh7uXEJaRr8zY5GNmyQr24Vy9wC−G-/view?usp=sharing.

using the expression of Wardle (2007):

Ṁ � 6× 10−12
(

B
1G

)2 (
rin

1.3R�

)5/2 (
MNS

1.4M�

)−1/2

M�yr−1,

(14)
where Ṁ is the mass accretion rate, B is the magnetic field, rin is the
accretion radius and MNS is the mass of the accretor, the deduced
accretion rate would be very low indeed. To obtain instead a mass
accretion rate of the order of 4× 10−3 M� yr−1, as is measured at
the end of the simulation, would necessitate a field at the inner disk
rim of 28 000 G. Such field could possibly be obtained bymagneto-
rotational instability amplification of a Gauss level field (Balbus &
Hawley 1991), over as little as ∼2 orbital periods of the gas at the
inner rim (the amplification grows as exp (3/4�t), where � is the
orbital frequency and t is time). This would argue for a need to
carry out these simulations in a magneto-hydrodynamics regime
(e.g. Pjanka & Stone 2020).

4. Sensitivity of results to the choice of some physical
and numerical parameters

4.1 Mass injection rate

The full evolution of the mass transfer rate from the moment of
Roche lobe overflow to the moment of CE as seen in the 1D MESA
simulation lasts 30 000 yr (Fig. 2) and goes from 1.6× 10−9 M�
yr−1 to 9.7× 10−2 M� yr−1 (Table 2). This entire period cannot
be modelled in 3D which by necessity can only simulate a much

shorter time (21 yr for us). The choice was therefore made to
model a period of time towards the end of the 30 000 yr mod-
elled in 1D between 29 500 and 29 521 yr, when the mass injection
rate goes between 2.3× 10−4 and 9.7× 10−2 M� yr−1 (see sim-0
in Table 5).

Using sim-0 as reference, we computed three additional simu-
lations with different initial mass transfer rates (called ‘sim-mdot-
#’ in Tables 3 and 5) and hence different start times in the context
of the MESA simulation. Therefore, each 3D simulation samples
a different part of the Ṁ vs. time curve in Fig. 2. In Table 5, we
present a summary of the initial and final parameters of these
simulations, noting that, besides the mass transfer rate, all other
parameters are the same as the Reference simulation sim-0 (see
Section 2.2).

In Fig. 13, we present density slices in the orbital plane of these
3D simulations at their final time step (see the fifth column in
Table 5). In the upper left panel, we show the simulation sim-
mdot-1, with the smallest initial mass transfer rate of 1.4× 10−8

M� yr−1, running for the first 128 yr of the 30 000 yr MESA simu-
lation. As expected, only a small, low mass disk forms at such low
mass transfer rate, even if the run time is relatively long.

In sim-mdot-2 with initial mass transfer rate of 1.1×
10−5 M� yr−1 (top right panel), starting towards the end of the
30 000-yr long MESA simulation (only 120 yr before sim-0) and
running for 29 yr, a disk forms with a radius of just under 50 R�
and amass that is not that dissimilar to that of sim-mdot-1, despite
the mass injection rate being larger by three orders of magnitude
(the run time was four times smaller).
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Table 5. Parameters of a sequence of 3D simulations aiming to assess the resilience of disk parameters (Mdisk and Rdisk) to the choice of mass transfer
rate and simulation length. Themass-transfer rate, donormass, accretormass, and orbital separation are selected at the MESA start time. The diskmass
and radius are measured at the end of the simulation.

Model ṀL1,start MESA ṀL1,stop Length Injected Donor Accretor Orbital RL1 Mdisk Rdisk
start time of sim mass mass mass separation

(M� yr−1) (yr) (M� yr−1) (yr) (M�) (M�) (M�) (R�) (R�) (M�) (R�)
sim-mdot-1 1.4× 10−8 0 1.4× 10−8 128 1.8× 10−6 6.98 1.40 270 84 6.3×10−9 10

sim-mdot-2 1.1× 10−5 29 380 6.4× 10−5 29 1.1× 10−3 6.98 1.40 268 83 5.1×10−5 46

sim-0 2.3× 10−4 29 500 9.7× 10−2 21 8.1× 10−2 6.97 1.41 266 83 5.5×10−3 39

sim-mdot-3 3.7× 10−3 29 508 9.7× 10−2 13 5.2× 10−2 6.94 1.44 258 81 8.6×10−3 43

Figure 13. Densities slices on the orbital plane at the end of the 3D simulations. Themodels that are shown are: sim-0 (lower left panel), sim-mdot-1 (upper left panel), sim-mdot-2
(upper right panel) and sim-mdot-3 (lower right panel). Note how the density colour bar may have different maximum limits.
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In the lower left panel of Fig. 13, we present sim-0, our refer-
ence simulation. The initial mass accretion rate is only 20 times
higher at the start than the previous simulation, sim-0, but it
increases far more steeply than for sim-mdot-2. The disk size is
of the same order as the one in sim-mdot-2, but the disk mass is
∼ 100 times larger.

Finally, sim-mdot-3 is very similar to sim-0 but starts 8 yr later
with an initial mass transfer rate that is again, ∼ 20 times larger.
It runs only 13 yr to the same end point as sim-0 (see the lower
right panel, Fig. 13). The disk reaches a similar radius (∼ 43 R�)
and a mass that is 1.6 times larger than the mass of the accretion
disk of sim-0, despite the fact that the simulation started 8 yr later
and therefore ran for only 13 yr compared to 21 of the reference
simulation and injected slightly less mass. This is due to the fact
that disk growth is not only dependent on the mass transfer rate
and length of simulation, but also on the specific geometry of the
flow, which dictates how much mass accretes through the inner
boundary as well as the shape of the disk at the time it is mea-
sured, whereby the ‘edge’ of the disk as defined by our criteria
(Section 3.1) can vary slightly.

With hindsight, these tests could be performed more system-
atically so as to gain a better idea of whether the disk parameters
as stated in Table 5 are close to what we might expect to be the
disk just before CE for a systems such as ours. With these tests as
they are we can only state that the disk’s mass and radius are likely
reasonable within a factor of � 2 for the mass, and 15% for the
radius. Given other sources of uncertainty this is a reasonable and
sufficient statement for now.

4.2 Velocity through the nozzle

The distribution and kinematics of the gas at L1 (the ‘nozzle’) is
calculated according to the prescription of Lubow & Shu (1975),
Ritter (1988), and Jackson et al. (2017). They used Bernoulli’s prin-
ciple to describe the evolution of the gas moving from the donor’s
surface toward L1. The gas above the donor photosphere moves
with a velocity vL1 � cT , where cT is the isothermal sound speed,
while near L1, the gas is assumed to reach a velocity comparable to
the isothermal sound speed, vL1 � cT . After the gas passes L1, due
to the pressure gradient, the gas free falls supersonically into the
companion’s Roche Lobe.

In our simulation, we need to set an injection velocity because
otherwise gas placed in the nozzle does not enter the computa-
tional domain at the prescribed rate. This initial nozzle velocity is
therefore arbitrary, and we thus need to ensure that changing its
value does not affect the disk parameters.

We test the dependency of the simulation on the velocity of
injection (vL1 ) at the nozzle, by executing three different simula-
tions using the same parameters as the reference simulation, but
setting different nozzle velocities in the x-direction: a subsonic
velocity of 7.75×104 cm s−1 (sim-0; 0.01 in code units), the isother-
mal sound speed at the donor’s photosphere, or 5.74×105 cm s−1

(sim-vel-1), and a supersonic velocity of 6.16×105 cm s−1 (sim-
vel-2). See Table 3 for a summary of all the simulations parameters.

The top panel of Fig. 14 shows the cumulative mass as a func-
tion of radius at 21 yr, similar to Fig. 6, the nozzle is located at
a radius of 74 R� (5.2×1012 cm) from the inner boundary. For
the reference simulation, sim-0, with the lowest injection veloc-
ity, the formation of the disk takes longer since the injected mass
needs more time to leave the nozzle and to fall into the com-
panion’s Roche lobe. The accretion disk in this simulation has 11

Figure 14. The cumulative mass as a function of radius (top panel) and the verti-
cal density profile (bottom panel) for models with different injection velocities at
t= 21 yr. Solid dark green line: vL1 = 7.75×104 cm s−1 (model sim-0), dotted green
line: vL1 = 5.74×105 cm s−1 (sim-vel-1), dashed emerald line: vL1 = 6.16×105 cm s−1

(sim-vel-2, which has the necessary velocity to leave the nozzle every time step).

percent more mass than simulations sim-vel-1 and sim-vel-2. We
conclude that relatively small differences in the injection velocity
around the isothermal velocity value cT , do not greatly affect the
disk parameters.

The density profile along the z-axis at 21 yr (Fig. 14, bottom
panel) is similar in the three simulations at z-values close to the
inner boundary, the disk scale height in the reference simulation
at 21 yr (Hsim−0 = 4.9 R�) is similar to the disk scale height for
sim-vel-1 (Hsim−vel−1 = 4.3 R�) and the disk scale height for sim-
vel-2 (Hsim−vel−2 = 5.0 R�). The density at the edges of the box is an
unbound low-density gas interacting with the even lower-density
background; this gas does not affect the dynamics/structure of the
accretion disk. The arbitrarily assumed velocity injection does not
affect the final results of the simulation.

4.3 Sensitivity of the results to background density and
temperature

Filling the background with low-density gas is an expedient to
ensure that no cell is empty, which would cause the inability to cal-
culate pressure gradients. The value of the background density is
ρbg = 2.60× 10−22 g cm−3 (1×10−16 code units), the lowest viable
value, below which the code does not run. As consequence of this
background density choice, at the beginning of the simulation a
low-density rarefaction wave propagates from the discontinuity
between the inner boundary and the background moving out-
ward and out of the computational domain. The rarefaction wave
leaves the computational box before the injected material reaches
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Figure 15. The cumulative mass as a function of radius (top panel) and the vertical
density profile (bottom panel) for models with different background temperatures at
t= 21 yr. Solid purple line: Tbg = 105 cm s−1 (model sim-0), dotted red line: Tbg = 104

cm s−1 (sim-bgT-1), dashed orange line: Tbg = 106 cm s−1 (sim-bgT-2).

the inner boundary. This rarefaction wave does not affect the
movement of the injected material, and the evolution of the disk
formation is shown in Fig. 4.

We repeat the simulation using the same background den-
sity but decreasing and increasing the background temperature
to 1× 104 K (sim-bgT-1) and 1× 106 K (sim-bgT-2), respectively
(note that sim-0 has a temperature of 1× 105 K). The adiabatic
index is γ = 1.1 in all simulations (see Section 4.5 for a discussion
about the adiabatic index). In Fig. 15, we show the total cumu-
lative mass as a function of radius (top panel) and the density
profile of the disk along the z-axis (bottom panel) at the end of
the simulation. The vertical density profile of the disk is similar
for all three simulations, but the highest temperature (and pres-
sure) simulation results in approximately half of the mass in the
disk at 21 yr.

Increasing the background temperature by an order of magni-
tude increases the pressure of the background such that it is higher
than the pressure inside the nozzle (see fifth column in Table 3),
reducing the amount of mass that can flow out from the nozzle.
In the case of sim-bgT-2 only half of the injected material manage
to leave the nozzle compared to the reference simulation.

4.4 Convergence tests

We finally test the sensitivity of the simulation to spatial and tem-
poral resolution. Our comparison models have the same parame-
ters as sim-0 (see Table 3) with (72× 96× 32) cells at the coarsest
level; we also preserved the size of the computational box (−dL1 ≤

Figure 16. The cumulativemass as a function of radius (top panel), the vertical density
profile (middle panel) of the accretion disk at t= 21 yr for different resolutions, and
the mass accretion rate onto the companion (bottom panel) as function of time for
different resolutions. sim-0 has 3 levels of refinement.

x≤ 1.25dL1 , −1.5dL1 ≤ y≤ 1.5dL1 and −0.5dL1 ≤ z ≤ 0.5dL1 , where
dL1 = 83 R�). We repeated the simulation with increasing levels of
refinements: 2 levels (as the low-resolution simulation), 3, 4, and
5 levels (high-resolution simulation). The inner boundary around
the companion star has a constant radius of Rin = 1.3 R� in all four
simulations, and the size of the nozzle is also not resolution depen-
dent. Refinement occurs primarily in the higher density regions
close to the accretor, as concentric circles on the orbital plane, and
around the nozzle area; this high-resolution refinement expands
along the line that connects the nozzle with the inner boundary on
the XZ plane.

In Fig. 16, we show the convergent behaviour of the disk
mass and scale height (top and middle panels). We measure the
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Table 6. Disk properties for the reference simulation (sim-0), at 21 yr,
with different resolutions.

Resolution Rdisk Mdisk Hdisk Ṁacc

(# levels) (R�) (M�) (R�) (M�/yr)
2 37 2.68× 10−3 7.2 6.5×10−3

3(sim-0) 39 5.46× 10−3 4.9 4.1×10−3

4 41 5.81× 10−3 4.5 4.2×10−3

5 42 6.15× 10−3 4.6 3.8×10−3

properties of the disk at the end of the simulation (21 yr; see
Table 6). The results show that the disk properties converge across
different resolution levels. For the highest resolution (5 levels)
simulation, the disk mass shows a 12% discrepancy compared to
the Reference simulation (sim-0; 3 levels of refinement), the disk
radius and scale height as measured using the criteria established
in Section 3.1 are consistent across the three highest resolution
simulations.

We test the convergence of the mass accretion rate onto the
neutron star as we have done for other quantities. In the bottom
panel of Fig. 16, it is clear that the accretion rate converges. At
the highest resolution (5 levels of refinement), the total accreted
mass is 7% smaller than for the reference simulation (3 levels of
refinement).

4.5 Simulation dimensionality and adiabatic index

The equation of state, given by P = (γ − 1)ρe, relates the gas pres-
sure P to the internal specific energy e and adiabatic index γ. In
the absence of dissipation, a fluid parcel’s internal energy changes
only due to the P dV work that it does on the surrounding fluid
or vice-versa, yielding the adiabatic relationship Pρ−γ = constant.
A higher adiabatic index implies that a higher fraction of the
internal energy is in the kinetic energy of the particles and
manifests as pressure, resulting in lower gas compressibility.
On the other hand, with a lower adiabatic index the majority
of the work done during compression is ‘hidden’ in the internal
excitation of the particles, so the pressure does not increase as
significantly. The adopted adiabatic index also plays an analogous
role in shock-heating, in which bulk kinetic energy is converted
to internal energy.

The adoption of an isothermal gas was proposed by Lubow
& Shu (1975). Armitage & Livio (2000) then showed, using an
adiabatic index of 4/3 in their 2D simulations of a mass transfer
into the Roche lobe of a neutron star, that an accretion disk could
form. Subsequently, Makita et al. (2000), MacLeod et al. (2017),
and Murguia-Berthier et al. (2017) showed, using 3D simulations
of mass transfer through a Roche lobe with various system param-
eters, that the maximum adiabatic index that would allow a disk
to form was γ ≤ 1.2, for simulations without radiation or cooling
function implemented.

We tested these claims by first performing a 2D comparison
simulation of the reference simulation (sim-0, Table 3), and three
additional 2D simulations with larger adiabatic indices and then
carrying out two 3D simulations with higher adiabatic indices than
sim-0. For the 2D simulations, we assume the gas is restricted to
the orbital plane. We drop the z-coordinate from the grid, �z =
1 for all cells, assuming symmetry along the z-axis, and the gas

Figure 17. Density in the orbital plane for 2D simulations with different adiabatic
indexes. Adiabatic index γ = 1.1 is on the upper-left panel (a 2D version of the 3D
sim-0), γ = 1.2 in the upper-right panel, γ = 4/3 in the lower-left panel, and γ = 5/3
in the lower-right panel). All simulations are plotted at t= 21 yr.

cannot be deflected in the z-direction. The code solved the two-
dimensional Euler equations for inviscid gas with external forces
f= (

fx, fy
)
. The simulations have the same physical parameters as

the reference simulation (sim-0).
In Fig. 17, we present density slices of the four, 2D simulations

with γ = 1.1 (top left panel, a 2D version of sim-0), 1.2 (top right
panel), 4/3 (bottom left panel) and 5/3 (bottom right panel), after
21 yr. In all simulations, the injected material revolves around the
companion and forms a high-density disk structure.

In Fig. 18, we show density slices of two 3D simulations per-
formed with adiabatic indexes γ = 4/3 and γ = 5/3 to investigate
the reluctance to form a disk for higher values of γ observed by
other authors. This figure should be compared with sim-0 (γ =
1.1) shown in the last column of Fig. 4. For γ = 4/3, only slightly
higher than the value used in sim-0, some of the material gets
deflected around the companion, which may prevent the forma-
tion of a stable disk. For γ = 5/3, the pressure gradient dominates
over the gravitational force of the companion so that a fraction of
the material is deflected away from the centre and may inhibit the
formation of a disk.

We quantify the difference between 3D simulations with dif-
ferent adiabatic indices (see last row of Table 4). The top panel
of Fig. 19 shows the cumulative mass as a function of radius, from
which wemeasure the radius andmass of the disk-like structure in
each simulation. Even though the simulations have the same mass
transfer rates as the reference simulation, the high-density struc-
ture formed on the simulation with an adiabatic index γ = 4/3 is
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Figure 18. Density slices in the orbital plane (upper panels) and perpendicular plane
(lower panels) for 3D simulations with different adiabatic indexes (γ = 4/3 left, and
γ = 5/3 right). The simulations are plotted at t= 21 yr, and can be compared with last
panel of Fig. 4.

Figure 19. The cumulativemass as a function of radius (top panel) and vertical density
profile (bottom panel) for 3D models with different adiabatic index. The simulations
are plotted at t= 21 yr. Density slices of thesemodels are presented in the last column
of Fig. 4 and in Fig. 18.

five times smaller (15.2 R� or 1.06×1012 cm) and two orders of
magnitude less massive (5.37×10−5 M�). In the case of the simula-
tion with γ = 5/3 a radius and a mass value cannot be determined
from the cumulative mass plot.

In the bottom panels of Fig. 19, we compare the density profile
along the z-axis of the simulations with different thermal prop-
erties. It is clear that when the adiabatic index is closer to the
isothermal value the vertical structure is more defined, as expected
from the bottom panels of Fig. 18, while for the higher adiabatic
indices there is only a very marginal equatorial compression.

These results are consistent with those of Makita et al. (2000),
MacLeod & Ramirez-Ruiz (2015), and Murguia-Berthier et al.
(2017), who showed that disk formation depends primarily on its
thermal properties: a disk forms only with an adiabatic index lower
than γ ≤ 1.2 when the gas is cooler and has more compressibility.
Although in the case of γ = 4/3, a thick disk seems to be formed
in our simulations.

5. Discussion and conclusion

The goal of this paper was to study the formation of an accretion
disk around a neutron star (1.4 M�) due to unstable mass transfer
from an intermediate mass red supergiant (7 M�) through Roche
lobe overflow (RLOF). This phase likely immediately precedes a
CE in-spiral with concomitant accretion onto the companion and
possibly the formation of a jet that may affect the pre-in-spiral,
as well as the in-spiral phases. Such feedback may lead to a
different outcome than what has been modelled thus far by 3D
hydrodynamic simulations without feedback (e.g. Lau et al. 2022)
or by 3D hydrodynamic simulations with a simplified version of
feedback (e.g. Hillel, Schreier, & Soker 2022).

By necessity, with an explicit 3D simulation, we only model a
short time (21 yr) of the evolution of the RLOF phase predicted
to last 30 000 yr by a 1D, implicit model. By carefully choosing to
model in 3D the last phases of the mass-transfer before the puta-
tive CE in-spiral, we show that the 3D disk mass is likely only a
factor of a few smaller than it might be if the entire phase were
modelled, and very similar in radius.

We show that the accretion disk in our system grows to a
mass of ∼ 5× 10−3 M�, a radius of ∼ 40R�, and a scale height of
∼ 5R�, just before it presumably goes into the CE in-spiral phase.
This disk has approximately Keplerian rotation near the inner
boundary, while the outer regions have a rotation velocity slightly
slower than Keplerian due to pressure support. The temperature
profile between the inner boundary and the disk’s outer radius
can be fit with an exponential law with index −1.1 steeper than
−0.75 predicted for accretion disks. An immediate improvement
to understanding the disk’s temperature (and structure) would be
to include explicit cooling. At the one significant figure level, these
results are resilient with respect to various physical and numerical
choices. The results are well converged with respect to spatial and
temporal resolution.

The accretion rate through the inner boundary that sur-
rounds the companion reaches 4× 10−3 M� yr−1, at the end of
the simulation, which is consistent with the accretion rate pre-
dicted using a Shakura & Sunyaev (1973) formalism with α =
0.1. We show that the high accretion rate is driven by turbu-
lent gas motion and possibly shocks, rather than by numerical
viscosity. The influence of magnetic fields on the accretion rates
cannot be measured in our non-magnetic code, but it remains
a possibility in nature. While disk magnetic fields at the inner
boundary of the disk should be Gauss-level, such magnetic field
strength could be amplified rapidly by the magnetic-rotational
instability (Balbus & Hawley 1991) – within a couple of orbital
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periods and their effect on disk accretion could therefore be
substantial.

The Eddington limit for mass accretion onto a neutron star
of 1.4 M� is on the order of 10−8 M� yr−1. X-ray binaries are
known to accrete at rates that can be 100 times the Eddington
rate. That said the rate modelled for systems accreting in an unsta-
ble mass transfer regime can be larger than that (e.g. 1 000 times,
see Dickson 2024). Extreme mass accretion rates predicted in the
last phases of mass transfer before the CE in-spiral are likely far
more complex physical phenomena, with likely extreme X-ray
feedback. MorenoMéndez (2022) explained the formation of high
mass X-ray binaries, with a black hole as a companion, with hyper
accretion rates (∼ 1× 108ṀEdd) before the CE phase.

Also, the measured maximum accretion rate of 4× 10−4 M�
yr−1 could result in a jet mass loss rate of 4× 10−5 M� yr−1.
An escape velocity at the inner boundary of 644 km s−1, would
result in a mechanical luminosity of ∼ 3× 103 L�. On the other
hand, if the jet is launched close to the surface of the neu-
tron star (which is not resolved in our numerical simulations),
the escape velocity would be ∼ 0.3 c, and the mechanical lumi-
nosity would be ∼ 108 L�. Understanding the potential for jet
formation from disks such as this one would be the next criti-
cal step because it may impact the early CE, even if the accretion
disk and jet do not survive entering the envelope (Murguia-
Berthier et al. 2017). Another possibility in this case, could be
that the companion jets can prevent the companion from enter-
ing the CE. Instead, the companion undergoes ‘grazing envelop
evolution’, where the companion slowly enters the donor’s enve-
lope while its jets help unbind the envelope (Shiber & Iaconi
2024). Further investigation on the survival of the accretion disk
during the CE phase for this system is intended on a follow
up study.
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Appendix A. Numerical considerations

Appendix A.1 Conservation of mass, energy and angular
momentum

As we explain in Section 2.2.2, the Reference simulation has con-
stant mass injection through the nozzle, we have external outflow
boundaries and the inner inflow boundary. To test for conserva-
tion, we run the reference simulation, for 9.5 yr after which we
switch off the nozzle, change the outflow boundary condition into
reflective boundaries, and remove the outflow boundary around
the companion star in the middle of the domain. We then run the
simulation for an additional 11.5 yr, during which we evaluate the
conservation of mass, angular momentum, and energy.

For each time step, we calculate the total mass, angularmomen-
tum, and energy in the inertial frame of reference. For this we
integrate the mass, angular momentum in each cell at every time
step. In the case of the total energy, we take into account the
kinetic energy of each cell, the potential energy between the fluid
and the companion star, and the thermal energy of each cell. The
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Figure A1. Total mass (top panel), total angular momentum (middle panel) within the
computational domain as a function of time. The bottom panel shows total kinetic
energy (Kin energy), potential energy (Pot energy), thermal energy (Thermenergy), and
total energy (Tot energy) as a function of time. During the grey shadow area, the mass
injection is on, and internal inflow boundary is present on the computational box. The
dashed line in each panel represents the comparative value after the injection is over.

integrated values of mass, angular momentum and energy are
shown in Fig. A1, where the grey area represents the time when the
nozzle and mass injection are on, causing the total mass, energy
and angular momentum to increase over time. The dashed light
line in each panel represents the first value of mass, energy angular
momentum after the nozzle is switched off.

As shown in the top panel of Fig. A1, the mass within the
reflective boundaries remains constant throughout the simulation,
with a maximum variation of 0.02 % at 21 yr. As expected, due
to numerical effects such as numerical viscosity, and the way the
conservation of the angular momentum equation is discretised, in
the middle panel of Fig. A1, the total angular momentum grows
up to 6% over the 10 yr the simulation has reflective boundaries.
For the measure of the total energy within the computational box
(bottom panel in Fig. A1), after turning off the nozzle, there is a
decrease in kinetic energy over 0.15 yr. This change is reflected
in a step increase in thermal energy of 2.5×1018 erg s−1. The
energy has a maximum change of 13% after the mass injection
finish and remains constant until the end of the simulation. The
extent of the non-conservation of the preceding values justifies the
approximations made in the simulations.
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