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Natural fliers and marine swimmers twist and turn their lifting or control surfaces to
manipulate the unsteady forces experienced in air and water. The passive deformation
of such surfaces has been investigated by several researchers, but the aspect of controlled
deformation has received comparatively less attention. In this paper, we experimentally
measure the forces and the flow fields of a flat-plate wing (aspect ratio (AR) = 3),
translating at a constant Reynolds number (Re) of 10 000, with a dynamically
twisting span. We show that the unsteady forces can be dependably estimated by a
three-dimensional discrete vortex model. In this model, we account for the leading-
edge separation with the help of the leading-edge-suction parameter. Experiments are
conducted for two angles of attack (AoAs), 5° and 15°. In addition, two rates of twisting
are implemented where part of the leading edge, closer to the tip region, is twisted away
from the incoming flow, increasing the effective AoA. The results show that twisting away
from the flow augments the lift forces in all cases, although the rate of increase of lift
is higher for the highest twist rate. The act of twisting causes an increase in effective
AoA beyond the static stall angle in the AoA = 15° case. This is highlighted by a distinct
dip in the force data following the initial rise after twisting is activated. The increase in
effective AoA from the reference case (without twisting) causes separation of the flow
below the mid-span. This, in turn, creates higher levels of vorticity in those regions and
results in a leading-edge vortex with increased cross-section and strength when compared
with the reference case without twisting. Finally, we apply force partitioning and reveal
that dynamic twisting leads to a localised increase in vorticity-induced forces along the
twisted part of the span, which is approximately twice that of the untwisted case.
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1. Introduction

Many natural fliers and swimmers can twist their wings and fins to improve propulsive
efficiency. Birds, such as the albatross, swift and hummingbird, can twist their wings to
adapt to varying flight conditions efficiently (Lentink et al. 2007; Ingersoll & Lentink
2018; Wei, Weigang & Bifeng 2024). Insects, with their small size and high wing
beat frequencies, employ dynamic twisting to generate the necessary lift and thrust
for sustained flight (Jongerius & Lentink 2010; Zheng, Hedrick & Mittal 2013; Noda,
Nakata & Liu 2014; Wootton 2020). In spite of these known benefits, the experimental
measurements of the forces and the flow field of a dynamically twisting wing have been
scarce. Moreover, there is a need to test the effectiveness of the existing reduced-order
models for the prediction of the forces on a finite wing dynamically twisting along the
span. In this paper, we focus on bridging these gaps by first experimentally measuring the
unsteady forces and the vorticity field of a translating wing undergoing dynamic spanwise
twisting. Then, we develop an analytical model using a three-dimensional discrete vortex
model, which accounts for leading-edge separation.

The effects of the passive deformation of a wing on the resultant fluid—structure
interaction (FSI) have been studied by several researchers, both from the biological
community and the fluid dynamics community. A number of biologists have investigated
the effect of wing deformation on insect flight (Grodnitsky & Morozov 1993; Dickinson,
Lehmann & Chan 1998; Dickinson, Lehmann & Sane 1999; Ellington 1999; Dudley 2002).
Insect wings have no muscles, so the wing deformation is always passive (Combes &
Daniel 2003). Daniel & Combes (2002) showed that insect wings deform mainly under
inertia—elastic forces rather than aerodynamic pressures. Nakata & Liu (2012) performed
computational studies on the effect of passive flexibility on a hovering hawkmoth. Their
results showed that dynamic bending delayed the breakdown of the leading-edge vortex
(LEV) and augmented the lift force. Moreover, combined bending and twisting of the wing
modified the wing kinematics in the distal area and enhanced the lift force immediately
before stroke reversal.

The effectiveness of passive flexion has also been observed by many researchers in the
fluid dynamics community who have performed experiments in wind tunnels or water
tunnels with airfoils or flat plates. Heathcote & Gursul (2007) used a heaving chordwise
flexible wing in a water tunnel and showed that flexibility improved both the thrust
coefficient and propulsive efficiency. In another study, the same authors used a spanwise
flexible wing with a heaving motion inside a water tunnel (Heathcote et al. 2008). They
found that spanwise flexibility increased the efficiency for a Strouhal (S?) number range of
0.2 < St <0.4. In a detailed study, Kang ef al. (2011) performed numerical FSI analysis
on wings with chordwise, spanwise and isotropic flexibility. Their study revealed that
the optimal propulsive efficiency is achieved when flapping at approximately half of the
natural frequency.

The aspect of active and controlled deformation of wings on FSI has been relatively
less explored. Bouard, Jardin & David (2024) used Direct Numerical Simulation (DNS) to
study the effect of passive and active deformation on a hovering flexible flapping wing.
They showed that active deformation can improve both the lift and efficiency for a certain
phase lag with the main flapping motion. Dong et al. (2024) performed a numerical
simulation based on a hummingbird-like flapping wing model where spanwise dynamic
twisting was implemented. Their results revealed that dynamic twists can lead to a higher
time-averaged thrust and vertical force. Tu et al. (2020) investigated the twist morphing
of a pitching—rolling plate and reported that the propulsive efficiency was optimised for
a morphing amplitude of 120°. Cong et al. (2023) investigated a combined heaving and
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pitching motion of a flapping wing numerically and showed that active morphing of the
chord leads to improved thrust and lift by delaying the shedding of the LEV. Soto &
Bhattacharya (2023) conducted an experiment where a 3D printed wing was dynamically
twisted during periodic plunging kinematics. The dynamical twisting showed significant
control of the forces depending on the direction of twisting. When the plate was twisted
in the direction of the heave (forward twist), a near-constant lift coefficient was reported
during the transition between downstroke and upstroke.

Modelling the unsteady forces of a dynamically twisting plate is still a challenging
task. Many unsteady aerodynamic models, such as Theodorsen’s model and Wagner’s
model, are based on the assumptions of attached flow and low angle of attack. Although,
few researchers have developed nonlinear unsteady models for high-angle-of-attack
applications as well (Leishman 1989; Leishman & Beddoes 1989; Taha, Hajj & Beran
2014; Yan, Taha & Hajj 2014; Taha er al. 2021; Pla Olea & Taha 2024). To account for
the leading-edge separation and for the forces created by the LEV, Ramesh et al. (2014)
developed a discrete vortex method (DVM,) which utilised point vortices shed from the
leading edge. This vortex was shed whenever the leading-edge suction (quantified by the
leading-edge-suction parameter, or LESP) exceeded a fixed value, termed the critical
LESP. They subsequently showed that the inclusion of this LESP concept in a DVM
successfully predicted the forces on a wing for a variety of unsteady kinematics. In a
later paper, Martinez-Carmena & Ramesh (2024) applied a similar DVM to airfoils with
a dynamically morphing camber line. This morphing discrete vortex model resulted in a
better prediction of forces compared with a rigid camber line. Kumar, Padhee & Samanta
(2024) recently used DVM to study the forces on a wing that had bend—twist coupling.
Their approach was similar to panel methods as they divided the surface areas into multiple
panels. Recently, Cavanagh, Bose & Ramesh (2024) applied the LESP-modulated DVM
(LDVM) to wings with three different sweep angles. The predicted force values were
successfully matched with DNS data. In spite of this recent surge in effort to apply LDVM
to three-dimensional flows, a low-order model for a dynamically twisting wing is still
lacking. In this paper, we have successfully applied LDVM to a dynamically twisting plate.

In this paper, we experimentally measure the unsteady forces and the flow field of a flat-
plate wing that is dynamically twisting along the span as it translates along a straight line
at a constant speed. The direction of twisting was opposite to the towing direction such
that the effective angle of attack (AoA) increased along part of the span. The organisation
of the paper is as follows. We describe the experimental set-up in § 2. After that, we first
discuss the evolution of the lift and drag forces experienced by the flat-plate wing at a
Reynolds number (Re) of 10 000 in § 3.1, followed by the vorticity fields of the spanwise
vortices in § 3.2 and the tip vortices in § 3.3. Next, we discuss the circulation growth in the
LEVs and trailing-edge vortices (TEVs) formed over the plates (§ 3.4). Finally, we present
a mathematical model based on discreet vortex methods to estimate the unsteady forces on
the twisting plate (§ 4).

2. Experimental details
2.1. Towing tank, flat plate and the twisting mechanism

The experiments are conducted inside a water-towing tank with a cross-sectional area
measuring 1 x 1 m? and a length of 6 m, at the University of Central Florida (figure 1).
The flat-plate wing is fabricated through 3D printing employing the polyjet technique with
black Agilus material, possessing a hardness rating of 70 on the Shore A scale. The flat
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Figure 1. Details of the experiment. (a) The experimental set-up includes a force sensor and a two-camera
system for particle image velocimetry (PIV); (inset) the straight and the twisted flat-plate wing and the cross-
section of the plate. (b) A plot of the experimental kinematics showing the initial and final positions of the
twisting manoeuvre for two twist rates, twist-1-chord and twist-2-chord. (¢) A schematic illustrates the variation
in the AoA along the span, leading edge and trailing edge.

plate has a chord length (c¢) of 10 cm with a wingspan of 30 cm (aspect ratio of 3, denoted
as AR3). The plate has a rounded leading edge, and a sharpened trailing edge. It also
has two internal grooves for accommodating prebent steel rods with a diameter of 3 mm.
These steel rods are affixed to a pair of servo motors. Upon rotation, these motors induce
a curvature in the plate’s wingspan. The mechanical arrangement is designed to yield a
flexion ratio of 0.6.
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Figure 2. The 6,5 values obtained from DLTdv experiment for (a) twist-1-chord and (b) twist-2-chord. The
twisting action begins at m in (a) (m’ in (b)) and ends at o (¢’ in (b)) The twist rate between m (m’) and n (n')
is higher than that between n (n') and o (0').

2.2. Wing kinematics

The flat plates are towed along the length of the water tank using a servo-driven linear stage
(HPLASO, Parker Motion, USA). The linear stage is controlled by an AC Servo controller
(Applied Motion SV200, USA) and operated using Applied Motion’s SVX Servo Suite
software. A pulse generator (Model 9424, Quantum Composer, USA) is used to time and
distribute trigger signals to the various motors and sensors in the experimental set-up
(figure 1a).

The twisting manoeuvres are executed at two AoAs, specifically 5° and 15°, while
maintaining a consistent velocity of 0.1 ms™!, corresponding to a Reynolds number (Re)
of 10 000. To avoid the initial starting transients in the force data and to ensure that the
wing reaches a constant speed, the wing is moved two chord lengths before we start logging
the force data. This starting point of the force record is denoted as s* = 0. Two distinct
twisting manoeuvres are carried out. In the first case, the flat-plate wing is twisted to the
maximum twist amplitude for one chord length of travel. This case will be denoted as
twist-1-chord in the rest of the paper. In the second case, denoted as twist-2-chord in the
paper, the wing is twisted to the same twist amplitude during two chord lengths of travel
(figure 1b). Naturally, twist-1-chord involves the highest twist acceleration. In both twist-
ing manoeuvres, the AoA is progressively increased in the spanwise direction (figure 1c).

2.3. Twist profile measurements

The twist profile of each plate is measured using a stereoscopic imaging technique.
A grid of markers is placed on the wing surface (inset, figure 1a), near the tip region.
The twisting motion is performed and recorded using two high-speed cameras (PCO.edge
5.5, PCO, USA) set to capture images (resolution 1920 pixels x 1080 pixels) at 200 Hz.
Three-dimensional (3-D) tracking of the marker grid nodes is performed using DLTdv, a
MATLAB-based digitising tool. These 3-D positional data are then used to compute the
time-varying twist angle distribution along the span.

Figure 2 shows the 6,y values for the two twisting manoeuvres, i.e. twist-1-chord
(figure 2a) and twist-2-chord (figure 2b). For both twisting manoeuvres the final twist
angle is same. For the twist-1-chord the duration of twisting is around 1 chord, which
leads to higher initial acceleration during twisting when compared with twist-2-chord.

2.4. Force sensor measurements

Force measurements are performed using a 6-degree-of-freedom force sensor (Mini 40,
ATI, USA). The sensor is mounted along the shaft that holds the plate, such that the
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sensor’s central axis is co-linear with the plate’s pitch axis. Force data are sampled at
5000 Hz using a NI USB-6216 data acquisition system (National Instruments, USA). The
force data are low-pass filtered with a cutoff frequency of 6 Hz and is ensemble averaged
over 20 runs.

2.5. Particle image velocimetry

Planar PIV is employed to measure the velocity field. Two separate laser sheets, each with
a thickness of approximately 2 mm, are created along horizontal (spanwise) and vertical
(chordwise) planes. The laser sheets are generated by 2 W continuous-wave laser heads
(Dragonlaser, China). The PIV is performed at spanwise positions of 95 %, 93 %, 90 %,
86 %, 81 %, 15 %, 68 % and 60 % span, to investigate the impact of twisting manoeuvres on
the LEV and the TEV. Additionally, PIV measurements are conducted on three planes near
the wing tip, with adjacent planes spaced 0.07¢ (c is chord) apart, to examine the effect of
twisting manoeuvres on tip vortex development. These tip vortex measurement planes are
oriented at a 20° angle counterclockwise from the direction of motion. The spanwise PIV
data are captured using two high-speed cameras (PCO.edge 5.5, PCO, USA), operating at
a frame rate of 200 Hz while moving with the traverse system. These two sets of images
are later stitched to represent both the LEV and the TEV in the same frame. The field of
view for all cases measured 11.33 cm x 20.15 cm. The acquired PIV data are processed
using the PIVIab software package (Stamhuis & Thielicke 2014). The processing involves
a multipass approach, culminating in a 32 pixel x 32 pixel window size with 75 % overlap.
Subsequent post-processing tasks are executed using MATLAB. Vorticity calculations are
derived from ensemble averaging five distinct PIV runs for each experimental condition.
To quantify the sectional growth rate of wake vortices over time, the non-dimensional
circulation (I'* = I'/ Uso¢), Free stream velocity (U) within the vortex core is determined
at various time points. This analysis employs the I criteria, as outlined by Laurent
Graftieaux, Michard & Grosjean (2001).

2.6. Dye-flow visualisation

Limited sets of dye-flow visualisation experiments are performed to reveal the structure
of the tip vortices. Fluorescent dye is injected at the tip from the pressure side of the
wing closer to the tip region. The dye is injected using tygon tubing attached to a hand-
held syringe. A UV light is used to illuminate the flow field. The videos are captured
with a GoPro camera at 30 Hz frame rate. Frames are later extracted from the video for
comparisons among different twist cases.

3. Results and discussion
3.1. Unsteady lift and drag forces

The unsteady lift and drag forces experienced by a dynamically twisted plate of AR = 3 are
compared with a straight plate of similar AR in figures 3 and 4, respectively. The evolution
of coefficients of lift (C;) and drag (C,) are presented with the non-dimensional distance,
S*, travelled by the wing (S* = (U *t)/c, where Uy, is the free stream velocity, ¢ is
time and c is the chord). For the calculation of C; of the twisted plate, the area of the
untwisted (straight) plate is considered as the reference area. We consider two twisting
rates, twist-1-chord and twist-2-chord for each initial AoA. In both twist-1-chord and twist-
2-chord cases, the twisting starts at S* = 1.8. However, in the former case, it continues
until $* = 2.8, whereas for the latter, it continues until S* = 3.8.
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Figure 3. Comparison of the evolution of coefficient of lift (C;) between the no-twisting case and the
spanwise-twisting case for AR = 3 plate at Re = 10 k: (a) for initial AoA = 5°; (b) for initial AoA = 15°.
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Figure 4. Comparison of the evolution of coefficient of drag (C4) between the no-twisting case and the
spanwise-twisting case for AR = 3 plate: (a) for initial AoA = 5°; (b) for initial AoA = 15°.
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Figure 3 shows that the onset of dynamic twisting caused both the lift and the drag
coefficients to shoot up from the straight case. The sudden rise is caused by the inertial
response of the wing due to the action of twisting. As twisting starts from rest, a definite
amount of acceleration is required for the twisting. This sudden acceleration causes the
forces to shoot up as an inertial response. In the twist-1-chord case, this acceleration
is higher as the wing tip needs to twist to the maximum AoA in a smaller amount of
time. Moreover, figure 2(a) shows that the rate of twist (slope) between m and n is higher
compared with that between n and o). Also, the slope of the line between m and r is higher
than that between m’ and n’, which is expected because of the faster twist in the former
case. Accordingly, the initial transients have higher peak values (red trace) in the twist-
1-chord case. The action of twisting also increases the AoA for part of the span below
the flexion point. Also, the wing stays twisted after the completion of the dynamic twist
(2 (a) between o and p). For this reason, the eventual lift coefficients are much higher than
that of the straight case. The evolution of lift of the untwisted wing with an initial AoA of
5° shows that the flow was almost attached (figure 3a). However, in the case of an initial
AoA of 15° (figure 3b), the C; traces show an upward movement until $* = 1.8, which is
followed by a downward slope. This trend is probably related to the formation of an LEV
and its eventual shedding, even for the straight case. Moreover, in the AoA of 15° case,
the wing attains a higher post-stall AoA after twisting is completed. Massive leading-edge
separation due to such high AoA caused LEV formation and eventual shedding. This is
evident in the eventual roll-off of the force traces. In the higher AoA case, the difference
in the final C; values between the twisting and no-twisting cases is comparatively less than
the AoA = 5° case.

The drag coefficients also experience a sharp increase due to the dynamic twisting
(figure 4). The final values of the drag coefficients for both twisting cases are much higher
than the no-twisting case for both initial AoAs (figure 4a,b). However, between twist-
1-chord and twist-2-chord cases, the final value (C; = 0.4) is comparable at S* =6, 7.
The increase in drag is due to the increase in the effective area facing the flow due to the
twisting. However, after the end of twisting at $* = 2.8 in the 15° case, C; is approximately
1.2, i.e. almost double the C; at similar S* in the 5° initial AoA case. This clearly denotes
that the overall lift-to-drag ratio improves due to an increase in the initial AoA while the
span is twisted dynamically. The increase in drag for the twist-2-chord is more gradual due
to the larger duration of twisting in this case.

3.2. Development of leading- and trailing-edge vortices

In this section, we illustrate the effect of controlled spanwise twisting on the LEV and
TEV development on the AR = 3 wing. Comparisons are made in terms of normalised
spanwise vorticity contours (w}) obtained at multiple span locations. In all the figures
presented in this section, the first slice (towards the top of the wing) of the vorticity
contours represents the 60 % span location, whereas the last slice represents the 95 %
span. The other slices represent 68 %, 75 %, 81 %, 86 %, 90 % and 93 %, respectively.
Figure 5 shows the difference in the development of spanwise vorticity over the AR = 3
plate, held at an AoA = 5°, between the no-twisting case and the twist-1-chord case. For
the no-twisting case, only one time instant (S* = 2) is presented as there are no significant
differences in the spanwise non-uniformity of w} at other time instants. At $* =2, in the
straight case, the leading-edge separation at 81 % span and beyond is negligible compared
with other span locations closer to mid-span. We note that, at a low AoA of 5°, leading-
edge separation may not lead to the formation of an LEV. However, the lack of vorticity is
expected as several researchers have shown that the vortex cross-section thins down closer
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Straight 5° §* =2 Tw 1 chord 5° §* =3 Tw 1 chord 5° S* =4

Tw 1 chord 5° §* =5 Tw 1 chord 5° S* =6

Figure 5. Contours of normalised spanwise vorticity at different span locations of the AR = 3 plate, and at
different time instants; comparison between the no-twisting case and the twist-1-chord case for an initial AoA
of =5°. The top of the wing represents close to 60 % span. The orientations of the wing, in this figure and
later, do not follow the exact AoA in each case. Also, the wing is not drawn to scale. Rather, it is drawn for
visual reference only.

to the tip owing to the hair-pin-like structure of the vortex (Linehan & Mohseni 2020; Son
et al. 2022). In the case of dynamic twisting with a twist rate of 1-chord, however, there is
significant development of the LEV closer to the tip region (figure 5). As the effective AoA
increases due to the gradual twist-up motion below the 60 % span of the plate, it helps in
forming LEV due to leading-edge separation. As the twisting progresses from S* = 2.8 to
S* =3.8, the LEV close to the tip gets stronger. Since the plate remains twisted afterward,
the LEV continues to increase in size and strength beyond S$* = 4. Twisting also increases
shedding at the trailing edge of the plate, as evident from the increased concentration of
blue contours at that region. Very close to the tip, at 95 % of the span, the blue contours
surely become stronger, indicating a higher level of vorticity involved.

Overall, this increase in vortical flows in the tip region of the plate is also evident
for the slower twist rate case (twist-2-chord) for the same AoA of 5° (figure 6). The
vortices, however, grow comparatively slower due to a slower twist rate. This fact will
be more evident when we discuss the circulation growth later. A qualitative comparison
of the vorticity contours at S* =4 between the two twist rates shows less concentration
of blue contours in the wake region of the plate in the twist-2-chord case. Even though
the distribution of the spanwise AoA is the same for both twist rates after twisting has
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Tw 2 chord 5° §* =5 Tw 2 chord 5° S* =6

Figure 6. Contours of normalised spanwise vorticity at different span locations of the AR = 3 plate, and at
different time instants; comparison between the no-twisting case and the twist-2-chord case for an initial AoA
of =5°.

ceased, the twist-2-chord shows relatively less concentration of the TEV. This is a direct
consequence of a slower twist rate, which can be explained with the help of Kelvin’s
circulation theorem. The rate of change of leading-edge circulation (red contours) in the
twist-2-chord case being lower, the rate of TEV growth would also be lower since the TEV
circulation balances the rest as per Kelvin’s theorem.

When the AoA of the flat plate is increased to 15°, an increased level of vorticity
development is observed over the span of the flat-plate wing. Since the AoA is 15°, flow
separation at the leading edge causes strong LEV formation even closer to the flexion
point, i.e. 60 % span location in the straight case (figure 7). The non-uniform distribution
in the strength of the LEV is evident in figure 7 from the gradual thinning of the vorticity
contours. When the plate is twisted at the fastest rate (twist-1-chord), the level of vorticity
increases significantly over the whole span below the flexion point of 60 % span location.
Twisting causes the effective AoA to reach a post-stall value, which leads to massive
separation and larger LEV formation close to the tip compared with the straight case
(figure 8). However, even with the faster twist rate, the cross-section of the LEV close
to the tip of the flat plate is still negligible compared with the planes near 60 % span
location at S* = 3 (the twisting is completed at S* = 2.8). This signifies that the formation
time of the LEV at the tip region is still longer than the twisting time scale. Therefore, we
can argue that the changes in the unsteady forces on the plate during twisting are caused
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=5 Straight 15° §* =2 Straight 15° S* =6

Figure 7. Contours of normalised spanwise vorticity at different span locations of the AR = 3 plate, and at
different time instants in the no-twisting case only for an initial AoA of = 15°.

Tw 1 chord 15° S* =35 Tw 1 chord 15° S* =6

Figure 8. Contours of normalised spanwise vorticity at different span locations of the AR = 3 plate, and at
different time instants (S*); the twist-1-chord case for an initial AoA of = 15°.
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Tw 2 chord 15° S* =5 Tw 2 chord 15° S* =6

Figure 9. Contours of normalised spanwise vorticity at different span locations of the AR = 3 plate and at
different time instants (S§*); the twist-2-chord case for an initial AoA of = 15°.

mainly by non-circulatory effects. When the twist rate is reduced (the twist-2-chord case),
similar differences are observed as in the AoA = 5° case (figure 9). The level of vorticity
close to the tip is lower at S* =4 due to the slower twist rate. On close inspection, the
faster twisting in the 15° AoA case (figure 8) shows a higher level of secondary vorticity
(blue contours) on the plate surface compared with any other case at S* =5, 6, especially
the ones with 5° AoA (figures 5 and 6). The formation of secondary vorticity is related to
stronger LEV formation and shedding.

3.3. Development of tip vortices

We performed dye-flow visualisation as well as planar PIV to capture the development of
the tip vortices. Figure 10 shows the tip vortex in the no-twisting case, which resembles
a straight filament of vorticity. The tip vortex retains this straight character even at the
later phases of the motion. However, the action of twisting (twist-1-chord case) bends
the trajectory of the tip vortex. Figure 11 shows this deformation in the tip vortex core
at §* =2.6 to $* =3.1. This severe deformation in the tip vortex causes it to diffuse at
S* =4.5. We speculate that such a diffused tip vortex will cause a lower induced drag
in the twist-1-chord case. The lack of a defined core of the tip vortex is due to increased
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Figure 10. Dye visualisation of the tip vortex in the no-twisting case with an AoA = 15°. The orientation of
the camera and the plate (a); the straight column of tip vortex at $* =2 (b).

disturbance in the flow at the tip region. At $* = 4.5, the twisting manoeuvre is complete,
so the effective AoA at the tip region is more than 30° (initial A0A of = 15° + 04s). This
causes massive separation at the tip (as proved by the vorticity contours), leading to tip
stall. The diffused core of the tip vortex is a result of this tip stall.

Due to the lack of proper optical access, it was difficult to create a laser plane exactly
perpendicular to the tip vortex trajectory. Instead, we created three inclined laser planes
where PIV was performed. These three planes are denoted by the dotted lines in figures 12
and 13. It is evident that, due to twisting, the tip vortices got stronger and showed darker
contours. This increase in circulation has been later corroborated by the circulation growth
plots. This growth in tip vortex circulation can be explained by the increased level of
vortical activities near the tip caused by twisting.

3.4. Growth of circulation

Figure 14 illustrates the circulation growth at four spanwise planes. The left column
represents AoA =5° (a,c,e,g), while the right column depicts AoA = 15° (b.d,f,h). In
the straight case, the circulation is miniscule close to the tip in the AoA = 5° case. This
is due to an absence of significant vortex growth as is evident from the vorticity contour
plots. In all cases, the twist-1-chord manoeuvre demonstrates high circulation growth at
the onset of the twisting motion, attributed to the faster twisting rate leading to strong
LEV formation at the start. Conversely, the twist-2-chord manoeuvre exhibits slow and
steady circulation growth. A notable dip in the growth of LEV circulation in the twist-1-
case (red trace) is visible in figures 14(a,b,c,d and e). This dip suggests that the formation
time of LEV is shorter for the faster twist rate case. The dip in the red trace is due to the
pinching off of the LEV from the flat-plate wing. The maximum levels of circulation are
consistently higher in the case of AoA = 15°. This is expected as higher AoA will cause a
larger separation leading to a bigger LEV.

The tip circulation growth is shown in figure 15. This circulation is calculated at the
midplane, intersecting the tip vortex at an angle. The growth of circulation in figure 15
follows a similar trend to the growth of the LEV circulation at the 86 % and 68 % planes,
shown in figures 14(h) and 14(d), respectively. Due to the twisting manoeuvre, the tip
circulation is higher compared with the straight case for both manoeuvres. Between twist-
1-chord and twist-2-chord, the growth rate of the circulation is consistently higher at
the start for twist-1-chord, as observed in all other circulation plots. However, a notable
difference is observed between the circulation growth of LEVs and the tip vortex during
the twisting manoeuvre. For the tip vortex, the change in circulation (compared with the
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Figure 11. Dye visualisation of the tip vortex in the twist-1-chord case for an initial AoA = 15° at different S*
values.

straight case) begins as soon as the twisting manoeuvre starts. In contrast, for the LEV
circulations, the change is not instantaneous and occurs after a chord length of travel at
86 % span and after two chord lengths of travel at 68 % span. The instantaneous change
in circulation of the tip vortex due to twisting is because of the sudden kink in the axis
of the vortex due to twisting. This kink bends the vortex and brings a larger portion of it
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Leading edge

Straight; S* =2.1

Figure 12. (a) The three cross-sectional planes cutting the tip vortex in the non-twisting case for initial AoA
=15° and at §* = 2.1. (b) The contours of vorticity.

|

Leading edge

Figure 13. (a) The three cross-sectional planes cutting the tip vortex in the twist-1-chord case for initial AoA
= 15° and at §* = 2.6. (b) The contours of vorticity.

inside the measurement plane. This aspect is clear from figures 12 and 13 where a larger
concentration of dye is present inside the measurement region in the latter figure.

The response to the twisting motion varies along the span. The increase in the growth of
circulation near the tip (at 75 % and 86 % span locations) is higher than those away from
the tip (at 68 % and 60 % span locations). Also, in most cases, the circulation starts peaking
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Figure 14. The comparison of circulation growths at 60 %, 68 %, 75 % and 86 % span. The left column
represents AoA = 5° (a,c,e,g) and the right column represents AoA = 15°(b.d, f,h).

after one and two chord lengths of travel. Circulation reaches a maximum for the twist-
1-chord case (red trace) at 75 % span when the AoA is 15°. This variation in response
time underscores the complex 3-D nature of the flow field during spanwise twisting
manoeuvres. There is probably a significant amount of spanwise vorticity transport that
planar PIV could not capture.

3.5. Force partitioning

A dynamically twisting plate involves a moving surface which causes an increased level of
vortical activity closer to the tip region. As such, we expect some kinematic contribution
in addition to higher levels of circulatory forces in such twisting cases. In this section, we
use the method of force partitioning, following Menon & Mittal (2021), to quantify the
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Figure 15. The growth of circulations in the tip vortex.

contribution of different factors to the total forces. First, we provide a quick overview of
the force partitioning method. More details can be found in Menon & Mittal (2021) or
in Zhang, Hedrick & Mittal (2015). The process begins with the construction of a 2-D
auxiliary potential field, and then consideration of the gradient (V¢;) aligned with the
direction of interest — in this case, the direction of lift. The auxiliary potential field is
a biharmonic function which is constructed to filter out the vectors along a generalised
direction. In the context of hydrodynamics, this direction is often chosen to align with the
lift, drag or moment vector. This auxiliary potential is obtained by solving the Laplace
equation

V(@) =0. (3.1

The boundary conditions are
on the body surface — n - V(®); =n;, (3.2a)
at far field > n - V(®); =0. (3.2b)

Here, n; is the unit vector along a desired direction i. Next, we project the Navier—Stokes
(NS) equation along V(@);. This projection is carried out by calculating the following
volume integral:

([NS equation] - V&;)dV. 3.3)
Vy
In a broader sense, the result of this integral will show what is the relative contribution
of each term of the NS equation, i.e. local acceleration, convective acceleration, pressure
gradient and viscous stresses, towards the generation of a certain force field over a body.
The auxiliary potentials are computed using a MATLAB code developed by He
& Zhu (2024). The forces acting on the body are then partitioned by projecting the
relevant components onto the NS equation, followed by a volume integral over the
fluid domain. The resulting force partitioning is expressed in terms of non-dimensional
force coefficients, C;, where C; = F; /((1 /Z)pUgoc) represents the force coefficient in
the ith direction, with F; as the dimensional form of the force. This force can then be
further divided into components corresponding to different force-producing mechanisms,
as outlined below

Ci=CP+c+c+cy +cf. (3.4)
In this context, C ﬁ” denotes the kinematic force, while c}j ) signifies the force induced

by vorticity. The term C((,i ) refers to the force resulting from viscous effects, and C g)
represents the force linked to the corresponding potential flow field. Additionally, C g)
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accounts for the influence of the outer boundary. For our experiment, we assume that both
Cf,l) and C (E’) are equal to zero

) dU 1
et == [ n- 52 gias— [ Jitanas. (35)
B dt B 2
) 1
ct=[ 17 @xuoav+ [ V-(Euwuv-i-ucp'uv) piav. (36
! f
: 1
cy= | v.<§u¢ .u(p) piav, (3.7)
Vy

where Up represents the velocity of the wing at the local PIV plane, while ¢; is the
auxiliary potential field in the ith direction, determined by the wing’s position. The
vorticity w and velocity u fields are derived from PIV data at a specific span. Here, U,
and Uy are the rotational and irrotational components of the velocity field, respectively,
obtained from the PIV experiments using Helmholtz decomposition (Wu, Ma & Zhou
2015). The integral over the control volume is computed assuming a unit depth in the
spanwise direction.

To perform the Helmholtz decomposition to separate rotational and irrotational velocity
components, we have first discretised the Helmholtz equations

U=-V¢p+V x1. (3.8)
Divergent component

G, j) -9l —-1,))

Uaiv= Ar (3.9)
Vi = 2227 s (3.10)
Ay
Rotational component
GJj+D—=¥G )
Upy= YT DZYE D) G.11)
Ay
(+1L)-vG))
V=¥ D=V ) (3.12)
Ax
Then, a linear system is formed, which is solved implicitly
o| |U
A[5]-19) a1y

We used MATLAB’s mldivide (backslash operator) to solve the linear system. This
operator uses Lower Upper factorisation to compute the solution.

Figure 16 presents a comparison of results for two spanwise planes: 68 % (figures 16a,
16¢ and 16¢) and 86 % span (figures 16b, 16d and 16f) for the AoA = 15°. The results
indicate that the forces induced by vorticity are greater at the 86 % span compared
with the 68 % span for both twisting manoeuvres. This increase in C, is attributed
to enhanced vortex growth closer to the tip region of the plate due to the twisting
manoeuvre. Furthermore, it also proves that dynamic twisting allows us to alter the
spanwise distribution of circulation. The kinematic contribution to the forces increases
during the period of twisting as the plate boundary moves through the domain. This is
evident in figures 16(d) and 16(f).
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Figure 16. The force contributions from kinematics (Cy ), vorticity-induced effects (C,,) and irrotational effects
(Cy) for two spanwise planes: 68 % (a,c,e) and 86 % (b,d,f), for the no-twist case, twist-1-chord case and
twist-2-chord case.

We note that this force partitioning approach does not take into account the three-
dimensionality of the flow. However, force partitioning can be applied to 3-D volumetric
data as well, which we lack. The use of 2-D force partitioning surely can not capture
3-D effects but it can capture the differences in the vorticity-induced force along the span
of a dynamically twisting wing. But for a twisting plate, the tip vortex changes location
dynamically with respect to the midspan. Hence, a change in the tip-vortex-induced force
is expected for such kinematics. Such a dynamic change in the downwash may lead to
spanwise flows, which the present work could not capture.

4. Analytical model

The analytical model presented here has two major parts. The first part employs the LDVM
developed by Ramesh et al. (2014). In the second part, we use the methodology prescribed
by Faure & Leogrande (2020) which extended the LDVM developed by Ramesh et al.
(2014) to a finite wing. Our unique contribution to this modelling is that we modify the
second part and implement a strip theory approach where the AoA of each strip is varied
with time. By using such a spanwise non-uniform, time-varying AoA, we model the effect
of dynamic twisting on the resultant unsteady forces.
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Figure 17. Wing reference frame and the inertial frame.

4.1. Brief summary of LDVM

The LDVM is based on the time-stepping approach described in Katz & Plotkin (2001).
In this method, a wing with chord ‘c’ is situated in a free-stream flow with velocity Ux
as illustrated in figure 17. The wing’s frame of reference is represented by x—z, while the
inertial frame of reference is denoted by X—Z. The variable ¢ is used to transform the
chordwise coordinates along the x-axis

x:g(l — cos D). 4.1)

The vorticity distribution y (¢, t) along the x-axis is expressed in terms of the Fourier
series

v (9, 1) =2Us |:A (t )IJ“XZ:I9 +3 4, sinn0:|. 4.2)

n=1

Here, A, and A, represent the Fourier coefficients, which are computed using the
velocity component W normal to the wing, which is set to zero to enforce the no-
penetration boundary conditions along the wing

-1 [T W, ¢t
Ay(t)y = — / @, 1) dv, n=0, (4.3a)
T Jo U,
2 [(TWW,t
A,,(t):—/ ( )cosm?dz?,nzl,2,3.... (4.3b)
The normal velocity induced to the airfoil is calculated from (4.4)
P dpr
Wx,t)= —( 1)+ —(x 1)+ UsxcosO(t) + h sin 0(t) —(x 1)
d
- ﬂ( )~ ﬂ( ) — Uso sin 61(1)
—G(t)(x —xp)+hcos 0(1). “4.4)

Here, n represents the wing camber line, while ¢, and ¢7 denote the velocity potentials
for the LEV and TEV, respectively. The pivot location is defined as x,, and 6 refers to

the time derivative of the AoA, with & corresponding to the plunging velocity in the
Z direction. The TEVs are shed at each time step, and their strengths are determined
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iteratively following Kelvin’s circulation theorem

i i
g+ Irx+Y I'ig=0, (4.5)
k=1 =1

where [I'p represents the bound circulation obtained by integrating the chordwise
distribution of bound vorticity over the airfoil chord

(4.6)

Ar(t
I'p =Uxcm |:A0(t) + 12( ):|.
To initiate the formation of LEV, we employ the LESP criterion, which is a non-
dimensional measure of suction at the leading edge and is given by

LESP(t) = A,(1). 4.7

If the LESP at a certain time, denoted as LESP(t), exceeds the critical LESP value,
LEV shedding occurs. In such cases, both LEV and TEV strengths are recalculated. The
implementation of these two criteria ((4.5) and (4.7)) within the discrete vortex method
has been previously demonstrated by Ramesh et al. (2014). For calculating the velocities
induced by the LEV, TEV and bound vortex, we utilise the vortex core model proposed by
Vatistas, Kozel & Mih (1991)

. & X —-—X,
21 (X = Xo)2 4+ (Z — Zo)2) 2 + 7%

(4.8a)

Yo Z—-17Z,
w=— ’
21 (X = Xo)* +(Z = Zo)?)? +1¢

where u and w are the velocities induced by the vortex in the inertial frame of reference
X and Z. For more comprehensive details regarding the LDVM and load calculation, we
direct readers to Ramesh et al. (2014).

(4.8b)

4.2. Brief summary of three-dimensional LDVM for finite wing

According to Lifting Line Theory (Houghton & Carpenter 2003), the wing is modelled as
a distribution of horseshoe vortices along its span

N
I'(p, 1) =2bUx(t) Z P,(t) sinng, 4.9)

n=1

where ¢ is the parameter defined along the span b
—b
y= > cos ¢. (4.10)

The downwash at a specific spanwise station y, which corresponds to a parameter ¢
resulting from all the shed filaments, is given by

N .
_ sin ng
Wi(g, 1) = Uoor;nPn(t) prmpel (4.11)

The coupling of 2-D LDVM and lifting line theory has been accomplished due
to their shared foundation in potential flow principles, as highlighted by Faure &
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Figure 18. Circulation distribution for the twisted wing along the span using lifting line theory.

Leogrande (2020). The underlying potential flow nature is characterised by the solution
of the Laplace equation. To integrate these models effectively, we apply the superposition
principle, combining potential functions from different potential flows. As a result, the
velocities are added together, leading to the expression W = (0 ®)/(9z)

W(1) =Wap (9, 1) + Wi(, 1). (4.12)

The time-dependent Fourier series coefficient from LESP and thin airfoil theory are
combined, which results in chordwise circulation at each strip as

Al12D1)
I'(¢,t)=Usocm | Ap2p(t) + Ag3p(t) + —5 | (4.13)

where Ap3p(t) = YN | n P, (t)(sin ng/sin ¢).

4.3. Adding AoA variation to model spanwise twisting

To implement spanwise twisting, we initially incorporate the spanwise AoA variation in
the lifting line theory. The case of AoA =@ is defined along the wing’s span as

0(9, 1) =0 + Orwisi (9, 1), (4.14)

where 6, represents the AoA for the straight wing, which is set to be 5° and 15° in our
study. Here, 6,,,;;; denotes the spanwise twist introduced along the wing’s span. Notably,
the twist variations remain consistent for both 5° and 15° AoA cases. We determine these
twist variations using the DLTdv digitising tool (refer to § 2.3 for more detail). The Fourier
coefficient for the lifting line theory at an instant #; can be calculated using (4.15), yielding

sin n¢
sing
As a result of introducing 6,5, the circulation distribution becomes asymmetric once

the twisting manoeuvre starts. Figure 18 illustrates the circulation distribution after the
wing has completed the twisting manoeuvre at a 15° AoA, which is plotted using (4.9).
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Figure 19. The 6y, values used for the analytical model. These values are simplified using the Eldredge
function. Panels show (@) TW1 and (b) TW2.

To incorporate the twisting manoeuvre (6;,s; and Opis) into the analytical model, we
used the Eldredge function (Eldredge 2007) with a smoothing parameter of @ = 11, which
applies to both twist-1 and twist-2 chords. Additionally, for the twist-1-chord, we employed
a non-dimensional pitch rate (K = 6yis1¢/2U ) of K = 0.2, while for the twist-2-chord,
we utilised a non-dimensional pitch rate of K = 0.1. Figures 2 and 19 show the comparison
of Onyisr between the experimental and theoretical models for twist-1 and twist-2 chords,
respectively. When comparing the results with experimental data, we note that 6y,;s in the
analytical model is smoother than its experimental counterpart.

For each spanwise strip, we independently conduct the LDVM analysis based on the
corresponding twisting angle associated with that strip. As a result, there is a variation in
the circulation term in (4.13) due to these individual twistings

A
I(¢. 1) =Usecn [Ao,w(qs, 1)+ Aosp (e, 1) + %] (4.16)

4.4. Determination of critical LESP

We first performed an iteration of our LDVM code with a range of critical LESP values
with the goal of matching the force sensor data for the twist-1-chord for the 15° AoA case.
We obtained the best match for critical LESP of 0.21. We then kept this value constant for
all other kinematics. This approach has also been described on p. 532 of Ramesh et al.
(2014).

4.5. Lift force comparison with analytical model

In this section, we compare the experimental data to the analytical model discussed in
§4.3. Figures 20 and 21 illustrate the comparison for AoAs 5° and 15° of the AR3
wing, respectively. The results demonstrate that the analytical model closely predicted
the trend in the variation of lift coefficient during the twisting manoeuvres for both twist-
1 and twist-2 chords. However, it is worth noting that the experimental data exhibited
higher fluctuations in both cases. These fluctuations were attributed to the sudden onset
of the twist manoeuvre and the overall higher variability observed throughout the twisting
manoeuvre (refer to figure 2). Such behaviour is not modelled due to the simplification of
the twisting manoeuvre achieved by utilising the Eldredge function.

The LDVM yields a potential flow field with discrete point vortices representing the
LEV and TEVs. The trajectories of these point vortices create a flow field over the plate
and in the wake. Such flow fields of point vortices are compared with the vorticity contours
obtained experimentally in figure 22. Here, we only show the straight (figures 22a and 22b)

1017 A40-23


https://doi.org/10.1017/jfm.2025.10495

https://doi.org/10.1017/jfm.2025.10495 Published online by Cambridge University Press

K. Joshi, C. Soto and S. Bhattacharya

(@) ()
16E | i Straight | : - s:migm(E) it i " Twist 1 chord I S:Twis‘(E) 3
1.2 F {F E
C
I8 ik ]
04 M\A/VWMNWM 3
0 1 2 3 4 5 6 70 1 2 3 4 5 6 7
S* s*
(©)
16E Twist 2 chord
12 F E
Cost ]
0.4 m[ . E
0 1 2 3 4 5 6 7
S*

Figure 20. The comparison of experimental and analytical results for the twisting manoeuvre for the AR3
wing at an AoA 5°.
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Figure 21. The comparison of experimental and analytical results for the twisting manoeuvre for the AR3
wing at an AoA 15°.
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Figure 22. Flow feature comparison between LDVM and PIV results at 75 %, 81 % and 90 % span. Panels
(a) and (b) show the straight wing at s* = 2 and 6, respectively. Panels (c) and (d) show the twisted wing
(1 chord) at s* = 3 and 4, respectively.

and the twist-1-chord cases (figures 22¢ and 22d). The LDVM computation correctly
models the gradual decay of circulation towards the span in both cases. The massive
separation and eventual roll-up of the LEV is also captured by the LDVM in the twisting
case at 75 % span (figure 22d).

5. Conclusion

We measured the instantaneous forces and the flow field of a flat-plate wing, which
was dynamically twisted along the span while translating at a Re value of 10 000. In
addition to experimental measurements, we also implemented a discrete vortex model that
incorporated the LESP to account for the unsteady forces on a dynamically twisting plate.
Experiments were conducted for two AoAs, namely, 5° and 15°, and two twist rates. In
the first case, the wing was twisted to the maximum tip AoA during one chord length of
travel. In the second case, a slower twist rate was applied where the wing was twisted to the
maximum tip AoA during two chord lengths of travel. In both these cases, the wing leading
edge was twisted away from the incoming flow, or the direction of twist was opposite to
the direction of motion. Our results show that spanwise twisting increases the lift forces
significantly. The lift-to-drag ratio improves the most for the higher twist rate case (the
twist-1-chord case). The most pronounced effects were observed at higher AoAs of 15°.
The increase in the effective AoA promoted the formation of LEV over the twisted part
closer to the tip. Such vortex formation close to the tip was hardly observed in the case
without twisting. The circulation inside the LEV was increased due to twisting. The rate
of increase of circulation was higher in the higher twist rate case. Although a dip in the
growth of circulation was observed, which was related to the early shedding of the LEV.
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Through our force partitioning analysis, we showed that the increasing vortical presence
during dynamic twisting led to a localised increase in vorticity-induced forces, particularly
near the twisted section of the plate. It underscores the significant role of active morphing
in controlling unsteady flow behaviour. Our discrete vortex model with LESP effectively
captured this dynamics, demonstrating its potential as a low-order tool for predicting the
complex interactions between twisting kinematics and vortex formation.

Our study advances the understanding of the mechanisms underlying the hydrodynamic
benefits of active morphing in natural and artificial flyers. We believe that controlled
spanwise twisting can be leveraged to enhance aerodynamic performance, reduce drag and
manipulate vortex-shedding patterns, paving the way for improved designs of bio-inspired
propulsion systems and control surfaces. In future research, we aim to refine our model to
account for 3-D flow effects and explore the implications of twist-induced flow structures
on energy efficiency and manoeuvrability in more complex configurations.

Acknowledgements. This work was supported by the National Science Foundation CAREER award
2045767 and monitored by Dr. R.D. Joslin. We thank Dr. Y. Zhu for pointing us to his MATLAB codes for
the calculation of auxiliary potential.

Declaration of interests. The authors report no conflict of interest.

REFERENCES

BOUARD, F., JARDIN, T. & DAVID, L. 2024 Aerodynamics of flapping wings with passive and active
deformation. J. Fluids Struct. 128, 104139.

CAVANAGH, A., BOSE, C. & RAMESH, K. 2024 Effect of sweep angle on three-dimensional vortex dynamics
over plunging wings. arXiv:2407.04972

COMBES, S.A. & DANIEL, T.L. 2003 Flexural stiffness in insect wings II. Spatial distribution and dynamic
wing bending. J. Expl Biol. 206 (17), 2989-2997.

CONG, L., TENG, B., CHEN, L., BAL, W,, JIN, R. & CHEN, B. 2023 Aerodynamic performance of low
aspect-ratio flapping wing with active wing-chord adjustment. J. Fluids Struct. 122, 103964.

DANIEL, T.L. & COMBES, S.A. 2002 Flexible wings and fins: bending by inertial or fluid-dynamic forces?
Integr. Compar. Biol. 42 (5), 1044-1049.

DICKINSON, M.H., LEHMANN, F.-O. & CHAN, W. P. 1998 The control of mechanical power in insect flight.
Am. Zool. 38 (4), 718-728.

DICKINSON, M.H., LEHMANN, F.-O. & SANE, S.P. 1999 Wing rotation and the aerodynamic basis of insect
flight. Science 284 (5422), 1954-1960.

DONG, Y., SONG, B., YANG, W. & XUE, D. 2024 A numerical study on the aerodynamic effects of dynamic
twisting on forward flight flapping wings. Bioinspir. Biomim. 19 (2), 026013.

DUDLEY, R. 2002 The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press.

ELDREDGE, J.D. 2007 Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex
particle method. J. Comput. Phys. 221 (2), 626—648.

ELLINGTON, C.P. 1999 The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Expl
Biol. 202 (23), 3439-3448.

FAURE, T.M. & LEOGRANDE, C. 2020 High angle-of-attack aerodynamics of a straight wing with finite span
using a discrete vortex method. Phys. Fluids 32 (10), 104109-1-104109-10.

GRAFTIEAUX, L., MICHARD, M. & GROSJEAN, N. 2001 Combining PIV, POD and vortex identification
algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (9), 1422.

GRODNITSKY, D.L. & MoRoOZzov, P.P. 1993 Vortex formation during tethered flight of functionally and
morphologically two-winged insects, including evolutionary considerations on insect flight. J. Expl Biol.
182 (1), 11-40.

HE, X. & ZHU, Y. 2024 Force and moment partitioning influence potential solver 2D-MATLAB-
Central File Exchange. Available at: https://www.mathworks.com/matlabcentral/fileexchange/
130274-force-and-moment-partitioning-influence-potential-solver-2d. Retrieved September 27, 2024.

HEATHCOTE, S. & GURSUL, 1. 2007 Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J.
45 (5), 1066-1079.

HEATHCOTE, S., WANG, Z. & GURSUL, I. 2008 Effect of spanwise flexibility on flapping wing propulsion.
J. Fluids Struct. 24 (2), 183-199.

HOUGHTON, E.L. & CARPENTER, P.W. 2003 Aerodynamics for Engineering Students. Elsevier.

1017 A40-26


https://arxiv.org/abs/2407.04972
https://www.mathworks.com/matlabcentral/fileexchange/130274-force-and-moment-partitioning-influence-potential-solver-2d
https://www.mathworks.com/matlabcentral/fileexchange/130274-force-and-moment-partitioning-influence-potential-solver-2d
https://doi.org/10.1017/jfm.2025.10495

https://doi.org/10.1017/jfm.2025.10495 Published online by Cambridge University Press

Journal of Fluid Mechanics

INGERSOLL, R. & LENTINK, D. 2018 How the hummingbird wingbeat is tuned for efficient hovering. J. Expl
Biol. 221 (20), jeb178228.

JONGERIUS, S.R. & LENTINK, D. 2010 Structural analysis of a dragonfly wing. Expl Mech. 50, 1323—-1334.

KANG, C.-K., AoNo, H., CESNIK, C.E.S. & SHYY, W. 2011 Effects of flexibility on the aerodynamic
performance of flapping wings. J. Fluid Mech. 689, 32—74.

KATZ,J. & PLOTKIN, A. 2001 Low-Speed Aerodynamics, 2nd edn. Cambridge Aerospace Series 1. Cambridge
University Press.

KUMAR, R., PADHEE, S.S. & SAMANTA, D. 2024 Aerodynamic performance and flow mechanism of 3D
flapping wing using discrete vortex method. J. Fluids Struct. 127, 104128.

LEISHMAN, J.G. 1989 State-space model for unsteady airfoil behavior and dynamic stall. In 30th Structures,
Structural Dynamics and Materials Conference, pp. 1319. American Institute of Aeronautics and
Astronautics, Inc.

LEISHMAN, J.G. & BEDDOES, T.S. 1989 A semi-empirical model for dynamic stall. J. Am. Helicopter Soc.
34 (3), 3-17.

LENTINK, D., et al. 2007 How swifts control their glide performance with morphing wings. Nature 446 (7139),
1082-1085.

LINEHAN, T. & MOHSENI, K. 2020 On the maintenance of an attached leading-edge vortex via model bird
alula. J. Fluid Mech. 897, A17.

MARTINEZ-CARMENA, A. & RAMESH, K. 2024 Inviscid modeling of unsteady morphing airfoils using
a discrete-vortex method. Theor. Comput. Fluid Dyn. 38 (6), 845-862.

MENON, K. & MITTAL, R. 2021 On the initiation and sustenance of flow-induced vibration of cylinders:
insights from force partitioning. J. Fluid Mech. 907, A37.

NAKATA, T. & L1u, H. 2012 Aerodynamic performance of a hovering hawkmoth with flexible wings:
a computational approach. Proc. R. Soc. B: Biol. Sci. 279 (1729), 722-731.

NoDA, R., NAKATA, T. & LIiu, H. 2014 Effects of wing deformation on aerodynamic performance of
a revolving insect wing. Acta Mechanica Sin. 30, 819-827.

PLA OLEA, L. & TAHA, H.E. 2024 Geometric control analysis of the unsteady aerodynamics of a pitching—
plunging airfoil in dynamic stall. Phys. Fluids 36 (3), 037116-1-037116-13.

RAMESH, K., GOPALARATHNAM, A., GRANLUND, K., OL, M.V. & EDWARDS, J.R. 2014 Discrete-vortex
method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex
shedding. J. Fluid Mech. 751, 500-538.

SoN, O., Gao, A.-K., GURSUL, I., CANTWELL, C.D., WANG, Z. & SHERWIN, S.J. 2022 Leading-edge
vortex dynamics on plunging airfoils and wings. J. Fluid Mech. 940, A28.

Soto, C. & BHATTACHARYA, S. 2023 The effect of dynamic twisting on the flow field and the unsteady
forces of a heaving flat plate. Bioinspir. Biomim. 18 (2), 026010.

STAMHUIS, E. & THIELICKE, W. 2014 PIVlab — towards user-friendly, affordable and accurate digital particle
image velocimetry in MATLAB. J. Open Res. Softw. 2 (1), 30.

TAHA, H.E., HAJJ, M.R. & BERAN, P.S. 2014 State-space representation of the unsteady aerodynamics of
flapping flight. Aerosp. Sci. Technol. 34, 1-11.

TAHA, H.E., PLA OLEA, L., KHALIFA, N., GONZALEZ, C. & REZAEI, A.S. 2021 Geometric-control
formulation and averaging analysis of the unsteady aerodynamics of a wing with oscillatory controls.
J. Fluid Mech. 928, A30.

Tu, Y., WANG, J., HU, H. & DONG, H. 2020 Twist morphing effect on propulsive performance of bio-inspired
pitching-rolling plates. In AIAA Scitech 2020 Forum, pp. 2019.

VATISTAS, G.H., KOZEL, V. & MIH, W.C. 1991 A simpler model for concentrated vortices. Exp. Fluids 11
(1), 73-76.

WEI, W., WEIGANG, A. & BIFENG, S. 2024 Effect of wing morphing on stability and energy harvesting in
albatross dynamic soaring. Chin. J. Aeronaut. 37 (11), 317-334.

WOOTTON, R. 2020 The geometry and mechanics of insect wing deformations in flight: a modelling approach.
Insects 11 (7), 446.

Wu, J.-Z., MA, H.-Y. & ZHOU, M.-D. 2015 Vortical Flows, vol. 28. Springer.

YAN, Z., TAHA, H.E. & HAJJ, M.R. 2014 Geometrically-exact unsteady model for airfoils undergoing large
amplitude maneuvers. Aerosp. Sci. Technol. 39, 293-306.

ZHANG, C., HEDRICK, T.L. & MITTAL, R. 2015 Centripetal acceleration reaction: an effective and robust
mechanism for flapping flight in insects. PLoS One 10 (8), e0135571.

ZHENG, L., HEDRICK, T.L., MITTAL, R. & AEGERTER, C.M. 2013 Time-varying wing-twist improves
aerodynamic efficiency of forward flight in butterflies. PloS One 8 (1), e53060.

1017 A40-27


https://doi.org/10.1017/jfm.2025.10495

	1. Introduction
	2. Experimental details
	2.1. Towing tank, flat plate and the twisting mechanism
	2.2. Wing kinematics
	2.3. Twist profile measurements
	2.4. Force sensor measurements
	2.5. Particle image velocimetry
	2.6. Dye-flow visualisation

	3. Results and discussion
	3.1. Unsteady lift and drag forces
	3.2. Development of leading- and trailing-edge vortices
	3.3. Development of tip vortices
	3.4. Growth of circulation
	3.5. Force partitioning

	4. Analytical model
	4.1. Brief summary of LDVM
	4.2. Brief summary of three-dimensional LDVM for finite wing
	4.3. Adding AoA variation to model spanwise twisting
	4.4. Determination of critical LESP
	4.5. Lift force comparison with analytical model

	5. Conclusion
	References

