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Developing reduced-order models for the transport of solid particles in turbulence typi-
cally requires a statistical description of the particle–turbulence interactions. In this work,
we utilize a statistical framework to derive continuum equations for the moments of the
slip velocity of inertial, settling Lagrangian particles in a turbulent boundary layer. Using
coupled Eulerian–Lagrangian direct numerical simulations, we then identify the dominant
mechanisms controlling the slip velocity variance, and find that for a range of Stokes
number St+, Settling number Sv+ and Reynolds number Reτ (based on frictional scales),
the slip variance is primarily controlled by local differences between the ‘seen’ variance
and the particle velocity variance, while terms appearing due to the inhomogeneity of the
turbulence are subleading until Sv+ becomes large. We also consider several comparative
metrics to assess the relative magnitudes of the fluctuating slip velocity and the mean slip
velocity, and we find that the vertical mean slip increases rapidly with Sv+, rendering the
variance relatively small – an effect found to be most substantial for Sv+ > 1. Finally, we
compare the results with a model of the acceleration variance (Berk & Coletti 2021 J. Fluid
Mech. 917, A47) based the concept of a response function described in Csanady (1963 J.
Atmos. Sci. 20, 201–208), highlighting the role of the crossing trajectories mechanism. We
find that while there is good agreement for low Sv+, systematic errors remain, possibly
due to implicit non-local effects arising from rapid particle settling and inhomogeneous
turbulence. We conclude with a discussion of the implications of this work for modelling
the transport of coarse dust grains in the atmospheric surface layer.
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1. Introduction
The study of the transport of inertial particles through fluids finds numerous applications
in the natural sciences and in industry. A significant focus is placed on understanding
how small but heavy particles respond to turbulence processes, and how to model these
processes in a physically coherent way. One such example is understanding the global
transport of coarse dust particles (30–100 µm) once they are emitted from the surfaces
of arid regions (Rosenberg et al. 2014; Meng et al. 2022; Adebiyi et al. 2023; Kok et al.
2023). These particles can be lofted high into the turbulent atmosphere where they can
be transported many hundreds to thousands of kilometres depending on their size (Shao
2008; Van Der Does et al. 2018). The interactions between the dust particles and the carrier
phase must be parameterized since such interactions occur at the particle scale, and cannot
be represented explicitly due to unrealistic computational requirements. Understanding the
impacts of turbulence on particle transport characteristics, such as emission and deposition
(Kok et al. 2012), will help us to understand their overall role in global climate processes
(Kok 2011; Ryder et al. 2019; Kok et al. 2023), biogeochemical cycles (Ryder et al. 2018)
and human health.

From a dynamical perspective, solid particles are subjected to various forces as they
travel through a turbulent flow. For small (relative to the local Kolmogorov scale) and
dense (relative to the carrier phase) spherical particles, the most important forces are
due to gravity and hydrodynamic drag (Maxey & Riley 1983). Since the seminal work
of Wang & Stock (1993), there has been a significant push to try to understand how
gravity and turbulent drag couple together to affect both mean and fluctuating quantities
through experiment and simulation (Aliseda et al. 2002; Good et al. 2014; Rosa et al.
2016; Tom & Bragg 2019; Mora et al. 2021; Ferran et al. 2023). Importantly, in a
turbulent flow, the bias created by gravity leads to a more rapid decorrelation of the
turbulence along particle trajectories, meaning that there is an implicit and nonlinear
coupling between gravity and turbulent drag, resulting in a fundamental change in
the forcing induced by the turbulence. This is an example of the crossing trajectories
effect (Yudine 1959; Csanady 1963). Crossing trajectories occurs when Lagrangian
particle trajectories cross fluid particle trajectories due to mean Lagrangian particle drift
(which can occur even in the absence of turbulence). The net effect is that Lagrangian
particles may experience higher frequency fluid fluctuations leading to an increase
in the particle dispersion. Crossing trajectories has also been shown to increase the
horizontal and vertical components of particle acceleration variance in simulations of
settling Lagrangian point particles in homogeneous isotropic turbulence (HIT) (Ireland,
Bragg & Collins 2016b), in numerical simulations of turbulent boundary layers (TBL)
(Lavezzo et al. 2010) as well as laboratory experiments in both set-ups (Gerashchenko
et al. 2008; Berk & Coletti 2021). The turbulent drag is often quantified via the particle
slip velocity, which is the difference between the fluid velocity seen by the particle,
and the particle’s velocity. Understanding the controlling mechanisms of the particle
slip velocity and their magnitude within wall-bounded turbulence is key for estimating
the particle Reynolds number (Balachandar 2009), as well building physically coherent
stochastic dispersion models for Reynolds-averaged Navier–Stokes (Arcen & Tanière
2009) applications.

In this work, we are particularly focused on understanding the dynamic regimes
characteristic of coarse dust particles in the Earth’s atmospheric surface layer (the lowest
100 m of the Earth’s atmosphere). Specifically, we consider how gravitational acceleration
implicitly modifies the mechanisms controlling the particle slip velocity in a TBL. In a
TBL, turbulence is driven by fluid shear originating at the solid lower boundary, resulting
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in turbulence inhomogeneity and a height dependence of the parameters governing both
the turbulent flow and the particle transport. Dynamically, a TBL is characterized by a
very thin laminar sublayer where viscosity plays a dominant role, followed by a smooth
transitional layer, known as the buffer layer, to a layer where viscous effects become
negligible, known as the logarithmic layer. A review of TBLs can be found in Smits,
McKeon & Marusic (2011).

Many studies of particle transport in TBLs tend to ignore the impact of gravitational
acceleration a priori in an attempt to try to decouple the effects of turbulent drag and
gravity (Marchioli et al. 2008; Balachandar 2009; Zamansky, Vinkovic & Gorokhovski
2011; Johnson, Bassenne & Moin 2020). However, due to the implicit coupling between
gravity and turbulent drag, we must take care when extrapolating results from studies
without gravity to those with gravity (Brandt & Coletti 2022). Furthermore, much of
our understanding of particle-laden flows under the influence of gravitational settling
comes from numerical (Bec, Homann & Ray 2014; Good et al. 2014; Ireland et al. 2016b;
Tom & Bragg 2019) or laboratory (Aliseda et al. 2002; Mora et al. 2021; Ferran et al.
2023) configurations of HIT, due to the relative simplicity of the set-up. There are a few
studies aiming to understand the statistical behaviour of settling inertial particles in TBLs
(Lavezzo et al. 2010; Lee & Lee 2019; Berk & Coletti 2020; Bragg, Richter & Wang
2021a,b; Berk & Coletti 2023), and while they are far less numerous, they indicate the
potential for gravitational settling to modify the dynamics of particle settling and two-way
coupling due to the presence of the solid boundary. Indeed, Bragg et al. (2021b) showed
that gravitational settling can have a strong impact on the particle transport in a TBL
even for very small settling numbers for which is has been traditionally assumed that the
effect of settling should be negligible. Having quantitative evidence as to when we may
apply models designed under the assumptions of homogeneous turbulence to dynamics
in a TBL, and when the settling is important for the particle transport, would be a useful
starting point when designing a more unified theory.

In the following work, our goals are:

(i) to derive continuum equations for moments of the particle slip velocity and identify
the leading-order balance of the variance throughout the TBL;

(ii) to determine the parametric conditions under which the slip velocity is governed by
its mean component, fluctuating component or some combination of both;

(iii) to compare the results from the direct numerical simulations (DNS) in a TBL with a
model based on the response function in homogeneous turbulence approach outlined
in Csanady (1963) and Berk & Coletti (2021), and identify potential discrepancies;

(iv) to discuss implications for the transport of coarse particles in the atmospheric surface
layer.

Section 2 provides the technical background on the carrier and particle phase equations
as well as the governing parameters. We also derive the diagnostic equation for the vertical
component of the slip velocity variance and discuss the model hierarchy. We choose to
focus on the slip velocity variance specifically for several reasons. First, accurate estimates
of the particle Reynolds number rely on the estimates of the magnitude of the slip velocity,
and this quantity is not easily accessible in a laboratory or field setting directly. Second, it
is related to the particle acceleration variance, which gives us a clue as to how the particles
respond to turbulent structures within the flow. Section 3 presents the results of the study,
while § 4 summarizes and provides a discussion on how the results relate to coarse dust
transport in the atmospheric surface layer.
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Particles injected at upper boundary
No stress

ẑ

ŷ

x̂

No slip

Horizontally periodic

ρp

H
−∂P/∂x > 0

Fg = − g ẑ
πH

2πH

Constant downward mass flux

dp

Figure 1. A schematic of the numerical set-up. The domain is a rectangular channel of height H , streamwise
length 2πH and spanwise width πH . The flow is periodic in the horizontal and is driven by a constant pressure
gradient in the streamwise direction, while the no-stress and no-slip boundary conditions are enforced at the
top and bottom boundaries, respectively. Particles are injected at the upper boundary at a random horizontal
location with an initial velocity equal to the fluid velocity at their location and removed when they contact the
bottom boundary. They are allowed to rebound elastically off the upper boundary.

2. Technical background

2.1. Carrier phase
In this work, we use the NCAR Turbulence with Lagrangian Particles Model (Richter &
Chamecki 2018) to model one-way coupled inertial particles settling through a TBL. This
code has been validated and used in multiple studies focused on inertial particle settling
and transport in TBLs (Richter & Chamecki 2018; Wang et al. 2019; Bragg et al. 2021a;
Gao, Samtaney & Richter 2023; Grace, Richter & Bragg 2024). For the carrier phase,
we use DNS to solve the three-dimensional, incompressible Navier–Stokes equations in a
turbulent open channel flow set-up,

Du
Dt

= − 1
ρa

∇ p + ν∇2u − 1
ρa

dP

dx
x̂, (2.1)

∇ · u = 0. (2.2)

A schematic of the set-up is presented in figure 1. In the above equations, D/Dt represents
the material derivative, u represents the three-dimensional flow velocity, p represents the
turbulent pressure field, ρa is the carrier phase density and ν is the kinematic viscosity.
Unconditional fluid velocities will be referred to by their components (u, v, w) with no
subscript, and fluctuating quantities will be denoted by a prime. For example, as we
are primarily focused on wall normal motion in this work, we will refer to fluctuating
vertical fluid velocities as w′. The code uses a pseudospectral method in the horizontal
directions and a second-order finite difference method in the vertical. We have clustered
points near the solid lower boundary using an algebraic grid stretching procedure, so that
�z1 = 0.8ν/uτ (uτ is the friction velocity, defined below), where �z1 is the first grid point
and (�xη, �yη, �zη) = (2.8, 1.4, 0.9) at the midplane of the flow, where the subscript η

represents the grid spacing in terms of the local Kolmogorov scale, defined below.
At the lower boundary, a no-slip boundary condition is enforced, while at the upper

boundary, a no-stress boundary condition (∂u/∂z = ∂v/∂z = 0 at z = H ) is enforced. The
domain is periodic in the x and y directions. The background state of the carrier phase
is established by accelerating the flow with an imposed pressure gradient, −dP/dx > 0
(note that x̂ is the unit vector in the streamwise direction) and allowing the flow to become
turbulent. The magnitude of the pressure gradient allows us to define a friction velocity
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Reτ Sv+ St+ g+ Stη Svη

315 0.025 10 2.5 × 10−3 0.31–4.25 0.038–0.14
315 0.025 50 5 × 10−4 1.58–21.25 0.038–0.14
315 0.25 10 2.5 × 10−2 0.31–4.25 0.38–1.4
315 0.25 50 5 × 10−3 1.58–21.25 0.38–1.4
315 0.8 10 8 × 10−2 0.3–4.29 1.22–4.47
315 2.5 10 2.5 × 10−1 0.31–4.25 3.8–14.0
315 2.5 50 5 × 10−2 1.58–21.25 3.8–14.0
630 0.025 10 2.5 × 10−3 0.24–4.7 0.037–0.16
630 0.025 50 5 × 10−4 1.18–23.17 0.037–0.16
630 0.025 100 2.5 × 10−4 2.38–46.33 0.037–0.16
630 0.25 10 2.5 × 10−2 0.24–4.7 0.37–1.60
630 0.25 50 5 × 10−3 1.18–23.17 0.37–1.60
630 0.25 100 2.5 × 10−3 2.38–46.33 0.37–1.60
630 0.8 10 8 × 10−2 0.24–4.7 1.17–5.21
630 2.5 10 2.5 × 10−1 0.24–4.7 3.66–16.03
630 2.5 50 5 × 10−2 1.18–23.17 3.66–16.03
630 2.5 100 2.5 × 10−2 2.38–46.33 3.66–16.03
1260 0.8 10 8 × 10−2 0.2357–6.29 1.0–5.21

Table 1. Table of cases discussed throughout the work. Parameter definitions can be found in the main text.
The case with Reτ = 1260 was run on a 5123 grid, all cases with Reτ = 630 were run on a 2563 grid, while
cases with Reτ = 315 were run on a 1283 grid.

uτ = √
τw/ρa , where τw is the stress at the lower boundary. Using the friction velocity,

the height of the domain, H , and viscosity of the carrier phase, we can define a friction
Reynolds number of Reτ = uτ H/ν. Friction Reynolds numbers for each simulation
presented in this work can be found in table 1. This set-up is identical to that used in
Grace et al. (2024).

We can define the local Kolmogorov time scale, velocity scale and acceleration scale,

τη =
(ν

ε

)1/2
, vη = (νε)1/4 , aη =

(
ε3

ν

)1/4

, (2.3)

respectively, which represent the smallest relevant length scales of the turbulence. These
parameters will be used to characterize the turbulent flow below. In statistically stationary
HIT, the above scales are constants, but for wall-bounded turbulence they depend on
height. Since the turbulence intensity decreases with height outside of the very thin viscous
sublayer adjacent to the wall, so too does the kinetic energy dissipation rate resulting
in a height variation of the Kolmogorov microscales. When the TBL is horizontally
homogeneous, the mean dissipation rate ε is a function of the distance from the solid
boundary. Within the logarithmic layer, it scales as

ε ∼ O

(
u3

τ

κz

)
, (2.4)

where uτ is the friction velocity, and κ is the von Kármán constant. However, when
calculating the Kolmogorov time scale, velocity scale and length scale, we use the
dissipation computed in the DNS.
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2.2. Dispersed phase
Our main focus is towards on-coarse dust transport in the atmospheric surface layer. Dust
particles can range in size, but even coarse grains (roughly 30–100 µm) are significantly
smaller than the local Kolmogorov scale, which can be in the range of several millimetres.
Indeed, these particles are also significantly denser than the carrier phase, though their
volume fractions can be quite low once they are above the emission layer. With these
assumptions in mind, for each particle (the dispersed phase), we apply the point-particle
approximation and apply the conservation of momentum for a rigid spherical particle
subjected to linear hydrodynamic drag and gravity. Note that we have purposefully omitted
particle lift as it has been shown to play negligible role in the dynamics discussed in
the present work (Costa, Brandt & Picano 2020). Furthermore, as we are concerned
with the dilute limit, two-way coupling and particle–particle interactions may be ignored.
Since these particles are assumed to be much denser than the carrier phase, we may
also ignore added mass and Basset history forces. The one-way coupled point particle
approximation also has the added benefit that each particle is independent from each other
particle, effectively removing the volume fraction as a governing parameter as the number
of particles is increased. This allows us to increase the number of particles to ensure
convergence of the statistics of interest without affecting the flow. As such, our results
are assumed to be valid in the dilute limit, where particle densities are much greater than
that of the fluid phase.

The equations of motion are

dup

dt
= Ψ

τp
(u f − up) − g, (2.5)

dx p

dt
= up. (2.6)

Here, up = (u p, vp, wp) is the three-dimensional velocity vector for each particle,
x p = (x, y, z) is the location of each particle in space, g is the gravitational acceleration
(which only affects accelerations in the z direction), u f = (u f , v f , w f ) is the three-
dimensional instantaneous flow velocity evaluated at the location of the particle. Much
of our focus will be placed on the vertical component which we denote as w f (not bold).

Particles are injected at the upper boundary at a random horizontal location with an
initial velocity equal to the fluid velocity at their location. We have performed a sensitivity
test to investigate the importance of the particle initial condition by comparing results
when injected at their laminar Stokes settling velocity. We have concluded that the choice
of initial particle velocities at injection makes a negligible quantitative change to our
results, and does not affect the results qualitatively.

Particles are removed when they contact the bottom boundary, and once removed, are
reinjected at a random horizontal location at the upper boundary. This maintains a constant
particle number in the domain, and a constant vertical particle flux. Particles are allowed
to come to statistical equilibrium, and statistics are recorded for no less than 100 eddy
turnover times after this time. Finally, particles are allowed to rebound elastically off
the upper boundary, and the particle boundary conditions are periodic in the horizontal
directions.

The relaxation time scale of the particles, τp, is defined as

τp = ρpd2
p

18ρaν
, (2.7)
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where ρp is the particle density, dp is the particle diameter and the Stokes settling velocity
is defined as vg = τpg. Here Ψ = 1 + 0.15Re0.687

p is the Schiller–Neumann correction to
the drag force, and Rep is the particle Reynolds number. The particle Reynolds number
remains small enough such that Ψ ≈ 1. For the theory discussed below in § 2.3, we follow
Bragg et al. (2021a) and make the assumption that Ψ = 1 for analytical tractability.

We can now define a set of non-dimensional parameters characterizing the system,

St+ = τpu2
τ

ν
, Sv+ = vg

uτ

, Stη = τp

τη

, Svη = vg

vη

. (2.8)

These are the friction Stokes number and the settling velocity parameter based on the
viscous scales, and the Stokes number and the settling velocity parameter based on the
local Kolmogorov scales. Here Stη and Svη are functions of the distance from the solid
boundary, whereas St+ and Sv+ are constant parameters.

Other studies focused on particle settling define other parameters such as a Froude
number, Fr = aη/g, (Bec et al. 2014; Berk & Coletti 2021), or a scaled gravity

g+ = gν

u3
τ

, (2.9)

which is simply the ratio of Sv+ to St+. These parameters are useful as they describe the
relative role of gravitational accelerations and turbulent accelerations without referring
to τp. We will refer to g+ at various points throughout the discussion when necessary. The
values for all parameters considered in this work, including the associated ranges of Stη
and Svη, can be found in table 1.

2.3. Statistics of inertial particles in a turbulent boundary layer
We adopt the particle phase space approach used in Bragg et al. (2021a), focusing only on
the vertical component of the particle equations of motion. First they define the particle
probability density function (PDF) in position-velocity space as

P = 〈δ(z p − z)δ(wp − w)〉, (2.10)

which describes the distribution of the vertical components of the particle position and
velocity, z p(t) and wp(t), in the phase space with coordinates z, w, and 〈·〉 represents
an ensemble average over all realizations of the system (note that δ represents the Dirac
delta function). Note we make frequent use of conditional averages throughout this work,
denoted by 〈·〉z,w which is short hand for 〈·|z p = z, wp = w〉. We can form an evolution
equation for the PDF,

∂P
∂t

+ ∂

∂z
(wP) + ∂

∂w

(〈ap〉z,wP
)= 0 (2.11)

where we have defined 〈ap〉z,w = τ−1
p (〈w f 〉z,w − w) − g as the vertical particle

acceleration conditioned on z p = z and wp = w based on the vertical component of (2.5).
The utility of this equation comes from the fact that we can derive evolution equations for
each moment. Recall that the nth moment is defined as

〈wn
p〉z = 1




∫ ∞

−∞
wnP dw, (2.12)

where the notation 〈·〉z represents an ensemble average conditioned on z p = z and 
 is
zeroth moment, which is related to the particle number concentration. Of importance to
the present work will be the first and second moments (i.e. n = 1 and n = 2). The evolution
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equation for the first moment is

〈wp〉z = 〈w f 〉z − vg − τp




d
dz


〈w2
p〉z . (2.13)

The details of the derivation of this equation can be found in Bragg et al. (2021a), and
the general form of this equation (for the case where vg = 0) for arbitrary moments can
be found in Johnson et al. (2020). Equation (2.13) says that the average settling velocity
comes from the average fluid velocity sampled by the particles, the laminar Stokes settling
velocity, and a term that depends on the derivative of the mean square particle velocity
which may be important near a solid boundary. For compactness, we can rearrange (2.13)
into a relationship describing how the mean slip velocity varies with height,

〈ws〉z = vg + τp




d
dz


〈w2
p〉z, (2.14)

where 〈ws〉z = 〈w f 〉z − 〈wp〉z .
Our goal is to derive a continuum equation for the slip velocity variance. To do this,

we multiply (2.11) by w2 and integrate over all w. The full details of this operation
can be found in Johnson et al. (2020). After integrating, we are left with the following
relationship:

d
dz


〈w3
p〉z − 2
〈apwp〉z = 0. (2.15)

To expand the acceleration–velocity covariance, we expand to get 〈apwp〉z =
〈w f wp〉z − 〈w2

p〉z and use the fact that 〈w2
s 〉z = 〈w2

f 〉z − 2〈w f wp〉z + 〈w2
p〉z to arrive at

2〈apwp〉z = 1
τp

(〈w2
f 〉z − 〈w2

s 〉z − 〈w2
p〉z) − 2〈wp〉zg. (2.16)

Putting (2.15) and (2.16) together, we get an equation for the mean squared slip velocity,

〈w2
s 〉z = 〈w2

f 〉z − 〈w2
p〉z − 2〈wp〉zvg − τp




d
dz


〈w3
p〉z . (2.17)

Equation (2.17) indicates that the mean squared slip velocity variance is a function of
the mean squared sampled velocity 〈w2

f 〉z , the mean squared particle velocity 〈w2
p〉z , a

drift due to the non-zero average vertical velocity 〈wp〉z and the vertical derivative of the
mean cubed particle velocity 〈w3

p〉z , all of which are implicit functions of particle inertia
and gravity.

At this point, an important distinction must be made. Though the above equation is valid
for inertial particles settling through a TBL, it should be noted that when particles settle
under gravity, the mean squared quantities are not equal to their variances in general. This
arises from the non-zero average settling velocity. Thus, to derive a relationship between
the variances, we must do a Reynolds decomposition of each term. The details of this
process are omitted here, but can be found in Appendix A . The final relationship is

〈w′
s

2〉z =
(2)︷ ︸︸ ︷

〈w′
f

2〉z − 〈w′
p

2〉z︸ ︷︷ ︸
(1)

+Rt +Rg

︸ ︷︷ ︸
(3)

(2.18)
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where Rt and Rg are defined as

Rt = −τp




d
dz


〈w′
p

3〉z, (2.19)

Rg = −τp




d
dz

(

〈wp〉3

z + 3
〈wp〉z〈w′
p

2〉z
)+ 2〈wp〉z(〈ws〉z − vg), (2.20)

respectively. This model contains many terms and is quite complex, but it can be broken
down into three parts, arranged in order of increasing problem complexity, and the level
of complexity highlighted by the over and underbraces.

First, grouped under (1), are the terms that would appear for particles settling through
homogeneous turbulence. In this limit, the slip velocity variance is determined exclusively
by the difference between 〈w′

f
2〉z and 〈w′

p
2〉z . This is the case for particles both with and

without gravity, since gravity and inertia implicitly modify these terms. Next, grouped
under (2), are the terms that appear for particles dispersing vertically through a TBL
in the absence of gravity. Note that all terms encompassed by (1) are included in (2),
but when considering those terms covered under (1) in the context of a TBL, they
gain implicit height dependence since their magnitudes vary with the distance from the
boundary. Furthermore, at this level, a new term appears, denoted by Rt . This term is
proportional to the derivative of the product of the concentration and the particle velocity
triple moment and increases with particle inertia. As Sv+ → 0, 〈w′

p
2〉z approaches 〈w2

p〉z ,
but Rt remains, regardless. Finally, by incorporating gravity, the mean particle velocity is
no longer zero, leading to a new term grouped under (3), denoted by Rg . The quantities
composing Rg are explicitly dependent on both the inhomogeneity of the flow through the
vertical derivative, and the non-zero particle settling velocity. For clarity of interpretation,
the second term on the right-hand side of (2.20) is written in terms of 〈ws〉z − vg , which
we can see from (2.14) is identical to τp/
d/dz
〈w2

p〉z . In summary, by considering the
continuum equations for the first and second moment of the particle velocity, we have been
able to derive an equation for the particle slip velocity. We have identified a hierarchy
of terms that appear in homogeneous turbulence and TBLs with and without settling
(grouped under (1)), those that appear in a TBL without settling (grouped under (2)) and
those that appear in a TBL with settling (grouped under (3)). In the following section, we
will identify the importance of these terms throughout the TBL.

3. Results

3.1. Tendencies governing the slip velocity variance

In this section, we consider vertical profiles of 〈w′
s

2〉z , 〈w′
p

2〉z , 〈w′
f

2〉z and Rg . Figure 2
shows the tendencies in (2.18) for several cases scaled by u2

τ . For the results presented in
this section, Rt was observed to be very small relative to the other terms in (2.18), and
is omitted from figure 2. Note that all profiles of a given St+ and Sv+ in figure 2(b,e,h)
and figure 2(c,f ,i) when added together return the profiles shown in figure 2(a,d,g), as
per (2.18). An example of this is shown in Appendix B . Each row corresponds to a
different friction Stokes number highlighted on the left-hand side of the figure, while
each curve on a given plot corresponds to a different value of Sv+. Overall, this figure
highlights the dominant tendencies controlling the slip velocity variance as St+ and Sv+
are independently changed.
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Figure 2. Controlling tendencies for the slip velocity variance according to (2.18) at Reτ = 630. Panels (a), (d)
and (g) show the normalized slip velocity variance for each Sv+, while (a–c), (d–f ) and (g–i) are for a different
value of St+ (shown on the left-hand side of the figure). Panels (b), (e) and (h) show the (negative) velocity
variance and the (positive) seen velocity variance. Panels (c), (f ) and (i) show the contributions from Rg . Note
that Rt is omitted from this figure as it is small across the entire domain relative to the other terms. All terms
are normalized by u2

τ .

Generally, the behaviour of the slip variance as a function of the vertical coordinate is
qualitatively similar between all cases considered, evident from figure 2(a,d,g). However,
the magnitude of the slip variance for a given case varies throughout the domain, and
becomes increasingly sensitive to Sv+ when Sv+ approaches unity. This is evident in
2(a), where we see a negligible changes when Sv+ is varied between 0.025 and 0.25,
but larger changes as it is increased to 0.8 and beyond. For particles of Sv+ ∼ O(1), we
expect that the vertical turbulent velocities in the logarithmic region (which themselves
scale in magnitude with uτ ) tend to be too weak on average to overcome the strong settling
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velocity, and this leads to increasingly larger slip velocities. Within the logarithmic layer,
the slip variance at constant Sv+ (curves of fixed colour) tends to increase rapidly between
St+ = 10 and St+ = 50, but more slowly between St+ = 50 and St+ = 100. This occurs
because the particle velocity variance rapidly decreases in magnitude towards zero, while
the variance of the fluid velocity seen by the particle does not, evident by considering
figure 2(b,e,h). However, very near the solid boundary (i.e. below z/H = 0.1), the variance
of the fluid velocity seen by the particle approaches zero, while the particle velocity
variance remains finite. This is also where Rg is relatively large, indicating that the primary
terms that control the slip variance very near the wall are these terms and negative particle
velocity variance.

Likewise, the slip variance at constant St+ tends to increase most rapidly as Sv+
surpasses unity. This is due to the fact that particles tend to settle out of locally correlated
regions of turbulence faster than they would in the absence of settling, thus experiencing
a higher variance in accelerations, and thus their slip velocity. Interestingly, there is
some variation in the variance of the fluid velocity seen by the particle with Sv+. This
dependence arises due to the preferential sampling of the fluid velocity field, and the
mechanisms responsible for this are essentially the same as those responsible for 〈w f 〉z
deviating from zero for an inertial particle (see detailed discussion in Bragg et al. (2021a)).

Lastly, Rg , shown in figure 2(c,f ,i), are non-zero but are not leading order within
the interior of the domain (note the change in the scale of the horizontal axes of these
panels), though they are relatively important within the viscous sublayer. Note that above
z/H = 0.1, these terms are almost completely negligible aside from when Sv+ = 2.5. It
is important to note that previous studies (Gerashchenko et al. 2008; Lavezzo et al. 2010)
have shown that the impact of fluid shear and wall-normal gravity on inertial particle
accelerations is most pronounced in the buffer layer z+ < 50. When normalized against
the large-scale parameters of the flow (at Reτ = 630), this height corresponds to a height
of roughly z/H < 0.1, so it should be expected that it is Rg that strongly influences the
slip velocity variance in that region of the flow.

In summary, these profiles highlight the fact that within the logarithmic layer, the slip
variance is primarily governed by the differences between the variance of the flow veloci-
ties sampled by the particles and the particle velocity variance, with contributions coming
from Rg when Sv+ increases beyond unity. However, it is clear that higher-order moments
of the continuum equations (encoded in Rg) may be subleading and negligible in most
other cases. It is not until the viscous sublayer where the contribution from Rg becomes
significant in determining the slip variance. Furthermore, the subleading behaviour of
Rg in the logarithmic layer does not imply that the inhomogeneity of the turbulence is
irrelevant. In fact, the remaining terms (〈w′

f
2〉z and 〈w′

p
2〉z) may have implicit dependence

on the inhomogeneity of the turbulence, and this will be discussed later.
As the particles settle, they experience a mean vertical slip velocity according to (2.14),

and they also experience a mean horizontal slip due to both the mean shear and the height
dependent correlations between horizontal and vertical particle velocity fluctuations.
Figure 3 illustrates the relative contribution of the slip fluctuations to the overall slip
velocity by considering two metrics: the integrated relative slip, and the integrated slip
variance. These metrics are defined as

ϕ(i)
r = 1

D

∫
D

〈u′
s,i

2〉z

〈us,i 〉2
z + 〈u′

s,i
2〉z

dz, ϕ(i)
s = 1

D

∫
D

〈u′
s,i

2〉z

u2
τ

dz, (3.1)
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Figure 3. The horizontal and vertical components of ϕ
(i)
r (panels (a) and (b)) and ϕ

(i)
s (panels (c) and (d))

for all cases in table 1 plotted against Sv+. The filled markers correspond to cases at Reτ = 630, while the
open-faced markers correspond to cases at Reτ = 315.

respectively, where D is the vertical subregion of the domain between z+ = 50 and
z/H = 0.75 and i = x, z (we have temporarily adopted this notation for compactness).
We have chosen this subregion as it represents the logarithmic region of the flow –
these bounds were chosen to eliminate edge effects from the upper boundary condition,
and our results are not qualitatively affected by the choice of the bounds of integration.
The integrated relative slip helps us to understand the relative importance of the slip
fluctuations relative to the mean slip, while the integrated variance provides a simple
metric to assess the average slip variance. The integrated relative slip is shown for the
horizontal (streamwise) and vertical components of the slip variance (there is no mean
slip in the spanwise, so this component is ignored for this discussion) in figures 3(a)
and 3(b), while the components of the integrated slip variance are shown in figures 3(c)
and 3(d). Each marker style corresponds to a different value for St+, and the results are
plotted against Sv+ to highlight the role of settling. Filled markers correspond to runs
with Reτ = 630, empty markers correspond to runs with Reτ = 315, and the empty marker
filled with a cross corresponds to the run with Reτ = 1260. Note that since this is an
integrated quantity, there is necessarily no information regarding the vertical structure of
the profiles. However, an analysis of the profiles themselves (not shown) would provide
the same conclusions.

1015 A21-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
32

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10326


Journal of Fluid Mechanics

Figure 3 shows that fluctuations of the slip velocity are less important at larger values of
Sv+. For example, for small Sv+ (independent of St+), the normalized variance is nearly
unity, indicating that the slip variance induced by the turbulent fluctuations are the leading-
order controller of the overall slip velocity for both the horizontal and vertical components.
However, we can see that by increasing Sv+, there is a decrease in the relative slip variance
for both components. The reason for this is clear from an examination of figures 3(c)
and 3(d), which show the integrated slip variance in the horizontal and the vertical,
respectively. We can see that in a bulk sense, the slip variance in both directions does not
strongly vary with Sv+ (except for perhaps particles with St+ = 10 in the horizontal). The
implication is that the strong decrease in the relative variance in figure 3(b) (the vertical
component) does not come from a decrease in the magnitude of the slip variance itself,
but instead a strong increase in the magnitude of the mean slip induced by gravitational
settling. Moreover, the same mechanism does not occur in the horizontal slip variance,
as the decrease in the normalized slip variance is not nearly as strong. Furthermore, as
Sv+ increases, particles with St+ = 10 have the largest change in the vertical relative slip
variance due to their small slip variance values. This is indicative of the fact that these
particles most faithfully follow the flow in the absence of gravity, and as a result, are most
sensitive to the growing mean slip as Sv+ increases.

We also briefly consider a comparison between several Reynolds numbers. There are
some slight differences in these metrics as the Reynolds number is varied between 315
and 1260. Here, changes in the relative slip variance are more strongly reflected in the
vertical component. As the Reynolds number is increased, the relative slip variance in
the vertical, figure 3(b), decreases. Since there are only small variations in the integrated
slip variance as the Reynolds number is increased, the change in the integrated relative
variance come from changes in the mean slip. The explanation for this change is as follows.
Appearing in the equation of the mean slip, (2.14), is the term τp/
(d/dz)
〈w2

p〉z , which
represents the combined effects of turbophoresis and diffusion-like behaviour near the
solid boundary. It is known from Bragg et al. (2021a) that this term is negative within the
logarithmic region of the flow, representing a mechanism that decreases the slip velocity.
However, this term tends to be significant only near the solid boundary for a given τp, so as
the Reynolds number increases, the relevance of this term is diminished when integrated
across the region D. Therefore, in the integrated sense, 〈ws〉2

z tends to increase towards
v2

g when Reτ increases which results in a decrease in ϕ
(3)
r . However, this conclusion is

only qualitative as more data at higher Reynolds numbers are necessary to make more
quantitative conclusions.

The conclusion of figure 3 is that while the overall slip magnitude in the horizontal may
be controlled by the slip fluctuations, the mean may end up being the main controller of
the slip in the vertical at large Sv+ and small to moderate St+, but the relative importance
of the mean may be impacted by the Reynolds number of the flow.

3.2. Relationship to the acceleration statistics
The slip velocity statistics are directly related to the acceleration statistics of the particles.
By considering the acceleration statistics, we can gain an understanding of how strongly
gravity implicitly modifies the drag felt by the particles as they traverse the TBL.
Moreover, the acceleration variance often gives a clue regarding the turbulent structures
which particles are interacting with. For example, Yeo, Kim & Lee (2010) showed that
the elongated tails of fluid particle acceleration PDFs within the buffer layer and viscous
sublayer are due to the vortical structures impinging on the viscous sublayer. Lavezzo et al.
(2010) attributed changes in the vertical and streamwise acceleration variance of settling
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inertial to these same vortical structures. In a two-way coupled turbulent Couette flow,
Richter & Sullivan (2013) found that particles tend to damp vertical fluctuations of the
near wall dynamics, suggesting a complex feedback cycle.

In the limit of g+ → 0 (recall that g+ = Sv+/St+), or when gravitational accelerations
are ignored a priori, Bec et al. (2006) demonstrated that particles tend to cluster in
strain dominated regions of the flow for low Stokes number (i.e. Stη � 0.3), leading
to a decrease in the acceleration variance of the particles. At larger Stokes number,
the acceleration variance continues to decrease, but is instead due to inertial filtering;
particles can no longer respond to turbulent fluctuations with time scales greater than τ−1

p .
Ultimately, both processes work to reduce the acceleration variance, but for different
reasons (Bragg, Ireland & Collins 2015). However, by introducing gravity, particles can
settle out of strain-dominated regions of the flow, which may actually contribute to an
increase in their acceleration variance, and this often referred to as the crossing trajectory
mechanism (Csanady 1963). Ireland et al. (2016) and Berk & Coletti (2021a) showed
that the importance of the crossing trajectories mechanism on the acceleration statistics
is due to both Stη and Svη (or alternatively 1/Fr = g/aη). They showed that for large g/aη

(equivalent to large g+ in our context), gravitational accelerations become increasingly
important to the dynamics, leading to a peak in the acceleration variance at sufficiently
high g/aη, around Stη = O(1). In the following results, we highlight some similarities of
the computed slip and acceleration variance to results from Berk & Coletti (2021), who
focused on modelling the slip and acceleration variance in homogeneous turbulence in
terms of the variance of the fluid along the particle trajectory. Our goal is to compare our
model results in a TBL with the predictions of their model for homogeneous turbulence
(derived in Appendix C).

First, we consider profiles of the relative slip variance, which we define as
〈w′

s
2〉z/〈w′

f
2〉z , shown in figure 4(a). Here we again focus on the region D, which is the

region between z+ = 50 and z/H = 0.75, in order to omit effects from viscous sublayer
and the upper boundary condition, respectively (denoted by black dashed lines on the
figure). The general trend is that by increasing Sv+ at a given St+, the relative slip variance
tends to increase, with the most dramatic increase coming as Sv+ is increased beyond
unity, which is probably a reflection of the crossing trajectories mechanism. Furthermore,
we can see that relative change between Sv+ = 0.25 and Sv+ = 2.5 decreases as St+
increases. The reason for this is discussed more below.

We can also consider the relative acceleration variance, 〈a′
p

2〉z/〈w′
f

2〉zτ
−2
η , plotted

against the local value of Stη, shown in figure 4(b). We can see that as the range of Stη
increases (by changing St+), the relative acceleration variance approaches the asymptotic
relationship St−2

η , i.e. is a decreasing function of the particle stokes number. So, in spite
of the slip variance increasing with particle inertia at fixed Sv+ (evident in figure 4a), it
does so at a slower rate than St2

η, meaning that the particle acceleration variance decreases
with particle inertia. This agrees with the work of Lavezzo et al. (2010), who showed
that the vertical particle acceleration variance decreased as St+ was increased at fixed
Sv+. Note that in their study, they considered a fixed g+ = Sv+/St+, but the conclusions
presented here are the same. However, for moderately inertial particles, characterized by
the St+ = 10 cases, there is more potential for gravity to increase the relative acceleration
variance. For example, due to the crossing trajectories mechanism, we can see that
when Sv+ = 2.5 for these particles, the acceleration variance is much larger, and tends
to scale as St−1

η , which is consistent with the results from Balachandar (2009) when
τη � τp � τl,p and from Berk & Coletti (2021) in roughly the same range of Stη. From
figure 4(b), we can see that the crossing trajectories mechanism is not strong for large
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Figure 4. Panel (a) shows the slip variance normalized by the seen variance for all cases in table 1 at
Reτ = 630. The horizontal dashed lines denote heights of z+ = 50 and z/H = 0.75. Panel (b) shows the
normalized acceleration variance over the same range plotted against the local value of Stη, while the dashed
line represents the St−2

η scaling. The colours of each curve in panels (a) and (b) correspond to values of St+,
while the line styles correspond to values of Sv+. Panel (c) shows ratio of the seen variance to the unconditional
variance averaged over the entire vertical extent plotted against Sv+ for all cases at Reτ = 630.

St+ particles, since these particles approach the asymptotic St−2
η scaling across the entire

TBL. The implication here is that extremely inertial particles tend not to respond to high
frequency and intermittent turbulent fluctuations associated with changes in the sampled
fluid environment anywhere across the TBL. However, when particles are moderately
sized, such that they achieve Stη ∼ 1 there is a region within the logarithmic layer of
the TBL where they become susceptible to crossing trajectory effects, and this leads to an
increase in their relative acceleration variance.

As a final point on this discussion, a potential shortcoming of analysing the relative slip
variance and the relative acceleration variance is that they are written in terms of the fluid
velocity variance along the particle trajectory, which is an unknown quantity a priori. We
can relate this to the unconditional variance, for which there are well-known models (see
Kunkel & Marusic (2006) for example). In figure 4(c) we show the vertically integrated
ratio of the vertical components of the fluid velocity variance along particle trajectories to
the unconditional fluid velocity variance against Sv+. This integrated ratio approaches
unity as Sv+ increases implying that the seen variance approaches the unconditional
variance in this limit. Moreover, this ratio is no less than roughly 0.8 for our range of
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Figure 5. Panel (a) shows the normalized acceleration variance for cases with St+ = 10 and Sv+ = 0.8 at
three different Reynolds numbers as a function of Stη. Panel (b) shows the seen variance (filled markers),
slip variance (coloured empty markers) and particle velocity variance (black markers) normalized by the
unconditional variance integrated over the range D as a function of Reτ .

parameters, implying an acceptable correspondence between these two quantities. This is
significant for modelling purposes as our results show that the fluid velocity variance along
the particle trajectory may be substituted for the seen variance in a TBL without incurring
significant error, having implications for the predictive power the particle statistics in a
TBL. Berk & Coletti (2021) also arrived at this conclusion in homogeneous turbulence.

We can also consider the impact of Reynolds number on the relative acceleration
variance, as well as the averaged components of (2.18). We can see in figure 5(a) the
relative variance decreases as a function of Stη, as we would expect based on figure 4,
but it is interesting that increasing Reτ further decreases the relative acceleration variance.
The reason for this is shown in figure 5(b). Both the the averaged fluid velocity variance
seen by the particles (filled markers), and the particle velocity variance (empty markers;
black outline) increase with Reτ , but since the particle velocity variance increases faster
with Reτ , the net effect is a decrease in the slip variance with increasing Reynolds number
(and consequently the relative acceleration variance since they are related through τp). The
increases in 〈w′

f
2〉z and 〈w′

p
2〉z with Reynolds number when averaged across the domain

is probably due to the increasing size of the quasihomogeneous region of the flow (Kunkel
& Marusic 2006). Models of the unconditional vertical fluid velocity variance suggest that
this quantity asymptotically approaches a constant in the limit of high Reynolds number.
Though our Reynolds numbers are still quite low with regards to those found in the
atmospheric surface layer, this notion can still provide some guidance to interpreting our
data. As both 〈w′

f
2〉z and 〈w′

p
2〉z are related to the unconditional fluid velocity variance

in some way, we expect that they should follow this behaviour, at least qualitatively.
Finally, Rg and Rt are non-zero within the interior of the domain, but their magnitude,
discussed later, is secondary to both 〈w′

f
2〉z and 〈w′

p
2〉z when taking the average across

the logarithmic layer (recall the D does not include the viscous sublayer).
To conclude this section, we comment on the applicability of the model proposed by

Berk & Coletti (2021) for 〈w′
s

2〉z (which we will refer to as BC2021 within the text).
A sketch of the derivation of their model is presented in Appendix C . In short, they invoke
an argument from Csanady (1963) to relate the particle velocity variance to the seen fluid
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energy spectrum. They then use the fact that the fluid energy spectrum along the particle
trajectory is the Fourier transform of the autocorrelation of the fluid velocity along the
particle trajectory, which they represent using a two time scale model derived by Sawford
(1991). The autocorrelation function involves the decorrelation time scale of the turbulence
along the particle trajectory, τl,p, for which they use the model derived in Csanady (1963).
This model assumes that the turbulence is homogeneous and isotropic, and thus particles
experience no spatial change in the statistics of the turbulence along their trajectory. Our
goal is to compare how the computed relative slip variance within the TBL compares with
the modelled slip variance in BC2021. As BC2021 was developed under the assumption
of homogeneous turbulence, we can extend it to a TBL by making a locally homogeneous
approximation, meaning that any change the slip variance with height is occurs due to
local changes in the turbulent dissipation. For brevity, we will refer to the slip variance
modelled by BC2021 as BC . We first consider (2.18) normalized by the seen variance,

〈w′
s

2〉z

〈w′
f

2〉z

=

M︷ ︸︸ ︷
1 − 〈w′

p
2〉z

〈w′
f

2〉z︸ ︷︷ ︸
PV

+ Rt

〈w′
f

2〉z

+ Rg

〈w′
f

2〉z

. (3.2)

We have highlighted two subsets of these terms. First, we denote the first two terms on
the right-hand side of (3.2) as PV (for ‘particle velocity’). Our focus on this subset of
terms is motivated by the BC2021 model (derived in Appendix C). The model BC2021
was developed for settling particles in homogeneous turbulence, meaning that there are
no spatial variations in the turbulent statistics. This implies that Rg and Rt play no role
in the dynamics, which leaves behind only the 〈w′

f
2〉z and 〈w′

p
2〉z terms. We also denote

the full right-hand side of (3.2) as M (for ‘model’). As we have discussed previously, our
analysis will be limited to the logarithmic region of the flow. We also comment (but do
not show) that the variance predicted by BC2021 is smaller in magnitude than the slip
variance computed by the DNS throughout this region.

First, we consider how BC2021 compares with the full right-hand side of (3.2), (denoted
by M) which includes Rt and Rg (recall that Rt and Rg cannot appear in BC2021 a priori
due to their assumption of homogeneous turbulence). Specifically, we consider the metric

ξ1 = 1
D

∫
D

‖M − BC‖dz, (3.3)

which is plotted in figure 6(a). Here, ξ1 represents the difference between the DNS data
(which includes Rt and Rg) and the BC2021 model averaged over the region D. The
main point here is that the differences between the BC2021 and M are relatively small.
This should be the case since the buffer layer and viscous sublayer where Rt and Rg are
expected to be most important has been omitted in D.

This motivates our second comparison between PV and the BC2021 model (BC);
mathematically, we consider

ξ2 = 1
D

∫
D

‖PV − BC‖dz, (3.4)

which is shown in figure 6(b). Here, ξ1 represents the difference between the DNS data
omitting Rt and Rg and the BC2021 model averaged over the region D. This metric
highlights a disparity between the DNS data and BC2021, but the differences amount to no
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Figure 6. Shown in panels (a)–(d) are ξ1, ξ2 and the root mean squares (r.m.s.) values of Rt and Rg normalized
by the seen variance for all cases in table 1, respectively. Open-faced markers represent cases with Reτ =
315, filled markers represent cases with Reτ = 630 and the marker with an ⊗ symbol represent the case with
Reτ = 1260.

more than roughly 0.3. This discrepancy may come from several sources; one may be due
to the fact that the underlying statistics of the turbulent flow change along the particle’s
trajectory due to the presence of the wall. This behaviour is reflected in the general increase
of ξ2 as Sv+ increases, and will be discussed more in § 4. It is also interesting to note that
there are differences associated with St+, and these differences tend to plateau at large
St+ for fixed Sv+.

Interestingly, from figures 6(a) and 6(b), it appears that the inclusion of Rt and Rg
(which did not occur in BC2021) actually work to decrease the associated differences
between the DNS and BC2021. However, as we established figure 2(c,f ,i), Rg is primarily
negative, causing a reduction of the relative slip variance. As we noted previously, M
underestimates the computed relative slip variance within the logarithmic region of the
turbulence, and the result is a decrease in the differences between the BC2021 and the
DNS data. Moreover, by considering the r.m.s. of Rt and Rg normalized by 〈w′

f
2〉z , shown

in figures 6(c) and 6(d), we can see that Rg more important tendency, rather than Rt .
Again, the importance of this term appears when both St+ and Sv+ are large, but decreases
significantly as Reτ increases.

Moreover, there are likely to be differences between the DNS data and BC2021
associated with the relatively small Reynolds numbers considered in this study. Within
BC2021, there are several semiempirical models required to calculate characteristic
parameters (i.e. C0 and a0; see Appendix C) of the turbulence, and there may be
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an associated error incurred when the Reynolds number is low (for example, see the
discussion in Lien & D’Asaro (2002)). However, we can see that by increasing Reτ , the
differences between the DNS and BC2021 tend to decrease suggesting a correspondence
at large enough Reynolds number.

In summary, BC2021 gives a reasonable estimate for the DNS data in the logarithmic
region of the flow. However, at large St+ and Sv+, the size of the differences increases,
and this is due to combination of the changing statistics of the turbulence along the
particle trajectories, as well as the low Reynolds numbers in the DNS, and how these are
represented within BC2021. However, an important conclusion is that at large Reynolds
number, we expect correspondence between the DNS data and BC2021, evidenced by the
fact that the differences between BC2021 and the DNS decrease in this limit. Moreover,
outside of the viscous sublayer, the importance of Rt and Rg will also be reduced as Reτ

increases, meaning correspondence between predictions by the BC2021 model and the
variance measured in a TBL will become stronger in this limit. These results suggest that
when St+ and Sv+ are not too large, we can estimate the slip variance in the logarithmic
region of the flow by using BC2021 without incurring significant error.

4. Summary and discussion

4.1. Summary
Motivated by coarse particle transport in the atmospheric surface layer, we used coupled
Eulerian–Lagrangian simulations to simulate the dynamics of ensembles of inertial
particles in boundary layer turbulence. We examined the impact of particle inertia and
settling on the mean and fluctuating particle slip velocity. We adapted a mathematical
model discussed in Bragg et al. (2021a) and Johnson et al. (2020) for the slip velocity
variance for settling inertial particles in a TBL and highlighted the controlling factors
throughout the domain. We showed that to leading order, the slip variance above of the
viscous sublayer was determined by the difference between the seen variance, 〈w′

f
2〉z , and

the particle velocity variance 〈w′
p

2〉z , except for the largest value of Sv+, where all terms
in (2.18) became comparable. Consequently, as changes in the seen variance were relatively
small, changes in the slip variance within the logarithmic layer were primarily governed
by a decrease of the particle velocity variance, which was implicitly a function of particle
inertia and the particle settling velocity (more on this below). Within the viscous sublayer,
the balance became more complicated. In all cases, 〈w′

f
2〉z tended towards zero to adhere

to the no-slip condition enforced at the bottom boundary. However, the slip variance
remained finite as the particles tended towards z+ = 0 as 〈w′

p
2〉z , Rt and Rg remained

finite. The higher-order terms tended to peak within this layer, and the magnitude of the
peak tended to increase with Sv+. However, by using domain averages, we demonstrated
that the relative magnitude of the higher-moment terms tended to decrease as the Reynolds
number increased, reflecting the fact that at higher Reynolds number, the viscous sublayer
becomes much thinner, leading to a smaller contribution when averaged across the domain.
As discussed above, these terms may still be important within the viscous sublayer
depending on particle parameters, though.

We also showed that the fluid velocity variance along the particle trajectories exhibited
only small changes with St+, Sv+ and Reτ , and was approximately 80 % of the
unconditional fluid velocity variance when averaged across the domain. The differences
between the seen and unconditional variances are largest at the smallest Sv+ considered
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in this work, though the differences are still relatively small. These differences are likely
a result of the relatively large spectrum of turbulent motions at high Reynolds number,
and the impact of crossing trajectories, which works to implicitly affect the seen variance
(see the discussion in Csanady (1963), for example). This conclusion is quantitatively
consistent to the conclusions presented in Berk & Coletti (2021) for their laboratory
experiments in homogeneous turbulence. This correspondence is significant as the seen
variance is not known a priori. There exist approaches to modelling this quantity (Pozorski
& Minier 1998; Minier & Peirano 2001), but the results of our work suggest that even in a
TBL where there is spatial dependence in the variance of the turbulent quantities, we can
approximate the fluid variance along the particle trajectories with the unconditional fluid
variance without introducing significant errors. While this reduces the overall accuracy of
the slip variance estimate, it increases the predictive power at the field scale, as models for
the unconditional variance, such as those discussed in Kunkel & Marusic (2006), can be
employed.

To examine the relative importance of the fluctuating and mean slip, we considered
the ratio of the slip variance to the total mean squared slip velocity, 〈ws

2〉z (i.e. the
square of the mean plus the fluctuation). We found that relative to the mean, the vertical
slip variance decreased much faster than the horizontal as Sv+ was varied. However,
for both components, we showed that the overall magnitudes in the average sense did
not change significantly, indicating that at relatively large Sv+, the mean slip was the
determining factor in the vertical, while the fluctuating slip was the determining factor in
the horizontal. This effect was also accentuated for the smallest particles considered, due
to their relatively small slip variance. To further complicate the behaviour, the relative size
of the slip variance tended to decrease as the Reynolds number was increased, though due
to computational restrictions, we can only provide limited guidance on this issue.

We also compared the slip variance computed by the DNS with a model derived for HIT
by Berk & Coletti (2021) (as no such model currently exists for a TBL and is the focus of
future work). The main conclusion is that the globally averaged differences (in the absolute
sense) were relatively small, but the higher moment terms act as a confounding factor to
reduce differences between the model and the DNS data. Thus, care should be taken when
extrapolating results from low Reynolds number DNS in TBLs to higher Reynolds number
experiments in homogeneous turbulence. However, as we know the size of higher moment
terms tends to decrease as Reynolds number increase when integrated across the domain,
we expect that DNS at higher Reynolds number should tend towards the results derived in
Berk & Coletti (2021) outside of the thin viscous sublayer.

Additionally, due to the inhomogeneous nature of the turbulence, non-local effects
implicit to 〈w′

f
2〉z and 〈w′

p
2〉z may occur at large Sv+ and St+. Isolating the importance

of non-local effects in a TBL is the focus on ongoing research (for a recent example for
a model of 〈w′

p
2〉z in a TBL, see Zhang, Bragg & Wang (2023) and references therein),

but incorporating them in a model is beyond the scope of the current article. These effects
may arise due to the fact that the statistics of the turbulence may change significantly as the
particle travels vertically. For example, consider the distance a settling particle travels over
one relaxation time: δ ∼ |τp〈wp〉z|, where 〈wp〉z is the average particle settling velocity
conditioned on a height z given by (2.13). In order for the particle trajectory to be altered,
turbulent fluctuations must be correlated over this distance. However, if this distance is
comparable to the distance over which the characteristics of the turbulence change, then
we expect that the particle feels the inhomogeneous nature of the flow. To formalize this
quantitatively, consider the local turbulent kinetic energy at a height z, k. Taylor expanding
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about this point and truncating after the second term, we have

k(z − δ) = k(z) − δ
dk

dz

∣∣∣∣
z
. (4.1)

To make a locally homogeneous approximation about the turbulence, we must have that

k(z) � δ
dk

dz

∣∣∣∣
z
, (4.2)

i.e. the kinetic energy in a small neighbourhood about z (defined by the distance δ) is
primarily defined by the kinetic energy measured at a height z. Using (4.1), we can estimate
under what conditions a locally homogeneous approximation would be appropriate by
looking for cases where the second term is small compared with the first. By assuming
that the gradient of the turbulent kinetic energy scales as u2

τ z−1 (also implying k can be
scaled by u2

τ ) (Smits et al. 2011) we have that z � δ. By normalizing both sides of this
inequality by the r.m.s. turbulent velocity, u′ = k1/2, we can write δ in terms of the sum of
the settling enhancement, E = (〈wp〉z + vg)/u′ and vg , (Good et al. 2014; Loth 2023) as

τp

∣∣∣E + vg

w′
∣∣∣� z

u′ . (4.3)

Now normalizing by τη, and observing that u′ ∼ uτ , we can simplify both side of this
inequality to reveal that

Stη |E + Sv�| �
( zuτ

ν

)1/2
, (4.4)

where we have used the dissipation scaling in (2.4) to relate τη to the vertical coordinate, z.
This relationship indicates that both particle inertia and gravity have an explicit role, and
an implicit role (through E) to play in potential non-local effects.

We know from Good et al. (2014) and Loth (2023) that in small scale laboratory
experiments, E ∼ 0.2 as Stη and Sv� approach unity, but as both of these parameters
increase, E tends back towards zero, and may even become negative (Ferran et al.
2023). Therefore, for the coarse particles we are concerned with in this work, we can
make a locally homogeneous approximation when StηSv� � (zuτ /ν)1/2. This may not
particularly restrictive for the atmospheric surface layer as the Reynolds numbers are
O(106), but for laboratory experiments, the integral scales tend to scale with the size of
the experimental domain (i.e. z ∼ h where h could be the half-height of a channel). This
could present a problem making a locally homogeneous approximation for coarse particles
in a wind tunnel set-up.

For the DNS presented in this work, the above relationship shows that non-local effects
are likely only important for cases when both St+ and Sv+ are large, as Sv� tends to
scale with Sv+ since u′ ∼ uτ . For example, if we consider cases with St+ = 100 and
Sv+ = 2.5 (and assume E ≈ 0), we can see immediately that (4.4) is not satisfied. This
may explain the differences between the DNS and the model in Berk & Coletti (2021)
in figures 6(a) and 6(b) for these particles. One of the main conclusions of this work is
that for the governing continuum equation for the particle slip velocity in a TBL, there
are tendencies that arise due to the inhomogeneities in the turbulence associated with the
presence of the wall and the fact that the particle settling velocity is non-zero. However, as
we have shown, for moderately sized particles (characterized by St+ or Stη), and Sv+ < 1,
these terms are subleading outside of the viscous sublayer. Moreover, the magnitudes of
these terms in the logarithmic layer tend to diminish as Reτ increases. Thus, outside of the
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viscous sublayer, and at moderate local Stη and Sv+, we can extend models designed for
homogeneous turbulence (like that described in Berk & Coletti (2021)) to a TBL, where
we must interpret the model as local to a height z. However, outside of this regime (i.e. for
very large and strongly settling particles), there are implicit non-local effects that appear
as particles tend to settle through the flow due to the vertical variation of the turbulent
statistics along the particle trajectories.

4.2. Implications for modelling coarse particle transport in the atmospheric surface
layer

Interpreting DNS results in terms of the laboratory or field scales must be done with care,
as the Reynolds numbers in DNS numbers are much smaller than those found at these
scales. However, by scaling up the results in this work, we can gain valuable qualitative
insights into the drag on inertial settling dust particles. For example, using estimates
of turbulent dissipation for an atmospheric surface layer of roughly 10−3 m2 s−3, we
can define a rough Kolmogorov time scale as 10−1 s. Thus, for quartz dust particles
(ρp = 2650 kg m−3) that range between 30–100 µm, we should expect a value of Stη
to range between 0.1–10. We can see that the ranges in our DNS are in the correct
neighbourhood to model these same coarse dust particles. Moreover, we can use the values
of g+ from table 1 (recall g+ = Sv+/St+) to estimate an equivalent friction velocity, u∗

τ
(note that since we are rescaling, u∗

τ is necessarily different than the value of uτ used in this
work), which effectively gives us a qualitative estimate of the intensity of the turbulence
in an atmospheric surface layer. The effective friction velocity is given by

u∗
τ =

(
gν

g+

)1/3

. (4.5)

Assuming g = 9.81 m s−2 and ν = 1.57 × 10−5 m2 s−1, and some relationship between
10 m wind velocity and the friction velocity (see Kantha & Clayson (2000) for example),
this gives us a proxy for wind speed at the field scale. For the values of g+ in this
manuscript (see table 1), the effective friction velocities vary between 0.09 m s−1 and
0.84 m s−1, which covers a wide range of friction velocities on the Earth (Vickers, Mahrt
& Andreas 2015). Since g+ is proportional to Sv+, we can see the effective wind speed
increases as Sv+ decreases.

Therefore, the insight we can gain is that the slip velocity in high wind conditions (small
Sv+) should be primarily governed by the fluctuations associated with the turbulence,
as opposed to the mean induced by gravitational settling and the presence of the solid
boundary. Conversely, at lower wind speeds, the drag induced by turbulent fluctuations
is much smaller relative to the mean slip. Thus, the magnitude of the slip velocity
should instead be controlled by the average, which itself is controlled by the Stokes
settling velocity and the turbophoretic term. Likewise, we expect the higher moment terms
governing the slip variance (i.e. Rt and Rg) to be more important to the dynamics farther
away from the surface in this limit, relatively speaking.

This is significant when applying models like BC2021 to particle transport in field
scale systems. For example, as we have described previously, BC2021 can be used (in
conjunction with a model for the unconditional fluid velocity variance) to predict the slip
velocity variance for inertial settling particles in homogeneous turbulence. Under low Sv+
conditions, our results show that the magnitude of the slip velocity is primarily governed
by its fluctuating component, which is in turn associated with the interactions with the
turbulence. Moreover, as we have discussed, a locally homogeneous approximation may
be used when Sv+ is small enough (see (4.4)), our work suggests that BC2021 can

1015 A21-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
32

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10326


Journal of Fluid Mechanics

also be applied to inhomogeneous turbulence, like that of the atmospheric surface layer,
provided we are not concerned with dynamics too close to the ground and the wind
conditions are strong enough. Another interesting related application is towards modelling
the particle Reynolds number, which is known to affect the associated drag on the particles
(Balachandar 2009; Berk & Coletti 2024). For example, it is known that loitering
effects are typically associated with large particle Reynolds number (Rosa et al. 2016),
and these loitering effects work to reduce the average particle settling velocity (Good
et al. 2014). Accurate modelling of loitering effects could explain discrepancies between
numerical simulations and laboratory experiments with respect to the measurement of
settling velocities (Ferran et al. 2023). Moreover, our results may gain some insights into
further than expected horizontal transport of giant dust particles off of the West African
coast (Van Der Does et al. 2018), which could be linked to loitering effects.
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Appendix A. Mathematical details of slip velocity model hierarchy
By including gravitational settling in the particle equation of motion, there is now a mean
settling velocity. Due to preferential sweeping, the average particle settling velocity can be
increased (or decreased in some cases) beyond the laminar settling velocity, vg , leading to
there is a non-zero average slip velocity. Since we know that the average settling velocity
of the particles will be non-zero due to the presence of gravity, the average of the square
is not equivalent to the variance, i.e. 〈F2〉 �= 〈F ′2〉, (F is some arbitrary quantity, and a
prime indicates a fluctuation about the mean of F) meaning we must be careful to discern
between the variance and squared means,

〈w2
p〉z = 〈wp〉2

z + 〈w′
p

2〉z, (A1)

〈w2
s 〉z = 〈ws〉2

z + 〈w′
s

2〉z, 〈ws〉z = 〈w f 〉z − 〈wp〉z, (A2)

〈w3
p〉z = 〈wp〉3

z + 〈wp〉z〈w′
p

2〉z + 〈w′
p

3〉z . (A3)

Equation (2.17), derived in Johnson et al. (2020), assumed that particles did not settle
under the action of gravity, meaning that 〈wp〉z = 0. However, by substituting in the above
Reynolds decompositions, it can be readily extended to settling particles. Doing this, we
arrive at

〈w′
s

2〉z = 〈w′
f

2〉z−〈w′
p

2〉z−τp




d

dz

〈w3

p〉z + 〈w f 〉2
z − 〈ws〉2

z − 〈wp〉2
z − 2〈wp〉zvg, (A4)

where we have not expanded 〈w3
p〉z in terms of its variance and mean components yet. We

can see from this equation that the slip velocity variance is due to the variance of seen
velocities, the variance of the particle velocity, and several other terms. These terms are
difficult to interpret in their current form, so we simplify them next.

The mean slip velocity squared, 〈ws〉2
z can be expanded as

〈ws〉2
z = 〈w f 〉2

z − 2〈w f 〉z〈wp〉z + 〈wp〉2
z . (A5)
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Upon substitution of the above into (A4) and simplifying, we can express (A4) as

〈w′
s

2〉z = 〈w′
f

2〉z − 〈w′
p

2〉z − τp




d

dz

〈w3

p〉z + 2〈wp〉z
(〈ws〉z − vg

)
. (A6)

We can now expand the third term on the right-hand side of the above in order to express
the slip velocity variance in terms of only means and variances of other quantities,

〈w′
s

2〉z =
(2)︷ ︸︸ ︷

〈w′
f

2〉z − 〈w′
p

2〉z︸ ︷︷ ︸
(1)

−τp




d

dz

〈w′

p
3〉z

−τp




d

dz
(
〈wp〉3

z + 3
〈wp〉z〈w′
p

2〉z) + 2〈wp〉z
(〈ws〉z − vg

)
︸ ︷︷ ︸

(3)

. (A7)

Appendix B. Comparison of computed and modelled slip variance

Figure 7(a) shows a comparison between computed values of 〈w′
s

2〉z and that computed
using the right-hand side of (2.18). The slip variance computed directly from the DNS for
three different values of Sv+ at St+ = 10 are shown by black curves, while the right-hand
side of (2.18) are shown by coloured dashed lines. We can see that the right-hand side
contains significant noise, but otherwise models the computed slip variance well. This
noise is a result of the routines used to estimate the derivatives in Rt and Rg , and not in
the computation of 〈w′

f
2〉z and 〈w′

p
2〉z (as evidenced in figure 2). Figure 7(b) shows a

comparison between the computed values of Rt + Rg (dashed curves) and that computed
by a residual of (2.18) (black solid curves). We can see that by plotting Rt and Rg as a
residual, the noise is significantly reduced.

(a) (b)

〈w′
s
2〉z ; Computed via DNS

〈w′
s
2〉z ; Computed via (2.18)

Rt + Rg ; Computed via residual

Rt + Rg ; Computed via DNS

Sv+ = 0.025
Sv+ = 0.25
Sv+ = 0.8

Sv+ = 0.025
Sv+ = 0.25
Sv+ = 0.8

z/H z/H

〈u′
s
2〉/uτ

2 (Rt + Rg)/uτ
2
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Figure 7. Panel (a) shows the slip velocity variance computed by the DNS for three values of Sv+ at fixed
St+ = 10 (black curves), and the slip variance computed by (2.18) (dashed coloured curves). Panel (b) shows
Rt + Rg computed via a residual of 〈w′

s〉z − (〈w′
f 〉z − 〈w′

p〉z) (black curves), and Rt + Rg computed directly
(dashed coloured curves) for the same cases.
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Appendix C. Response function model of acceleration variance
In this section, we sketch the derivation of the semianalytical model proposed by Berk &
Coletti (2021) for the slip velocity variance. The following is based on the concept of a
response function, described in Csanady (1963), which is meant to quantify the fact that
inertial particles require a finite amount of time to respond to turbulent fluctuations. By
Fourier-transforming the vertical component of the fluctuating particle velocity and the
sampled velocity through the use of standard manipulations, we can write the slip velocity
variance and the particle velocity variance as

〈w′
s

2〉 =
∫ ∞

0
(ωτp)

2 E p dω, 〈w′
p

2〉 =
∫ ∞

0
E p dω. (C1)

In this equation, E p is the kinetic energy spectrum of the particles. As discussed in
Csanady (1963), E p is related to the kinetic energy spectrum of the fluid motion sampled
along the particle’s trajectory, denoted by E f,p, through a response function

H(ω) = 1
1 + (ωτp)2 , (C2)

meaning that

〈w′
s

2〉 =
∫ ∞

0
(ωτp)

2 H(ω)E f,p dω, 〈w′
p

2〉 =
∫ ∞

0
H(ω)E f,p dω. (C3)

Using the stochastic model for the particle velocity autocorrelation outlined in Sawford
(1991), Berk & Coletti (2021) used the fact that the autocorrelation and the spectra
are Fourier transform pairs. The particle velocity autocorrelation described in Sawford
(1991) is

R f,p(t) = 〈w′
f

2〉
τl,p − τ2

(
τl,pe−t/τl,p + τ2e−t/τ2

)
, (C4)

where τ2 is proportional to the fluid acceleration variance and appears due to the finite
Reynolds number. For this work, we use

τ2 = C0

2a0
τη, (C5)

where C0 and a0 are universal constants modelled by

C0 = C∞(1 − (0.1Reλ
−1/2)), a0 =

(
5

1 + 110Re−1
λ

)
, (C6)

defined in Lien & D’Asaro (2002) and Sawford et al. (2003), respectively. Here, Reλ =√
15〈w2〉/v2

η is the Taylor–Reynolds number evaluated at a height z. Thus, C0 and a0 are
functions of the vertical coordinate. Note that the results in this work are not meaningfully
dependent on the exact choice of model for C0 and a0.

Here τl,p is the Lagrangian correlation time scale of the turbulence along the particle
trajectory. Here τl,p is a function of three parameters: ratio of the laminar settling velocity
to the integral velocity scale; the Lagrangian correlation time scale of the turbulence;
the Eulerian correlation time scale of the turbulence which are defined as

Sv� = vg

w′ , τE = 〈w2〉
ε

, τ = −κz

uτ

〈uw〉
〈w2〉 , (C7)
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respectively. Note that the definition of τ can be found in Oesterlé & Zaichik (2004).
Here τl,p is meant to encapsulate the fact that as an inertial particle settles through a
local neighbourhood of correlated motion, the turbulence it experiences decorrelates faster
along its trajectory than it would if it was not settling. Berk & Coletti (2021) derived a
semiempirical model for the correlation along the particle trajectory using the idea of the
crossing trajectories mechanism introduced by Csanady (1963) as

τl,p = τ
1(

1 +
(

τ
τE

)2
Sv2

�

)1/2 . (C8)

By Fourier-transforming R f,p and substituting into the integral relations for the slip
variance and velocity variance, we arrive at the following for the velocity variance:

〈w′
p

2〉 = 〈w′
f

2〉
⎛
⎝1 − St2

η(
Stη + τl,p

τη

) (
Stη + τ2

τη

)
⎞
⎠ , (C9)

and the slip variance

〈w′
s

2〉 = 〈w′
f

2〉 St2
η(

Stη + τl,p
τη

) (
Stη + τ2

τη

) . (C10)

If follows from the above that the particle acceleration variance is

〈a′
p

2〉 = 〈w′
f

2〉 1(
Stη + τl,p

τη

) (
Stη + τ2

τη

) . (C11)

Since the term in the brackets in (C9) is simply the model for 1 − 〈w′
s

2〉/〈w′
f

2〉, the
implied relationship between the slip variance and the particle velocity variance is

〈w′
s

2〉 = 〈w′
f

2〉 − 〈w′
p

2〉, (C12)

which is almost identical to (2.18), except for the fact that Rt and Rg are not accounted for
in this model.
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