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Abstract
The finite families of biorthogonal rational functions and orthogonal polynomials of Hahn type are interpreted
algebraically in a unified way by considering the three-generated meta Hahn algebra and its finite-dimensional
representations. The functions of interest arise as overlaps between eigensolutions of generalized and ordinary
eigenvalue problems on the representation space. The orthogonality relations and bispectral properties naturally
follow from the framework.

Contents

1 Introduction 2
2 The general framework 3

2.1 Bases for M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Meta Hahn algebra 5
4 Two-diagonal representation 6
5 (Generalized) eigenbases 7
6 Representations of 𝑚ℌ on various bases 9

6.1 Representations in the e and 𝑒∗ bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 Representations in the f and 𝑓 ∗ bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Representations in the d and 𝑑∗ bases . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 Hahn and dual Hahn polynomials 11
7.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.2 Orthogonality relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3 Bispectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7.3.1 Recurrence relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.3.2 Difference equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Hahn rational functions 15
8.1 Representation theoretic interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2025.10040
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 18 Sep 2025 at 10:31:32, subject to the Cambridge Core terms of use, available at

doi:10.1017/fms.2025.10040
https://orcid.org/0000-0002-6726-7514
https://orcid.org/0000-0001-6211-7907
https://orcid.org/0000-0002-1681-0521
https://creativecommons.org/licenses/by/4.0
https://crossmark.crossref.org/dialog?doi=10.1017/fms.2025.10040&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2025.10040
https://www.cambridge.org/core


2 S. Tsujimoto, L. Vinet and A. Zhedanov

8.2 Biorthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3 Bispectrality of U𝑚(𝑛) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8.3.1 Recurrence relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.3.2 Difference equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.4 Bispectrality of V𝑚 (𝑛) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.4.1 Recurrence relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.4.2 Difference equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.5 Contiguity relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Conclusion 24
References 26

1. Introduction

This paper initiates a program aimed at extending the Askey scheme to biorthogonal rational functions
(BRFs) from a representation theoretic perspective. The approach will treat in a combined way both BRFs
and orthogonal polynomials (OPs) with this article focusing on terminating 3𝐹2 series (i.e., functions
of the Hahn type). The program hinges on the introduction of meta algebras whose name indicates that
they subsume the algebras of Askey-Wilson type [1] known to encode the bispectral properties of the
Askey-Wilson polynomials and their limits and specializations. One feature of these meta algebras is
that they admit as subalgebra a two-generated algebra modeling a noncommutative plane [2].

By and large, the broad strategy to provide a unified algebraic interpretation of the finite polyno-
mial families of the Askey scheme and their rational function companions is as follows. First, construct
the finite-dimensional two-diagonal representation of all three generators of the meta algebra. Second,
introduce various bases for these modules that are defined as solutions of Generalized Eigenvalue Prob-
lems (GEVP) and their transpose or of ordinary Eigenvalue Problems (EVP) and also of their transpose,
set up on the two-diagonal representation space and solved using the known actions of the generators of
the meta algebra. Third, construct overlaps between these different bases to be identified as the special
functions of interest. As a consequence of the fact that eigenbases are used, the resulting special func-
tions are by construction bispectral, and this is straightforwardly spelled out. Moreover, orthogonality
relations are found between overlaps involving correspondingly the eigenbases of transposed problems.

This general program will be realized here for functions of the 3𝐹2 type. The intent is to develop this
algebraic treatment for polynomials and rational functions of the 4𝐹3 type and for the basic (𝑞−analogs)
3𝜙2 and 4𝜙3 types subsequently.

The key starting point is obviously the identification of the meta algebra in the present case, the meta
Hahn one. Two previous papers have paved the way in this respect. In [3], it was observed that three
different operators 𝑋,𝑌, 𝑍 act in a three-diagonal fashion on a monomial rational basis. It then proved
possible to obtain the rational functions of Hahn type as solutions of the difference equation given by
the GEVP involving X and Y. The biorthogonal partner was provided by the adjoint problem. It was
also seen that the GEVP defined rather in terms of X and Z provides a recurrence relation to show that
the Hahn rational functions are biorthogonal and bispectral. It was further found that the difference
operators 𝑋,𝑌, 𝑍 formed an algebra that was called the rational Hahn algebra.

The idea of a unified algebraic treatment for both polynomials and rational functions of hypergeo-
metric type was first put forward and realized in [4] where the meta Hahn algebra 𝑚ℌ was introduced.
Elements of the abstract representation theory of 𝑚ℌ were developed directly in eigenbases of GEVP
and EVP associated to the generators. It was shown that the overlaps between these bases are generally
bound to be bispectral orthogonal polynomials or biorthogonal rational functions, but it was only through
the introduction of (differential or difference) models that the specific special functions were arrived at.

We now aim to provide a model-independent algebraic treatment of the Askey scheme enlarged to
biorthogonal rational functions. It is hence appropriate to begin as a first step by revisiting the Hahn
functions from this perspective and to record how the full characterization of these polynomial and
rational functions can be synthetically derived from a remarkably simple algebra.
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The organization of the paper will follow the general strategy sketched above. The framework for the
joint algebraic interpretation of OPs and BRFs will be explained in more precise terms in Section 2.
Working out the Hahn case will thereafter be the objective for the remainder of the article. The definition
of the meta Hahn algebra 𝑚ℌ will be recalled in Section 3. How the Hahn algebra ℌ associated to the
Hahn OPs embeds in 𝑚ℌ will also be spelled out. The finite-dimensional two-diagonal representation
of 𝑚ℌ will be given in Section 4. The eigenvector bases will be explicitly constructed in Section 5. The
representations of 𝑚ℌ on these bases will be discussed in Section 6. How the OPs and their properties
emerge in this framework will be the object of Section 7, and the corresponding BRFs will be introduced
and analyzed in Section 8. An outlook and perspectives will form Section 9. Appendix A comprises a
compendium of formulas for the actions of the generators in various bases.

2. The general framework

A meta algebra (associated with finite families of functions) will have three generators 𝑋, 𝑍,𝑉 and will
possess in particular a (𝑁+1)-dimensional moduleM overR, equipped with a basis {| 𝑛 〉, 𝑛 = 0, . . . , 𝑁}

in which all generators act in a ‘two-diagonal’ way (see Proposition 1) and, the standard scalar product
denoted by 〈 𝑥 | 𝑦 〉 for any two vectors | 𝑥 〉, | 𝑦 〉 ∈ M. It is assumed that the basis vectors | 𝑛 〉 satisfy
the orthonormality condition

〈 𝑛 | 𝑚 〉 = 𝛿𝑚,𝑛 for 0 ≤ 𝑛, 𝑚 ≤ 𝑁. (2.1)

Corresponding to the embeddings of an Askey type algebra and of the associated rational algebra that
they exhibit, meta algebras have the feature of encompassing a Leonard pair [5] formed by V and W
(see below) and a GEVP- EVP analog involving (𝑋, 𝑍) and V [4].

2.1. Bases for M
In addition to the basis { | 𝑛 〉 }, the following eigenbases of M associated to Generalized Eigenvalue
Problems (GEVP) and ordinary Eigenvalue Problems (EVP) will hence be called upon.

◦ GEVP bases { | 𝑑𝑛 〉 }, { | 𝑑∗𝑛 〉 }, 𝑛 = 0, . . . , 𝑁:

(𝑋 − 𝜆𝑛𝑍) | 𝑑𝑛 〉 = 0, (2.2)
(𝑋� − 𝜆𝑛𝑍

�) | 𝑑∗𝑛 〉 = 0. (2.3)

Here and in the following, we shall not distinguish between the generators and their representation as
operators acting on M since the context will always make clear what is understood. With this noted, 𝑋�

denotes the transpose of the operator X and similarly for Z: 〈 𝑢 | 𝑋 | 𝑣 〉 = 〈 𝑣 | 𝑋� | 𝑢 〉,∀ | 𝑢 〉, | 𝑣 〉 ∈
M. The vectors involving an ∗ in their notation will always correspond to the transposed problems. To
be clear, we can take operators on M to be defined by their matrix representations in the orthonormal
basis {| 𝑛 〉, 𝑛 = 0, . . . , 𝑁}. We then have, for example, 〈𝑚 | 𝑋 | 𝑛 〉 = 𝑋𝑚𝑛, implying 𝑋�

𝑚𝑛 = 𝑋𝑛𝑚.
Since all eigenbases will eventually be given through expansions over the {| 𝑛 〉} basis, this leaves no
ambiguities in the definition of the transposed of operators.

◦ EVP bases { | 𝑒𝑛 〉 }, { | 𝑒∗𝑛 〉 }, { | 𝑓𝑛 〉 }, { | 𝑓 ∗𝑛 〉 }, 𝑛 = 0, . . . , 𝑁:

𝑉 | 𝑒𝑛 〉 = 𝜇𝑛 | 𝑒𝑛 〉, (2.4)
𝑉� | 𝑒∗𝑛 〉 = 𝜇𝑛 | 𝑒∗𝑛 〉, (2.5)
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4 S. Tsujimoto, L. Vinet and A. Zhedanov

and with 𝑊 = 𝑋 + 𝜌𝑍 where 𝜌 is a real parameter:

𝑊 | 𝑓𝑛 〉 = 𝜈𝑛 | 𝑓𝑛 〉, (2.6)
𝑊� | 𝑓 ∗𝑛 〉 = 𝜈𝑛 | 𝑓 ∗𝑛 〉. (2.7)

We have the following orthogonality relations:

〈 𝑒∗𝑚 | 𝑒𝑛 〉 = 𝜅−1
𝑛 𝛿𝑚,𝑛, (2.8)

〈 𝑓 ∗𝑚 | 𝑓𝑛 〉 = 𝜁−1
𝑛 𝛿𝑚,𝑛, (2.9)

〈 𝑑∗𝑚 | 𝑍 | 𝑑𝑛 〉 = (〈 𝑑∗𝑚 | 𝑍�) | 𝑑𝑛 〉 = 𝑤−1
𝑛 𝛿𝑚,𝑛, 𝑚, 𝑛 = 0, 1, . . . , 𝑁, (2.10)

where the constants 𝜅𝑛, 𝜁𝑛,𝑤𝑛 define the norms of the basis elements. Note that overR, 〈 𝑢 | 𝑣 〉 = 〈 𝑣 | 𝑢 〉
for | 𝑢 〉, | 𝑣 〉 ∈ M. While the first two relations (2.8), (2.9), are well known, the third (2.10) could be
less familiar. It is proven as follows. We have

𝜆𝑛〈 𝑑
∗
𝑚 | 𝑍 | 𝑑𝑛 〉 = 〈 𝑑∗𝑚 | 𝑋 | 𝑑𝑛 〉 = (〈 𝑑∗𝑚 | 𝑋�) | 𝑑𝑛 〉 = 𝜆𝑚(〈 𝑑

∗
𝑚 | 𝑍�) | 𝑑𝑛 〉, (2.11)

which implies (𝜆𝑛 −𝜆𝑚)〈 𝑑
∗
𝑚 | 𝑍 | 𝑑𝑛 〉 = 0. For (2.10) to follow, it is necessary that 𝜆𝑛 are distinct (i.e.,

𝜆𝑛 ≠ 𝜆𝑚 for 𝑛 ≠ 𝑚). This assumption ensures that 〈 𝑑∗𝑚 | 𝑍 | 𝑑𝑛 〉 = 0 whenever 𝑛 ≠ 𝑚, leading to the
desired orthogonality condition. The corresponding completeness relations take the form

𝑁∑
𝑛=0

𝜅𝑛 | 𝑒𝑛 〉〈 𝑒
∗
𝑛 |= 1, (2.12)

𝑁∑
𝑛=0

𝜁𝑛 | 𝑓𝑛 〉〈 𝑓
∗
𝑛 |= 1, (2.13)

𝑁∑
𝑛=0

𝑤𝑛𝑍 | 𝑑𝑛 〉〈 𝑑
∗
𝑛 |= 1. (2.14)

2.2. Overlaps

The following set of functions of the discrete variable n and labeled by m arising as expansion coefficients
between bases are the central entities.

◦ The EVP - EVP overlaps

𝑆𝑚(𝑛) = 〈 𝑒𝑚 | 𝑓 ∗𝑛 〉, (2.15)

𝑆𝑚(𝑛) = 〈 𝑒∗𝑚 | 𝑓𝑛 〉. (2.16)

The orthogonality relations obeyed by these functions,

𝑁∑
𝑛=0

𝑆𝑚 (𝑛)𝑆𝑚′ (𝑛)𝜁𝑛 = 𝜅−1
𝑚 𝛿𝑚,𝑚′ , (2.17)

𝑁∑
𝑚=0

𝑆𝑚 (𝑛)𝑆𝑚(𝑛
′)𝜅𝑚 = 𝜁−1

𝑛 𝛿𝑛,𝑛′, (2.18)

are readily seen to follow from (2.8), (2.9), (2.12), (2.13). As already mentioned at the beginning of this
section, it is a defining property of meta algebras that V and W form a Leonard pair [5] meaning that
V is tridiagonal in the eigenbasis of W and vice versa. Since the functions 𝑆𝑚(𝑛) and 𝑆𝑚 (𝑛) are both
overlaps between reciprocal eigenbases associated to the operators V and W (and their transpose) that
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must realize an algebra of the Askey-Wilson type whose representations are known to be unitarizable,
we can expect 𝑆𝑚(𝑛) and 𝑆𝑚 (𝑛) to involve at their core the same orthogonal polynomials. (See Section
5 of [4] for ampler explanations of this point.) This will be explicitly observed in the following in the
meta Hahn case.

◦ The GEVP - EVP overlaps

𝑈𝑚(𝑛) = 〈 𝑒𝑚 | 𝑑∗𝑛 〉, (2.19)

𝑈̃𝑚 (𝑛) = 〈 𝑒∗𝑚 | 𝑍 | 𝑑𝑛 〉. (2.20)

Stemming from (2.10), (2.8), (2.14), (2.12), the orthogonalities between these functions read

𝑁∑
𝑛=0

𝑈̃𝑚(𝑛)𝑈𝑚′ (𝑛)𝑤𝑛 = 𝜅−1
𝑚 𝛿𝑚,𝑚′ , (2.21)

𝑁∑
𝑚=0

𝑈̃𝑚 (𝑛)𝑈𝑚(𝑛
′)𝜅𝑚 = 𝑤−1

𝑛 𝛿𝑛,𝑛′ . (2.22)

One defining property of a meta algebra is that it contains a GEVP analog of a Leonard pair whose
features will be fully spelled out later but which is such that X and Z are tridiagonal in the eigenbasis of
V. Integrating this fact with the above definitions, it follows that𝑈𝑚(𝑛) satisfies a generalized eigenvalue
equation defined in terms of two tridiagonal matrix and, as shown in [6], is thus formed of a rational
function which will have its biorthogonal partner contained in 𝑈̃𝑚 (𝑛). Again, this will all be confirmed
as we proceed.

From this point onward, we shall focus on the Hahn case.

3. Meta Hahn algebra

Definition 3.1. The meta Hahn algebra 𝑚ℌ is generated by X, Z and V with the defining relations:

[𝑍, 𝑋] = 𝑍2 + 𝑍, (3.1)
[𝑋,𝑉] = {𝑉, 𝑍} +𝑉 + 𝜉𝐼 (3.2)
[𝑉, 𝑍] = 2𝑋 + 𝜂𝐼. (3.3)

Consistently, [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 and {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴. The Casimir element of 𝑚ℌ is given by

𝑄 = {𝑉, 𝑍2 + 𝑍} + 2(𝑋2 + 𝑍2) + 2𝜂𝑋 + 2(𝜉 + 1)𝑍. (3.4)

The bispectral operators of the Hahn polynomials form a Leonard pair that realizes the Hahn algebra
ℌ with generators 𝐾1, 𝐾2. Its defining relations are generically of the form

[𝐾1, [𝐾2, 𝐾1]] = 𝑎𝐾2
1 + 𝑏𝐾1 + 𝑐1𝐾2 + 𝑑1𝐼, (3.5)

[𝐾2, [𝐾1, 𝐾2]] = 𝑎{𝐾1, 𝐾2} + 𝑏𝐾2 + 𝑐2𝐾1 + 𝑑2𝐼, (3.6)

where a, b, 𝑐1, 𝑐2, 𝑑1, 𝑑2 are central parameters. (It is assumed that 𝑎 ≠ 0, in which case affine
transformations of the generators bring the number of independent parameters to two.) A significant
feature of the meta Hahn algebra is that the Hahn algebra embeds in it (i.e.,ℌ ↩→ 𝑚ℌ). Indeed, by setting

𝐾1 = 𝑊 = 𝑋 + 𝜌𝑍, 𝐾2 = 𝑉 with 𝜌 ∈ R, (3.7)
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and using the relations (3.1), (3.2), (3.3) of 𝑚ℌ and the expression (3.4) for the Casimir element Q, one
sees that 𝐾1 and 𝐾2 thus defined verify the Hahn relations (3.5) and (3.6) with

𝑎 = 2, 𝑏 = 2𝜌 − 𝜉 + 2𝜂, 𝑐1 = −1, 𝑑1 = −𝑄, (3.8)
𝑐2 = 0, 𝑑2 = 2𝜉𝜌. (3.9)

Remark 3.2. In [4], the second and third defining relations of 𝑚ℌ are seen to involve an additional
parameter and to be of the form

[𝑋,𝑉] = {𝑉, 𝑍} +𝑉 + 𝜒𝑋 − 𝜒𝑍 + 𝜉𝐼, (3.10)
[𝑉, 𝑍] = 2𝑋 + 𝜒𝑍 + 𝜂𝐼. (3.11)

It is readily seen that (3.2) and (3.3) are obtained from the latter by performing the automorphisms:

𝑉 → 𝑉 +
𝜒(𝜒 + 2)

4
𝐼, 𝑋 → 𝑋 −

𝜒

2
𝑍. (3.12)

This corresponds to the freedom there is in splitting the Hahn algebra generator 𝐾1 in two parts.

4. Two-diagonal representation

Proposition 1. The two-diagonal representation of 𝑚ℌ on the finite-dimensional vector space M with
basis { | 𝑛 〉, 𝑛 = 0, . . . , 𝑁} is given by the following actions of the generators Z, X and V:

𝑍 | 𝑛 〉 = − | 𝑛 〉 + 𝑎𝑛 | 𝑛 + 1 〉, (4.1)
𝑋 | 𝑛 〉 = (𝑛 − 𝛼) | 𝑛 〉 − 𝑎𝑛 (𝑛 − 𝛽) | 𝑛 + 1 〉. (4.2)

𝑉 | 𝑛 〉 = (𝛽 − 𝑛) (𝑛 − 𝛽 − 1) | 𝑛 〉 −
𝑛(𝑁 + 1 − 𝑛)

𝑎𝑛−1
| 𝑛 − 1 〉, (4.3)

with 𝑎𝑛, 𝑛 = 0, . . . , 𝑁 , normalization constants such that 𝑎𝑁 = 0, and 𝛼, 𝛽 two parameters related to
the algebra parameters 𝜉, 𝜂 and N as follows:

𝜂 = −𝑁 + 2𝛼, 𝜉 = (𝛽 + 1) (𝑁 − 𝛽). (4.4)

Proof. Assume that

𝑍 | 𝑛 〉 = 𝑐𝑛 | 𝑛 〉 + 𝑎𝑛 | 𝑛 + 1 〉, (4.5)
𝑋 | 𝑛 〉 = 𝑑𝑛 | 𝑛 〉 + 𝑏𝑛 | 𝑛 + 1 〉. (4.6)

From (3.1), one obtains

𝑎𝑛𝑎𝑛+1 + 𝑎𝑛𝑏𝑛+1 − 𝑎𝑛+1𝑏𝑛 = 0,

which leads to

𝑏𝑛 = 𝑎𝑛 (−𝑛 + 𝛽). (4.7)

One then finds that 𝑐𝑛 (𝑐𝑛 + 1) = 0. Taking 𝑐𝑛 = −1, it follows that

𝑑𝑛 = 𝑛 − 𝛼. (4.8)

The first relation (3.1) thus gives the two-diagonal actions (4.1) and (4.2) of Z and X. Furthermore, the
second and third relations (3.2)-(3.3) yield (4.3) for 𝑉 | 𝑛 〉 with the conditions (4.4) required to ensure
a finite-dimensional truncation. �
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Although this readily follows from Proposition 1, we shall record for convenience the action of the
transposed generators:

𝑍� | 𝑛 〉 = − | 𝑛 〉 + 𝑎𝑛−1 | 𝑛 − 1 〉, (4.9)
𝑋� | 𝑛 〉 = (𝑛 − 𝛼) | 𝑛 〉 − 𝑎𝑛−1 (𝑛 − 1 − 𝛽) | 𝑛 − 1 〉, (4.10)

𝑉� | 𝑛 〉 = (𝛽 − 𝑛) (𝑛 − 𝛽 − 1) | 𝑛 〉 −
(𝑛 + 1) (𝑁 − 𝑛)

𝑎𝑛
| 𝑛 + 1 〉. (4.11)

5. (Generalized) eigenbases

The various eigenbases of M defined in Section 2 can now be explicitly constructed given the above
two-diagonal representation of 𝑚ℌ. The results are gathered below.

Proposition 2. The solutions to the GEVPs and EVPs of interest are given as follows in terms of
expansions over the basis { | 𝑛 〉, 𝑛 = 0, . . . , 𝑁}:

◦ 𝑋 | 𝑑𝑛 〉 = 𝜆𝑛𝑍 | 𝑑𝑛 〉

𝜆𝑛 = 𝛼 − 𝑛, (5.1)

| 𝑑𝑛 〉 =
𝑁∑
ℓ=0

𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎ℓ𝑎ℓ+1 · · · 𝑎𝑁−1

(𝑛 − 𝑁)𝑁−ℓ (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)𝑁−ℓ
| ℓ 〉. (5.2)

◦ 𝑋� | 𝑑∗𝑛 〉 = 𝜆𝑛𝑍
� | 𝑑∗𝑛 〉

𝜆𝑛 = 𝛼 − 𝑛, (5.3)

| 𝑑∗𝑛 〉 =
𝑁∑
ℓ=0

𝑎0𝑎1 · · · 𝑎𝑛−1
𝑎0𝑎1 · · · 𝑎ℓ−1

(−𝑛)ℓ (−𝑛 + 𝛼 − 𝛽)𝑛
(−𝑛)𝑛 (−𝑛 + 𝛼 − 𝛽)ℓ

| ℓ 〉. (5.4)

◦ 𝑉 | 𝑒𝑛 〉 = 𝜇𝑛 | 𝑒𝑛 〉

𝜇𝑛 = (𝛽 − 𝑛) (𝑛 − 𝛽 − 1), (5.5)

| 𝑒𝑛 〉 =
𝑁∑
ℓ=0

𝑎0𝑎1 · · · 𝑎ℓ−1
𝑎0𝑎1 · · · 𝑎𝑛−1

𝑛!(−𝑁)𝑛 (−𝑛, 𝑛 − 2𝛽 − 1)ℓ
ℓ!(−𝑁)ℓ (−𝑛, 𝑛 − 2𝛽 − 1)𝑛

| ℓ 〉. (5.6)

◦ 𝑉� | 𝑒∗𝑛 〉 = 𝜇𝑛𝑒
∗
𝑛

𝜇𝑛 = (𝛽 − 𝑛) (𝑛 − 𝛽 − 1), (5.7)

| 𝑒∗𝑛 〉 =
𝑁∑
ℓ=0

𝑎ℓ𝑎ℓ+1 · · · 𝑎𝑁−1
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1

(𝑁 − 𝑛)!(−𝑁)𝑁−𝑛 (𝑛 − 𝑁,−𝑁 − 𝑛 + 2𝛽 + 1)𝑁−ℓ

(𝑁 − ℓ)!(−𝑁)𝑁−ℓ (𝑛 − 𝑁,−𝑁 − 𝑛 + 2𝛽 + 1)𝑁−𝑛
| ℓ 〉. (5.8)

◦ 𝑊 | 𝑓𝑛 〉 = (𝑋 + 𝜇𝑍) | 𝑓𝑛 〉 = 𝜌𝑛 | 𝑓𝑛 〉

𝜌𝑛 = 𝑛 − 𝛼 − 𝜇, (5.9)

| 𝑓𝑛 〉 =
𝑁∑
ℓ=0

𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎ℓ𝑎ℓ+1 · · · 𝑎𝑁−1

(𝑛 − 𝑁)𝑁−ℓ (−𝑁 + 𝛽 + 𝜇 + 1)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (−𝑁 + 𝛽 + 𝜇 + 1)𝑁−ℓ
| ℓ 〉. (5.10)
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◦ 𝑊� | 𝑓 ∗𝑛 〉 = (𝑋� + 𝜇𝑍�) | 𝑓 ∗𝑛 〉 = 𝜌𝑛 | 𝑓 ∗𝑛 〉

𝜌𝑛 = 𝑛 − 𝛼 − 𝜇, (5.11)

| 𝑓 ∗𝑛 〉 =
𝑁∑
ℓ=0

𝑎0𝑎1 · · · 𝑎𝑛−1
𝑎0𝑎1 · · · 𝑎ℓ−1

(−𝑛)ℓ (−𝛽 − 𝜇)𝑛
(−𝑛)𝑛 (−𝛽 − 𝜇)ℓ

| ℓ 〉. (5.12)

Note importantly that the normalizations in (2.8), (2.9), (2.10), have been chosen so that 𝜅𝑛 = 1,
𝜁𝑛 = 1 and 𝑤𝑛 = −1.

Proof. Here is a sketch of the proof. First, the eigenvalues 𝜆𝑛, 𝜇𝑛 and 𝜌𝑛 are straightforwardly identified
from the diagonal part of the actions of the generators. Second, consider to begin, the eigenvectors
{ | 𝑒𝑛 〉 }

𝑁
𝑛=0 of V in the 𝑁 + 1-dimensional space M. From 𝑉 | 𝑒𝑛 〉 = 𝜇𝑛 | 𝑒𝑛 〉, we have

〈 ℓ | (𝑉 − 𝜇𝑛) | 𝑒𝑛 〉 = 0, (ℓ = 0, 1, . . . , 𝑁), (5.13)

which upon using the action of 𝑉� on 〈 ℓ | amounts to

(𝜇ℓ − 𝜇𝑛)〈 ℓ | 𝑒𝑛 〉 −
(ℓ + 1) (𝑁 − ℓ)

𝑎ℓ
〈 ℓ + 1 | 𝑒𝑛 〉 = 0, (ℓ = 0, 1, . . . , 𝑁), (5.14)

where 𝜇𝑘 = (𝛽− 𝑘) (𝑘 − 𝛽−1). It is easy to solve (5.14) under the normalization condition 〈 𝑛 | 𝑒𝑛 〉 = 1
to find the explicit expression for | 𝑒𝑛 〉 given in (5.6).

Coming to the generalized eigenvectors { | 𝑑𝑛 〉 }𝑁𝑛=0 for 𝑋 | 𝑑𝑛 〉 = 𝜆𝑛𝑍 | 𝑑𝑛 〉, one has

〈 𝑁 − ℓ | (𝑋 − 𝜆𝑛𝑍) | 𝑑𝑛 〉 = 0, (ℓ = 0, 1, . . . , 𝑁), (5.15)

which leads to

−(𝜆𝑁−ℓ − 𝜆𝑛)〈 𝑁 − ℓ | 𝑑𝑛 〉 + ((−𝑁 + ℓ + 1 + 𝛽) − 𝜆𝑛))𝑎𝑁−ℓ−1〈 𝑁 − ℓ − 1 | 𝑑𝑛 〉 = 0, (5.16)

where 𝜆𝑘 = 𝛼 − 𝑘 , for ℓ = 0, 1, . . . , 𝑁 . Solving (5.16) under the normalization 〈 𝑛 | 𝑑𝑛 〉 = 1 yields

〈 𝑁 − ℓ | 𝑑𝑛 〉 =
ℓ−1∏
𝑗=0

(𝑛 + 𝑗 − 𝑁)

𝑎𝑁− 𝑗−1 (𝑛 + 𝑗 − 𝑁 − 𝛼 + 𝛽 + 1)
〈 𝑁 | 𝑑𝑛 〉 (5.17)

=
𝑎𝑛 · · · 𝑎𝑁−1

𝑎𝑁−ℓ · · · 𝑎𝑁−1

(𝑛 − 𝑁)ℓ (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)ℓ
. (5.18)

and hence the formula for | 𝑑𝑛 〉 provided in (5.2).
Similarly, the eigenvectors | 𝑒∗𝑛 〉 (5.8) and | 𝑑∗𝑛 〉 (5.4) of the problems involving the transposed

operators 𝑉�, 𝑋� and 𝑍� are respectively obtained by solving

〈 𝑁 − ℓ | (𝑉� − 𝜇𝑛) | 𝑒
∗
𝑛 〉 = 0, 〈 ℓ | (𝑋� − 𝜆𝑛𝑍

�) | 𝑑∗𝑛 〉 = 0, (5.19)

which entails

(𝜇𝑁−ℓ − 𝜇𝑛)〈 𝑁 − ℓ | 𝑒∗𝑛 〉 −
(ℓ + 1) (𝑁 − ℓ)

𝑎𝑁−ℓ−1
〈 𝑁 − ℓ − 1 | 𝑒∗𝑛 〉 = 0, (5.20)

− (𝜆ℓ − 𝜆𝑛)〈 ℓ | 𝑑∗𝑛 〉 + ((−ℓ + 𝛽) − 𝜆𝑛))𝑎ℓ 〈 ℓ + 1 | 𝑑∗𝑛 〉 = 0, (5.21)

for ℓ = 0, 1, . . . , 𝑁 . One proceeds in the same fashion to obtain the expressions (5.10) and (5.12) for
| 𝑓𝑛 〉 and | 𝑓 ∗𝑛 〉. �
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Let us record here the following formula for the action of Z on | 𝑑𝑛 〉:

𝑍 | 𝑑𝑛 〉 =
𝑁∑
ℓ=0

𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎ℓ𝑎ℓ+1 · · · 𝑎𝑁−1

(𝑛 − 𝑁)𝑁−ℓ (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)𝑁−ℓ
𝑍 | ℓ 〉

=
𝑁∑
ℓ=0

𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎ℓ𝑎ℓ+1 · · · 𝑎𝑁−1

(𝑛 − 𝑁)𝑁−ℓ (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑛 − 𝑁 − 𝛼 + 𝛽 + 1)𝑁−ℓ
(− | ℓ 〉 + 𝑎ℓ | ℓ + 1 〉)

= −

𝑁∑
ℓ=0

𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎ℓ𝑎ℓ+1 · · · 𝑎𝑁−1

(𝑛 − 𝑁)𝑁−ℓ (𝑛 − 𝑁 − 𝛼 + 𝛽 + 2)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑛 − 𝑁 − 𝛼 + 𝛽 + 2)𝑁−ℓ
| ℓ 〉

= − | 𝑑𝑛 〉
���
𝛼→𝛼−1

, (5.22)

where 𝑎𝑁 = 0.
We further notice that the eigenvectors are of the form

| 𝑒𝑛 〉 = | 𝑛 〉 +
𝑛−1∑
𝑗=0

𝐶 (𝑒)
𝑛, 𝑗 | 𝑗 〉, | 𝑒∗𝑛 〉 = | 𝑛 〉 +

𝑁∑
𝑗=𝑛+1

𝐶 (𝑒∗)
𝑛, 𝑗 | 𝑗 〉,

| 𝑓𝑛 〉 = | 𝑛 〉 +
𝑁∑

𝑗=𝑛+1
𝐶

( 𝑓 )
𝑛, 𝑗 | 𝑗 〉, | 𝑓 ∗𝑛 〉 = | 𝑛 〉 +

𝑛−1∑
𝑗=0

𝐶
( 𝑓 ∗)
𝑛, 𝑗 | 𝑗 〉,

𝑍 | 𝑑𝑛 〉 = − | 𝑛 〉 +
𝑁∑

𝑗=𝑛+1
𝐶 (𝑍𝑑)
𝑛, 𝑗 | 𝑗 〉, | 𝑑∗𝑛 〉 = | 𝑛 〉 +

𝑛−1∑
𝑗=0

𝐶 (𝑑∗)
𝑛, 𝑗 | 𝑗 〉.

in keeping with the normalization choices and that the orthogonality relations (2.8), (2.9), (2.10), with
the given conventions, are thus explicitly seen to result.

6. Representations of 𝑚ℌ on various bases

Some bits of the representation theory of 𝑚ℌ on EVP and GEVP bases were developed directly [4]
without recourse obviously to the two-diagonal representation. It is here possible to proceed with much
more ease and clarity since these basis eigenvectors are now explicitly known elements of a fully
characterized representation space. In addition to providing in this Section (and in Appendix A) various
matrix elements of the generators (in these various eigenbases that will be used in the treatment of the
arising special functions), we shall also summarize some salient features of these representations. We
shall generically denote by 𝑂 (𝑏)

𝑚,𝑛 the 𝑚, 𝑛 entry of the matrix representing the operator O in the basis
𝑏 ∈ {𝑑, 𝑑∗, 𝑒, 𝑒∗, 𝑓 , 𝑓 ∗}.

6.1. Representations in the e and 𝑒∗ bases

The e and 𝑒∗ bases, respectively formed from the eigenvectors of V and𝑉�, are pivotal in that they enter
in the construction of both pairs of functions 𝑆, 𝑆 and 𝑈, 𝑈̃. A key observation is that X and Z (and
hence 𝑊 = 𝑋 + 𝜌𝑍) are tridiagonal in the basis e.

From the expression (5.6) for | 𝑒𝑛 〉 and the actions of 𝑍, 𝑋 on the standard basis, we obtain in
addition to 𝑉 | 𝑒𝑛 〉 = 𝜇𝑛 | 𝑒𝑛 〉,

𝑍 | 𝑒𝑛 〉 = 𝑍 (𝑒)
𝑛+1,𝑛 | 𝑒𝑛+1 〉 + 𝑍 (𝑒)

𝑛,𝑛 | 𝑒𝑛 〉 + 𝑍 (𝑒)
𝑛−1,𝑛 | 𝑒𝑛−1 〉, (6.1)

𝑋 | 𝑒𝑛 〉 = 𝑋 (𝑒)
𝑛+1,𝑛 | 𝑒𝑛+1 〉 + 𝑋 (𝑒)

𝑛,𝑛 | 𝑒𝑛 〉 + 𝑋 (𝑒)
𝑛−1,𝑛 | 𝑒𝑛−1 〉, (6.2)
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where

𝑍 (𝑒)
𝑛+1,𝑛 = 𝑎𝑛, (6.3)

𝑍 (𝑒)
𝑛,𝑛 = −1 −

(𝑛 + 1) (𝑛 − 𝑁)

2(𝛽 − 𝑛)
+
𝑛(𝑛 − 𝑁 − 1)
2(𝛽 − 𝑛 + 1)

, (6.4)

𝑍 (𝑒)
𝑛−1,𝑛 =

𝑛(𝑛 − 𝑁 − 1) (𝛽 + (−𝑛 + 2)/2) (𝛽 + (−𝑛 + 1 − 𝑁)/2)
4𝑎𝑛−1 (𝛽 − 𝑛 + 1/2) (𝛽 − 𝑛 + 1)2(𝛽 − 𝑛 + 3/2)

, (6.5)

𝑋 (𝑒)
𝑛+1,𝑛 = 𝑎𝑛 (𝛽 − 𝑛), (6.6)

𝑋 (𝑒)
𝑛,𝑛 =

𝑁

2
− 𝛼, (6.7)

𝑋 (𝑒)
𝑛−1,𝑛 = −(𝛽 − 𝑛 + 1)𝑍 (𝑒)

𝑛−1,𝑛. (6.8)

The tridiagonal actions of the transposed operators 𝑋� and 𝑍� on | 𝑒∗𝑛 〉 is readily obtained from the
formulas above.

6.2. Representations in the f and 𝑓 ∗ bases

The f and 𝑓 ∗ bases are made out of the eigenvectors of the linear pencil𝑊 = 𝑋 + 𝜌𝑍 and of its transpose
𝑊� = 𝑋� + 𝜌𝑍�. The significant observation here is that V is tridiagonal in the f basis. Indeed, a
straightforward computation gives

𝑉 | 𝑓𝑛 〉 = 𝑉
( 𝑓 )
𝑛+1,𝑛 | 𝑓𝑛+1 〉 +𝑉

( 𝑓 )
𝑛,𝑛 | 𝑓𝑛 〉 +𝑉

( 𝑓 )
𝑛−1,𝑛 | 𝑓𝑛−1 〉, (6.9)

with

𝑉
( 𝑓 )
𝑛+1,𝑛 = 𝑎𝑛 (𝑛 − 𝛽 − 𝜇) (𝑛 − 𝑁 + 𝛽 − 𝜇 + 1), (6.10)

𝑉
( 𝑓 )
𝑛,𝑛 = (𝑁 − 2𝑛)𝜇 − 2𝑛(𝑁 − 𝑛) + 𝛽(𝑁 − 𝛽 − 1), (6.11)

𝑉
( 𝑓 )
𝑛−1,𝑛 =

𝑛(𝑛 − 𝑁 − 1)
𝑎𝑛−1

. (6.12)

Naturally,𝑉� acts tridiagonally in the 𝑓 ∗ basis; see (A.14), (A.22). As alluded to before, in conjunction
with the observations made in the last subsection, this confirms that V and W form a Leonard pair with
V tridiagonal in the f basis where W is diagonal and conversely with W tridiagonal in the e basis that
diagonalizes V. In this case, the set { | 𝑛 〉 } plays the role of a split basis for the pair [5], and this yields
in a simple way the finite-dimensional representations of the Hahn algebra ℌ.

6.3. Representations in the d and 𝑑∗ bases

We recall that these bases are obtained from the solutions of the GEVP (𝑋 − 𝜆𝑛𝑍) | 𝑑𝑛 〉 = 0 and its
adjoint. There are two observations to stress regarding the actions of the generators in these bases. The
first one is that V is represented by a upper Hessenberg matrix in the basis d, that is a matrix with zero
entries above the first superdiagonal. See (A.3). The transposed situation occurs for 𝑉� in the basis 𝑑∗

(A.6). The second observation is that 𝑉𝑍 and 𝑉�𝑍� respectfully act tridiagonally on the basis d and
𝑑∗. The reader is referred to Appendix A for the corresponding formulas and additional results on the
actions of the operators in the various bases. We thus see how the notion of Leonard pair generalizes to
situations involving one GEVP and one EVP. The operators X and Z that define the GEVP are tridiagonal
in the basis e where V is diagonal, while it is 𝑉𝑍 (or 𝑉𝑋) that is tridiagonal in the basis d generated by
the GEVP solutions. Therein lies as we will see the bispectrality of the BRFs U and 𝑈̃.
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7. Hahn and dual Hahn polynomials

How the Hahn (and dual Hahn) polynomials arise in the functions 𝑆𝑚(𝑛) = 〈 𝑒𝑚 | 𝑓 ∗𝑛 〉 and 𝑆𝑚 (𝑛) =
〈 𝑒∗𝑚 | 𝑓𝑛 〉 is shown next. The characterization of these polynomials [7] is of course classical. It is
recorded in the present context to underscore that their orthogonality and bispectral properties are
obtained quite easily from the meta Hahn algebra representations and more importantly that OPs and
BRFs can be treated within this framework in a completely parallel fashion.

Recall [7] that the Hahn polynomials are defined as

𝑄𝑚(𝑥; 𝛼̂, 𝛽, 𝑁) = 3𝐹2

(
−𝑚, 𝑚 + 𝛼̂ + 𝛽 + 1,−𝑥

−𝑁, 𝛼̂ + 1 ; 1
)
, 𝑚 = 0, . . . , 𝑁 (7.1)

and the dual Hahn polynomials as

𝑅𝑚(𝜆(𝑥), 𝛼̂, 𝛽, 𝑁) = 3𝐹2

(
−𝑚,−𝑥, 𝑥 + 𝛼̂ + 𝛽 + 1

−𝑁, 𝛼̂ + 1 ; 1
)
, with 𝜆(𝑥) = 𝑥(𝑥 + 𝛼̂ + 𝛽 + 1). (7.2)

Note that when x is the discrete variable 𝑛 = 0, . . . , 𝑁 , the dual Hahn polynomials are obtained from
the Hahn ones by exchanging m and n in the latter: 𝑅𝑚 (𝜆(𝑛), 𝛼̂, 𝛽, 𝑁) = 𝑄𝑛 (𝑚; 𝛼̂, 𝛽, 𝑁). The notation

(𝑎1, 𝑎2, . . . , 𝑎𝑘 )𝑛 = (𝑎1)𝑛 (𝑎2)𝑛 . . . (𝑎𝑘 )𝑛 (7.3)

shall be used.

7.1. Identification

Here is the precise connection between the EVP-EVP overlaps and the Hahn polynomials.

Proposition 3. The functions 𝑆𝑚 (𝑛) = 〈 𝑒𝑚 | 𝑓 ∗𝑛 〉 and 𝑆𝑚(𝑛) = 〈 𝑒∗𝑚 | 𝑓𝑛 〉 are both expressible in terms
of Hahn polynomials as follows:

𝑆𝑚 (𝑛) =
𝑎0𝑎1 · · · 𝑎𝑛−1
𝑎0𝑎1 · · · 𝑎𝑚−1

𝑁!(−1)𝑛

𝑛!(𝑁 − 𝑚)!
(𝛼̂ + 1)𝑛

(𝑚 + 𝛼̂ + 𝛽 + 1)𝑚
𝑄𝑚(𝑛; 𝛼̂, 𝛽, 𝑁), (7.4)

𝑆𝑚 (𝑛) =
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎𝑚𝑎𝑚+1 · · · 𝑎𝑁−1

𝑁!(−1)𝑛 (𝛼̂ + 1)𝑚
𝑚!(𝑁 − 𝑛)!(𝛽 + 1)𝑚

(𝛽 + 1)𝑁−𝑛

(2𝑚 + 𝛼̂ + 𝛽 + 2)𝑁−𝑚

𝑄𝑚(𝑛; 𝛼̂, 𝛽, 𝑁), (7.5)

with

𝛼̂ = −1 − 𝛽 − 𝜇, 𝛽 = 𝜇 − 𝛽 − 1. (7.6)

Proof. Given the expressions (5.6) and (5.12) for | 𝑒𝑛 〉 and | 𝑓 ∗𝑛 〉 respectively, using 〈 ℓ | 𝑘 〉 = 𝛿ℓ,𝑘
and simple transformations, one straightforwardly finds

〈 𝑒𝑚 | 𝑓 ∗𝑛 〉 =
𝑎0𝑎1 · · · 𝑎𝑛−1
𝑎0𝑎1 · · · 𝑎𝑚−1

𝑁!(−1)𝑛

𝑛!(𝑁 − 𝑚)!
(−𝛽 − 𝜇)𝑛

(−2𝛽 + 𝑚 − 1)𝑚

𝑁∑
ℓ=0

(−𝑛,−𝑚, 𝑚 − 2𝛽 − 1)ℓ
ℓ!(−𝑁,−𝛽 − 𝜇)ℓ

, (7.7)

which in view of definition (7.1) is readily seen to yield (7.4) under the identification (7.6). The derivation
of formula (7.5) requires a little more effort. From (5.8) and (5.10), it is immediate to find

𝑆𝑚(𝑛) = 〈 𝑒∗𝑚 | 𝑓𝑛 〉 =
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎𝑚𝑎𝑚+1 · · · 𝑎𝑁−1

(𝑁 − 𝑚)!(−𝑁)𝑁−𝑚(−𝑁 + 𝛽 + 𝜇 + 1)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑚 − 𝑁,−𝑁 − 𝑚 + 2𝛽 + 1)𝑁−𝑚

×

𝑁∑
𝑘=0

(𝑛 − 𝑁, 𝑚 − 𝑁,−𝑁 − 𝑚 + 2𝛽 + 1)𝑘
𝑘!(−𝑁,−𝑁 + 𝛽 + 𝜇 + 1)𝑘

. (7.8)
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The hypergeometric sum in (7.8) needs to be transformed to identify the Hahn polynomial. The following
two formulas will be used:

3𝐹2

(
𝑎, 𝑏, 𝑐
𝑑, 𝑒

; 1
)
=

Γ(𝑒)Γ(𝑑 + 𝑒 − 𝑎 − 𝑏 − 𝑐)

Γ(𝑒 − 𝑐)Γ(𝑑 + 𝑒 − 𝑏 − 𝑐)
3𝐹2

(
𝑎, 𝑑 − 𝑏, 𝑑 − 𝑐
𝑑, 𝑑 + 𝑒 − 𝑏 − 𝑐

; 1
)
, (7.9)

(corollary 3.3.5 in [8]) and

3𝐹2

(
−𝑛, 𝑏, 𝑐
𝑑, 𝑒

; 1
)
=

(𝑒 − 𝑐)𝑛
(𝑒)𝑛

3𝐹2

(
−𝑛, 𝑑 − 𝑏, 𝑐

𝑑, 𝑐 − 𝑒 − 𝑛 + 1 ; 1
)
, (7.10)

(an exercise in [9] and a special case of Whipple’s formula [10]). From (7.9), one has

3𝐹2

(
−𝑁 − 𝑚 + 2𝛽 + 1, 𝑛 − 𝑁, 𝑚 − 𝑁

−𝑁,−𝑁 + 𝛽 + 𝜇 + 1 ; 1
)
=

Γ(𝛽 + 𝜇 + 1 − 𝑁)Γ(𝜇 − 𝛽 − 𝑛 + 𝑁)

Γ(𝛽 + 𝜇 + 1 − 𝑛 − 𝑚)Γ(𝜇 − 𝛽 + 𝑚)

× 3𝐹2

(
−𝑁 − 𝑚 + 2𝛽 + 1,−𝑛,−𝑚
−𝑁, 𝛽 + 𝜇 + 1 − 𝑛 − 𝑚

; 1
)
, (7.11)

and (7.10) yields

3𝐹2

(
−𝑁 − 𝑚 + 2𝛽 + 1,−𝑛,−𝑚
−𝑁, 𝛽 + 𝜇 + 1 − 𝑛 − 𝑚

; 1
)
=

(−𝛽 − 𝜇)𝑛
(𝑚 − 𝛽 − 𝜇)𝑛

3𝐹2

(
𝑚 − 2𝛽 − 1,−𝑛,−𝑚

−𝑁,−𝛽 − 𝜇
; 1
)
, (7.12)

where we have used (𝑎 + 1 − 𝑛)𝑛 = (−1)𝑛 (−𝑎)𝑛. Combining these results and recalling that Γ(𝑎 +

𝑛)/Γ(𝑎) = (𝑎)𝑛, one finds

𝑆𝑚(𝑛) =
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎𝑚𝑎𝑚+1 · · · 𝑎𝑁−1

(𝑁 − 𝑚)!(−𝑁)𝑁−𝑚

(𝑛 − 𝑁)𝑁−𝑛 (𝑚 − 𝑁)𝑁−𝑚

(−𝑁 + 𝛽 + 𝜇 + 1)𝑁−𝑛

(−𝑁 − 𝑚 + 2𝛽 + 1)𝑁−𝑚

×
(𝜇 − 𝛽)𝑁−𝑛

(−𝑁 + 𝛽 + 𝜇 + 1)𝑁−𝑛−𝑚(𝜇 − 𝛽)𝑚

(−𝛽 − 𝜇)𝑛
(𝑚 − 𝛽 − 𝜇)𝑛

3𝐹2

(
𝑚 − 2𝛽 − 1,−𝑛,−𝑚

−𝑁,−𝛽 − 𝜇
; 1
)
. (7.13)

Numerous simplifications can now be performed. First one notes that

(𝑁 − 𝑚)!(−𝑁)𝑁−𝑚

(𝑛 − 𝑁)𝑁−𝑛 (𝑚 − 𝑁)𝑁−𝑚
= (−1)𝑁−𝑛 𝑁!

(𝑁 − 𝑛)!𝑚!
. (7.14)

From the simple identity (−𝑚 − 𝑎 + 1)𝑚 = (−1)𝑚(𝑎)𝑚, it follows that

(−𝑁 − 𝑚 + 2𝛽)𝑁−𝑚 = (−1)𝑁−𝑚(2𝑚 − 2𝛽 + 1)𝑁−𝑚, (7.15)

and one can further show that

(−𝑁 + 𝛽 + 𝜇 + 1)𝑁−𝑛

(−𝑁 + 𝛽 + 𝜇 + 1)𝑁−𝑛−𝑚
= (−1)𝑚(𝑛 − 𝛽 − 𝜇)𝑚, (7.16)

and that

(−𝛽 − 𝜇)𝑛
(𝑚 − 𝛽 − 𝜇)𝑛

=
(−𝛽 − 𝜇)𝑚
(𝑛 − 𝛽 − 𝜇)𝑚

. (7.17)
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Putting all this together, one arrives at

𝑆𝑚(𝑛) =
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎𝑚𝑎𝑚+1 · · · 𝑎𝑁−1

𝑁!(−1)𝑛

(𝑁 − 𝑛)!𝑚!

×
(𝜇 − 𝛽)𝑁−𝑛 (−𝛽 − 𝜇)𝑚
(2𝑚 − 2𝛽)𝑁−𝑚(𝜇 − 𝛽)𝑚

3𝐹2

(
𝑚 − 2𝛽 − 1,−𝑛,−𝑚

−𝑁,−𝛽 − 𝜇
; 1
)
, (7.18)

which is checked to coincide with (7.5) upon substituting the parameters (7.6) and using the definition
(7.1) of the Hahn polynomials. �

7.2. Orthogonality relations

The fact that the functions 𝑆𝑚 (𝑛) and 𝑆𝑚 (𝑛) are orthogonal by construction with respect to the variables
m and n (recall (2.17), (2.18)) can now be exploited to readily recover the orthogonality relations of the
Hahn and dual Hahn polynomials and their normalizations. Remember that 𝜁𝑛 = 𝜅𝑛 = 1,∀𝑛 given the
normalization of the eigenvectors that have been imposed in Section 5.

Substituting the expressions for 𝑆𝑚(𝑛) and 𝑆𝑚(𝑛) of Proposition 3 in

𝑁∑
𝑛=0

𝑆𝑚(𝑛)𝑆𝑚′ (𝑛) = 𝛿𝑚.𝑚′ , (7.19)

one finds
𝑁∑
𝑛=0

(𝛼̂ + 1)𝑛 (𝛽 + 1)𝑁−𝑛

𝑛!(𝑁 − 𝑛)!
𝑄𝑚 (𝑛; 𝛼̂, 𝛽, 𝑁)𝑄𝑚′ (𝑛; 𝛼̂, 𝛽, 𝑁)

=
(−1)𝑚(𝑚 + 𝛼̂ + 𝛽 + 1)𝑁+1(𝛽 + 1)𝑚𝑚!
(2𝑚 + 𝛼̂ + 𝛽 + 1) (𝛼̂ + 1)𝑚(−𝑁)𝑛𝑁!

𝛿𝑚,𝑚′ , (7.20)

using

(2𝑚 + 𝛼̂ + 𝛽 + 2)𝑁−𝑚(𝑚 + 𝛼̂ + 𝛽 + 1)𝑚 =
(𝑚 + 𝛼̂ + 𝛽 + 1)𝑁+1

(2𝑚 + 𝛼̂ + 𝛽 + 1)
(7.21)

and (−𝑁)𝑛 = (−1)𝑛𝑁!/(𝑁 − 𝑛)!. This is seen to coincide exactly with the formula given in [7] if one
recalls that (

𝛼 + 𝑘

𝑘

)
= (−1)𝑘

(−𝛼 − 𝑘)𝑘
𝑘!

=
(𝛼 + 1)𝑘

𝑘!
. (7.22)

The other orthogonality relation,

𝑁∑
𝑚=0

𝑆𝑚(𝑛)𝑆𝑚(𝑛
′) = 𝛿𝑛.𝑛′ , (7.23)

gives (using again (7.21)) the dual relation

𝑁∑
𝑚=0

(2𝑚 + 𝛼̂ + 𝛽 + 1) (𝛼̂ + 1)𝑚(−𝑁)𝑚𝑁!
(−1)𝑚(𝑚 + 𝛼̂ + 𝛽 + 1)𝑁+1(𝛽 + 1)𝑚𝑚!

𝑄𝑚(𝑛; 𝛼̂, 𝛽, 𝑁)𝑄𝑚(𝑛
′; 𝛼̂, 𝛽, 𝑁) (7.24)

=
(𝑁 − 𝑛)!𝑛!

(𝛼̂ + 1)𝑛 (𝛽 + 1)𝑁−𝑛

𝛿𝑛,𝑛′ , (7.25)

which is, of course, the orthogonality relation of the dual Hahn polynomials [7].
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7.3. Bispectral properties

The recurrence relation and difference equation of the Hahn polynomials follow in the present picture
from the fact that they appear in overlaps between eigenvectors of two different EVPs.

7.3.1. Recurrence relation
Recall the EVPs defined in terms of the linear pencil 𝑊 = 𝑋 + 𝜇𝑍 and its transpose: 𝑊 | 𝑓𝑛 〉 = 𝜌𝑛 | 𝑓𝑛 〉
and 𝑊� | 𝑓 ∗𝑛 〉 = 𝜌𝑛 | 𝑓 ∗𝑛 〉 with 𝜌𝑛 = 𝑛 − 𝛼 − 𝜇. From (〈 𝑓 ∗𝑛 | 𝑊�) | 𝑒𝑚 〉 = 〈 𝑓 ∗𝑛 | 𝑊 | 𝑒𝑚 〉, one has

𝜌𝑛〈 𝑓
∗
𝑛 | 𝑒𝑚 〉 = 𝑊 (𝑒)

𝑚+1,𝑚〈 𝑓
∗
𝑛 | 𝑒𝑚+1 〉 +𝑊 (𝑒)

𝑚,𝑚〈 𝑓
∗
𝑛 | 𝑒𝑚 〉 +𝑊 (𝑒)

𝑚−1,𝑚〈 𝑓
∗
𝑛 | 𝑒𝑚−1 〉. (7.26)

The matrix elements 𝑊 (𝑒)
𝑖, 𝑗 of W in the basis e are readily obtained from those of X and Z given by

formulas (6.3)–(6.8).
This amounts to the following recurrence relation for 𝑆𝑚 (𝑛):

𝜌𝑛𝑆𝑚 (𝑛) = 𝑊 (𝑒)
𝑚+1,𝑚𝑆𝑚+1(𝑛) +𝑊 (𝑒)

𝑚,𝑚𝑆𝑚(𝑛) +𝑊 (𝑒)
𝑚−1,𝑚𝑆𝑚−1(𝑛) (7.27)

from where the one for the Hahn polynomials follow. Indeed, substituting the expression (7.4) for 𝑆𝑚(𝑛)
one finds,

(𝑛 − 𝛼 − 𝜇)𝑄𝑚(𝑛) = 𝑊 (𝑒)
𝑚+1,𝑚

(𝑁 − 𝑚) (𝑚 + 𝛼̂ + 𝛽 + 1)
𝑎𝑚 (2𝑚 + 𝛼̂ + 𝛽 + 1) (2𝑚 + 𝛼̂ + 𝛽 + 2)

𝑄𝑚+1(𝑛)

+𝑊 (𝑒)
𝑚,𝑚𝑄𝑚(𝑛)

+𝑊 (𝑒)
𝑚−1,𝑚

𝑎𝑚−1 (2𝑚 + 𝛼̂ + 𝛽 − 1) (2𝑚 + 𝛼̂ + 𝛽)

(𝑁 − 𝑚 + 1) (𝑚 + 𝛼̂ + 𝛽)
𝑄𝑚−1(𝑛), (7.28)

where we have suppressed the parameters of the Hahn polynomials 𝑄𝑚 (𝑥; 𝛼̂, 𝛽, 𝑁). Replacing the
original parameters by 𝛼̂ and 𝛽 given in (7.6), one finds for the matrix elements,

𝑊 (𝑒)
𝑚+1,𝑚 = −𝑎𝑚 (𝑚 + 𝛼̂ + 1), (7.29)

𝑊 (𝑒)
𝑚,𝑚 + 𝛼 + 𝜇 =

𝑁

2
+

(𝛽 − 𝛼̂)

2(2𝑛 + 𝛼̂ + 𝛽 + 2)

[
2𝑛 − 𝑁 −

2𝑛(𝑛 − 𝑁 − 1)
2𝑛 + 𝛼̂ + 𝛽

]

=
𝑁

2
+
𝛽 − 𝛼̂

4
+

(𝛼̂2 − 𝛽2) (2𝑁 + 𝛼̂ + 𝛽 + 2)
4(2𝑛 + 𝛼̂ + 𝛽) (2𝑛 + 𝛼̂ + 𝛽 + 2)

, (7.30)

𝑊 (𝑒)
𝑚−1,𝑚 =

(𝑚 + 𝛽)𝑚(𝑚 − 𝑁 − 1) (𝑚 + 𝛼̂ + 𝛽) (𝑚 + 𝑁 + 𝛼̂ + 𝛽 + 1)
𝑎𝑚−1 (2𝑚 + 𝛼̂ + 𝛽 + 1) (2𝑚 + 𝛼̂ + 𝛽)2(2𝑚 + 𝛼̂ + 𝛽 − 1)

. (7.31)

It is then seen that the recurrence relation (7.28) can be presented in the standard form [7]

𝑛𝑄𝑚 (𝑛) = −𝐴𝑚𝑄𝑚+1(𝑛) + (𝐴𝑚 + 𝐶𝑚)𝑄𝑚(𝑛) − 𝐶𝑚𝑄𝑚−1 (𝑛), (7.32)

where

𝐴𝑚 =
(𝑚 + 𝛼̂ + 𝛽 + 1) (𝑚 + 𝛼̂ + 1) (𝑁 − 𝑚)

(2𝑚 + 𝛼̂ + 𝛽 + 1) (2𝑚 + 𝛼̂ + 𝛽 + 2)
, (7.33)

𝐶𝑚 =
𝑚(𝑚 + 𝛼̂ + 𝛽 + 𝑁 + 1) (𝑚 + 𝛽)

(2𝑚 + 𝛼̂ + 𝛽) (2𝑚 + 𝛼̂ + 𝛽 + 1)
. (7.34)
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7.3.2. Difference equation
The difference equation of the Hahn polynomials is obtained in a similar fashion by using the EVP for
V:𝑉 | 𝑒𝑛 〉 = 𝜇𝑛 | 𝑒𝑛 〉 with 𝜇𝑛 = (𝛽− 𝑛) (𝑛− 𝛽−1). From 〈 𝑓 ∗𝑛 | 𝑉 | 𝑒𝑚 〉 = (〈 𝑓 ∗𝑛 | 𝑉�) | 𝑒𝑚 〉, we have

𝜇𝑚𝑆𝑚 (𝑛) = 𝑉
�( 𝑓 ∗)
𝑛+1,𝑛 𝑆𝑚 (𝑛 + 1) +𝑉

�( 𝑓 ∗)
𝑛,𝑛 𝑆𝑚(𝑛) +𝑉

�( 𝑓 ∗)
𝑛−1,𝑛 𝑆𝑚(𝑛 − 1)

= 𝑉
( 𝑓 )
𝑛,𝑛+1𝑆𝑚(𝑛 + 1) +𝑉

( 𝑓 )
𝑛,𝑛 𝑆𝑚(𝑛) +𝑉

( 𝑓 )
𝑛,𝑛−1𝑆𝑚 (𝑛 − 1). (7.35)

Substituting the expression (7.4) for 𝑆𝑚 (𝑛), yields

𝜇𝑚𝑄𝑚 (𝑛) = −
𝑎𝑛 (𝑛 + 𝛼̂ + 1)

(𝑛 + 1)
𝑉

( 𝑓 )
𝑛,𝑛+1𝑄𝑚(𝑛 + 1)

+𝑉
( 𝑓 )
𝑛,𝑛 𝑄𝑚 (𝑛) −

𝑛

𝑎𝑛−1 (𝑛 + 𝛼̂)
𝑉

( 𝑓 )
𝑛,𝑛−1𝑄𝑚(𝑛 − 1). (7.36)

Observe that

𝜇𝑛 = −𝑚(𝑚 − 2𝛽 − 1) − 𝛽(𝛽 + 1). (7.37)

Converting to the parameters 𝛼̂ and 𝛽 and recalling (6.12), (6.10), (6.11) for the matrix elements, one
finds

𝑉
( 𝑓 )
𝑛,𝑛+1 =

1
𝑎𝑛

(𝑛 + 1) (𝑛 − 𝑁), (7.38)

𝑉
( 𝑓 )
𝑛,𝑛−1 = 𝑎𝑛−1 (𝑛 + 𝛼̂) (𝑛 − 𝑁 − 𝛽 − 1), (7.39)

𝑉
( 𝑓 )
𝑛,𝑛 + 𝛽(𝛽 + 1) = 2𝑛2 + 𝑛(𝛼̂ − 𝛽 − 2𝑁) − 𝑁 (𝛼̂ + 1). (7.40)

Incorporating all that in (7.36) proves indeed that the Hahn polynomials obey the familiar difference
equation [7]:

𝑚(𝑚 + 𝛼̂ + 𝛽 + 1)𝑄𝑚(𝑛) = 𝐵(𝑛)𝑄𝑚(𝑛 + 1) −
[
𝐵(𝑛) + 𝐷 (𝑛)

]
𝑄𝑚 (𝑛) + 𝐷 (𝑛)𝑄𝑚(𝑛 − 1), (7.41)

where

𝐵(𝑛) = (𝑛 + 𝛼̂ + 1) (𝑛 − 𝑁) (7.42)
𝐷 (𝑛) = 𝑛(𝑛 − 𝛽 − 𝑁 − 1). (7.43)

Obviously, as for the recurrence relation, the same final results are obtained by initiating the computations
with the functions 𝑆𝑚(𝑛).

8. Hahn rational functions

This section will provide the promised algebraic interpretation of the following functions introduced
in [4].

U𝑚(𝑥; 𝑎, 𝑏, 𝑁) =
(−1)𝑚(−𝑁)𝑚
(𝑏 + 1)𝑚

3𝐹2

(
−𝑥,−𝑚, 𝑏 + 𝑚 − 𝑁

−𝑁, 𝑎 − 𝑥
; 1
)
, (8.1)

V𝑚(𝑥; 𝑎, 𝑏, 𝑁) = U𝑚(𝑁 − 𝑥; 𝑏 + 2 − 𝑎, 𝑏, 𝑁). (8.2)

Their rational character is manifest, and they will be seen to be biorthogonal partners. As they are
defined in terms of 3𝐹2series, they are naturally said to be of Hahn type. Their connection with the meta
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Hahn algebra, jointly with the eponymous polynomials, further justifies this name. The normalization
has been chosen so that

lim
𝑥→∞

U𝑚(𝑥; 𝑎, 𝑏, 𝑁) = 1. (8.3)

8.1. Representation theoretic interpretation

As already mentioned, BRFs arise from considering the GEVP-EVP overlaps 𝑈𝑚(𝑛) = 〈 𝑒𝑚 | 𝑑∗𝑛 〉 and
𝑈̃𝑚 (𝑛) = 〈 𝑒∗𝑚 | 𝑍 | 𝑑𝑛 〉.

Proposition 4. The functions𝑈𝑚 (𝑛) and 𝑈̃𝑚(𝑛) are respectively given as follows in terms of the rational
Hahn functions U𝑚(𝑥; 𝑎, 𝑏, 𝑁) and V𝑚(𝑥; 𝑎, 𝑏, 𝑁):

𝑈𝑚(𝑛) =
𝑎0 . . . 𝑎𝑛−1
𝑎0 . . . 𝑎𝑚−1

(1 − 𝑎)𝑛 (1 + 𝑏)𝑚
𝑛!(𝑚 + 𝑏 − 𝑁)𝑚

U𝑚(𝑛; 𝑎, 𝑏, 𝑁), (8.4)

𝑈̃𝑚(𝑛) = −
𝑎𝑛 . . . 𝑎𝑁−1
𝑎𝑚 . . . 𝑎𝑁−1

(𝑚 + 1)𝑁−𝑚(𝑎 − 𝑏 − 1)𝑁−𝑛

(𝑁 − 𝑛)!(−𝑁)𝑚(−𝑏)𝑁−2𝑚
V𝑚 (𝑛; 𝑎, 𝑏, 𝑁). (8.5)

where

𝑎 = 𝛼 − 𝛽, 𝑏 − 𝑁 = −2𝛽 − 1. (8.6)

Proof. The identification of U𝑚(𝑛) in 𝑈𝑚(𝑛) is readily achieved by taking the scalar product of the
vectors | 𝑒𝑚 〉 and | 𝑑∗𝑛 〉 respectively given by (5.6) and (5.4). This yields

𝑈𝑚 (𝑛) =
𝑎0𝑎1 · · · 𝑎𝑛−1
𝑎0𝑎1 · · · 𝑎𝑚−1

𝑚!(−𝑁)𝑚(−𝑛 + 𝛼 − 𝛽)𝑛
(−𝑛)𝑛 (−𝑚, 𝑚 − 2𝛽 − 1)𝑚

𝑁∑
ℓ=0

(−𝑛,−𝑚, 𝑚 − 2𝛽 − 1)ℓ
ℓ!(−𝑁,−𝑛 + 𝛼 − 𝛽)ℓ

, (8.7)

from where one gets formula (8.4) using (8.1) and (8.6).
Obtaining 𝑈̃𝑚(𝑛) requires more algebraic transformations. From formulas (5.8) and (5.22) for | 𝑒∗𝑛 〉

and 𝑍 | 𝑑𝑛 〉, one finds

𝑈̃𝑚 (𝑛) = −
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎𝑚𝑎𝑚+1 · · · 𝑎𝑁−1

(𝑁 − 𝑚)!(−𝑁)𝑁−𝑚(𝑛 − 𝑁 − 𝛼 + 𝛽 + 2)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑚 − 𝑁,−𝑁 − 𝑚 + 2𝛽 + 1)𝑁−𝑚

×

𝑁∑
ℓ=0

(𝑛 − 𝑁, 𝑚 − 𝑁,−𝑁 − 𝑚 + 2𝛽 + 1)𝑁−ℓ

(𝑁 − ℓ)!(−𝑁, 𝑛 − 𝑁 − 𝛼 + 𝛽 + 2)𝑁−ℓ

= −
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎𝑚𝑎𝑚+1 · · · 𝑎𝑁−1

(𝑁 − 𝑚)!(−𝑁)𝑁−𝑚(𝑛 − 𝑁 − 𝛼 + 𝛽 + 2)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑚 − 𝑁,−𝑁 − 𝑚 + 2𝛽 + 1)𝑁−𝑚

× 3𝐹2

(
𝑛 − 𝑁, 𝑚 − 𝑁,−𝑁 − 𝑚 + 2𝛽 + 1

𝑁, 𝑛 − 𝑁 − 𝛼 + 𝛽 + 2 ; 1
)
. (8.8)

Now use (7.10) successively twice to arrive at

𝑈̃𝑚(𝑛) = −
𝑎𝑛𝑎𝑛+1 · · · 𝑎𝑁−1
𝑎𝑚𝑎𝑚+1 · · · 𝑎𝑁−1

(−1)𝑁−𝑛 (𝑁 − 𝑚)!(−𝑁)𝑁−𝑚(−𝑁 + 𝛼 + 𝛽)𝑁−𝑛

(𝑛 − 𝑁)𝑁−𝑛 (𝑚 − 𝑁)𝑁−𝑚(−𝑁 − 𝑚 + 2𝛽 + 1)𝑁−𝑚

× 3𝐹2

(
𝑛 − 𝑁,−𝑚, 𝑚 − 2𝛽 − 1

𝑁, 𝑛 − 𝛼 − 𝛽 + 1 ; 1
)
, (8.9)

having taken note that

(𝑚 + 𝑛 − 𝛼 − 𝛽 + 1)𝑁−𝑛 = (−1)𝑁−𝑛 (−𝑚 − 𝑁 + 𝛼 + 𝛽)𝑁−𝑛. (8.10)
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From definition (8.2), one sees that

3𝐹2

(
𝑛 − 𝑁,−𝑚, 𝑚 − 2𝛽 − 1

𝑁 , 𝑛 − 𝛼 − 𝛽 + 1 ; 1
)
=

(−1)𝑚(𝑁 − 2𝛽)𝑚
(−𝑁)𝑚

V𝑚 (𝑛, 𝛼 − 𝛽, 𝑁 − 2𝛽 − 1, 𝑁). (8.11)

Integrating this observation in (8.9), using the easily proven identities

(−1)𝑚(𝑁 − 𝜅 + 1)𝑚(𝜅 − 𝑁)𝑁−2𝑚 = (−𝑁 − 𝑚 + 𝜅)𝑁−𝑚 (8.12)

and (𝑚 + 1)𝑁−𝑚 = (−1)𝑁−𝑚(−𝑁)𝑁−𝑚 as well as the fact that (−𝑛)𝑛 = (−1)𝑛𝑛! yields the identification
(8.5) upon introducing a and b as per (8.6). �

8.2. Biorthogonality

A key result is the biorthogonality of the rational functions of Hahn type.

Proposition 5. The rational functions U𝑚(𝑛; 𝑎, 𝑏, 𝑁) and V𝑚(𝑛; 𝑎, 𝑏, 𝑁) satisfy the following biorthog-
onality relations:

𝑁∑
𝑛=0

W (𝑛) V𝑚 (𝑛; 𝑎, 𝑏, 𝑁) U𝑚′ (𝑛; 𝑎, 𝑏, 𝑁) = ℎ𝑚𝛿𝑚,𝑚′ , (8.13)

𝑁∑
𝑚=0

W∗(𝑚) V𝑚(𝑛; 𝑎, 𝑏, 𝑁) U𝑚(𝑛
′; 𝑎, 𝑏, 𝑁) = ℎ∗𝑛𝛿𝑛,𝑛′ , (8.14)

where

ℎ𝑚 =
(1,−𝑁, 𝑚 − 𝑁 + 𝑏)𝑚(2𝑚 − 𝑁 + 𝑏 + 1)𝑁−2𝑚

(𝑏 + 1)𝑚(𝑏 − 𝑁 + 1)𝑁
, (8.15)

W (𝑛) =
(𝑎 − 𝑏 − 1)𝑁−𝑛 (1 − 𝑎)𝑛

(−𝑏)𝑁

𝑁!
𝑛!(𝑁 − 𝑛)!

, (8.16)

ℎ∗𝑛 =
(1, 2 − 𝑎 + 𝑏 − 𝑁)𝑛

(−𝑁, 1 − 𝑎)𝑛
, (8.17)

W∗(𝑚) =
(2 − 𝑎 + 𝑏 − 𝑁)𝑁 (𝑏 + 1)𝑚

(1,−𝑁, 𝑚 + 𝑏 − 𝑁)𝑚(2𝑚 + 𝑏 − 𝑁 + 1)𝑁−2𝑚
. (8.18)

Proof. It was observed quite generally in (2.21) and (2.22) that the overlaps 𝑈𝑚(𝑛) and 𝑈̃𝑚(𝑛) are
biorthogonal. Recall that we have chosen normalizations so that 𝜅𝑛 = 1 and 𝑤𝑛 = −1∀𝑛. Hence,
substituting the expressions (8.4) and (8.5) for 𝑈𝑚(𝑛) and 𝑈̃𝑚(𝑛) in terms of U𝑚(𝑛; 𝑎, 𝑏, 𝑁) and
V𝑚 (𝑛; 𝑎, 𝑏, 𝑁) in

𝑁∑
𝑛=0

(−1)𝑈̃𝑚 (𝑛)𝑈𝑚′ (𝑛) = 𝛿𝑚,𝑚′ , (8.19)

𝑁∑
𝑚=0

(−1)𝑈̃𝑚(𝑛)𝑈𝑚(𝑛
′) = 𝛿𝑛,𝑛′ , (8.20)

gives the formulas recorded in the above proposition. Note that the weight functions W and W∗ are
specified by requesting the normalizations ℎ0 = ℎ∗0 = 1, respectively. Technically, for presentation
convenience, in obtaining (8.13), both sides have been multiplied by 𝑁!/(−𝑏)𝑁 and the identities

𝑁! = 𝑚!(𝑚 + 1)𝑁−𝑚 and (−1)𝑁 (2𝑚 + 𝑏 − 𝑁 + 1)𝑁−2𝑚 = (−𝑏)𝑁−2𝑚 (8.21)
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are used. Similarly to get (8.14), both sides have been multiplied by (2 − 𝑎 + 𝑏 − 𝑁)𝑁 /𝑁! and the
identities (−1)𝑛 (−𝑁)𝑛 (𝑁 − 𝑛)! = 𝑁!, (8.21) and

(2 − 𝑎 + 𝑏 − 𝑁)𝑁 = (−1)𝑁−𝑛 (2 − 𝑎 + 𝑏 − 𝑁)𝑛 (𝑎 − 𝑏 − 1)𝑁−𝑛 (8.22)

are called upon. �

8.3. Bispectrality of U𝑚(𝑛)

8.3.1. Recurrence relation
Proposition 6. The rational functionU𝑚 (𝑛; 𝑎, 𝑏, 𝑁) of Hahn type obeys the following recurrence relation

(𝑛 − 𝑚 − 𝑎)A𝑚(U𝑚+1(𝑛; 𝑎, 𝑏, 𝑁) − U𝑚(𝑛; 𝑎, 𝑏, 𝑁))
+ (𝑛 + 𝑚 − 𝑎 + 𝑏 − 𝑁)C𝑚(U𝑚−1(𝑛; 𝑎, 𝑏, 𝑁) − U𝑚(𝑛; 𝑎, 𝑏, 𝑁)) = 𝑎(2𝑚 + 𝑏 − 𝑁) U𝑚(𝑛; 𝑎, 𝑏, 𝑁),

(8.23)

where

A𝑚 =
(𝑚 + 𝑏 + 1) (𝑚 + 𝑏 − 𝑁)

(2𝑚 + 𝑏 − 𝑁 + 1)
, (8.24)

C𝑚 =
𝑚(𝑚 − 𝑁 − 1)

(2𝑚 + 𝑏 − 𝑁 − 1)
. (8.25)

Proof. The recurrence relation for 𝑈𝑚 (𝑛) = 〈 𝑒𝑚 | 𝑑∗𝑛 〉 is obtained from

𝜆𝑛〈 𝑒𝑚 | 𝑍� | 𝑑∗𝑛 〉 = 〈 𝑒𝑚 | 𝜆𝑛𝑍
� | 𝑑∗𝑛 〉 = 〈 𝑒𝑚 | 𝑋� | 𝑑∗𝑛 〉,

recalling that | 𝑑∗𝑛 〉 are solutions of a GEVP and that X and Z act tridiagonally on the e-basis. More
precisely, the identity 〈 𝑒𝑚 | 𝑋� − 𝜆𝑛𝑍

� | 𝑑∗𝑛 〉 = (〈 𝑒𝑚 | 𝑋 − 𝜆𝑛𝑍) | 𝑑
∗
𝑛 〉 = 0 is readily seen to imply

𝑋 (𝑒)
𝑚+1,𝑚𝑈𝑚+1 (𝑛) + 𝑋 (𝑒)

𝑚,𝑚𝑈𝑚 (𝑛) + 𝑋 (𝑒)
𝑚−1,𝑚𝑈𝑚−1 (𝑛)

= (𝛼 − 𝑛)
(
𝑍 (𝑒)
𝑚+1,𝑚𝑈𝑚+1(𝑛) + 𝑍 (𝑒)

𝑚,𝑚𝑈𝑚 (𝑛) + 𝑍 (𝑒)
𝑚−1,𝑚𝑈𝑚−1 (𝑛)

)
(8.26)

from where the recurrence relation for U𝑚(𝑛; 𝑎, 𝑏, 𝑁) will be extracted. From (6.3)–(6.8), it is observed
that

𝑋 (𝑒)
𝑚+1,𝑚 = (𝛽 − 𝑚)𝑍 (𝑒)

𝑚+1,𝑚, 𝑋 (𝑒)
𝑚−1,𝑚 = −(𝛽 − 𝑚 + 1)𝑍 (𝑒)

𝑚−1,𝑚, 𝑋 (𝑒)
𝑚,𝑚 =

𝑁

2
− 𝛼. (8.27)

As a result, (8.26) can be recast in the form

(𝑛 − 𝑚 − 𝛼 + 𝛽)𝑍 (𝑒)
𝑚+1,𝑚𝑈𝑚+1(𝑛) +

[
𝑁

2
− 𝛼 + (𝑛 − 𝛼)𝑍 (𝑒)

𝑚,𝑚

]
𝑈𝑚 (𝑛)

+ (𝑛 + 𝑚 − 𝛼 − 𝛽 − 1)𝑍 (𝑒)
𝑚−1,𝑚𝑈𝑚−1 (𝑛) = 0. (8.28)

Inserting in this equation the expression (8.4) of 𝑈𝑚(𝑛) in terms of U𝑚(𝑛; 𝑎, 𝑏, 𝑁) and using (8.6), one
finds

(𝑛 − 𝑚 − 𝑎)𝑍 (𝑒)
𝑚+1,𝑚

(𝑚 + 𝑏 + 1) (𝑚 + 𝑏 − 𝑁)

𝑎𝑚 (2𝑚 + 𝑏 − 𝑁) (2𝑚 + 𝑏 − 𝑁 − 1)
U𝑚+1(𝑛)

+

[
−𝑎 +

𝑏

2
+

1
2
+

(
𝑛 − 𝑎 +

𝑏

2
−

𝑁

2
+

1
2

)
𝑍 (𝑒)
𝑚,𝑚

]
U𝑚(𝑛)

+ (𝑛 + 𝑚 − 𝑎 + 𝑏 − 𝑁)𝑍 (𝑒)
𝑚−1,𝑚

𝑎𝑚+1(2𝑚 + 𝑏 − 𝑁 − 2) (2𝑚 + 𝑏 − 𝑁 − 1)
(𝑚 + 𝑏) (𝑚 + 𝑏 − 𝑁 − 1)

U𝑚−1(𝑛) = 0. (8.29)
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Calling upon the expressions (6.3), (6.4), (6.5) for the matrix elements of Z in the e-basis, multiplying
by (2𝑚 + 𝑏 − 𝑁) and simplifying, one arrives at (8.23). �

By rearranging (8.23), it is possible to reexpress this recurrence relation in a nice GEVP form.

Proposition 7. The rational function U𝑚(𝑛; 𝑎, 𝑏, 𝑁) of Hahn type verifies the following recurrence
GEVP equation:

(2𝑚 + 𝑏 − 𝑁)
(
A𝑚 U𝑚+1(𝑛; 𝑎, 𝑏, 𝑁) − (A𝑚 − C𝑚 − 2𝑎) U𝑚(𝑛; 𝑎, 𝑏, 𝑁) − C𝑚 U𝑚−1(𝑛; 𝑎, 𝑏, 𝑁)

)
= (2𝑛 − 2𝑎 + 𝑏 − 𝑁)

(
A𝑚 U𝑚+1(𝑛; 𝑎, 𝑏, 𝑁) − (A𝑚 + C𝑚) U𝑚(𝑛; 𝑎, 𝑏, 𝑁) + C𝑚 U𝑚−1(𝑛; 𝑎, 𝑏, 𝑁)

)
,

(8.30)

where A𝑚 and C𝑚 are again given by (8.24) and (8.25).

The recurrence relation (8.30) can be renormalized to yield the polynomial recurrence relation of
𝑅II-type [11]

A𝑚P II
𝑚+1(𝑛; 𝑎, 𝑏, 𝑁) + ((𝑎 + 𝑚 − 𝑛) (A𝑚 − 𝑎) + (𝑎 − 𝑏 + 𝑁 − 𝑚 − 𝑛) (C𝑚 + 𝑎))P II

𝑚(𝑛; 𝑎, 𝑏, 𝑁)
+ (𝑎 + 𝑚 − 1 − 𝑛) (𝑎 − 𝑏 + 𝑁 − 𝑚 − 𝑛)C𝑚P II

𝑚−1(𝑛; 𝑎, 𝑏, 𝑁) = 0 (8.31)

with P II
−1 = 0 and P II

0 = 1, where the renomalization is given by the monic polynomials in n

P II
𝑚(𝑛; 𝑎, 𝑏, 𝑁) = U𝑚(𝑛; 𝑎, 𝑏, 𝑁)

𝑚−1∏
ℓ=0

(𝑛 − 𝑎 − ℓ). (8.32)

Note that the eigenvalues differ from those of the GEVP for the vectors | 𝑑𝑛 〉 and | 𝑑∗𝑛 〉. This is in keeping
with fact that in GEVPs, linear combinations of the operators induce homographic transformations of
the eigenvalues.

8.3.2. Difference equation
Proposition 8. The rational functionU𝑚 (𝑛; 𝑎, 𝑏, 𝑁) of Hahn type obeys the following difference equation

B𝑛 U𝑚(𝑛 + 1; 𝑎, 𝑏, 𝑁) − (B𝑛 +D𝑛) U𝑚(𝑛; 𝑎, 𝑏, 𝑁) +D𝑛 U𝑚(𝑛 − 1; 𝑎, 𝑏, 𝑁)

= 𝑚(𝑚 + 𝑏 − 𝑁)
(
(𝑎 − 𝑛) U𝑚(𝑛; 𝑎, 𝑏, 𝑁) + 𝑛U𝑚 (𝑛 − 1; 𝑎, 𝑏, 𝑁)

)
, (8.33)

where

B𝑛 = (𝑛 − 𝑎) (𝑛 − 𝑎 + 1) (𝑛 − 𝑁), (8.34)
D𝑛 = (𝑛 − 𝑎) (𝑛 − 𝑎 + 𝑏 − 𝑁)𝑛. (8.35)

Proof. The difference equation for 𝑈𝑚 (𝑛) = 〈 𝑒𝑚 | 𝑑∗𝑛 〉 is derived by focusing on the EVP 𝑉 | 𝑒𝑚 〉 =
𝜇𝑚 | 𝑒𝑚 〉 involving the degree m and the fact that 𝑉�𝑍� acts tridiagonally on the GEVP basis vectors
| 𝑑∗𝑛 〉. From the relation

𝜇𝑚〈 𝑒𝑚 | 𝑍� | 𝑑∗𝑛 〉 = (〈 𝑒𝑚 | 𝑉) 𝑍� | 𝑑∗𝑛 〉 = 〈 𝑒𝑚 | 𝑉�𝑍� | 𝑑∗𝑛 〉,

one finds

(𝑉�𝑍�)
(𝑑∗)
𝑛+1,𝑛𝑈𝑚 (𝑛 + 1) + (𝑉�𝑍�)

(𝑑∗)
𝑛,𝑛 𝑈𝑚 (𝑛) + (𝑉�𝑍�)

(𝑑∗)
𝑛−1,𝑛𝑈𝑚 (𝑛 − 1)

= (𝛽 − 𝑚) (𝑚 − 𝛽 − 1) (−𝑈𝑚(𝑛) + 𝑎𝑛−1𝑈𝑚(𝑛 − 1)) (8.36)
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with the help of (A.4) and recalling that 𝜇𝑚 = (𝛽−𝑚) (𝑚−𝛽−1). Inserting in this equation the expression
(8.4) for 𝑈𝑚 (𝑛) in terms of U𝑚(𝑛), and writing for now 𝑎 = 𝛼 − 𝛽 and 𝑏 = 𝑁 − 2𝛽 − 1, one gets

(𝑉�𝑍�)
(𝑑∗)
𝑛+1,𝑛𝑎𝑛

(𝑛 − 𝛼 − 𝛽 + 1)
(𝑛 + 1)

U𝑚(𝑛 + 1)

+ (𝑉�𝑍�)
(𝑑∗)
𝑛,𝑛 U𝑚(𝑛) + (𝑉�𝑍�)

(𝑑∗)
𝑛−1,𝑛

𝑛

𝑎𝑛−1 (𝑛 − 𝛼 + 𝛽)
U𝑚(𝑛 − 1)

= (𝛽 − 𝑚) (𝑚 − 𝛽 − 1) (−U𝑚(𝑛) +
𝑛

𝑛 − 𝛼 + 𝛽
U𝑚(𝑛 − 1)). (8.37)

Using at this point the expressions (A.18), (A.19) and (A.20) for the matrix elements of𝑉�𝑍� in the basis
𝑑∗, after multiplying both sides of the equation by (𝑛−𝛼+𝛽+1), one finds thatU𝑚(𝑛;𝛼−𝛽, 𝑁−2𝛽−1, 𝑁)
obeys the difference equation

B̂𝑛 U𝑚(𝑛 + 1;𝛼 − 𝛽, 𝑁 − 2𝛽 − 1, 𝑁) + D̂𝑛 U𝑚(𝑛 − 1;𝛼 − 𝛽, 𝑁 − 2𝛽 − 1, 𝑁)
+ (𝛽(𝛼 − 𝛽) (𝛽 + 1) − B̂𝑛 − D̂𝑛) U𝑚(𝑛;𝛼 − 𝛽, 𝑁 − 2𝛽 − 1, 𝑁)

= 𝜇𝑚

(
(𝑛 − 𝛼 + 𝛽) U𝑚(𝑛;𝛼 − 𝛽, 𝑁 − 2𝛽 − 1, 𝑁) − 𝑛U𝑚 (𝑛 − 1;𝛼 − 𝛽, 𝑁 − 2𝛽 − 1, 𝑁)

)
, (8.38)

where

B̂𝑛 = (𝑛 − 𝑁) (𝑛 − 𝛼 + 𝛽) (𝑛 − 𝛼 + 𝛽 + 1), (8.39)
D̂𝑛 = 𝑛(𝑛 − 𝛼) (𝑛 − 𝛼 − 1). (8.40)

By rewriting the parameters 𝛼, 𝛽 in terms of 𝑎, 𝑏 and rearranging (8.38), the difference equation in
the variable n satisfied by U𝑚 is found to be as stated in Proposition 8. �

It is interesting to observe that the difference equation (8.33) for U𝑚(𝑛; 𝑎, 𝑏, 𝑁) can be recast in the
following form:

B𝑛

(
U𝑚(𝑛 + 1; 𝑎, 𝑏, 𝑁) − U𝑚(𝑛; 𝑎, 𝑏, 𝑁)

)
+D𝑛,𝑚

(
U𝑚(𝑛 − 1; 𝑎, 𝑏, 𝑁) − U𝑚(𝑛; 𝑎, 𝑏, 𝑁)

)
= 𝑎𝑚(𝑚 + 𝑏 − 𝑁) U𝑚(𝑛; 𝑎, 𝑏, 𝑁), (8.41)

where B𝑛 given by (8.34) and

D𝑛,𝑚 = D𝑛 − 𝑛𝑚(𝑚 + 𝑏 − 𝑁) = (𝑛 − 𝑚 − 𝑎) (𝑛 + 𝑚 − 𝑎 + 𝑏 − 𝑁)𝑛. (8.42)

Note that interchanging the role of m and n, the difference equation (8.33) can be considered as the
recurrence relation of 𝑅I-type [11] under the initial conditions U𝑚(−1) = 0 and U𝑚(0) = 1, which is
satisfied by the system of polynomials in 𝑚(𝑚 + 𝑏 − 𝑁):

P I
𝑛 (𝑚; 𝑎, 𝑏, 𝑁) =

(𝑏 + 1)𝑚
(−1)𝑚(−𝑁)𝑚

U𝑚(𝑛; 𝑎, 𝑏, 𝑁) = 3𝐹2

(
−𝑛,−𝑚, 𝑚 + 𝑏 − 𝑁

−𝑁, 𝑎 − 𝑛
; 1
)
.

8.4. Bispectrality of V𝑚(𝑛)

The rational functionsV𝑚 (𝑛; 𝑎, 𝑏, 𝑁) which are the biorthogonal partners of the functionsV𝑚(𝑛; 𝑎, 𝑏, 𝑁)
stand on their own. From the observation that they are obtained from U𝑚(𝑛; 𝑎, 𝑏, 𝑁) by a reflection of
the variable and a substitution of parameters, they will necessarily be bispectral given that the Us are.
It is nevertheless important to see that their bispectral properties independently follow from the present
algebraic framework.
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8.4.1. Recurrence relation
Proposition 9. The rational function of Hahn type defined in (8.2) satisfies the recurrence relation

(𝑁 − 𝑛 − 𝑚 − 𝑏 + 𝑎 − 2)A𝑚(V𝑚+1(𝑛; 𝑎, 𝑏, 𝑁) − V𝑚(𝑛; 𝑎, 𝑏, 𝑁))
+ (−𝑛 + 𝑚 + 𝑎 − 2)C𝑚

(
V𝑚−1 (𝑛; 𝑎, 𝑏, 𝑁) − V𝑚 (𝑛; 𝑎, 𝑏, 𝑁)

)
= (𝑏 − 𝑎 + 2) (2𝑚 + 𝑏 − 𝑁) V𝑚 (𝑛; 𝑎, 𝑏, 𝑁)

(8.43)

with A𝑚 and C𝑚 given by (8.24) and (8.25).

Proof. Let | 𝑑𝑛 〉 = 𝑍 | 𝑑𝑛 〉. Recall that V𝑚 (𝑛; 𝑎, 𝑏, 𝑁) is related to 𝑈̃𝑚 (𝑛) = 〈 𝑒∗𝑚 | 𝑍 | 𝑑𝑛 〉 that is to
〈 𝑒∗𝑚 | 𝑑𝑛 〉. The first relation (3.1) of the algebra shows that 𝑑𝑛 satisfies

(𝑋 + 𝑍 + 1 − 𝜆𝑛𝑍) | 𝑑𝑛 〉 = 0. (8.44)

This is confirmed by

(𝑋 + 𝑍 + 1 − 𝜆𝑛𝑍) 𝑍 | 𝑑𝑛 〉 = (𝑋𝑍 + 𝑍2 + 𝑍 − 𝑍𝑋) | 𝑑𝑛 〉 = 0. (8.45)

Thus, we obtain the relation

𝜆𝑛〈 𝑒
∗
𝑚 | 𝑍 | 𝑑𝑛 〉 = 〈 𝑒∗𝑚 | 𝜆𝑛𝑍

2 | 𝑑𝑛 〉 = 〈 𝑒∗𝑚 | 𝑍𝑋 | 𝑑𝑛 〉

= 〈 𝑒∗𝑚 | 𝑋𝑍 + 𝑍2 + 𝑍 | 𝑑𝑛 〉 = 〈 𝑒∗𝑚 | 𝑋 + 𝑍 + 1 | 𝑑𝑛 〉

that leads to the recurrence relations:

(𝑋 (𝑒)
𝑚,𝑚+1 + 𝑍 (𝑒)

𝑚,𝑚+1)𝑈̃𝑚+1(𝑛) + (𝑋 (𝑒)
𝑚,𝑚 + 𝑍 (𝑒)

𝑚,𝑚 + 1)𝑈̃𝑚 (𝑛) + (𝑋 (𝑒)
𝑚,𝑚−1 + 𝑍 (𝑒)

𝑚,𝑚−1)𝑈̃𝑚−1(𝑛)

= 𝜆𝑛

(
𝑍 (𝑒)
𝑚,𝑚+1𝑈̃𝑚+1 (𝑛) + 𝑍 (𝑒)

𝑚,𝑚𝑈̃𝑚(𝑛) + 𝑍 (𝑒)
𝑚,𝑚−1𝑈̃𝑚−1(𝑛)

)
. (8.46)

As done before, rewriting in terms of V𝑚 (𝑛; 𝑎, 𝑏, 𝑁) using (8.5), watching for the m-dependent factors
and invoking (6.3), (6.4), (6.5), (6.6), (6.7) and (6.8) yields the equation (8.43). �

This equation coincides with the one obtained under the rearrangement 𝑎 → 𝑏 − 𝑎 + 2, 𝑛 → 𝑁 − 𝑛
of the recurrence relation (8.30) satisfied by U𝑚(𝑛).

8.4.2. Difference equation
Proposition 10. The rational functionV𝑚 (𝑛; 𝑎, 𝑏, 𝑁) of Hahn type defined in (8.2) satisfies the difference
equation

B̃𝑛,𝑚

(
V𝑚 (𝑛 + 1; 𝑎, 𝑏, 𝑁) − V𝑚(𝑛; 𝑎, 𝑏, 𝑁)

)
+ D̃𝑛

(
V𝑚 (𝑛 − 1; 𝑎, 𝑏, 𝑁) − V𝑚(𝑛; 𝑎, 𝑏, 𝑁)

)
= 𝑚(𝑚 + 𝑏 − 𝑁) (−𝑎 + 𝑏 + 2)V𝑚(𝑛; 𝑎, 𝑏, 𝑁), (8.47)

where

B̃𝑛,𝑚 = (𝑁 − 𝑛 − 𝑚 + 𝑎 − 𝑏 − 2) (−𝑛 + 𝑚 + 𝑎 − 2) (𝑁 − 𝑛), (8.48)
D̃𝑛 = −(𝑁 − 𝑛 + 𝑎 − 𝑏 − 2) (𝑁 − 𝑛 + 𝑎 − 𝑏 − 1) 𝑛. (8.49)

Proof. Using the first and the second relations (3.1)–(3.2) of the algebra, one finds the following
equations:
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𝜇𝑚〈 𝑒
∗
𝑚 | 𝑍 | 𝑑𝑛 〉 = (〈 𝑒∗𝑚 | 𝑉�) 𝑍2 | 𝑑𝑛 〉 = 〈 𝑒∗𝑚 | 𝑉𝑍2 | 𝑑𝑛 〉

= 〈 𝑒∗𝑚 | (𝑍𝑉 + 2𝑋 + 𝜂)𝑍 | 𝑑𝑛 〉

= 〈 𝑒∗𝑚 | 𝑍 (𝑉𝑍 + 𝜂) + 2𝑋𝑍 | 𝑑𝑛 〉

= 〈 𝑒∗𝑚 | 𝑍 (𝑉𝑍 + 𝜂) + 2(𝑍𝑋 − 𝑍2 − 𝑍) | 𝑑𝑛 〉

= 〈 𝑒∗𝑚 | 𝑍 (𝑉𝑍 + 𝜂 + 2𝑋 − 2𝑍 − 2) | 𝑑𝑛 〉

and 𝑍 | 𝑑𝑛 〉 = 𝑍2 | 𝑑𝑛 〉 = 𝑍 (− | 𝑑𝑛 〉 + 𝑎𝑛 | 𝑑𝑛+1 〉) = − | 𝑑𝑛 〉 + 𝑎𝑛 | 𝑑𝑛+1 〉. Recalling in addition (A.2).
these observations allow to introduce the difference equations:

𝜇𝑚
(
−𝑈̃𝑚(𝑛) + 𝑎𝑛𝑈̃𝑚 (𝑛 + 1)

)
= ((𝑉𝑍) (𝑑)𝑛+1,𝑛 + 2𝑋 (𝑑)

𝑛+1,𝑛 − 2𝑍 (𝑑)
𝑛+1,𝑛)𝑈̃𝑚(𝑛 + 1)

+ ((𝑉𝑍) (𝑑)𝑛,𝑛 + 𝜂 + 2𝑋 (𝑑)
𝑛,𝑛 − 2𝑍 (𝑑)

𝑛,𝑛 − 2)𝑈̃𝑚(𝑛) + (𝑉𝑍) (𝑑)𝑛−1,𝑛𝑈̃𝑚 (𝑛 − 1) (8.50)

with 𝜂 = −𝑁+2𝛼. Substituting for 𝑈̃𝑚(𝑛) the formula (8.5), paying attention to the remnants of the gauge
factor and using (A.1), (A.2), (A.18), (A.19), (A.20), (A.21), gives the difference equation (8.47). �

Here, one can see that

B̃𝑛,𝑚 = B̃𝑛,0 + 𝑚(𝑚 + 𝑏 − 𝑁) (𝑛 − 𝑁). (8.51)

Then (8.47) can be rewritten in GEVP form as

B̃𝑛,0

(
V𝑚 (𝑛 + 1; 𝑎, 𝑏, 𝑁) − V𝑚 (𝑛; 𝑎, 𝑏, 𝑁)

)
+ D̃𝑛

(
V𝑚(𝑛 − 1; 𝑎, 𝑏, 𝑁) − V𝑚 (𝑛; 𝑎, 𝑏, 𝑁)

)
= 𝑚(𝑚 + 𝑏 − 𝑁)

(
(𝑁 − 𝑛)V𝑚(𝑛 + 1; 𝑎, 𝑏, 𝑁) − (𝑁 − 𝑛 + 𝑎 − 𝑏 − 2)V𝑚(𝑛; 𝑎, 𝑏, 𝑁)

)
. (8.52)

Note that interchanging the role of m and n, the difference equation (8.52) can be considered as a
recurrence relation of 𝑅I-type [11] with V𝑚 (𝑁; 𝑎, 𝑏, 𝑁) = 1 and V𝑚 (𝑁 + 1; 𝑎, 𝑏, 𝑁) = 0. This relation
is satisfied by a system of polynomials in 𝑚(𝑚 + 𝑏 − 𝑁), where the polynomial of degree n is given by

P̃ I
𝑛 (𝑚; 𝑎, 𝑏, 𝑁) =

(𝑏 + 1)𝑚
(−1)𝑚(−𝑁)𝑚

V𝑚 (𝑁 − 𝑛; 𝑎, 𝑏, 𝑁) = 3𝐹2

(
−𝑛,−𝑚, 𝑚 + 𝑏 − 𝑁
−𝑁, 2 − 𝑎 + 𝑏 − 𝑛

; 1
)
.

In a standard 𝑅I-type biorthogonal function system, the biorthogonality holds between a polynomial
sequence and a rational function sequence. However, in this case, due to the finiteness of the spaces
considered, solving the recurrence relation on the dual side from 𝑛 = 𝑁 yields a biorthogonal function
system between the polynomial sequences P I

𝑛 (𝑚) and P̃ I
𝑛 (𝑚). From the orthogonality relations (8.14),

we obtain

𝑁∑
𝑚=0

W∗
1 (𝑚; 𝑎, 𝑏, 𝑁)P̃ I

𝑁−𝑛 (𝑚; 𝑎, 𝑏, 𝑁)P I
𝑛′ (𝑚; 𝑎, 𝑏, 𝑁) = ℎ∗𝑛𝛿𝑛,𝑛′ ,

where ℎ∗𝑛 is defined in (8.17) and

W∗
1 (𝑚; 𝑎, 𝑏, 𝑁) =

(−1)𝑚(−𝑁)𝑚(𝑎 − 𝑏 − 1)𝑁
(1, 𝑏 + 𝑚 − 𝑁)𝑚(−𝑏 − 𝑚)𝑁−𝑚

.

As shown in the example above, in the finite-dimensional case, it is possible to extract a common
denominator of all 𝑅I-type biorthogonal partners. Therefore, the 𝑅I-type biorthogonal system in the
finite-dimensional case can be expressed only in terms of polynomials.
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Reconsidering the problem with the initial conditions V𝑚(−1) = 0 and V𝑚(0) = 1, solving (8.52)
leads to a rational function sequence {R𝐼

𝑛 (𝑦)}𝑛∈{0,1,2,...,𝑁 }, where the [𝑛/𝑛]-type rational function is
given by

RI
𝑛 (𝑦; 𝑎, 𝑏, 𝑁) =

(2 − 𝑎, 2 − 𝑎 + 𝑏 − 𝑁)𝑛P I
𝑛 (𝑦; 𝑎 − 1, 𝑏, 𝑁)

(2 − 𝑎 − 𝑦)𝑛 (2 − 𝑎 + 𝑏 − 𝑁 + 𝑦)𝑛
.

Then the following biorthogonality relations hold for 𝑛, 𝑛′ ∈ {0, 1, . . . , 𝑁}:

𝑁∑
𝑚=0

W∗
2 (𝑚; 𝑎, 𝑏, 𝑁)RI

𝑛 (𝑚; 𝑎, 𝑏, 𝑁)P I
𝑛′ (𝑚; 𝑎, 𝑏, 𝑁) = ℎ∗𝑛𝛿𝑛,𝑛′ ,

where

W∗
2 (𝑚; 𝑎, 𝑏, 𝑁) =

(−1)𝑚(−𝑁, 𝑎 − 1)𝑚(𝑎 − 𝑏 − 1)𝑁−𝑚

(1, 𝑏 + 𝑚 − 𝑁)𝑚(−𝑏 − 𝑚)𝑁−𝑚
.

As a consequence, it can also be verified that the equality

RI
𝑛 (𝑚; 𝑎, 𝑏, 𝑁) =

(2 − 𝑎 + 𝑏 − 𝑁)𝑚
(2 − 𝑎 − 𝑚)𝑚

P̃ I
𝑁−𝑛 (𝑚; 𝑎, 𝑏, 𝑁)

holds at the grid-points 𝑚 ∈ {0, 1, 2, . . . , 𝑁}.
Furthermore, solving the recurrence relation (8.33) from 𝑛 = 𝑁 with the initial conditionsU𝑚(𝑁) = 1

and U𝑚(𝑁 + 1) = 0 yields another rational function sequence {R̃𝐼
𝑛 (𝑦)}𝑛∈{0,1,2,...,𝑁 }, which is given by

R̃𝐼
𝑛 (𝑦; 𝑎, 𝑏, 𝑁) =

(𝑎 − 𝑁, 𝑎 − 𝑏)𝑛
(𝑎 − 𝑁 + 𝑦, 𝑎 − 𝑏 − 𝑦)𝑛

3𝐹2

(
−𝑛,−𝑦, 𝑦 + 𝑏 − 𝑁
−𝑁, 1 − 𝑎 + 𝑏 − 𝑛

; 1
)

holding the equality

R̃𝐼
𝑛 (𝑚; 𝑎, 𝑏, 𝑁) =

(𝑎 − 𝑁)𝑚
(𝑎 − 𝑏 − 𝑚)𝑚

P 𝐼
𝑁−𝑛 (𝑚; 𝑎, 𝑏, 𝑁)

at the grid-points 𝑚 ∈ {0, 1, 2, . . . , 𝑁}. Then the following biorthogonality relations hold for 𝑛, 𝑛′ ∈
{0, 1, . . . , 𝑁}:

𝑁∑
𝑚=0

W∗
3 (𝑚; 𝑎, 𝑏, 𝑁)RI

𝑛 (𝑚; 𝑎, 𝑏, 𝑁)R̃I
𝑁−𝑛′ (𝑚; 𝑎, 𝑏, 𝑁) = ℎ∗𝑛𝛿𝑛,𝑛′ ,

where

W∗
3 (𝑚; 𝑎, 𝑏, 𝑁) =

(−𝑁, 𝑎 − 1,−𝑎 + 𝑏 + 1)𝑚(𝑎 − 𝑏 − 1)𝑁−𝑚

(1, 𝑎 − 𝑁, 𝑏 + 𝑚 − 𝑁)𝑚(−𝑏 − 𝑚)𝑁−𝑚
.

Additionally, we give the fourth biorthogonal pair satisfying the biorthogonal relations

𝑁∑
𝑚=0

W∗
4 (𝑚; 𝑎, 𝑏, 𝑁)P̃ I

𝑁−𝑛 (𝑚; 𝑎, 𝑏, 𝑁)R̃I
𝑁−𝑛′ (𝑚; 𝑎, 𝑏, 𝑁) = ℎ∗𝑛𝛿𝑛,𝑛′ ,

where

W∗
4 (𝑚; 𝑎, 𝑏, 𝑁) =

(−𝑁,−𝑎 + 𝑏 + 1)𝑚(𝑎 − 𝑏 − 1)𝑁
(1, 𝑎 − 𝑁, 𝑏 + 𝑚 − 𝑁)𝑚(−𝑏 − 𝑚)𝑁−𝑚

.
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In the finite case of the 𝑅I-type biorthogonal function system, biorthogonality is established not
only between a rational function sequence and a polynomial sequence but also between two polynomial
sequences and between two rational function sequences.

8.5. Contiguity relations

Proposition 11. The rational functions U𝑚(𝑛, 𝑎, 𝑏 : 𝑁) satisfy the following contiguity relations:

𝑎 U𝑚 (𝑛; 𝑎 + 1, 𝑏, 𝑁) = (𝑎 − 𝑛) U𝑚(𝑛; 𝑎, 𝑏, 𝑁) + 𝑛U𝑚(𝑛 − 1; 𝑎, 𝑏, 𝑁), (8.53)

and

𝑎(2𝑚 + 𝑏 − 𝑁)

𝑎 − 𝑛
U𝑚(𝑛; 𝑎 + 1, 𝑏, 𝑁)

= A𝑚U𝑚+1(𝑛; 𝑎, 𝑏, 𝑁) − (A𝑚 + C𝑚)U𝑚(𝑛; 𝑎, 𝑏, 𝑁)) + C𝑚U𝑚−1(𝑛; 𝑎, 𝑏, 𝑁). (8.54)

Proof. One can show that

𝑍� | 𝑑∗𝑛 〉 = − | 𝑑∗𝑛 〉
���
𝛼→𝛼+1

in the same way that 𝑍 | 𝑑𝑛 〉 = − | 𝑑𝑛 〉
���
𝛼→𝛼−1

was proven in (5.22).
On the one hand, noticing that the vector 〈 𝑒𝑚 | does not depend on 𝛼, one obtains

𝑈𝑚 (𝑛)
���
𝛼→𝛼+1

= −〈 𝑒𝑚 | 𝑍� | 𝑑∗𝑛 〉, (8.55)

𝑈𝑚(𝑛)
���
𝛼→𝛼+𝑘

= 〈 𝑒𝑚 | (−𝑍�)𝑘 | 𝑑∗𝑛 〉. (8.56)

From 𝑍� | 𝑑∗𝑛 〉 = | 𝑑∗𝑛 〉 − 𝑎𝑛−1 | 𝑑∗𝑛−1 〉, one thus arrives at the contiguity relation

𝑈𝑚(𝑛)
���
𝛼→𝛼+1

= 𝑈𝑚 (𝑛) − 𝑎𝑛−1𝑈𝑚 (𝑛 − 1) (8.57)

which gives (8.53) when rewritten in terms of U𝑚. On the other hand, applying the operator Z to the
vector 〈 𝑒𝑚 | is seen to give another contiguity relation – namely,

𝑈𝑚(𝑛)
���
𝛼→𝛼+1

= −(〈 𝑒𝑚 | 𝑍) | 𝑑∗𝑛 〉

= −𝑍 (𝑒)
𝑚+1,𝑚𝑈𝑚+1(𝑛;𝛼) − 𝑍 (𝑒)

𝑚,𝑚𝑈𝑚 (𝑛;𝛼) − 𝑍 (𝑒)
𝑚−1,𝑚𝑈𝑚−1 (𝑛;𝛼), (8.58)

which amounts to (8.54) in terms of U𝑚. �

9. Conclusion

This paper has begun the study of an enlargement of the Askey scheme to biorthogonal rational
functions with the objective of offering a full characterization of these functions. The approach is rooted
in the introduction of so-called meta algebras that stand to subsume the algebras of Askey-Wilson
type [12], [13], [14], [15], [16] associated to the various families of orthogonal polynomials of the
Askey scheme [7]. These last algebras embody the bispectrality of the hypergeometric polynomials of
the Askey scheme and have numerous interesting features and applications [1]. The meta algebras are
expected to similarly account for the bispectrality of the biorthogonal rational functions attached to the
entries of the Askey scheme. In fact, these meta algebras are furthermore poised to provide a unified
interpretation of both the orthogonal polynomials and the biorthogonal rational functions of a given
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hypergeometric type since the corresponding (degenerate) Askey-Wilson algebra embeds in the meta
algebra of relevance. The general approach involves constructing modules of the meta algebra and then
considering overlaps between different eigenbases of this representation space. The rational functions
appear when Generalized Eigenvalue problems (GEVP) are set up while polynomials arise when using
rather the eigenvectors of the linear pencil of the operators appearing in the GEVP.

By focusing on the terminating 3𝐹2case, that is the polynomials and rational functions of Hahn type,
this paper has launched and validated this program. The meta Hahn algebra𝑚ℌ was introduced, and from
its representation theory, the properties of the Hahn polynomials were recovered and the characterization
of the rational functions of Hahn type and of their biorthogonal partners was obtained. The simplicity
of 𝑚ℌ should be stressed. It is minimally quadratic and has for subalgebra a PBW deformation [17] of
the Artin-Schelter regular algebra [𝑋, 𝑍] = 𝑍2 known as the Jordan plane [18]. (See also [19].)

Specifically, it was shown that starting from the easily obtained two-diagonal (finite-dimensional)
representations of 𝑚ℌ, the full theory of both the Hahn polynomials and the Hahn rational functions
unfolds. As a result, the biorthogonality, the recurrence relations and the difference equations of the
rational functions of Hahn type were obtained and, as a nice bonus, a synthetic and complete derivation
of the Hahn algebra representations and of the fundamental properties of the Hahn and dual Hahn
polynomials was provided. In particular, for the Hahn-type rational functions, we demonstrated that the
𝑅II-type recurrence relation follows from the recurrence relation, and the 𝑅I-type recurrence relation
arises from the difference equation. Since we are considering the finite-dimensional case, we showed
that, in the 𝑅I-type case, a common denominator can be extracted from all 𝑅I-type biorthogonal partners,
allowing the biorthogonal pair to be expressed as a pair of polynomial sequences.

The paper sets the directions to pursue the program of characterizing the biorthogonal rational func-
tions of q-Hahn [20], Racah and q-Racah types. This will call for the introduction of the corresponding
meta algebras and would essentially complete the finite rational extension of the Askey scheme. We in-
tend to pursue this next. Subsequently, the infinite dimensional version of this study should be elaborated
to complete the univariate picture.

Questions that this research should shed light on include the following: Are the meta algebras
connected to double affine Hecke algebras (of rank one) (see, for instance, [21]) or degenerations of
elliptic quantum groups via relations to elliptic hypergeometric series [22]? Are there other classes of
functions that arise from their representations? What is the most appropriate extension of the notion of
Leonard pairs that the context of biorthogonal rational functions leads to?

Further generalizations also come to mind and underscore the potential that the notion of meta algebra
holds: moving beyond the Askey scheme or exploring multivariate situations and their higher rank meta
algebras are some examples. Examining more deeply the structure and general representation theory of
meta algebras and their potential occurrences in diverse areas also warrants attention.

Appendix: Actions of operators on several bases

Note that 𝑎−1 = 𝑎𝑁 = 0.

𝑍 | 𝑑𝑛 〉 = − | 𝑑𝑛 〉 + 𝑎𝑛 | 𝑑𝑛+1 〉, (A.1)
𝑋 | 𝑑𝑛 〉 = 𝜆𝑛𝑍 | 𝑑𝑛 〉 = −𝜆𝑛 | 𝑑𝑛 〉 + 𝜆𝑛𝑎𝑛 | 𝑑𝑛+1 〉, (A.2)

𝑉 | 𝑑𝑛 〉 =
𝑁∑

𝑗=max(0,𝑛−1)
𝑉 (𝑑)
𝑗 ,𝑛 | 𝑑 𝑗 〉, (A.3)

𝑍� | 𝑑∗𝑛 〉 = − | 𝑑∗𝑛 〉 + 𝑎𝑛−1 | 𝑑∗𝑛−1 〉, (A.4)
𝑋� | 𝑑∗𝑛 〉 = 𝜆𝑛𝑍

� | 𝑑∗𝑛 〉 = −𝜆𝑛 | 𝑑∗𝑛 〉 + 𝜆𝑛𝑎𝑛−1 | 𝑑∗𝑛−1 〉, (A.5)

𝑉� | 𝑑∗𝑛 〉 =
min(𝑛+1,𝑁 )∑

𝑗=0
𝑉�(𝑑∗)
𝑗 ,𝑛 | 𝑑∗𝑗 〉, (A.6)
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𝑉�𝑍� | 𝑑∗𝑛 〉 = (𝑉�𝑍�)
(𝑑∗)
𝑛+1,𝑛 | 𝑑∗𝑛+1 〉 + (𝑉�𝑍�)

(𝑑∗)
𝑛,𝑛 | 𝑑∗𝑛 〉 + (𝑉�𝑍�)

(𝑑∗)
𝑛−1,𝑛 | 𝑑∗𝑛−1 〉, (A.7)

𝑉𝑍 | 𝑑𝑛 〉 = (𝑉𝑍) (𝑑)𝑛+1,𝑛 | 𝑑𝑛+1 〉 + (𝑉𝑍) (𝑑)𝑛,𝑛 | 𝑑𝑛 〉 + (𝑉𝑍) (𝑑)𝑛−1,𝑛 | 𝑑𝑛−1 〉, (A.8)

𝑍 | 𝑒𝑛 〉 = 𝑍 (𝑒)
𝑛+1,𝑛 | 𝑒𝑛+1 〉 + 𝑍 (𝑒)

𝑛,𝑛 | 𝑒𝑛 〉 + 𝑍 (𝑒)
𝑛−1,𝑛 | 𝑒𝑛−1 〉, (A.9)

𝑋 | 𝑒𝑛 〉 = 𝑋 (𝑒)
𝑛+1,𝑛 | 𝑒𝑛+1 〉 + 𝑋 (𝑒)

𝑛,𝑛 | 𝑒𝑛 〉 + 𝑋 (𝑒)
𝑛−1,𝑛 | 𝑒𝑛−1 〉, (A.10)

𝑉 | 𝑒𝑛 〉 = 𝜇𝑛 | 𝑒𝑛 〉, (A.11)

𝑍 | 𝑓𝑛 〉 =
𝑁∑
𝑗=𝑛

(−1) 𝑗+𝑛+1𝑎𝑛𝑎𝑛+1 · · · 𝑎 𝑗−1 | 𝑓 𝑗 〉, (A.12)

𝑋 | 𝑓𝑛 〉 = (𝑛 − 𝛼) | 𝑓𝑛 〉 +
𝑁∑

𝑗=𝑛+1
(−1) 𝑗+𝑛𝜇 𝑎𝑛𝑎𝑛+1 · · · 𝑎 𝑗−1 | 𝑓 𝑗 〉, (A.13)

𝑉� | 𝑓 ∗𝑛 〉 = 𝑉
�( 𝑓 ∗)
𝑛+1,𝑛 | 𝑓 ∗𝑛+1 〉 +𝑉

�( 𝑓 ∗)
𝑛,𝑛 | 𝑓 ∗𝑛 〉 +𝑉

�( 𝑓 ∗)
𝑛−1,𝑛 | 𝑓 ∗𝑛−1 〉, (A.14)

𝑉 (𝑑)
𝑛−1,𝑛 =

𝑛(𝑛 − 𝑁 − 1)
𝑎𝑛−1

, (A.15)

𝑉 (𝑑)
𝑛,𝑛 = (𝑛 − 𝛼) (𝛼 + 𝜂1 + 1 − 𝑛) + (𝛼 − 𝛽) (𝛼 + 𝛽 + 𝜂1 + 1 − 𝑁), (A.16)

𝑉 (𝑑)
𝑗 ,𝑛 = (𝛼 − 𝛽) (𝛼 + 𝛽 + 𝜂1 + 1 − 𝑁) 𝑎𝑛𝑎𝑛+1 . . . 𝑎 𝑗−1 ( 𝑗 > 𝑛), (A.17)

(𝑉�𝑍�)
(𝑑∗)
𝑛+1,𝑛 =

(𝑛 + 1) (𝑁 − 𝑛)

𝑎𝑛
, (A.18)

(𝑉�𝑍�)
(𝑑∗)
𝑛,𝑛 = (𝛼 − 𝑛) (𝑁 − 2𝑛) + (𝛽 − 𝑛)𝜂1 + (𝛽 − 𝑁) (𝛽 + 1), (A.19)

(𝑉�𝑍�)
(𝑑∗)
𝑛−1,𝑛 = 𝑎𝑛−1 (𝛼 − 𝑛) (𝑛 − 𝛼 − 𝜂1 − 1), (A.20)

(𝑉𝑍) (𝑑)𝑛+1,𝑛 = (𝑉�𝑍�)
(𝑑∗)
𝑛,𝑛+1, (𝑉𝑍) (𝑑)𝑛,𝑛 = (𝑉�𝑍�)

(𝑑∗)
𝑛,𝑛 , (𝑉𝑍) (𝑑)𝑛−1,𝑛 = (𝑉�𝑍�)

(𝑑∗)
𝑛,𝑛−1, (A.21)

𝑉
�( 𝑓 ∗)
𝑛+1,𝑛 = 𝑉

( 𝑓 )
𝑛,𝑛+1, 𝑉

�( 𝑓 ∗)
𝑛,𝑛 = 𝑉

( 𝑓 )
𝑛,𝑛 , 𝑉

�( 𝑓 ∗)
𝑛−1,𝑛 = 𝑉

( 𝑓 )
𝑛,𝑛−1 see (6.10), (6.11), (6.12). (A.22)
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