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to a Jacobian
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Abstract

Let X be a curve of genus at least 4 that is very general or very general hyperelliptic.

We classify all the ways in which a power (JX)k of the Jacobian of X can be isogenous
to a product of Jacobians of curves. As an application, we show that if A is a very
general principally polarized abelian variety of dimension at least 4 or the intermediate
Jacobian of a very general cubic threefold, then no power Ak is isogenous to a product
of Jacobians of curves. This confirms various cases of the Coleman–Oort conjecture.
We further deduce from our results some progress on the question of whether the
integral Hodge conjecture fails for A as above.
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1. Introduction

In this paper we work over the field of complex numbers. For a positive integer g, let Mg be
the moduli space of smooth projective connected curves of genus g. If C is a smooth projective
curve, let JC denote its Jacobian. Our main result is the following theorem.

Theorem 1.1. Let Z ⊂Mg be an irreducible subvariety containing the hyperelliptic locus and
let X be a curve that defines a very general point in Z. Assume that there is an isogeny

ϕ : (JX)k −→ JC1 × · · · × JCn
for some positive integers k and n and some smooth projective connected curves C1, . . . , Cn of
positive genus. If g≥ 4, then k= n and there is an isomorphism Ci �X for each i∈ {1, . . . , n}.

Theorem 1.1 generalizes in various directions the main result of Bardelli and Pirola in [BP89],
which says that the Jacobian JX of a very general curve of genus g≥ 4 is not isogenous to the
Jacobian of any other curve C with C ��X.

The case k= 1 of Theorem 1.1 is due to Naranjo and Pirola; see [NP18, Theorem 1.1]. By
proving Theorem 1.1, we fix a gap in their proof (cf. Remark 4.2) and generalize their theorem
to arbitrary powers (JX)k with k≥ 1. For k≥ 2, additional difficulties appear and the proof
requires new ingredients, most notably work of Kneser [Kne57] on the classification of integral
inner product spaces of dimension at most 16, a generalization of a theorem of Lu and Zuo [LZ19]
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on Shimura curves in the Torelli locus, and a recent result of Lazarsfeld and Martin [LM23] that
grew out from their study of various measures of irrationality.

We will use Theorem 1.1 to prove the following.

Theorem 1.2. Let A be either the intermediate Jacobian of a very general cubic threefold,
or a very general principally polarized abelian variety of dimension g≥ 4. Then there exists no
integer k≥ 1 such that Ak is isogenous to a product of Jacobians of smooth projective curves.

Theorem 1.2 implies that no power of a very general principally polarized abelian variety of
dimension g≥ 4 is isogenous to the Jacobian of a smooth projective curve. In particular, this
proves an instance of the Coleman–Oort conjecture [MO13, Expectation 4.2], which predicts
that for g≥ 8, no positive-dimensional special subvariety Z ⊂Ag is generically contained in the
Torelli locus. More precisely, Theorem 1.2 has the following consequence.

Corollary 1.3. Let g= hk with h≥ 4 and k≥ 2. Let Z ⊂Ag be a subvariety such that the
general element of Z is isogenous to the kth power of a general principally polarized abelian
variety of dimension h. Then Z ⊂Ag is a special subvariety that satisfies the Coleman–Oort
conjecture. In particular, the generic point of Z does not lie in the Torelli locus.

Notice that the union of all subvarieties Z ⊂Ag as in the above corollary is stable under
Hecke translation, and hence dense in Ag for the euclidean topology.

The assertion of Theorem 1.2 that concerns intermediate Jacobians of cubic threefolds seems
to go beyond what is predicted by the Coleman–Oort conjecture.

Another consequence of Theorem 1.1 is the following result.

Corollary 1.4. Let A be either the intermediate Jacobian of a very general cubic threefold,
or a very general principally polarized abelian variety of dimension g≥ 4. Let A1 be an abelian
variety isogenous to a power of A, and let A2 be an abelian variety with Hom(A, A2) = 0. Then
A1 ×A2 is not isomorphic (as unpolarized abelian varieties) to a product of Jacobians of curves.

In the above corollary, we cannot exclude that A1 ×A2 is isogenous to a product of
Jacobians. In fact, for any abelian variety A, a sufficiently general complete intersection curve
C ⊂A has the property that JC is isogenous to A×A2 for some abelian variety A2 with
Hom(A, A2) = 0.

It is a famous open problem to decide whether the integral Hodge conjecture for curve classes
holds on any principally polarized abelian variety. This is partly motivated by [Voi17], where it is
shown that a smooth cubic threefold is not stably rational if the minimal class of its intermediate
Jacobian is not algebraic. The question of the stable rationality of cubic threefolds is in turn
open since the work of Clemens and Griffiths in the 1970s [CG72].

It is shown in [BGF23, Voi24] that a principally polarized abelian variety A satisfies the
integral Hodge conjecture for curve classes if and only if there is an abelian variety B such that
A×B is isomorphic to a product of Jacobians of curves. If dim(A)≥ 4 and A is very general or
the intermediate Jacobian of a very general cubic threefold, then Corollary 1.4 excludes several
possibilities for the abelian variety B, as follows. Since A is simple, we know that B is an
extension 0→B1→B→B2→ 0 of an abelian variety B2 with Hom(A, B2) = 0 (i.e. B2 does
not have A as an isogeny factor) by an abelian variety B1 that is isogenous to a power of A.
Corollary 1.4 shows that this extension cannot be split.

Corollary 1.5. Let A be either the intermediate Jacobian of a very general cubic threefold,
or a very general principally polarized abelian variety of dimension g≥ 4. Let B be an abelian
variety. Assume that B =B1 ×B2, where B1 is isogenous to a power of A and B2 does not have
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A as an isogeny factor. Then A×B is not isomorphic (as unpolarized abelian varieties) to a
product of Jacobians of curves.

The above corollary implies for instance that A×B is not isomorphic to a product of
Jacobians whenever A is as in the corollary and B is a product of simple abelian varieties.

A natural strategy for proving the integral Hodge conjecture for curve classes on an abelian
variety A is to construct isogenies of coprime degrees from kth powers of A to Jacobians of curves.
This approach for k= 1 allowed Voisin to prove the property for special families of intermediate
Jacobians of cubic threefolds in [Voi17]. Similarly, Beckmann and the first named author used
this approach in [BGF23] to prove that the locus of principally polarized abelian varieties that
satisfy the integral Hodge conjecture for curve classes is dense in moduli. Theorem 1.2 above
shows that such an approach does not work for a very general abelian variety of dimension at
least four, nor for the intermediate Jacobian of a very general cubic threefold.

Remark 1.6. A simple dimension count shows that there are complex abelian varieties of dimen-
sion at least 4 that are not isogenous to the Jacobian of a curve. While such an argument cannot
work over countable fields, the statement remains true over Q by work of Chai and Oort [CO12]
and Tsimerman [Tsi12] and, via a different method, by work of Masser and Zannier [MZ20]. Our
paper shows that there are abelian varieties A over C such that no power of A is isogenous to
the Jacobian of a curve; see Theorem 1.2. It is reasonable to ask whether such examples exist
over Q as well; first results in this direction have been proven by Chen, Lu and Zuo in [CLZ21].

As aforementioned, an ingredient in the proofs of Theorems 1.1 and 1.2 is a generalization
of a result of Lu and Zuo on Shimura curves in the Torelli locus. To be precise, note that [LZ19,
Theorem A] implies that for an elliptic curve E with transcendental j-invariant and for g≥ 12,
the gth power Eg yields a point in Ag that is not in the same Hecke orbit as the Jacobian of
a smooth projective connected curve. In other words, there is no smooth projective connected
curve C for which there exists an isogeny Eg→ JC that respects the natural polarizations up
to a positive integer multiple (cf. Remark B.2). In Appendix B of this paper, we show how to
deduce from the results of Lu and Zuo [LZ19] the stronger statement, where the compatibility
assumption on the polarizations is dropped; see Theorem B.1 for the precise statement.

1.1 Outline of the argument

1.1.1 Theorem 1.1 implies Theorem 1.2. Let us first explain how to deduce Theorem 1.2
from Theorem 1.1. To this end, let A be either the intermediate Jacobian of a very general
cubic threefold or a very general principally polarized abelian variety of dimension at least 4. We
assume for a contradiction that there is a smooth projective curve C and an isogeny f : Ak→ JC
for some k≥ 1.

Our assumptions on A ensure by [Col82] that A specializes to JX, where X is a very general
hyperelliptic curve of genus g=dim(A). This yields a specialization of C to a compact-type curve
C0 and an isogeny f0 : (JX)k→ JC0. Applying Theorem 1.1 to f0, we see that there exists an
isomorphism g0 : JC0 � (JX)k. The composition g0 ◦ f0 is an isogeny (JX)k→ (JX)k, given by a
matrix Mk(Z) with non-zero determinant as End(JX) =Z. By an idea from [BP89] (generalized
in Lemma 2.1), we deduce that JC �Ak as unpolarized abelian varieties.

By the above step, we are reduced to the case where f : Ak→ JC is an isomorphism of
complex tori. Using this isomorphism, the canonical principal polarization on JC induces an
indecomposable principal polarization on Ak. We will study all principal polarizations on Ak in
§ 5 and see that such polarizations correspond to indecomposable integral inner product spaces,
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that is, indecomposable pairs (Zk, α) where α∈Mk(Z) is symmetric and the bilinear form it
defines on Zk is positive definite and unimodular. Kneser classified such pairs for k≤ 16 (see
[Kne57]): there is one such space in dimension k= 1, 8, 12, 14 or 15 and there are two for k= 16.
(As an aside, we point out that the number of such spaces grows exponentially with k, e.g. there
are more than 1051 such spaces for k= 40, and there is no classification for large k, see [MH73,
p. 28, Remark 1].)

The aforementioned classification implies that the isomorphism f : Ak
∼−→ JC is actually an

isomorphism of principally polarized abelian varieties f : (Ak, α)
∼−→ (JC,ΘC), where (Ak, α)

denotes the principally polarized abelian variety associated to Ak and some indecomposable
integral inner product space (Zk, α). To conclude the argument, we specialize A to a product
E ×B where E is a very general elliptic curve and B is a principally polarized abelian variety
with Hom(E, B) = 0. We find that (Ak, α) specializes to the product of principally polarized
abelian varieties (Ek ×Bk, α)� (Ek, α)× (Bk, α), and this principally polarized abelian variety
is isomorphic to the Jacobian of the specialization of the curve C. Since (Zk, α) is indecompos-
able, so is the principally polarized abelian variety (Ek, α), which must therefore be isomorphic
to the Jacobian of an irreducible curve. In particular, as E is very general, we get k≤ 11 in view
of Theorem B.1 in Appendix B, which generalizes work of Lu and Zuo [LZ19].

At this point Kneser’s classification can be applied and we are reduced to the case where
either k= 1, or k= 8 and α is induced by the E8-lattice. The latter is ruled out by comparing
the automorphism group of the E8-lattice with the automorphism group of the Jacobian of a
smooth curve of genus eight. We thus arrive at k= 1. This yields an isomorphism f : A� JC of
unpolarized abelian varieties, which has to respect the polarizations on both sides (because A is
very general and hence has Picard rank one). We have finally arrived at a contradiction because
the principally polarized abelian variety A is not isomorphic to a Jacobian by our assumptions
(when A is the intermediate Jacobian of a smooth cubic threefold, this follows from [CG72]).

1.1.2 Sketch of the proof of Theorem 1.1. This is the technical heart of the paper. The
assumptions that Z ⊂Mg contains the hyperelliptic locus Hg ⊂Mg and that [X]∈Z is very
general quickly reduce the proof of Theorem 1.1 to the case where n= 1 and Z =Hg. Thus, we
may assume X is a very general hyperelliptic curve and there exists an isogeny ϕ : (JX)k→ JC
for some smooth projective connected curve C. We then have to show that k= 1 and C �X.
For this, the idea is to split the proof into two steps and prove that:

(i) there exists an isomorphism of unpolarized abelian varieties (JX)k � JC; and
(ii) if ϕ : (JX)k � JC is an isomorphism, then k= 1 and C �X.

Let us first sketch how to prove (i). Define H :=H1(JX,Z). The isogeny ϕ : (JX)k→ JC
induces an embedding ϕ∗ : H1(JC,Z) ↪→H⊕k whose image we denote by M ⊂H⊕k. We remark
that to prove (i), it suffices to prove that:

(i′) M = α ·H⊕k for some α∈Mk(Z) with non-zero determinant.

At the core of the proof of statement (i′) lies a carefully chosen degeneration of X to four different
one-nodal hyperelliptic curves X01, X02, X03 and X04. These degenerations induce degenerations
of C to nodal curves C01, . . . , C04. In fact, for each i∈ {1, 2, 3, 4}, we deform the curve X01 while
keeping its normalization X̃0i fixed, which moves the extension class on JX̃0i associated to JX0i.
We compare the latter with the extension class on JC̃0i associated to JC0i. More precisely, in
Proposition 3.2 we use the induced isogeny ϕ̃i : (JX̃0i)

k→ JC̃0i to compare the two extension
classes and the way they move to conclude that each irrational connected component K ⊂ C̃0i
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of the smooth curve C̃0i must be hyperelliptic since X̃0i is hyperelliptic. Consequently, a result
of Lazarsfeld and Martin (see Proposition 4.6) implies that the genus of K equals the genus of
the curve X̃0i. We then apply a simpler version of Theorem 1.1 due to Naranjo and Pirola (see
Theorem 4.1), in which one has the additional assumptions that k= n= 1 and both curves are
hyperelliptic. This allows us to conclude that K � X̃0i for each irrational connected component
K ⊂ C̃0i, which implies that (JX̃0i)

k � JC̃0i. In other words, (i) holds for the normalizations of
X0i and C0i for each i, and we aim to deduce from this the statement in (i′).

The degenerations come together with specialization maps H1(X0i,Z) ↪→H1(X,Z) =H. The
above implies that for each i∈ {1, 2, 3, 4}, there exists a matrix αi ∈Mk(Z) with non-zero
determinant such that if W0H

1(X0i,Z) :=H1(X0i,Z)∩W0H
1(X0i,Q), then

M ∩H1(X0i,Z)
⊕k ≡ αi ·H1(X0i,Z)

⊕k mod (W0H
1(X0i,Z))

⊕k ∀i∈ {1, 2, 3, 4} .
The way in which we chose our four degenerations X�X0i allows us to apply two technical
linear algebra statements to the above congruences see Lemmas 7.5 and 7.9. The result is that
M = αi ·H⊕k for each i. In particular, this proves the above assertion (i) as desired.

To finish the proof of Theorem 1.1, it remains to prove assertion (ii) above. For this, we
establish the following result of independent interest; for a more general version of the statement,
see Theorem 6.1 in § 6.
Theorem 1.7. Let g ∈Z≥1 and let Z ⊂Mg be an irreducible subvariety which contains the
hyperelliptic locus. Let X be a curve that defines a very general point in Z. If for some k, n≥ 1,
there is an isomorphism of unpolarized abelian varieties JC1 × · · · × JCn � (JX)k for some
smooth projective connected curves Ci of positive genus, then k= n and Ci �X for each i.

We emphasize that Theorem 1.7 works in any genus g≥ 1, while the assumption g≥ 4 in
Theorem 1.1 is necessary. For instance, Theorem 1.7 implies that for an elliptic curve E with
transcendental j-invariant, no power Ek with k≥ 2 is isomorphic as unpolarized abelian varieties
to the Jacobian of a smooth projective connected curve.

The assumption in Theorem 1.7 cannot be weakened to require only that (JX)k be isogenous
to a product of Jacobians of curves; for example, the third power of a very general elliptic curve
is isogenous to countably many Jacobians of smooth projective connected curves of genus three.
The subtlety of the result lies in the fact that for k≥ 2, the abelian variety (JX)k carries various
principal polarizations and so the Torelli theorem can a priori not be applied directly. Besides
Theorem B.1 and the aforementioned result from [Kne57], our proof depends on various fortunate
numerical coincidences; see § 6.2.

1.2 Conventions

We work over the field of complex numbers. Varieties are integral separated schemes of finite
type over C. In particular, varieties (and subvarieties) are integral and hence irreducible by
convention.

Let X be a variety defined over a subfield K ⊂C which is finitely generated over Q and
such that X cannot be defined over a subfield of smaller transcendence degree. A complex point
x : Spec C→XC is very general if the image of the composition Spec C→XC→X is the generic
point of X. This notion does not depend on the choice of the finitely generated subfield K ⊂C.
It therefore makes sense to talk about very general points of a complex variety. The set of all
very general points of a complex variety is the complement of a countable union of proper closed
subsets. IfM is an integral moduli space parametrizing complex varieties (e.g. curves) with some
properties, then an object of M is said to be very general if the corresponding moduli point in
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M is a very general point. If the moduli spaceM is fine, we may thus think about a very general
object of M as (a base change of) the geometric generic fibre of the universal family. This allows
us to specialize very general objects of M to any other given object, which is the key property
that we will use in this paper. For instance, an elliptic curve is very general if and only if its
j-invariant is transcendental.

A curve is a reduced projective scheme of pure dimension one over C, or the analytification
of such a scheme. A curve X of arithmetic genus g≥ 2 is semi-stable (respectively, stable) if
its singularities are at most nodal and each rational connected component of its normalization
contains at least two (respectively, three) points lying over nodes of X. A curve is of compact
type if its dual graph is a tree. A family of curves is a proper flat morphism p : X →B of finite-
type schemes, or complex analytic spaces, such that for each b∈B, the fibre Xb = p−1(b) is a
curve which is (unless mentioned otherwise) connected. We say that a family of curves p : X →B
is a family of semi-stable (respectively, stable, smooth, compact-type, nodal) curves if the curve
Xb is semi-stable (respectively, is stable, is smooth, is of compact type, has at most nodal
singularities) for each b∈B. If X denotes a complex quasi-projective variety, then we denote by
WkH

i(X,Q) the kth piece of the weight filtration of the associated mixed Hodge structure; see
e.g. [PS08]. IfH i(X,Z) is torsion-free (e.g. if i= 1), then we also writeWkH

i(X,Z) :=H i(X,Z)∩
WkH

i(X,Q). If A is an abelian variety with dual abelian variety A∨, then a polarization on A is
the isogeny λ : A→A∨ associated to an ample line bundle L on A; thus λ(x) = [t∗x(L)⊗L−1]∈
Pic0(A) =A∨ for x∈A, where tx : A→A denotes the translation-by-x map.

2. Preliminaries

In this section, we gather various preliminary results.

2.1 Isogenies between powers of abelian schemes and cohomology

We start with the following lemma.

Lemma 2.1. Let k ∈Z≥1. Let S be a connected complex manifold, f : A→ S and g : B→ S
families of compact complex tori, and ψ : Ak→B a family of isogenies over S, where Ak
denotes the k-fold fibre product of A over S. Suppose that for some t∈ S, the induced map
ψ∗
t : H

1(Bt,Z)→H1(At,Z)⊕k satisfies ψ∗
t (H

1(Bt,Z)) = α ·H1(At,Z)⊕k ⊂H1(At,Z)⊕k for some
α∈Mk(Z). Then there is an isomorphism B �Ak over S.

Proof. The k= 1 case goes back to [BP89]; the more general version stated above is similar.
First of all, in order to prove B �Ak over S, it suffices to show that the variation of inte-

gral Hodge structure R1g∗Z on S is isomorphic to (R1f∗Z)⊕k. The matrix α has full rank,
because ψt is an isogeny and ψ∗

t (H
1(Bt,Z)) = α ·H1(At,Z)⊕k by assumption. Hence, fibre-

wise multiplication by α yields an embedding of integral Hodge structures α : (R1f∗Z)⊕k→
(R1f∗Z)⊕k. Similarly, fibrewise push-forward along the family of isogenies ψ yields an embed-
ding ψ∗ : R1g∗Z→ (R1f∗Z)⊕k. To prove that R1g∗Z� (R1f∗Z)⊕k, it thus suffices to prove that
the images of the above embeddings coincide, i.e. that the following equality holds:

im(ψ∗ : R1g∗Z→ (R1f∗Z)⊕k) = im(α : (R1f∗Z)⊕k→ (R1f∗Z)⊕k).

Since S is connected, the above identity can be checked at the single point t∈ S, where it holds
by assumption. This concludes the proof of the lemma. �

As a corollary, we obtain the following useful criterion.
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Abelian varieties with no power isogenous to a Jacobian

Lemma 2.2. Let S be a smooth connected complex manifold and let f : A→ S and g : B→ S
be families of compact complex tori. Let ψ : Ak→B be a family of isogenies of complex tori over
S. Suppose that for some t∈ S, we have End(At) =Z and Bt �Akt for some k ∈Z≥1. Then there
is an isomorphism B �Ak over S.

Proof. By Lemma 2.1, it suffices to show that the induced map ψ∗
t : H

1(Bt,Z)→H1(At,Z)⊕k

has image α ·H1(At,Z)⊕k ⊂H1(At,Z)⊕k for some α∈Mk(Z). This is clear: as End(At) =Z, the
composition

Akt
ψt−→Bt �Akt

is given by a matrix α∈Mk(Z), and hence the same is true on cohomology. �

2.2 Gauß maps

The goal of this section is to prove Proposition 2.8 below. This proposition says that if C
is a smooth connected non-hyperelliptic curve and m∈Z≥1, then the surface m(C −C)⊂ JC
contains no hyperelliptic curves.

For a dominant morphism of varieties f : X→ Y with dim(X) = dim(Y ), let the branch locus
B(f)⊂ Y be the reduced closed subscheme which is the complement of the largest open subset of
Y over which f is étale. Similarly, define the ramification locus R(f)⊂X of f as the complement
of the largest open subset U ⊂X such that f |U : U →X is étale. These definitions readily extend
to the case of a dominant rational map f : X ��� Y of varieties of the same dimension. Specifically,
if U ⊂X is a non-empty open subset on which f restricts to a morphism f |U : U → Y , then we
define R(f) as the closure of R(f |U ) in X and B(f) as the closure of B(f |U ) in Y .

Let C be a smooth connected non-hyperelliptic curve (hence of genus g≥ 3), and let

φKC
: C −→ P(H0(C,KC)) = P (T0JC)

be the canonical embedding. This gives a morphism

s : C ×C −→Gr(1, P(T0JC)), (p, q) �→ (line spanned by φKC
(p) and φKC

(q)) .

Lemma 2.3. In the above notation, the morphism s : C ×C→ s(C ×C) is generically finite.
Moreover, if we let deg(s) denote its degree, then we have

deg(s) =

{
2 if g≥ 4,

12 if g= 3.

The ramification locus R(s) of s is the diagonal ΔC ⊂C ×C, and the branch locus B(s) of s
is the curve D in Gr(1, P(T0JC)) parametrizing lines which are tangent to the canonical curve
φKC

(C)⊂ P (T0JC). Moreover, the induced map C =ΔC =R(s)→B(s) =D is birational.

Proof. This is well known (see e.g. [BP89, Remark 3.1.2]). �

Lemma 2.4. Let C be a smooth connected non-hyperelliptic curve. Let ΔC ⊂C ×C be the diag-
onal, and consider the origin 0∈C −C ⊂ JC. The difference map a : C ×C→C −C restricts
to an isomorphism (C ×C) \ΔC

∼−→ (C −C) \ {0}.
Proof. Let p, q, p′, q′ ∈C. Then [p− q] = [p′ − q′]∈ JC implies that the divisors p+ q′ and p′ + q
on C are linearly equivalent. Hence they are equal, because C is not hyperelliptic. �
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O. de Gaay Fortman and S. Schreieder

Lemma 2.5. Let C be a smooth connected non-hyperelliptic curve of genus three, with canonical
embedding C ↪→ P2. Let �⊂ P2 be a very general line and let p1, p2, p3, p4 be four distinct points
on C such that �∩C = {p1, p2, p3, p4} ⊂C. Then for any integer m≥ 1, the 12 points m[pi − pj ]∈
JC (i �= j ∈ {1, 2, 3, 4}) are pairwise distinct.

Proof. Assume that there is a very general line �⊂ P2 and points p, q, p′, q′ ∈C ∩ � with p �= q
and p′ �= q′ such that m[p− q] =m[p′ − q′]∈ JC for some m≥ 1. We need to show p= p′ and
q= q′. For a contradiction, we assume that this is not the case.

The line � is spanned by the two points p and q. Since � is very general, so is (p, q)∈C ×C.
In a first step, we note that p= q′ and q= p′ is impossible, as it leads to 2m[p− q] = 0∈ JC for
very general (p, q)∈C ×C, which is absurd. Since (p, q) �= (p′, q′) by assumption, we get that
{p, q} �= {p′, q′}.

We specialize the line � to a line �0 so that p and q collapse to a single very general point
p0 ∈C and �0 is the tangent line of C at p0. We denote the limit points of p′ and q′ by p′0 and q′0,
respectively. Since {p, q} �= {p′, q′}, the equality p′0 = q′0 would imply that �0 is a bitangent, which
is impossible as their number is finite (there are exactly 28 such lines). Hence, p′0 �= q′0. Moreover,
the identity m[p− q] =m[p′ − q′]∈ JC specializes to the identity 0 =m[p′0 − q′0]∈ JC. We can
further specialize the point p0 ∈C at which �0 is tangent and find that there is a one-dimensional
family of points (p′0, q′0)∈C ×C such that 0 =m[p′0 − q′0]∈ JC and p′0 �= q′0. Since the m-torsion
points of JC are discrete, taking the closure of the above one-dimensional family yields a curve
in C ×C which is different from the diagonal and which is contracted by the difference map
C ×C→C −C. This contradicts Lemma 2.4 and hence concludes the proof. �

Let A be an abelian variety of dimension g≥ 2 and let V ⊂A be a closed subvariety of
dimension k, with 1≤ k≤ g− 1. Let T0A be the tangent space of A at the origin, and consider
the canonical trivialization TA� T0A×A of the tangent bundle TA of A. Define Gr(k, T0A) as
the Grassmannian of k-planes in T0A. Recall that, in this setting, the Gauß map

GV,A : V Gr(k, T0A) = Gr(k − 1,P(T0A))

is the rational map defined as follows. For a point x in the smooth locus of V , the induced map
on tangent spaces TxV → TxA is an embedding, whose image can be identified with a k-plane in
T0A via t; we let GV,A(x)∈Gr(k, T0A) be the induced point of the Grassmannian.

Let C be a smooth connected non-hyperelliptic curve. Define a morphism

a : C ×C −→ JC, a(x, y) = [x− y]∈Pic0(C) = JC. (2.1)

For m∈Z≥1, let m(C −C)⊂ JC be the image of the morphism m · a : C ×C→ JC, and put
C −C = 1(C −C)⊂ JC. Consider the Gauß map Gm = Gm(C−C),JC , which is a rational map.

Gm : m(C − C) Gr(1,P(T0JC)) (2.2)

By [BP89, Lemma 3.1.1 and Remark 3.1.2], the following diagram commutes.

C × C a

s

C − C
G1

m
m(C − C)

Gm

Gr(1,P(T0JC)) Gr(2, T0JC) Gr(2, T0JC)

(2.3)

In particular, we obtain the rational maps

G1 : C −C ��� s(C ×C), Gm : m(C −C) ��� s(C ×C). (2.4)
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Abelian varieties with no power isogenous to a Jacobian

Proposition 2.6. Let C be a smooth connected non-hyperelliptic curve and let m≥ 1 be an
integer. Consider the commutative diagram (2.3) above and the resulting morphisms (2.4). The
following assertions are true.

(1) The morphisms a : C ×C→C −C and m : C −C→m(C −C) are birational.

(2) The rational maps G1 : C −C ��� s(C ×C) and Gm : m(C −C) ��� s(C ×C) are generi-
cally finite.

Proof. By Lemma 2.3, the morphism s : C ×C→ s(C ×C) is generically finite. Hence, the
commutativity of diagram (2.3) shows that assertion (2) follows from assertion (1).

Let us prove assertion (1). By Lemma 2.4, the map a is birational, so it remains to prove that
the map m : C −C→m(C −C) is birational. Since diagram (2.3) commutes and a is birational,
we get that deg(s) = deg(G1) = deg(m) · deg(Gm). To prove deg(m) = 1 it thus suffices to show
deg(s)≤ deg(Gm). Assume first that g≥ 4. Let p∈C be any point, and let q ∈C be a point such
that [p− q]∈ JC is not 2m-torsion. Then, on the one hand, m[p− q] �=m[q− p]∈ JC and, on
the other hand, Gm(m[p− q]) =Gm(m[q− p])∈Gr(2, T0JC). Therefore 2≤ deg(Gm), and since
deg(s) = 2 by Lemma 2.3, we get deg(s)≤ deg(Gm), proving what we want.

Next, assume that g= 3, and consider the canonical embedding C ↪→ P2. Let �⊂ P2 be a
very general line, so that �∩C = {p1, p2, p3, p4} ⊂C for distinct points p1, p2, p3 and p4 on C.
The elements m[pi − pj ]∈m(C −C) for i �= j are all sent to the same element in Gr(2, T0JC)
under the rational map Gm. Moreover, the twelve points m[pi − pj ]∈ JC (i �= j ∈ {1, 2, 3, 4})
are pairwise distinct by Lemma 2.5. We conclude that 12≤ deg(Gm), and since deg(s) = 12 by
Lemma 2.3, we get deg(s)≤ deg(Gm) and we are done. �

Remark 2.7. In [NP18], assertion (1) of Proposition 2.6 is proven for g≥ 4. We gave some details
of the arguments above because we will need the case of g= 3, in which case the claim in loc.
cit. that deg(s) = 2 is incorrect; see Lemma 2.3.

We are now in a position to prove the following proposition.

Proposition 2.8. Let C be a smooth connected curve of genus g≥ 3. Suppose that for some
m∈Z≥1 there is a non-constant morphism

f : X −→m(C −C)⊂ JC,
where X is a smooth connected hyperelliptic curve. Then C is hyperelliptic.

Proof. Assume that C is non-hyperelliptic; our goal is to arrive at a contradiction. Recall that
m : C −C→m(C −C) is birational; see statement (1) of Proposition 2.6. Assume first that
f(X) is contained in the branch locus B(m) of m. The commutativity of diagram (2.3) yields a
rational map X ���B(s) defined as the composition

X
f

B(m)
Gm

B(Gm ◦m) B(G1) ⊂ B(G1 ◦ a) B(s).

This rational map is non-constant as B(m) must be a curve (as f is non-constant) and Gm is
generically finite; see statement (2) in Proposition 2.6. As B(s) is birational to C by Lemma 2.3,
one obtains a non-constant morphism X→C, proving that C is hyperelliptic (see e.g. [Sch90,
Lemma 1.1]), which yields the desired contradiction.

Therefore, the curve f(X)⊂m(C −C) is not contained in B(m), and we obtain a non-
constant rational map X ���C −C defined as the composition

X
f

m(C − C) m−1

C − C.
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Note that R(a) =ΔC ⊂C ×C and B(a) = {0} ⊂C −C. Consequently, composing the non-
constant rational map m−1 ◦ f with the rational map a−1 : C −C ���C ×C, one obtains a
non-constant rational map X ���C defined as the composition

a−1 ◦m−1 ◦ f : X ���m(C −C) ���C −C ���C ×C.
Thus, X admits a non-constant morphism X→C. This is a contradiction, and we are done. �

Remark 2.9. Let C be a non-hyperelliptic curve of genus g≥ 3. Essential in the proof of
Proposition 2.8 above is the exploitation of the birational map (m ◦ a)−1 : m(C −C) ���C ×C.
This idea was inspired by [NP18, p. 902]. We have provided some additional details of the
argument for convenience of the reader.

2.3 Extensions of abelian varieties

Let A be an abelian variety with dual abelian variety A∨. Recall that, by the Barsotti–Weil
formula, there is a canonical isomorphism Ext(A,Gm) =A∨. If T �Gr

m is a torus, G a con-
nected commutative algebraic group, and 0→ T →G→A→ 0 an exact sequence of commutative
algebraic groups, then by applying Hom(−,Gm) one obtains a homomorphism

ct : Hom(T,Gm)−→Ext(A,Gm) =A∨

from the character group of T to the dual abelian variety A∨, and this construction induces a
bijection (compare [Car80, Proposition 2] and [Cha85, Chapter II, § 2]):

Ext(A, T ) =Hom
(
Hom(T,Gm), A

∨) . (2.5)

Lemma 2.10. For i∈ {1, 2}, let 0→ Ti→Gi→Ai→ 0 be an exact sequence of algebraic groups,
where Ai is an abelian variety and Ti �Gri

m a torus. Let f : G1→G2 be a morphism of algebraic
groups. Then f restricts to a homomorphism f |Ti

: T1→ T2 and hence induces a homomorphism
f̄ : A1→A2. Moreover, if cti ∈Hom(Hom(Ti,Gm), A

∨
i ) is the homomorphism that corresponds

to the class of Gi in Ext(Ai, Ti) via (2.5), then the following diagram commutes.

Hom(T2,Gm)

ct2

(f |T1 )∗
Hom(T1,Gm)

ct1

A∨
2

(f̄)∨ ∨
1

(2.6)

Proof. The first statement follows from the fact that Hom(T1, A2) = 0. For the second statement,
consider the following commutative diagram with exact rows.

0 T1 G1 A1 0

0 T2 G2 A2 0

Applying Hom(−,Gm) to this diagram and using the fact that for an abelian variety A, the
isomorphism Ext(A,Gm) =A∨ is functorial in A, the commutativity of (2.6) follows. �

2.4 Extension classes of nodal curves

Next, we recall some known results on extensions of Jacobians of smooth projective connected
curves, following [Ale04, §§ 2.2–2.4]. We will make use of the following definition.
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Definition 2.11. Let X be a connected nodal curve, and let Γ(X) be its dual graph. An orien-
tation of Γ(X) is the choice of an ordering (P+, P−) on every pair of points on the normalization
X̃ of X lying above the same node.

Let X be a connected nodal curve. Let X1, . . . , Xn be the irreducible components of X and
X̃i→Xi their normalizations. We denote the dual graph of X by Γ=Γ(X) and fix any
orientation of Γ. Let

X̃ =

n∐
i=1

X̃i −→X

be the normalization of X. The dual abelian variety of JX̃ is identified with itself via the
principal polarization, and the character group of the torus T =Ker(JX→ JX̃) is canonically
identified with H1(Γ,Z). Hence,

Ext(JX̃, T ) =Hom(Hom(T,Gm), JX̃) =Hom(H1(Γ,Z), JX̃). (2.7)

Moreover, the homomorphism

ct : H1(Γ,Z)−→ JX̃ (2.8)

corresponding to [JX]∈Ext(JX̃, T ) via (2.7) is described explicitly in the following way. Every
edge e of Γ corresponds to a node P of X, and the orientation defines an ordered pair of points
(P+, P−) on X̃. Put

ct(e) = P+ − P− ∈Pic(X̃),

and extend this by linearity to the free module C1(Γ,Z) on the edges of Γ. Let C0(Γ,Z) be the
free Z-module on the set of vertices of Γ. For an edge e, let end(e) and beg(e) be the end-vertex
and begin-vertex of e, as determined by the orientation of e, and define

∂ : C1(Γ,Z)−→C0(Γ,Z) by ∂(e) = end(e)− beg(e) for an edge e of Γ.

If h∈H1(Γ,Z) =Ker(∂ : C1(Γ,Z)→C0(Γ,Z)), one has ct(h)∈ JX̃, and this construction defines
the homomorphism (2.8); see [Ale04, § 2.4].

2.5 Graph homology and extension classes

We continue with the notation of § 2.4. Let v1, . . . , vm be a set of vertices and e1, . . . , em a set
of edges of Γ, such that for each j ∈ {1, . . . , m− 1}, the edge ej connects the vertices vj and
vj+1, and em connects vm and v1. In particular, if m= 1, then e1 is a loop connecting v1 to
itself.

Let

X̃i1 , X̃i2 , . . . , X̃im

be the connected components of the normalization X̃ of X that correspond to the vertices
v1, . . . , vm. For j ∈ {1, . . . , m− 1}, the orientation of ej defines an ordered pair of points

(P+
j , P

−
j ) such that P+

j lies either on X̃ij or on X̃ij+1
, and the opposite is true for P−

j ; define

εj ∈ {1,−1} by declaring that εj = 1 if P−
j lies on X̃ij and εj =−1 otherwise. We obtain a cycle

γ =

m∑
j=1

εj · ej ∈C1(Γ,Z), (2.9)

and one readily observes that ∂(γ) = 0, so that γ ∈H1(Γ,Z)⊂C1(Γ,Z).
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Lemma 2.12. Let X be a connected nodal curve with dual graph Γ. Then the following hold.

(1) There exists a linearly independent subset S = {γ1, . . . , γk} ⊂H1(Γ,Z) consisting of homol-
ogy classes of the form (2.9) such that S defines a basis of H1(Γ,Q).

(2) Let X̃1, . . . , X̃n be the connected components of the normalization X̃ of X. Let γ ∈H1(Γ,Z)
be a class of the form (2.9), and consider the homomorphism ct : H1(Γ,Z)→ JX̃; see (2.7)
and (2.8). There are points pi, qi ∈ X̃i for each i∈ {1, . . . , n} such that

ct(γ) = (p1 − q1, . . . , pn − qn)∈ JX̃1 × · · · × JX̃n = JX̃. (2.10)

Note that we do not require that all the points pi and qi be distinct.

Proof. To prove (1), first recall the following fact. Let Y be a path-connected one-dimensional
CW complex with basepoint y0, a 0-cell. Then every loop in Y is homotopic to a loop consisting of
a finite sequence of edges traversed monotonically; see [Hat02, § 1.1, Exercise 19]. Consequently,
homology classes of the form (2.9) generate H1(Γ,Z), yielding the lemma. (We do not require
that S be an integral basis, because not any generating set of a free Z-module contains a basis.)

To prove (2), we note that in the notation used above (2.9), we have

ct(γ) = (P+
i1
− P−

im−1
, P+

i2
− P−

i1
, P+

i3
− P−

i2
, . . . , P+

im
− P−

im−1
)∈

m∏
j=1

JX̃ij ⊂ JX̃.

The lemma follows. �

2.6 Extension classes of nodal hyperelliptic curves

We turn to the hyperelliptic case.

Lemma 2.13. Let X be an irreducible one-nodal hyperelliptic curve of genus g≥ 1, with nor-
malization X̃→X. Consider the homomorphism ct : H1(Γ,Z)→ JX̃, where Γ denotes the dual
graph of X; see (2.8). If γ is a generator for H1(Γ,Z)�Z, there is a point x∈ X̃ such that
ct(γ) = x− ι(x), where ι : X̃→ X̃ is the hyperelliptic involution.

Proof. By the description of the map ct, we have ct(γ) = p− q, where p and q denote the points
on the normalization X̃ of X that are glued to form the nodal curve X. As X is hyperel-
liptic, the hyperelliptic involution on X̃ descends to an involution on X, which implies that
q= ι(p). �

Lemma 2.14. Let X be a very general one-nodal hyperelliptic curve. There is no positive-
dimensional abelian subvariety of JX.

Proof. Let T =Ker(JX→ JX̃) and consider the extension

0−→ T −→ JX −→ JX̃ −→ 0. (2.11)

Since X is very general, JX̃ is simple. Hence any positive-dimensional abelian subvariety of
JX must be isogenous to JX̃. If such a subvariety exists, then the extension (2.11) splits up to
isogeny, and so it suffices to exclude the latter. By Lemma 2.13, the isomorphism Ext(JX̃, T )�
JX̃ (cf. § 2.3) identifies [JX] with x− ι(x) for some x∈ X̃, so (2.11) splits up to isogeny if and
only if x− ι(x)∈ JX̃ is torsion. As the one-nodal hyperelliptic curve X is very general, this is
not the case. �
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2.7 Nodal degeneration and vanishing cycles

Recall the following result.

Proposition 2.15. Let D be the open unit disc with origin 0∈D. Let X be a complex analytic
space and f : X→D a proper map. Put X0 = f−1(0). If X is smooth and f is smooth over
D− {0}, then the inclusion X0 ↪→X is a homotopy equivalence. If X is any complex analytic
space and f any proper map X→D, then the same is true up to shrinking D around 0.

Proof. See for instance [PS08, Proposition C.11 and Remark C.12.ii]. �

Lemma 2.16. Let X be an analytic space, (D, 0) the pointed unit disc, and f : X→D a family
of nodal curves over D which is smooth over D∗ =D− {0}. There exists a complex manifold
X̃ and a projective morphism h : X̃→X which is an isomorphism over the regular locus of X,
such that f ◦ h defines a family of nodal curves X̃→D which is smooth over D∗.

Proof. See [Jon96, Lemma 3.2], the main point being that we can find a resolution X̃ of X such
that the fibres of X̃→D are reduced. �

Consider a proper holomorphic map

f : X −→D

from an n-dimensional complex manifold X to a disc D. Assume that f is a submersion over
the punctured disc D∗ and that over 0∈D there are k critical points x1, . . . , xk ∈X0 = f−1(0)
for some k ∈Z≥1 that are non-degenerate. Assume that X is regular (something we can always
achieve by modifying X ; see Lemma 2.16).

Lemma 2.17. Continue with the above notation, and let t∈D∗. There are k disjoint spheres
Sn−1
1 , . . . , Sn−1

k ⊂Xt and a deformation retraction of X onto the union of Xt and k disjoint
n-dimensional balls Bn

1 , . . . , B
n
k , where the ball Bni is glued to Xt along the sphere Sn−1

i ⊂Xt.

Proof. This is a straightforward generalization of [Voi07, Theorem 2.16]. �

Corollary 2.18. Continue with the above notation. Let t∈D∗ and let i :Xt ↪→X be the
inclusion. Then i∗ : Hm(Xt,Z)→Hm(X,Z) is an isomorphism for m<n− 1. For m= n− 1,
the map i∗ is surjective, with kernel generated by the cohomology classes of the spheres
Sn−1
1 , . . . , Sn−1

k ⊂Xt.

Proof. This is a straightforward generalization of [Voi07, Corollary 2.17]. �

Lemma 2.19. Continue with the above notation and let t∈D∗. Let δ1, . . . , δn ∈Hn−1(Xt,Z)
be the Poincaré duals of the homology classes of the vanishing spheres Sn−1

1 , . . . , Sn−1
k ⊂Xt; see

Lemma 2.17. Let (−,−) : Hn−1(Xt,Z)×Hn−1(Xt,Z)→Z be the cup-product pairing. For some
εn ∈ {±1}, depending only on n, the natural generator T ∈Aut(H1(Xt,Z)) of the monodromy
group satisfies

T (α) = α+ εn ·
k∑
i=1

(α, δi) δi ∀α∈Hn−1(Xt,Z).

Proof. This is a straightforward generalization of [Voi07, Theorem 3.16]. �

Next, we verify that for a nodal degeneration of curves over a disc with smooth general fibre,
the monodromy invariant part of the first integral cohomology group of the general fibre does
not change after any finite base change.
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Lemma 2.20. Let D � 0 be the pointed unit disc. Let X →D be a family of nodal curves, smooth
over D∗ =D \ {0}. Let τ : D′ =D→D be the map z �→ zm, let 0′ ∈D′ be the preimage of 0∈D,
and consider the base change X ′ :=X ×D D′. Let t �= 0∈D and fix a preimage t′ ∈D′ of t∈D.
Let T ∈Aut(H1(Xt,Z)) and T ′ ∈Aut(H1(X ′

t′ ,Z) be the monodromy operators induced by the
restrictions of the families to D∗ and D′∗. Then the invariant subspaces of T and T ′ coincide,
that is,

H1(Xt,Z)
T =H1(X ′

t′ ,Z)
T ′
.

Proof. To prove the lemma, we may assume that X is regular; see Lemma 2.16. Suppose that the
central fibre X0 has k nodes, and let δ1, . . . , δk ∈H1(Xt,Z) be the cohomology classes attached
to the vanishing spheres S1, . . . , Sk ⊂Xt; see Lemma 2.17. By Lemma 2.19, we have the following
generalization of the Picard–Lefschetz formula: for each α∈H1(Xt,Z), one has

T (α) = α+

k∑
i=1

(α · δi)δi ∈H1(Xt,Z).

On the one hand, the monodromy operator T ′ on H1(X ′
t′ ,Z) =H1(Xt,Z) satisfies T ′ = Tm. On

the other hand, we have

Tm(α) = α+m ·
k∑
i=1

(α · δi)δi ∈H1(Xt,Z), α∈H1(Xt,Z).

This implies that for α∈H1(Xt,Z) one has

T ′(α) = α ⇐⇒ m ·
k∑
i=1

(α · δi)δi = 0 ⇐⇒
k∑
i=1

(α · δi)δi = 0 ⇐⇒ T (α) = α.

This proves the lemma. �

Remark 2.21. In the course of the proof of Theorem 1.1 we will be forced to perform various
base changes. This is a priori a subtle issue for the following reasons. We plan to degenerate to
different nodal fibres, which is equivalent to the degeneration to one fixed nodal fibre followed
by the application of a monodromy operator. However, the monodromy action on cohomology
with finite coefficients may become trivial after a base change, while the basic criterion in
Lemma 2.1 that we aim to exploit is in fact equivalent to the analogous assertion for (sufficiently
divisible) finite coefficients. For this reason, the fact that even after an arbitrary base change one
can deduce additional information from degeneration to various nodal fibres (a fact which was
already exploited in [BP89, NP18]) seems somewhat surprising. The key reason which makes
these arguments work is given in Lemma 2.20 above, which says that the monodromy invariant
subspace is not affected by any finite base change.

We conclude the section with the following lemma.

Lemma 2.22. Let C be a complex analytic space, D⊂C an open disc around 0∈C, and
q : C →D a family of nodal curves over D. Suppose that for each s∈D∗ =D− {0}, the curve
Cs = q−1(s) is of compact type. Then up to shrinking D around 0, the following holds: for t∈D∗

and T ∈Aut(H1(Ct,Z)) a generator of the monodromy group, the natural map

H1(C,Z)−→H1(Ct,Z)
T

is surjective.
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Abelian varieties with no power isogenous to a Jacobian

Proof. Let Ci (i∈ I) denote the irreducible components of C. By flatness of q, the induced
morphism qi : Ci→D is surjective. We claim that the general fibre of qi is irreducible. Clearly,
it suffices to prove this after shrinking the disc D. The main point is then that C →D is a
family of nodal curves, and hence the fibre above 0 is reduced. This in turn implies that for each
irreducible component C0,j of the special fibre of q, there is up to shrinking a section of q that
passes through a general point of C0,j . This shows that the component Ci of C that contains C0,j

admits a section and hence has irreducible general fibre. Running through all components C0,j

of the special fibre of q, we get in this way that each qi : Ci→D has irreducible general fibre.
Since the general fibre of q : C →D is of compact type, the general fibre of qi is smooth and

the index set I forms the vertices of a tree that indicates which components of a general fibre of
q meet. If i, j ∈ I are joined by an edge ei,j , or equivalently if the general fibres of Ci and Cj are
glued at a point, then we get a section ei,j :D

∗→C, which has to extend across the puncture
by properness of q. Since the arithmetic genus of the fibres of each qi : Ci→D is constant, and
because the same holds for q : C →D, we see that C is given by the quotient

C =
(∐
i∈I
Ci
)
/∼

where we glue for each edge ei,j between some indices i, j ∈ I according to the section constructed
above. Since the fibres of q are nodal, we see moreover that the points that are glued via ∼ on
the special fibre lie in the smooth locus of

⊔
i∈I Ci→D.

A simple Mayer–Vietoris argument now reduces us to showing that

H1(Ci,Z)−→H1(Cit,Z)
T

is surjective for each i∈ I. In other words, we have reduced the result to the case where q is
smooth over the punctured disc D∗. In this case we apply Lemma 2.16 and get a modification
τ : C̃ → C given by successive blow-ups of the singular points in the central fibre, such that the
fibres of C̃ →D are reduced and hence nodal curves. By [Kol93, Theorem 7.8], τ∗ : π1(C̃)→
π1(C) is an isomorphism. Passing to the abelianization and applying Hom(−,Z), we find that
τ∗ : H1(C,Z)→H1(C̃,Z) is an isomorphism. This reduces us to the case where C is regular
and q is smooth over D∗. By Corollary 2.18, H1(Ct,Z)→H1(C,Z) is surjective. It follows that
H1(C,Z)→H1(Ct,Z) is injective with torsion-free cokernel. By the local invariant cycle theorem
(cf. [Mor84]), the map H1(C,Z)→H1(Ct,Z)T becomes surjective after tensoring with Q; as its
cokernel is torsion-free, it is surjective. This concludes the proof of the lemma. �

2.8 Degenerations of hyperelliptic curves

In this section, we construct a family of stable hyperelliptic curves satisfying suitable properties.
The base will be higher-dimensional with several divisors, each of which gives rise to a family
of one-nodal hyperelliptic curves, allowing us to degenerate a very general hyperelliptic curve
in different directions. We will ultimately need these different degenerations in order to prove
Theorem 1.1; see § 8.

The following lemma is certainly well known; we include some details for convenience of the
reader.

Lemma 2.23. Let n, g≥ 2 be positive integers with n≤ g. Consider the affine space A2g−1 with
coordinates z1, . . . , z2g−1. There exists a non-empty Zariski open subset U ⊂A2g−1, irreducible
divisors Δi ⊂U for i= 1, . . . , n, and a family of genus g stable hyperelliptic curves

p : X −→U (2.12)

such that the following hold.
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(1) Let Δ :=
⋃
iΔi. The family (2.12) is smooth over U −Δ, the fibre Xt = p−1(t) for very

general t∈U is a very general hyperelliptic curve of genus g, and for each i∈ {1, . . . , n} the
fibre X0i

above a very general point 0i ∈Δi is a very general one-nodal hyperelliptic curve
of arithmetic genus g.

(2) For 0i ∈Δi (i∈ {1, . . . , n}), there exists a one-dimensional disc Di ⊂U intersecting Δ
transversally in 0i ∈Δi such that the restriction p|Di

: X|Di
→Di is a Lefschetz degeneration

with nodal central fibre above 0i ∈Di.

(3) Let t∈U −Δ and ti ∈Di − {0i} be base points. Let δi ∈H1(Xti ,Z) be the vanishing cycle
associated to p|Di

: X|Di
→Di, and view δi as an element of H1(Xt,Z) via parallel transport

along a path ρi from t to ti. Then δ1, . . . , δn can be completed to a symplectic basis

H1(Xt,Z) = 〈δ1, . . . , δg; γ1, . . . , γg〉. (2.13)

Proof. Let an−1, . . . , a2g−1 ∈C be general complex numbers, and consider the following
equation:

y2 = ((x− an−1)
2 − z1) · ((x− an)2 − z2) ·

n−2∏
i=1

((x− zn+i − an+i)2 − zi+2) ·
2g−1∏

j=2n−1

(x− zj − aj).

(The slight asymmetry in the quadratic terms reflects automorphisms of P1 and stems from
the fact that we want to have a family that depends on 2g− 1 parameters z1, . . . , z2g−1.) This
defines a family of affine hyperelliptic curves over A2g−1, branched at the 2g+ 2 points

x=∞, x=±√z1 + an−1, x=±√z2 + an, x=±√zi+2 + zn+i + an+i, x= zj + aj

for i= 1, . . . , n− 2 and j = 2n− 1, . . . , 2g− 1. This extends to a projective family of hyperelliptic
curves, and we denote by U ⊂A2g−1 the open subset where the corresponding hyperelliptic curve
attains at most one node. The corresponding projective family of hyperelliptic curves is denoted
by p : X →U , and we note that X is regular. By construction, for u= (z1, . . . , z2g−1)∈U , the
fibre Xu = p−1(u) either is smooth or attains exactly one node; the latter happens if and only
if zi = 0 for some i∈ {1, . . . , n}. Let Δi :=U ∩ {zi = 0} for i∈ {1, . . . , n}. The above description
of the ramification points of the hyperelliptic covering Xu→ P1 for u∈U shows that the moduli
map Δi→Mg is generically finite onto its image (because the hyperelliptic locus in Mg has
dimension 2g− 1). Altogether this proves assertion (1) in the lemma.

For i∈ {1, . . . , n}, let Di ⊂U be a disc that intersects Δ transversally in a general point
0i ∈Δi. Up to shrinking the disc Di, we can assume that the total space X|Di

of the restriction
X|Di

→Di is regular: the only possible singularity is at the node of the central fibre, where
analytically locally an equation of X|Di

is given by t= x2 − y2, which yields a regular surface.
Thus, X|Di

→Di is a Lefschetz degeneration, proving assertion (2).
The fibre Xt is a double covering Xt→ P1 branched along 2g+ 2 points p0, p1, . . . , p2g+1.

By construction, X →U is given by an equation of the form y2 =
∏n
i=1 fi(x) ·

∏2g−1
j=2n−1 gj(x),

where gj(x) = x− zj − aj and fi(x) is quadratic in x. Up to reordering, we can assume that
{p2i−1, p2i} corresponds to the roots of fi(x). In particular, p2i−1 and p2i collide along the
Lefschetz degeneration over the disc Di for i= 1, . . . , n.

We pick a path of shortest distance between p2i−1 and p2i on P1 for i= 1, . . . , g and note
that the preimage of this path in the hyperelliptic curve Xt gives rise to a homology class in
H1(Xt,Z) (well-defined up to sign) whose Poincaré dual δi ∈H1(Xt,Z) is for i= 1, . . . , n the
vanishing cycle that corresponds to colliding p2i−1 and p2i. The classes δ1, . . . , δg are orthogonal
to each other and can be completed to a symplectic basis, proving assertion (3). �
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Let p : X →U be a family of hyperelliptic curves of genus g as in Lemma 2.23. For i∈
{1, . . . , n}, consider the embedding H1(X0i

,Z) ↪→H1(Xt,Z) defined as the composition of the
inverse of the mapH1(X|Di

,Z)→H1(X0i
,Z) (which is an isomorphism by Proposition 2.15), the

restriction H1(X|Di
,Z)→H1(Xti ,Z) and the parallel transport H1(Xti ,Z)→H1(Xt,Z) along

ρi. Let

W0H
1(X0i

,Z) =W0H
1(X0i

,Q)∩H1(X0i
,Z)

be the integral part of the zeroth piece of the weight filtration. For i∈ {1, . . . , n}, let Ti ∈
Aut(H1(Xt,Z)) be the monodromy operator associated to the path ρi and the pointed disc
(Di, 0i).

Lemma 2.24. Consider the above notation. With respect to the symplectic basis (2.13), we have

Im
(
H1(X0i

,Z) ↪→H1(Xt,Z)
)
=H1(Xt,Z)

Ti

= 〈δ1, . . . , δg; γ1, . . . , γi−1, γ̂i, γi+1, . . . , γg〉, (2.14)

Im
(
W0H

1(X0i
,Z) ↪→H1(Xt,Z)

)
= Im (Ti − id) = 〈δi〉=Z · δi. (2.15)

Here, the module on the right in (2.14) denotes the submodule of H1(Xt,Z) obtained from
H1(Xt,Z) by removing γi from the symplectic basis (2.13).

Proof. For each i∈ {1, . . . , n}, define
H ′
i := Im

(
H1(X0i

,Z) ↪→H1(Xt,Z)
)

and Vi := Im
(
W0H

1(X0i
,Z) ↪→H1(Xt,Z)

)
.

Consider the monodromy operator Ti : H
1(Xt,Z)→H1(Xt,Z). In view of statements (2) and

(3) in Lemma 2.23, Ti is given by the formula

Ti(α) = α+ (α · δi)δi, α∈H1(Xt,Z),

where the δi are the vanishing cycles δi ∈H1(Xt,Z) attached to the Lefschetz degenerations
X|Di

→Di and the path ρi. It is well known that

Vi ⊗Q= Im(Ti − id)⊗Q⊂Ker(Ti − id)⊗Q=H ′
i ⊗Q⊂H1(Xt,Q). (2.16)

In fact, (2.16) holds integrally because the respective spaces are saturated inH1(Xt,Z). In partic-
ular, (2.14) follows. Note that (Ti − id)(α) = (α · δi)δi for each α∈H1(Xt,Z). As we have γi · δi =
−1, this gives (Ti − id) (γi) = (γi · δi)δi =−δi. Therefore, Vi = Im (Ti − id) = 〈δi〉=Z · δi ⊂H ′

i,
proving (2.15) and thereby the lemma. �

3. Moving the extension class

Let f : X→ Y be a flat morphism of complex analytic spaces with reduced fibres. Following
[CHL06, Definition 5.3], a simultaneous normalization of f is a finite morphism of analytic
spaces ν : Z→X such that f̄ := f ◦ ν is a flat morphism Z→ Y whose non-empty fibres are
normal and such that for each y ∈ f(X), the induced morphism of fibres νy : f̄

−1(y)→ f−1(y) is
a normalization map. We say that f : X→ Y is equinormalizable if a simultaneous normalization
of f exists. If Y is normal, f : X→ Y is flat with reduced fibres, and the connected components
of X are equidimensional, then any simultaneous normalization ν : Z→X of f is a normalization
of X; see [CHL06, Proposition 5.4]. In particular, ν : Z→X is then unique up to isomorphism.

Proposition 3.1. Let X and Y be complex analytic spaces with Y normal. Let f : X→ Y be
a (proper) family of nodal curves with irreducible fibres (cf. § 1.2). Assume that the number of
nodes of the curve Xy = f−1(y) is constant for y ∈ Y . Then f is equinormalizable.
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Proof. This can for instance be deduced from [CHL06, Theorem 5.6, Corollary 5.4.2 and
Definition 5.1]; we include some details for convenience of the reader. Since f is a proper family
of nodal curves, Sing(f)→ Y is finite and unramified; see e.g. [Jon96, § 2.21]. Since the number
of nodes is constant in the family, it follows that each component of Sing(f) dominates Y . Using
this we see that for each x∈ Sing(f) with image y= f(x), there is a suitable neighbourhood
U ⊂X such that Sing(f)∩U ∩ f−1(y) = {x}. Up to shrinking U , we can assume that the fibres
of U → Y have at most one node. Up to replacing U by the intersection with the preimage of
a suitable neighbourhood of y in Y , we can moreover assume that U ∩ Sing(f)→ f(U) is finite
and surjective. Moreover, since f is flat, so is U → f(U). We may then apply Theorem 5.6 in loc.
cit. to conclude that f is equinormalizable at x (in the sense of the paragraph above Corollary
5.4.2 in loc. cit.). Since x∈X was arbitrary, it follows from Corollary 5.4.2(ii) in loc. cit. that f
is equinormalizable. �

Let p : X →H be a family of one-nodal hyperelliptic curves of arithmetic genus g≥ 2 over a
connected normal complex analytic space H. Assume that the following hold.

(1) For some k≥ 1 and some family of semi-stable curves q : C →H, there is an isogeny

ψ : (JX )k := JX ×H · · · ×H JX −→ JC
of semi-abelian varieties over H, where JX and JC are the relative Jacobians over H.

(2) If ν : X̃ →X is a simultaneous normalization (cf. Proposition 3.1), then:

(i) there is an isomorphism

X̃ � X̃0 ×H (3.1)

over H, where X̃0 ⊂ X̃ is the fibre above a general base point 0∈H;
(ii) there is a non-constant morphism H→ X̃0, u �→ xu, such that for any u∈H the fibre

Xu is obtained from its normalization X̃u by gluing the images of the points xu, ι(xu)∈
X̃0, under the isomorphism X̃0 � X̃u induced by (3.1). Here, ι : X̃0→ X̃0 denotes the
hyperelliptic involution on X̃0.

Proposition 3.2. In the above notation, let C̃0,1, . . . , C̃0,n be the non-rational connected

components of the normalization C̃0 of the curve C0 = q−1(0). Then there is an integer N ≥ 1
and a matrix α= (ai,j)ij ∈Mk(Z) with non-zero determinant such that for each j ∈ {1, . . . , k}
the image of the composition

gj : X̃0
fj−→ (JX̃0)

k α−→ (JX̃0)
k

˜ψ0−→ JC̃0 = JC̃0,1 × · · · × JC̃0,n

is contained in

N · (C̃0,1 − C̃0,1)× · · · ×N · (C̃0,n − C̃0,n)⊂ JC̃0,1 × · · · × JC̃0,n,

where fj(x) = (0, . . . , x− ι(x), . . . , 0) with x− ι(x) placed on the jth coordinate and where ψ̃0

is the isogeny induced by ψ. Moreover, for each i∈ {1, . . . , n} there exists j ∈ {1, . . . , k} such
that the resulting morphism

pri ◦ gj : X̃0 −→N · (C̃0,i − C̃0,i)

is non-constant.

Proof. The image of gj is analytic and the image of fj is one-dimensional. Hence, in order to
prove the proposition, we are allowed to perform a base change along an arbitrary morphism
τ : H ′→H of complex analytic spaces as long as 0∈ im(τ) and the point xu ∈ X̃0 from (ii) moves
if u runs along H ∩ im(τ). This easily reduces us to the situation where H is a one-dimensional
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disc and the number of irreducible components of the curve Cu = q−1(u) is constant for u∈H.
By the existence of the isogeny ψ : (JX )k→ JC, this implies that the number of nodes of Cu is
constant for u∈H. Indeed, if ν is the number of nodes of Cu and c the number of irreducible
components of Cu, then one has the formula k= ν − c+ 1.

Since the fibres of p : X →H are one-nodal and ψ : (JX )k→ JC is an isogeny, we have
that k= rankZ(H1(Γ(C0),Z)), where Γ(C0) denotes the dual graph on C0. By statement (1) in
Lemma 2.12, there is a linearly independent subset {γ1(0), . . . , γk(0)} ⊂H1(Γ(C0),Z) of homol-
ogy classes of the form (2.9). Since C →H is equisingular, the groups H1(Γ(Cu),Z) for u∈H
form a local system on H. Since H is a disc, the corresponding local system is trivial and so
each γj(0) extends to a section of classes γj(u)∈H1(Γ(Cu),Z). Hence, for each u∈H we get a
linearly independent subset

{γ1(u), . . . , γk(u)} ⊂H1(Γ(Cu),Z) (3.2)

of homology classes of the form (2.9). �

Claim 3.3. There exists a family of abelian varieties A→H with fibre Au � JC̃u above a point
u∈H, such that the semi-abelian scheme JC is globally over H the extension of A by the torus
Gk
m ×H over H, and the isogeny ψ : (JX )k→ JC induces an isogeny

ψ̃ : (JX̃)k −→A
of families of abelian varieties over H.

Proof of Claim 3.3. The claim follows easily once the existence of A→H is established. In the
algebraic setting, this is [FC90, Chapter I, Corollary 2.11]. As we are working in the analytic
setting, we provide an argument for convenience of the reader.

Let (V, W,F) be the polarized integral variation of mixed Hodge structure on H (cf. [PS08,
Definitions 14.44 and 14.45]) defined by the family of curves q : C →H. In particular, the under-
lying local system of Z-modules V has stalk Vu =H1(Cu,Z) for a point u∈H. The quotient
V/W0(V) is a local system on H with stalk

H1(Cu,Z)/W0H
1(Cu,Z) =H1(C̃u,Z)

for u∈H, and the filtration F induces a filtration F on the holomorphic vector bundle
(V/W0(V))⊗Z OH that extends to a principally polarized integral variation of Hodge structure
of weight one over H. This concludes the proof of the claim. �

Since (JX̃)k � (JX̃0)
k ×H as families of abelian varieties over H, in view of the isogeny

ψ̃ above, the polarized abelian scheme A→H from the above claim is isotrivial, and hence
constant, since H is simply connected. Thus, we get a canonical isomorphism

A ∼−→ JC̃0 ×H
of principally polarized abelian schemes over H, yielding a canonical isomorphism of principally
polarized abelian varieties

JC̃u =Au ∼−→ JC̃0 (3.3)

for each u∈H.
Consider the homomorphism

ct : H1(Γ(Cu),Z)−→ JC̃u � JC̃0 =

n∏
i=1

JC̃0,i ;

1423

https://doi.org/10.1112/S0010437X25007171
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.166, on 14 Nov 2025 at 19:33:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X25007171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


O. de Gaay Fortman and S. Schreieder

see § 2.4 and in particular (2.7) and (2.8). Here, the isomorphism JC̃u � JC̃0 is the one defined in
(3.3) above. By statement (2) in Lemma 2.12, for each u∈H there are points pi,j(u), qi,j(u)∈ C̃0,i

for i∈ {1, . . . , n} and j ∈ {1, . . . , k} such that

ct(γj(u)) = (p1,j(u)− q1,j(u), . . . , pn,j(u)− qn,j(u))∈JC̃0,1 × · · · × JC̃0,n. (3.4)

Up to a suitable base change we may assume that the points pi,j(u) and qi,j(u) depend
holomorphically on u and give rise to sections of C →H.

By Lemma 2.10 and (2.7), for each u∈H the isogeny of semi-abelian varieties ψu : (JXu)
k→

JCu induces a canonical morphism (ψu)∗ : H1(Γ(Xu),Z)⊕k→H1(Γ(Cu),Z) such that the
following diagram commutes.

H1(Γ(Xu),Z)⊕k
(ψu)∗

ct
(JXu)k

H1(Γ(Cu),Z)

ctJCu

(JX̃0)
k

˜ψ0
JC0

(3.5)

By the assumptions, for u∈H we have X̃0 � X̃u, and the curve Xu is obtained from its normal-
ization X̃u by gluing the images in X̃u of the points xu and ι(xu) on X̃0. In particular, the dual
graph Γ(Xu) consists of a single loop. We fix an orientation of this dual graph (see Definition
2.11) and obtain a canonical identification H1(Γ(Xu),Z) =Z. Let

μ(u)r = (0, . . . , 0, 1, 0, . . . , 0)∈H1(Γ(Xu),Z)
⊕k,

where 1 is placed on the rth coordinate. Then

ct(JXu)k
(μ(u)r) = (0, . . . , xu − ι(xu), . . . , 0)∈ (JX̃u)

k = (JX̃0)
k,

where xu − ι(xu) is placed on the rth coordinate. Recall the set of classes γj(u)∈H1(Γ(Cu),Z)
from (3.2). As the elements μ(u)1, . . . , μ(u)k form a basis of H1(Γ(Xu),Z)⊕k and the cokernel
of the embedding

(ψu)∗ : H1(Γ(Xu),Z)
⊕k −→H1(Γ(Cu),Z)

is finite (because ψu is an isogeny), there exists an integer N ∈Z≥1 and integers a1,j , . . . , ak,j ∈Z
for each j ∈ {1, . . . , k} such that

N · γj(u) =
k∑
r=1

ar,j · (ψu)∗(μ(u)r)∈H1(Γ(Cu),Z) (3.6)

for each j ∈ {1, . . . , k}. By the commutativity of the diagram (3.5), together with (3.4), we obtain
the following equalities for each u∈H and each j ∈ {1, . . . , k}:

ψ̃0(a1,j · (xu − ι(xu)), . . . , ak,j · (xu − ι(xu)))

=

k∑
r=1

ar,j · ψ̃0 (0, . . . , xu − ι(xu), . . . , 0) =
k∑
r=1

ar,j · ψ̃0(c
t
(JXu)k

(μ(u)r))

=

k∑
r=1

ar,j · ctJCu
((ψu)∗(μ(u)r)) = ctJCu

(
k∑
r=1

ar,j · (ψu)∗(μ(u)r)
)

= ctJCu
(N · γj) =N · ctJCu

(γj)

=N · (p1,j(u)− q1,j(u), . . . , pn,j(u)− qn,j(u))∈ JC̃0,1 × · · · × JC̃0,n.
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Abelian varieties with no power isogenous to a Jacobian

We may now consider the integral k× k matrix α := (ai,j)i,j , and we note that this matrix
has non-zero determinant because γ1(u), . . . , γk(u)∈H1(Γ(Cu),Z) from (3.2) form a rational
basis. Then

α · fj(xu) = (a1,j · (xu − ι(xu)), . . . , ak,j · (xu − ι(xu))) ,
and so we conclude that

ψ̃0 (α · fj(xu)) =N · (p1,j(u)− q1,j(u), . . . , pn,j(u)− qn,j(u))∈ JC̃0,1 × · · · × JC̃0,n.

As ψ̃0 is an isogeny, ψ̃0 (α · fj(xu)) moves with u∈H because the map H→ X̃0, u �→ xu is non-

constant by assumption. This shows that the restriction of gj : X̃0→ JC̃0 to some analytically

open non-empty subset of X̃0 has the property claimed in the proposition, which suffices to
conclude.

It remains to prove the last assertion. Note that the curves fj(X̃0) for j = 1, . . . , k gen-

erate (JX̃0)
k. As ψ̃0 and α are isogenies, the curves gj(X̃0) for j = 1, . . . , k generate JC̃0 =∏n

i=1 JC̃0,i. Thus, for i∈ {1, . . . , n} the projection pri : gj(X̃0)→ JC̃0,i, and hence the projec-

tion pri : gj(X̃0)→N · (C̃0,i − C̃0,i), is non-constant for some j ∈ {1, . . . , k}. This concludes the
proof of the proposition.

4. Hyperelliptic curves on hyperelliptic Jacobians

The following result is due to Naranjo and Pirola; see [NP18, Theorem 1.1].

Theorem 4.1 (Naranjo–Pirola). Let X be a very general hyperelliptic curve of genus g≥ 3.
Suppose that the Jacobian JC of some hyperelliptic curve C is isogenous to JX. Then C �X.

Remark 4.2. The statement of [NP18, Theorem 1.1] is more general than the above Theorem
4.1, but the proof of [NP18, Theorem 1.1] contains a gap; see [NP18, fifth line from the end in
the proof of Theorem 1.1]. Here, it is claimed that the nodal curves C0 and D0 in loc. cit. are
isomorphic, while the given arguments only suffice to conclude that their normalizations C̃0 and
D̃0 are isomorphic. (Note that the authors do indeed prove that C̃0 � D̃0. Indeed, they show that
D̃0 is hyperelliptic, and so one can apply Theorem 4.1 to the isogeny f̃0 : JD̃0→ JC̃0.) Proving
Theorem 1.1 will in particular fix the gap in loc. cit. Naranjo and Pirola have informed us that it
is possible to find an alternative fix via the study of infinitesimal variations of Hodge structures
due to Griffiths and Voisin.

Remark 4.3. Theorem 4.1 is the part of [NP18, Theorem 1.1] that is not affected by the afore-
mentioned gap. To explain this, in the notation of [NP18, Theorem 1.1], assume that for a very
general hyperelliptic curve C there exists an isogeny f : JD→ JC where D is a smooth hyper-
elliptic curve of genus g≥ 3. The moduli count on [NP18, p. 901] is used to show that the map
φ : D̃0→ JD̃0 defined as y �→m(y− ιD̃0

(y)) (see p. 901 in loc. cit.) is birational onto its image.
Although this moduli count is incorrect, φ is birational onto its image for the following reason: if
2mD̃0 ⊂ JD̃0 denotes the image of φ, then the geometric genera of D̃0 and 2mD̃0 are the same
because 2mD̃0 is dominated by D̃0 and generates JD̃0. The isogeny f̃∗0 : JC̃0→ JD̃0 in loc. cit.
sends, by comparison of the respective extension classes, the curve 2C̃0 into the curve 2mD̃0.
By the above, this provides us with a dominant rational map C̃0 ��� D̃0, which must be an iso-
morphism because both curves have the same genus of at least two. The remaining arguments
in loc. cit. (together with Proposition A.1 in Appendix A) suffice to prove that JD� JC, and
hence D�C by Torelli and the genericity assumptions.

The goal of this section is to deduce from Theorem 4.1 the following generalization.
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Theorem 4.4. Let X be a very general hyperelliptic curve of genus at least 3. Let C1, . . . , Cn
be hyperelliptic curves of genus at least one such that there exists an isogeny JC1 × · · · ×
JCn→ (JX)k for some k≥ 1. Then n= k, there is an isomorphism Ci �X for each i∈
{1, . . . , n}, and the induced isogeny (JX)k � JC1 × · · · × JCn→ (JX)k is given by a matrix
α∈Mk(Z).

The proof of Theorem 4.4 relies on Theorem 4.1 and the following two results, the first
of which is probably well known, and the second of which is due to Lazarsfeld and Martin
[LM23].

Lemma 4.5. Let A be an abelian variety with End(A) =Z. The natural maps Mk(Z)→End(Ak)
and GLk(Z)→Aut(Ak) are isomorphisms. Moreover, if there exist abelian varieties B1, . . . , Bn
and an isomorphism ϕ :

∏n
i=1 Bi

∼→Ak, then there exists α∈Aut(Ak) =GLk(Z) such that the
composition α ◦ϕ : ∏n

i=1 Bi→Ak respects the product structures on both sides. In particular,
in that case, there is a partition k= k1 + · · ·+ kn such that Bi �Aki for each i.
Proof. The space of endomorphisms End(Ak) is naturally given by k× k matrices whose entries
are endomorphisms of A. Since End(A) =Z, we find that End(Ak)�Mk(Z), which proves the
first claim in the lemma. This also implies Aut(Ak)�GLk(Z).

The ith factor Bi yields a projector pi ∈End(Ak). By what we have said above, pi can be
identified with a k× k matrix with pi · pi = pi and pi ◦ pj = pj ◦ pi for all i and j. By simultaneous
diagonalization of permuting projectors, we find a change of coordinates, i.e. an automorphism
α∈Aut(Ak) =GLk(Z), such that α ◦ϕ has the property claimed in the lemma. �

Proposition 4.6 (Lazarsfeld–Martin). Let X be a very general hyperelliptic curve of genus
g≥ 3 and let Z ⊂ JX × JX be an irreducible curve whose normalization is hyperelliptic. Then
Z generates a proper subtorus of JX × JX.

Proof. See [LM23, Proposition 3.1]. In the statement of that proposition, there is the additional
assumption that Z lifts to a curve on X ×X, but this assumption is not used in the proof.
Indeed, the proof in loc. cit. immediately starts with the hyperelliptic curve Z inside JX × JX
and spreads this out to a family of hyperelliptic curves Zs ⊂ JXs × JXs. Then the hyperelliptic
Jacobian JXs is specialized to JXs =Bs ×E, where E is a fixed elliptic curve and Bs is the
Jacobian of a very general hyperelliptic curve of genus g− 1 which varies with s. Under the
assumption that Z generates JX × JX, the same will be true for Zs for all s. In particular,
under this assumption, the image of Zs via the projection JXs × JXs→E ×E is a curve in
E ×E. It is then shown (see [LM23, Claim in § 3]) that this curve varies with s. Since the
normalization of Zs is hyperelliptic, its image in E ×E yields a rational curve on the Kummer
surface associated to E ×E. The latter are rigid, because Kummer surfaces are not ruled. This
contradiction concludes the argument. �

Proof of Theorem 4.4. As JX is simple, we have g(Ci)≥ g(X) for each i, and n≤ k. If g(Ci)>
g(X) for some i, then k≥ 2 and there exists a surjection

JCi� JX × JX.

As Ci is hyperelliptic and X is very general hyperelliptic, this contradicts Proposition 4.6. We
conclude that g(Ci) = g(X) for each i and that n= k. In particular, for each i, there exists an
isogeny JCi→ JX. By Theorem 4.1, we have Ci �X for each i. As the hyperelliptic curve X
is very general, the composition (JX)k �∏n

i=1 JCi→ (JX)k is given by a matrix in Mk(Z); see
Lemma 4.5. �
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Abelian varieties with no power isogenous to a Jacobian

5. Polarizations on powers of abelian varieties and bilinear forms

This section has two goals. Consider a principally polarized abelian variety A with endomorphism
ring Z. Firstly, we classify isomorphism classes of principal polarizations on any power of A; see
§ 5. Secondly, we investigate principal polarizations on any abelian variety B isogenous to a
power of A; see § 5.2.

5.1 Polarizations on powers of a very general abelian variety

Let A be an abelian variety with dual abelian variety A∨. For a line bundle L on A, the map
ϕL : A→Pic0(A) =A∨ defined as x �→ t∗x(L)⊗L−1 is a homomorphism of abelian varieties, and
the association L �→ϕL induces an injective map

Φ: NS(A) ↪→Hom(A, A∨).

The image of Φ is contained in the subset Homsym(A, A∨)⊂Hom(A, A∨) of maps φ : A→A∨

that satisfy φ∨ = φ (viewed as maps A∨∨ =A→A∨). A line bundle L on A is ample if and only if
ϕL : A→A∨ is an isogeny, in which case the class [L]∈NS(A) (respectively, the homomorphism
ϕL) is called a polarization. The polarization [L] is principal if h0(A,L) = 1 or, equivalently, if
ϕL is an isomorphism. See e.g. [Mil86] or [BL04] for more details.

Lemma 5.1. Let A= V/Λ be a complex torus. Let k ∈Z≥1 and consider the natural
embedding

ιA : Mk(Z) ↪→End(Ak).

Let α∈Mk(Z) with attached endomorphism ιA(α)∈End(Ak). Let ιA(α)∨ ∈End((Ak)∨) be the
endomorphism dual to ιA(α). Then, with respect to the canonical isomorphism (Ak)∨ = (A∨)k,
we have ιA(α)

∨ = ιA∨(αt) where αt ∈Mk(Z) is the transpose of the matrix α.

Proof. The lemma follows from the following well-known linear algebra statement: if Λ is a free
Z-module of positive and finite rank and if α∈Mk(Z), then the endomorphism fΛ(α) : Λ

k→Λk

that α induces satisfies fΛ(α)
∨ = fΛ∨(αt) as morphisms (Λ∨)k −→ (Λ∨)k. Here, fΛ∨(αt) is the

endomorphism of (Λ∨)k attached to the transpose αt ∈Mk(Z) of α. �

Let k ∈Z≥1 and let A be an abelian variety, principally polarized by λ : A
∼−→A∨. Let

λk : Ak→ (Ak)∨ be the product polarization on Ak. From now on we drop the notation ιA intro-
duced in Lemma 5.1 by letting α∈End(Ak) denote the endomorphism attached to a matrix
α∈Mk(Z). We define an injective map

Mk(Z) ↪→Hom(Ak, (Ak)∨),
α �→ λα := λk ◦ α. (5.1)

Observe that any γ ∈GLk(A) acts naturally on the set of morphisms μ : Ak→ (Ak)∨ via

μ �→ γ ◦ μ ◦ γt, (5.2)

where we view γ as an automorphism of Ak, μ as a morphism Ak→ (A∨)k, and the transpose
γt ∈GLk(Z) of γ as an automorphism of (A∨)k. If μ is a polarization, then γ ◦ μ ◦ γt is again
a polarization. Indeed, it is clear that (γt)∨ ◦ μ ◦ γt is a polarization, where the automorphism
(γt)∨ : (A∨)k ∼−→ (A∨)k is the automorphism of (A∨)k induced by γt via duality; moreover, by
Lemma 5.1 we have (γt)∨ = (γt)t = γ as automorphisms (A∨)k ∼−→ (A∨)k.

If End(A) =Z, then End(Ak) =Mk(Z) and Aut(Ak) =GLk(Z) by Lemma 4.5, and the map
α �→ λα yields an isomorphism Mk(Z)

∼−→Hom(Ak, (Ak)∨).

Lemma 5.2. Let (A, λ) be a principally polarized abelian variety. Then the following hold.
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(1) Let α∈Mk(Z) such that α has non-zero determinant. Then the map λα : A
k→ (Ak)∨ asso-

ciated to α is a polarization on Ak if and only if α is symmetric and positive definite. In
particular, the map (5.1) restricts to an injective map

Pk(Z) ↪→{polarizations on Ak},
α �→ λα,

(5.3)

where Pk(Z)⊂Mk(Z) denotes the subset of positive-definite symmetric matrices.

(2) The map (5.1) is equivariant with respect to the GLk(Z)-action on both sides, where GLk(Z)
acts on Pk(Z) by γ · α= γαγt for α∈Pk(Z) and γ ∈GLk(Z), and where GLk(Z) acts on
Ak via (5.2) and the natural embedding GLk(Z)⊂Aut(Ak).

(3) If End(A) =Z, then (5.3) defines a bijection

Pk(Z)
∼−→{polarizations on Ak},

α �→ λα.
(5.4)

(4) Assume End(A) =Z. Let α, β ∈Pk(Z) and γ ∈GLk(Z) =Aut(Ak). Then α= γβγt if and
only if γt defines an isomorphism of polarized abelian varieties (Ak, λα)

∼−→ (Ak, λβ).

(5) If End(A) =Z, then the map (5.1) induces a bijection between the set of (isomorphism
classes of) unimodular positive-definite symmetric bilinear forms on Zk and the set of
(isomorphism classes of) principal polarizations on Ak.

Proof. Let us prove assertion (1). Let α∈Mk(Z) such that α has non-zero determinant. We need
to show that λα : A

k→ (Ak)∨ is a polarization on Ak if and only if α is symmetric and positive
definite. For this, in view of [BL04, Theorem 5.2.4], it suffices to prove that α is symmetric
and positive definite if and only if the endomorphism α∈End(Ak) is symmetric and totally
positive. Here, symmetric is understood to be with respect to the Rosati involution † : End(Ak)→
End(Ak) defined by the product principal polarization λk on Ak attached to λ (thus, f ∈End(Ak)
is symmetric if f † = f), and an endomorphism ϕ : X→X of an abelian variety X is said to
be totally positive if the zeros of the characteristic polynomial of the analytic representation
ϕan : Lie(X)→ Lie(X) of ϕ are all positive.

Consider the canonical embedding

Mk(Z) ↪→End(Ak).

The above shows that to prove (1), it suffices to prove the following assertions.

(a) A matrix α∈Mk(Z) is symmetric if and only if the associated endomorphism α∈End(Ak)
is symmetric.

(b) Let α∈Mk(Z) be a symmetric matrix with non-zero determinant. Then the induced R-
linear transformation α : Rk

∼−→Rk has positive real eigenvalues if and only if the associated
endomorphism α∈End(Ak) is totally positive.

Assertion (a) follows from Lemma 5.1. Let us prove (b). Let αan : Lie(A)k→ Lie(A)k denote the
analytic representation of the endomorphism α∈End(Ak). We must show that the eigenvalues of
the induced R-linear transformation α : Rk

∼−→Rk are positive if and only if the eigenvalues of the
complex linear map αan : Lie(A)k→ Lie(A)k are positive. This follows readily from the fact that if
V is a complex vector space of finite positive dimension and k≥ 1 an integer, then any symmetric
matrix α∈GLk(R) has positive real eigenvalues when viewed as an R-linear transformation
α : Rk

∼−→Rk if and only if the induced C-linear map V k =Rk ⊗R V
∼−→Rk ⊗R V = V k has positive

real eigenvalues.
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Next, we prove assertion (2). Let α∈Pk(Z) with associated polarization λα : A
k→ (Ak)∨.

Let (a1, . . . , ak)∈Ak. Then λk ◦ γ = γ ◦ λk as maps Ak→ (A∨)k since λk is the image of the
identity matrix under the map (5.1). Therefore,

λγαγt = λk ◦ γ ◦ α ◦ γt = γ ◦ λk ◦ α ◦ γt = γ ◦ λα ◦ γt,
and hence (2) follows.

We now prove (3). For this, we assume End(A) =Z. Note that this assumption implies that
the map (5.1) is a bijection. Hence any polarization μ : Ak→ (Ak)∨ is of the form μ= λα for a
unique α∈GLk(Z), and by (1) such a matrix α is symmetric and positive definite, proving what
we want.

To prove (4), assume End(A) =Z. Let α, β ∈Pk(Z) and γ ∈GLk(Z) =Aut(Ak). Then
γt defines an isomorphism of polarized abelian varieties (Ak, λα)� (Ak, λβ) if and only if
λα = γ ◦ λβ ◦ γt. Since γ ◦ λβ ◦ γt = λγβγt by (2), this happens if and only if λα = λγβγt , which in
turn happens if and only if α= γβγt by the injectivity of (5.3). Assertion (4) follows.

Finally, for α∈Pk(Z), the polarization λα is a principal if and only if α is unimodular.
Assertion (5) of the lemma then follows from (4), and we are done. �

Lemma 5.3. Let (A, λ) a principally polarized abelian variety with End(A) =Z. Let k be a
positive integer, let α∈Pk(Z), and consider the associated polarization λα on Ak. Consider the
positive-definite integral quadratic space (Zk, α) associated to the matrix α.

(1) The association α �→ λα in (5.4) induces a bijection between the set of isomorphism classes
of decompositions (Ak, λα)�

∏
i(Bi, λi) for some polarized abelian varieties (Bi, λi) and

the set of isomorphism classes of decompositions (Zk, α)�⊕i(Z
ki , αi) of (Zk, α) into an

orthogonal direct sum of positive-definite integral quadratic spaces.

(2) The polarized abelian variety (Ak, λα) is indecomposable as a polarized abelian variety if
and only if (Zk, α) is an indecomposable positive-definite integral quadratic space.

Proof. If (Zk, α)�⊕i(Z
ki , αi) as integral quadratic spaces, then (Ak, λα)�

∏
i(A

ki , λαi
) by

Lemma 5.2. Conversely, consider an isomorphism
∏
i(Bi, λi)

∼→ (Ak, λα) of polarized abelian vari-
eties. By Lemma 4.5, for each i there exists a non-negative integer ki ≤ k and an isomorphism
of abelian varieties Bi �Aki . Thus, there is a polarization λ′i on the abelian variety Aki for each
i such that

∏
i(Bi, λi)�

∏
i(A

ki , λ′i). Each λ
′
i is again of the form λ′i = λαi

for αi ∈Pki(Z), and
the resulting isomorphism of polarized abelian varieties (Ak, λα)�

∏
i(A

ki , λαi
) is induced by an

isomorphism of positive-definite integral quadratic spaces (Zk, α)�⊕i(Z
ki , αi); see Lemma 5.2.

Assertion (1) follows, and (2) is a direct consequence of (1). �

5.2 Polarizations on abelian varieties isogenous to a power of an abelian variety

Lemma 5.4. Let A be an abelian variety and let λ : A→A∨ be a polarization. There is a
canonical isomorphism H1(A

∨,Z) =H1(A,Z)∨. Moreover, if E : H1(A,Z)×H1(A,Z)→Z is the
alternating form corresponding to λ, then the push-forward

λ∗ : H1(A,Z)−→H1(A
∨,Z) =H1(A,Z)

∨

satisfies λ∗(x)(y) =E(x, y) for all x, y ∈H1(A,Z).

Proof. This is well known and follows for instance from [BL04, Lemma 2.4.5]. �

Let (A, λA) and (B, λB) be principally polarized abelian varieties. Let Ak→B be an isogeny
for some integer k≥ 1, and suppose that the principal polarization λB of B pulls back to the
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polarization β · λAk on Ak defined as

β · λAk : Ak −→ (A∨)k, x �→ β · λAk(x),

where β is a positive-definite symmetric integral k× k matrix and λAk is the natural product
polarization on Ak induced by λA.

Lemma 5.5. In the above notation, let M :=H1(B,Z) and H :=H1(A,Z), and let EM and E⊕k
H

be the symplectic forms onM and H⊕k associated to the respective principal polarizations. With
respect to the natural embedding M ⊂H⊕k induced by the isogeny Ak→B, we have

EM (x, y) =E⊕k
H (x, β−1 · y) =E⊕k

H (β−1 · x, y) for each x, y ∈M.

Proof. Via the principal polarizations, the given isogeny φ : Ak→B induces an isogeny ψ : B→
Ak. We claim that ψ ◦ φ= β as isogenies Ak→Ak. To see this, recall that the pull-back φ∗(λB)
of the principal polarization λB of B is the isogeny Ak→ (Ak)∨ given by the composition

Ak
φ

B
λB

B∨ φ∨
(Ak)∨.

As this is β times the natural principal polarization on Ak, the claim follows.
On the level of lattices, the maps φ and ψ induce embeddings

H⊕k
f

M
g

H⊕k.

The claim above implies that g ◦ f = β as linear maps H⊕k→H⊕k. By assumption, we have
φ∗(λB) = β · λAk . Therefore, by Lemma 5.4, we have

EM (f(x), f(y)) = (f∗EM ) (x, y) =E⊕k
H (β · x, y) ∀x, y ∈H⊕k.

If we view M as a sublattice of H⊕k via g, then the above equality implies that

EM (β · x, β · y) =EM (f(x), f(y)) =E⊕k
H (β · x, y) ∀x, y ∈H⊕k.

In particular, EM (β · x, β · y) =E⊕k
H (β · x, y) for all x, y ∈M , and hence EM (x, y) =

E⊕k
H (x, β−1 · y) for x, y ∈M . As E⊕k

H (x, β−1 · y) =E⊕k
H (β−1 · x, y) for each x, y ∈H⊕k, the lemma

follows. �

6. Powers of abelian varieties isomorphic to products of Jacobians

The goal of this section is to prove the following theorem, which will be used in the proofs of
Theorems 1.1 and 1.2.

Theorem 6.1. Let g ∈Z≥1 and let Z ⊂Ag be a subvariety of the moduli space of principally
polarized abelian varieties of dimension g with the following properties:

– there is a point [(A0, λ0)]∈Z such that A0 �E0 ×B0 (as polarized abelian varieties), where
B0 is a principally polarized abelian variety of dimension g− 1 and E0 is an elliptic curve
with transcendental j-invariant;

– a very general point [(A, λ)]∈Z satisfies End(A) =Z.

If for some very general point [(A, λ)]∈Z and some integers k, n≥ 1, there are some smooth
projective connected curves C1, . . . , Cn of positive genus and an isomorphism

∏n
i=1 JCi �Ak of

unpolarized abelian varieties, then k= n and for each i we have an isomorphism (JCi,ΘCi
)�

(A, λ) of polarized abelian varieties.
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6.1 Applications of Theorem 6.1

Before we turn to the proof of Theorem 6.1, we show that it implies Theorem 1.7 stated in the
introduction.

Proof of Theorem 1.7. Let Z̄ ⊂Ag be the closure in Ag of the image of Z under the Torelli map
Mg→Ag. By assumption, Z̄ contains the hyperelliptic Torelli locus. Since the Jacobian JX of
a very general hyperelliptic curve X satisfies End(JX) =Z, we conclude via specialization that
End(A) =Z for any very general point [(A, λ)]∈ Z̄. Moreover, there are hyperelliptic compact-
type curves X0 with JX0 �E0 ×B0 for an elliptic curve E0 with transcendental j-invariant.
Since Z̄ is closed in Ag and contains the hyperelliptic locus, the point [JX0,ΘX0

] is contained in
Z̄ and so Theorem 6.1 applies to the subvariety Z̄ of Ag. Hence, for each i we have (JCi,ΘCi

)�
(JX,ΘX) as polarized abelian varieties, and this implies Ci �X by the Torelli theorem. This
concludes the proof. �

Another consequence of Theorem 6.1 is as follows.

Corollary 6.2. Let Y be a very general cubic threefold and k a positive integer. There exist
no smooth projective curves C1, . . . , Cn such that JC1 × · · · × JCn � (J3Y )k.

Proof. By [Col82, Theorem (0.1)], we can degenerate Y into a singular cubic threefold Y0 such
that J3Y0 = JX is the Jacobian of a very general hyperelliptic curveX of genus five. In particular,
the closure of the locus of intermediate Jacobians of cubics inside A5 contains the locus of
Jacobians of hyperelliptic curves. We can then argue as in the proof of Theorem 1.7 to deduce
from Theorem 6.1 that (J3Y,ΘY ) is isomorphic to the Jacobian of a curve, which contradicts
the main result of [CG72]. This concludes the proof of the corollary. �

The remaining part of § 6 will be devoted to a proof of Theorem 6.1.

6.2 Special subvarieties and powers of abelian varieties isomorphic to Jacobians

Proof of Theorem 6.1. Recall that Z ⊂Ag is a subvariety such that:

– there is a point [(A0, λ0)]∈Z such that A0 �E0 ×B0 and some elliptic curve E0 with
transcendental j-invariant;

– a very general point [(A, λ)]∈Z satisfies End(A) =Z.

We assume that for some k, n≥ 1, there are some smooth projective connected curves C1, . . . , Cn
of positive genus and an isomorphism

∏n
i=1 JCi �Ak of unpolarized abelian varieties. By

Lemma 4.5, we reduce to the case of n= 1 and get an isomorphism

f : JC
∼−→Ak

for some k≥ 1, where C :=C1. We aim to prove that k= 1. Since End(A) =Z, this already implies
(JC,ΘC)� (A, λ) as polarized varieties, because A carries only one principal polarization, since
NS(A) =Z.

The above isomorphism f : JC→Ak provides Ak with an indecomposable principal polar-
ization, say μ. Since End(A) =Z, one has μ= λα, the polarization on Ak associated to a
positive-definite symmetric unimodular bilinear form α on Zk; see Lemma 5.2. With an abuse
of notation, we will denote the principal polarization λα by α for simplicity and hence write
(Ak, α) := (Ak, λα).

As the principally polarized abelian variety (Ak, α) is indecomposable, the positive-definite
integral quadratic space (Zk, α) is indecomposable; see Lemma 5.3. Kneser’s classification of
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indecomposable integral inner product spaces of rank at most 16 then implies that k= 1 or
k≥ 8; see [MH73, p. 28, Remark 1] and [Kne57].

As explained above, we only need to show k= 1, and so we assume for a contradiction that
k≥ 8. By our assumptions there is a degeneration of A to A0 �E0 ×B0, where E0 is an elliptic
curve with transcendental j-invariant. This yields an isomorphism (E0 ×B0)

k � JC0 for some
compact-type degeneration C0 of C. If C0,1, . . . , C0,n are the non-rational irreducible components
of C0, then we can write

(E0 ×B0)
k =Ek0 ×Bk

0 � JC0,1 × · · · × JC0,n.

This is an isomorphism of principally polarized abelian varieties, where the polarization on Ek0
(respectively, Bk

0 ) is the one induced by α and the principal polarization of E0 (respectively, B0);
see Lemma 5.2 (this step uses that A0 �E0 ×B0 as principally polarized abelian varieties). By
Lemma 5.3, the principally polarized abelian variety (Ek0 , α) is an indecomposable principally
polarized abelian variety because (Zk, α) is an indecomposable integral inner product space. By
uniqueness of the decomposition of any principally polarized abelian variety into a product of
indecomposable principally polarized abelian subvarieties [CG72, Deb96], it follows that for some
i, there is an isomorphism of principally polarized abelian varieties (JC0,i,ΘC0,i

)� (Ek0 , α).
To simplify notation, we write E :=E0 and C :=C0,i and get an isomorphism (Ek, α)�

(JC,ΘC) of principally polarized abelian varieties where E is a very general elliptic curve. By
Theorem B.1 in Appendix B, we conclude that k≤ 11.

For 8≤ k≤ 11, the only indecomposable integral inner product space is, by Kneser’s classifi-
cation, given by the E8-lattice; see [MH73, p. 28, Remark 1] and [Kne57]. Hence we are reduced to
the case of k= 8 and we have (E8, α)� (JC,ΘC) for a smooth projective curve C of genus eight,
with α induced by the E8-lattice. In particular, the automorphism group of (E8, α) is isomorphic
toW (E8), the Weyl group of type E8, and so |Aut(E, α)|= |W (E8)|= 4! · 6! · 8! = 696 729 600 by
[Hum90, § 2.12]. Since (E8, α)� (JC,ΘC) as principally polarized abelian varieties, the Torelli
theorem implies Aut(C) =W (E8) or Aut(C)× 〈±1〉=W (E8). This is absurd: the genus g(C)
of C is equal to eight, and hence |Aut(C)| ≤ 84(g(C)− 1) = 84 · 7 = 588. This contradiction
concludes the proof of the theorem. �

7. Modules and lattice theory

The goal of this section is to prove Lemmas 7.5 and 7.9 below. We consider unimodular symplectic
lattices M and H such that M ⊂H⊕k as well as four matrices αi ∈Mk(Z) for i= 1, 2, 3, 4.
In Lemma 7.5 we give sufficient conditions that guarantee the inclusions αiH

⊕k ⊂M , and in
Lemma 7.9 we give sufficient conditions for the inclusions αiH

⊕k ⊂M to be an equality. When
combined, these lemmas provide a key technical step in the proof of our main theorem, which
will be provided in the next section, § 8.

7.1 Preliminary lemmas

We start by collecting three basic lemmas for future reference.

Lemma 7.1. Let Λ be a free Z-module of positive rank. Let n∈Z≥1 and let α1, α2 ∈Mn(Z) be
matrices with non-zero determinant. The following assertions are equivalent.

(1) We have α1 ·Λ⊕n = α2 ·Λ⊕n for the natural actions of the αi on Λ⊕n.
(2) There exists an invertible matrix γ ∈GLn(Z) such that α2 = α1γ ∈Mn(Z).
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Abelian varieties with no power isogenous to a Jacobian

Proof. Clearly, (2) implies (1). To prove the other implication, assume that (1) holds. Define
γ = α−1

1 α2 ∈GLn(Q). One readily shows that γ ∈GLn(Z). �

Lemma 7.2. Let M be a free Z-module of finite rank and N ⊂M a saturated submodule. For
k≥ 1, let α∈Mk(Z) be a matrix with non-zero determinant. Then N⊕k ∩ (α ·M⊕k) = α ·N⊕k.

Proof. We may assume that N �=M . In particular,M/N is a non-zero free Z-module. Moreover,
the matrix α∈Mk(Z) induces an endomorphism

α : (M/N)⊕k→ (M/N)⊕k. (7.1)

As α has non-zero determinant and (M/N)⊕k is torsion-free, the endomorphism (7.1) is injective.
Therefore, N⊕k ∩ (α ·M⊕k)⊂ α ·N⊕k. The other inclusion is clear. �

Lemma 7.3. Let Λ be a Z-module. Let M1, M2 and N be submodules of Λ with M1 ⊂M2.
Suppose that M1 +N =M2 +N and that M1 ∩N =M2 ∩N . Then M1 =M2 ⊂Λ.

Proof. It suffices to prove that M2 ⊂M1. Let x2 ∈M2. The hypotheses imply that there exists
an element z ∈N such that x2 = x1 + z for some x1 ∈M1. As M1 ⊂M2, we have x1 ∈M2, and
hence x2 − x1 = z ∈M2 ∩N =M1 ∩N . Therefore, z ∈M1, so that x2 = x1 + z ∈M1. �

7.2 Matrices and saturated submodules

Consider finite free Z-modules M and H such that M ⊂H⊕k. For matrices αi ∈Mk(Z) (i=
1, 2, 3, 4), we would like to know whether αiH

⊕k ⊂M , assuming that this holds in certain sub-
quotients of H⊕k. The goal of this section is to provide some sufficient conditions. The main
result in this direction is Lemma 7.5 below.

Lemma 7.4. Let H be a free Z-module of finite rank. LetW ⊂H be a submodule, and let Vi ⊂H
be saturated submodules for i= 1, 2 such that V1 ∩ V2 = 0 and V1 ⊕ V2 �W . Let M ⊂H⊕k be
a submodule such that for each i∈ {1, 2} and some αi ∈Mk(Z) with non-zero determinant, we
have

M ∩W⊕k ≡ αi ·W⊕k mod V ⊕k
i . (7.2)

Then the following hold.

(1) There exists γ ∈GLk(Z) such that α2 = α1γ.

(2) We have

M ∩W⊕k = α1 ·W⊕k = α2 ·W⊕k. (7.3)

Proof. Replacing M by M ∩W⊕k and H by W , we may assume that M ⊂W⊕k =H⊕k. Notice
that

M ≡ α1 ·W⊕k ≡ α2 ·W⊕k mod V ⊕k
1 ⊕ V ⊕k

2 . (7.4)

As (W/(V1 ⊕ V2))⊕k is torsion-free, assertion (1) follows from Lemma 7.1 because V1 ⊕ V2 �=W .
Next, let us prove (2). Note that since α2 = α1γ for some γ ∈GLk(Z) by (1), we may and do

assume that α2 = α1. We claim that

M ⊂ α ·W⊕k where α := α1 = α2. (7.5)

To prove this, let x∈M ⊂W⊕k. By (7.2), we can write x= α ·w1 + v1 = α ·w2 + v2 ∈W⊕k with
w1, w2 ∈W⊕k and vi ∈ V ⊕k

i . Therefore, we have

α · (w1 −w2) =−v1 + v2 ∈ α ·W⊕k ∩ (V ⊕k
1 ⊕ V ⊕k

2 ) = α(V ⊕k
1 ⊕ V ⊕k

2 ) = αV ⊕k
1 ⊕ αV ⊕k

2 ,
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where we have used Lemma 7.2, which applies because V ⊕k
1 ⊕ V ⊕k

2 is saturated in H⊕k by
assumption. In particular, v1 ∈ αV ⊕k

1 and v2 ∈ αV ⊕k
2 . Thus, we have x= αw1 + v1 ∈ αW⊕k. This

proves the inclusion (7.5).
Furthermore, we claim that

α · V ⊕k
1 ⊂M ∩ V ⊕k

1 . (7.6)

To prove this, notice that α · V ⊕k
1 ⊂ α ·W⊕k ≡M ∩W⊕k mod V ⊕k

2 , where we use the assumption
V1 ⊂W for the inclusion and (7.2) for the congruence. As α · V ⊕k

1 ⊂ V ⊕k
1 , we obtain

α · V ⊕k
1 ⊂M ∩ V ⊕k

1 mod V ⊕k
2 . (7.7)

Notice that (7.7) implies (7.6), because V1 ∩ V2 = 0. Our claim is proved. In a similar way (or by
symmetry), one proves that α · V ⊕k

2 ⊂M ∩ V ⊕k
2 ⊂M .

As V1 ∩ V2 = 0, it follows that α · V ⊕k
1 ⊕ α · V ⊕k

2 ⊂M . Via Lemma 7.2, we thus obtain

α ·W⊕k ∩ (V ⊕k
1 ⊕ V ⊕k

2 ) = α · (V ⊕k
1 ⊕ V ⊕k

2 )⊂M ∩ (V ⊕k
1 ⊕ V ⊕k

2 ). (7.8)

By (7.5), we have M ⊂ α ·W⊕k, so that

M ∩ (V ⊕k
1 ⊕ V ⊕k

2 )⊂ α ·W⊕k ∩ (V ⊕k
1 ⊕ V ⊕k

2 ). (7.9)

Combining (7.8) and (7.9), we see that

M ∩ (V ⊕k
1 ⊕ V ⊕k

2 ) = α ·W⊕k ∩ (V ⊕k
1 ⊕ V ⊕k

2 ). (7.10)

We are now in a position to apply Lemma 7.3 to the following Z-modules: let Λ :=W⊕k, M1 :=
M ⊂Λ, M2 := α ·W⊕k ⊂Λ and N := V ⊕k

1 ⊕ V ⊕k
2 . Observe that (7.4), (7.5) and (7.10) imply,

respectively, that M1 +N =M2 +N , M1 ⊂M2 and M1 ∩N =M2 ∩N . Therefore, by Lemma
7.3, we have M1 =M2. That is, M = α ·W⊕k, and the lemma follows. �

Lemma 7.5. Let H be a free Z-module of finite rank. Assume that for each i∈ {1, 2, 3, 4}, there
exists a sequence of free submodules

Vi ⊂Wi ⊂H
such that the following properties are satisfied.

(1) The natural map V1 ⊕ V2 ⊕ V3 ⊕ V4→H is an embedding with torsion-free cokernel.

(2) We have (W1 ∩W2) + (W3 ∩W4) =H.

(3) The intersections

W1 ∩W2, W3 ∩W4 and W1 ∩W2 ∩W3 ∩W4

are non-zero and saturated in H, and W1 ∩W2 (respectively, W3 ∩W4 and W1 ∩W2 ∩W3 ∩
W4) strictly contains V1 ⊕ V2 (respectively, V3 ⊕ V4 and V1 ⊕ V2 ⊕ V3 ⊕ V4).

Let k≥ 1 and let M ⊂H⊕k be a submodule that satisfies the following condition: for each
i∈ {1, 2, 3, 4} there exists a matrix αi ∈Mk(Z) with non-zero determinant such that

M ∩W⊕k
i ≡ αi ·W⊕k

i mod V ⊕k
i . (7.11)

Then for each i, j ∈ {1, 2, 3, 4} we have

αi ·H⊕k = αj ·H⊕k ⊂M. (7.12)

Proof. We claim that the following equality holds:

α1 · ((W1 ∩W2)/(V1 ⊕ V2))⊕k = α2 · ((W1 ∩W2)/(V1 ⊕ V2))⊕k . (7.13)
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To prove this, first observe that (W1 ∩W2)/(V1 ⊕ V2) is saturated inWi/(V1 ⊕ V2) for i= 1, 2 and
that both modules are non-zero and torsion-free. Indeed, by condition (1), V1 ⊕ V2 is saturated in
H and hence in any submodule that contains it; by condition (3), we have V1 ⊕ V2 �W1 ∩W2 ⊂
Wi, and hence the quotients (W1 ∩W2)/(V1 ⊕ V2) and Wi/(V1 ⊕ V2) are non-zero and torsion-
free. The saturation of (W1 ∩W2)/(V1 ⊕ V2)⊂Wi/(V1 ⊕ V2) follows from the saturation of W1 ∩
W2 ⊂Wi, which holds because of condition (3). In view of Lemma 7.2, we deduce that

α1 · (W⊕k
1 ∩W⊕k

2 )≡ (α1 ·W⊕k
1 )∩W⊕k

2 mod V ⊕k
1 ⊕ V ⊕k

2 , (7.14)

W⊕k
1 ∩ (α2 ·W⊕k

2 )≡ α2 · (W⊕k
1 ∩W⊕k

2 ) mod V ⊕k
1 ⊕ V ⊕k

2 . (7.15)

Moreover, because of (7.11), we have

(α1 ·W⊕k
1 )∩W⊕k

2 ≡ (M ∩W⊕k
1 )∩W⊕k

2 ≡W⊕k
1 ∩ (M ∩W⊕k

2 )

≡W⊕k
1 ∩ (α2 ·W⊕k

2 ) mod V ⊕k
1 ⊕ V ⊕k

2 . (7.16)

Taken together, (7.14), (7.15) and (7.16) imply (7.13), proving the claim.
From Lemma 7.1 and (7.13), we conclude that there exists γ12 ∈GLk(Z) such that α2 =

α1γ12 ∈Mk(Z). By symmetry, there exists a matrix γ34 ∈GLk(Z) such that α4 = α3γ34. Replacing
α2 by α2γ

−1
12 = α1 and α4 by α4γ

−1
34 = α3, we may (and will) assume that α1 = α2 and α3 = α4.

Consider, for i= 1, 2, 3, 4, the inclusions

V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊂W1 ∩W2 ∩W3 ∩W4 ⊂Wi.

Both inclusions are saturated by conditions (1) and (3). Consequently, for each i, the inclusion

(W1 ∩W2 ∩W3 ∩W4)/(V1 ⊕ V2 ⊕ V3 ⊕ V4)⊂Wi/(V1 ⊕ V2 ⊕ V3 ⊕ V4)
is a saturated embedding of free Z-modules, which are non-zero in view of condition (3).

We obtain the following congruences:

α1 · (W1 ∩W2 ∩W3 ∩W4)
⊕k ≡ (α1 ·W⊕k

1 )∩ (W1 ∩W2 ∩W3 ∩W4)
⊕k

≡ (M ∩W⊕k
1 )∩W⊕k

2 ∩W⊕k
3 ∩W⊕k

4

≡W⊕k
1 ∩W⊕k

2 ∩ (M ∩W⊕k
3 )∩W⊕k

4

≡W⊕k
1 ∩W⊕k

2 ∩ (α3 ·W⊕k
3 )∩W⊕k

4

≡ α3 · (W1 ∩W2 ∩W3 ∩W4)
⊕k mod V ⊕k

1 ⊕ V ⊕k
2 ⊕ V ⊕k

3 ⊕ V ⊕k
4 .

Here, the first congruence follows from Lemma 7.2, the second from (7.11), the third congru-
ence is clear, the fourth congruence follows from (7.11) again and the final congruence from
Lemma 7.2 again.

Therefore, by Lemma 7.1, using that (W1 ∩W2 ∩W3 ∩W4)/(V1 ⊕ V2 ⊕ V3 ⊕ V4) is a non-zero
free Z-module, there exists an invertible matrix γ ∈GLk(Z) such that α3 = α1γ. Let α= α1.
Replacing α3 by α3γ

−1 = α1, we may and do assume that

α= α1 = α2 = α3 = α4. (7.17)

By (7.11) and (7.17), we get

M ∩W⊕k
i ≡ α ·W⊕k

i mod V ⊕k
i ∀i∈ {1, 2}. (7.18)

Combining (7.18) with Lemma 7.2, using that, for i= 1, 2, (W1 ∩W2)/(V1 ⊕ V2)⊂Wi/(V1 ⊕ V2)
is a saturated inclusion of free Z-modules (see conditions (1) and (3)), we obtain:

M ∩ (W1 ∩W2)
⊕k ≡ α · (W1 ∩W2)

⊕k mod V ⊕k
i ∀i∈ {1, 2}. (7.19)
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By Lemma 7.4 and the fact that V1 ∩ V2 = 0, it follows from (7.19) that

M ∩ (W1 ∩W2)
⊕k = α · (W1 ∩W2)

⊕k.

By symmetry, we obtain M ∩ (W3 ∩W4)
⊕k = α · (W3 ∩W4)

⊕k.
Finally, as we have an equality H⊕k = (W1 ∩W2)

⊕k + (W3 ∩W4)
⊕k (see condition (2)), we

conclude that

α ·H⊕k = α · (W1 ∩W2)
⊕k + α · (W3 ∩W4)

⊕k =M ∩ (W1 ∩W2)
⊕k +M ∩ (W3 ∩W4)

⊕k ⊂M.

In other words, the inclusion (7.12) is proved, and we are done. �

7.3 Sublattices of powers of unimodular symplectic lattices

We continue by investigating sublattices M ⊂H⊕k of some power of a unimodular sym-
plectic lattice H. This section is independent of § 7.2. The main result of this section is
Lemma 7.9.

Lemma 7.6. Let (H, EH) be a unimodular symplectic lattice of positive finite rank. Let U ⊂H
be a saturated isotropic subspace. Then there is a saturated subspace U ′ ⊂H such that U ⊕U ′ ⊂
H is a unimodular subspace.

Proof. We argue by induction on the rank of U . If U has rank one, then U = 〈u〉. The map
EH(u,−) :H→Z is surjective because u is indivisible and EH is unimodular. Hence there is a
class u′ ∈H with EH(u, u

′) = 1, as we want.
If U has rank r≥ 2, then we pick a saturated subspace U1 ⊂U of rank r− 1 and apply the

induction hypothesis to U1 to get a unimodular subspace U1 ⊕U ′
1 ⊂H. Any unimodular subspace

of a unimodular lattice admits a unimodular complement. Hence, we can extend any symplectic
basis of U1 ⊕U ′

1 to a symplectic basis of H. It follows that there is a symplectic basis

{e1, . . . , eg, f1, . . . , fg}
of H with U = 〈e1, . . . , er−1〉 ⊕ 〈u〉 for some primitive element u∈ 〈er, . . . , eg, fr, . . . , fg〉.
Applying the r= 1 case of the lemma to the subspace 〈u〉 ⊂ 〈er, . . . , eg, fr, . . . , fg〉, we get an
element u′ ∈ 〈er, . . . , eg, fr, . . . , fg〉 such that

〈u, u′〉 ⊂ 〈er, . . . , eg, fr, . . . , fg〉
is a unimodular subspace. This subspace has a complement, and hence up to change of basis we
can assume u= er and u

′ = fr. At this point the lemma is clear. �

Lemma 7.7. Let (H, EH) be a unimodular symplectic lattice of rank 2g. Let k≥ 1 and consider
the induced unimodular symplectic lattice (H⊕k, E⊕k

H ). Let M ⊂H⊕k be a sublattice such that
there is a matrix β ∈Mk(Z) with positive determinant such that the intersection form

EM (−,−) :=E⊕k
H (β−1−,−)

is unimodular and integral on M . Assume that there is a matrix α∈Mk(Z) with non-zero
determinant such that αH⊕k ⊂M . Let [H⊕k : M ] be the index of M in H⊕k. Then

[H⊕k : M ] = det(β)g | det(α)2g.
Proof. The inclusions αH⊕k ⊂M ⊂H⊕k, together with the fact that the index of αH⊕k in H⊕k

equals det(α)2g, show that the index of M in H⊕k divides det(α)2g. Thus, it suffices to prove
that [H⊕k : M ] = det(β)g.

To prove this, note that EM and ψ induce isomorphismsM �M∨ and H �H∨. In particular,
we can dualize the inclusionM ⊂H⊕k to obtain an inclusion H⊕k ⊂M , and, with respect to this
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embedding, the index ofM in H⊕k equals the index of H⊕k inM . The fact that E⊕k
H (β−1 · −,−)

restricts to the unimodular pairing EM on M implies that EM restricts to E⊕k
H (β · −,−) on

H⊕k ⊂M . This means precisely that the composition

H⊕k M
	

M∨ (H⊕k)∨ = (H∨)⊕k (7.20)

is given by the map

x �→ (y �→E⊕k
H (β · x, y)).

Consequently, by identifying M and H⊕k with their respective duals M∨ and (H⊕k)∨ (via EM
and E⊕k

H ) in (7.20), it follows that the composition

H⊕k M H⊕k

is given by multiplication by the matrix β. In particular, if [H⊕k : M ] denotes the index of M
in H⊕k and [H⊕k : β ·H⊕k] denotes the index of β ·H⊕k in H⊕k, then

[H⊕k : M ]2 = [H⊕k : β ·H⊕k] = det(β)2g.

As det(β) is positive, we get [H⊕k : M ] = det(β)g as desired. �

Lemma 7.8. Let Λ be a free Z-module and put ΛQ =Λ⊗Q. Let ψ : ΛQ ×ΛQ→Q be a bilinear
form that takes integral values on Λ×Λ. Let αi, βi ∈Mk(Z) (i= 1, 2) be matrices with non-
zero determinant. Let e1, . . . , ek, f1, . . . , fk ∈Λ. For γ = (γij)∈Mk(Q), define γei =

∑
j γjiej and

γfi =
∑

j γjifj , and assume ψ(β−1
1 α1ei, β

−1
2 α2fj) = δij for all i, j ∈ {1, . . . , k}.

Then det(α1) det(α2) | det(β1) det(β2).
Proof. Let {h1, . . . , hg} be the canonical basis of Z⊕k, and define a bilinear form

Ψ: Q⊕k ×Q⊕k→Q by Ψ(hi, hj) =ψ(ei, fj).

Then Ψ takes integral values on Z⊕k ×Z⊕k. Let Q= (Qij) be the k× k matrix with entries
Qij =Ψ(hi, hj). Then Q∈Mk(Z), and for x, y ∈Q⊕k we have

Ψ(x, y) = x
Qy.

Moreover, Ψ(β−1
1 α1hi, β

−1
2 α2hj) = ψ(β−1

1 α1ei, β
−1
2 α2fj) = δij . Therefore,

δij =Ψ(β−1
1 α1hi, β

−1
2 α2hj) = (β−1

1 α1hi)

 ·Q · (β−1

2 α2hj) = h
i (α


1 β

−

1 Qβ−1

2 α2)hj .

Hence, the matrix α

1 β

−

1 Qβ−1

2 α2 ∈Mk(Q) is the identity matrix. In particular,

det(α

1 β

−

1 Qβ−1

2 α2) = det(α1) det(α2) det(β1)
−1 det(β2)

−1 det(Q) = 1,

which implies that det(α1) det(α2) det(Q) = det(β1) det(β2). We have det(Q)∈Z because
Q∈Mk(Z), and the lemma follows. �

We now come to the main result of § 7.3, which is the following lemma. A proof of a simpler
version of this lemma is contained in the appendix; see Proposition A.1.

Let (H, EH) be a unimodular symplectic lattice of rank 2g. Let k≥ 1 and consider the
unimodular lattice (H, EH)

⊕k = (H⊕k, E⊕k
H ) with symplectic basis

{e1i, . . . , egi, f1i, . . . , fgi} , i= 1, . . . , k.

Let

H ′
1 :=

k⊕
i=1

〈e1i, . . . , egi, f2i, f3i, . . . , fgi〉, H ′
2 :=

k⊕
i=1

〈e1i, . . . , egi, f1i, f3i, . . . , fgi〉,
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and define

V1 :=

k⊕
i=1

〈e1i〉, V2 :=

k⊕
i=1

〈e2i〉.

Lemma 7.9. In the above notation, let M ⊂H⊕k be a sublattice such that there is a matrix
β ∈Mk(Z) with positive determinant such that the intersection form

EM (−,−) :=E⊕k
H (β−1−,−)

is unimodular and integral on M . Assume that there are matrices α1, α2 ∈Mk(Z) with non-zero
determinant such that αiH

⊕k ⊂M for i= 1, 2 and such that

M ∩H ′
i ≡ αiH ′

i mod Vi for i= 1, 2. (7.21)

Then there exists γ ∈GLk(Z) such that α2 = α1γ, and we have (det αi)
2 =det β for i= 1, 2.

Furthermore, we have M = αiH
⊕k for i= 1, 2.

Proof. As a first step, we aim to show that there exists γ ∈GLk(Z) such that α2 = α1γ. To
prove this, notice that by Lemma 7.2 we have, for i= 1, 2,(

αi ·H ′
1

)∩H ′
2 = αi ·

(
H ′

1 ∩H ′
2

)
=H ′

1 ∩
(
αi ·H ′

2

)
. (7.22)

Moreover, V1 ⊕ V2 ⊂H ′
1 ∩H ′

2. Modulo V1 ⊕ V2, the equality (7.22) combined with (7.21) gives

α1 ·
(
H ′

1 ∩H ′
2

)≡ (α1 ·H ′
1

)∩H ′
2 ≡

(
M ∩H ′

1

)∩H ′
2 ≡H ′

1 ∩
(
M ∩H ′

2

)
≡H ′

1 ∩
(
α2 ·H ′

2

)≡ α2 ·
(
H ′

1 ∩H ′
2

)
mod V1 ⊕ V2. (7.23)

Observe that V1 ⊕ V2 ⊂H ′
1 ∩H ′

2 is saturated in H ′
1 ∩H ′

2. Thus, by Lemma 7.1, (7.23) implies
that there exists γ ∈GLk(Z) such that α2 = α1γ, as we want.

As a second step, we let

U := α · (V1 ⊕ V2)⊂M, α := α1 ∈Mk(Z)

and claim that U is saturated in M . To prove this, let x∈M and assume that rx∈U for some
r ∈Z≥1. We need to show that x∈U . As rx∈U , we have x∈ V1 ⊕ V2. In particular, x∈H ′

i for
i= 1, 2, and hence x∈M ∩H ′

1 ∩H ′
2. By (7.21), this means that we can write

x= αh′1 + v1 for some h′1 ∈H ′
1 and v1 ∈ V1,

x= αh′2 + v2 for some h′2 ∈H ′
2 and v2 ∈ V2.

As x∈ V1 ⊕ V2, we get that h′i ∈ V1 ⊕ V2 and hence

α(h′1 − h′2) =−v1 + v2 ∈ 〈e1, e2〉⊕k = V1 ⊕ V2.
As the action of α respects the decomposition V1 ⊕ V2, this implies v1 ∈ αV1 and v2 ∈ αV2.
Therefore, x= αh′1 + v1 ∈ α〈e1, e2〉⊕k =U, proving our claim that U is saturated in M .

Next, observe that the subspace U of M is isotropic. As we have just proved that U ⊂M is
saturated in M , we conclude from Lemma 7.6 that there are classes g1i, g2i ∈M such that

U ⊕
k⊕
i=1

〈g1i, g2i〉

is a unimodular sublattice of M . More precisely, we can assume that the gai (a∈ {1, 2}) are
chosen such that EM (αeai, gbj) = δabδij . Hence

E⊕k
H (β−1αeai, gbj) = δabδij . (7.24)
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Since the ers and frs form a basis of H⊕k, we can write

gij =
∑
r,s

(aijrsers + bijrsfrs)

for uniquely determined aijrs, bijrs ∈Z. By (7.24), we have

E⊕k
H (β−1αe1i, g2j) = 0 for all i and j.

Since α and β have non-zero determinants, the classes β−1αe1i with i= 1, . . . , k span rationally
the space

⊕k
i=1〈e1i〉, and so we find that g2j contains the basis element f1i trivially, that is,

we have b2j1s = 0 for all j, s= 1, . . . , k. This implies g2j ∈M ∩H ′
1 for all j = 1, . . . , k. Hence, by

(7.21), there exist classes g′2j ∈H ′
1 such that, for all j, we have

g2j = αg′2j + e′j for some e′j ∈ V1. (7.25)

By (7.24), we have

E⊕k
H (β−1αe2i, g2j) = δij . (7.26)

Combining (7.25) and (7.26), and noticing that E⊕k
H (β−1αe2i, e

′
j) = 0, we get

δij =E⊕k
H (β−1αe2i, g2j) =E⊕k

H (β−1αe2i, g2j − e′j) =E⊕k
H (β−1αe2i, αg

′
2j)

for all i, j ∈ {1, . . . , k}. By Lemma 7.8, this implies that det(α)2 | det(β).
Conversely, by Lemma 7.7, we have that det(β)g | det(α)2g. We conclude that det(α)2g =

det(β)g. As det(β) is positive, it follows that det(β) = det(α)2. Finally, by Lemma 7.7
again, we have that [H⊕k : M ] = det(β)g. Consequently, [H⊕k : M ] = det(α)2g = [H⊕k : αH⊕k].
As αH⊕k ⊂M , we must have M = αH⊕k. This finishes the proof of the lemma. �

8. Proof of the main theorem

The goal of this section is to prove Theorem 1.1, the main result of this paper. The idea is
to degenerate the given isogeny JC→ (JX)k in four different directions; these are provided
by Lemma 2.23. For each such degeneration JC0i→ (JX0i)

k (i∈ {1, 2, 3, 4}), we consider the
induced map on the compact quotients, or equivalently the map H1(C̃0i,Z)→H1(X̃0i,Z)⊕k

between the cohomology groups of the normalizations C̃0i and X̃0i of C0i and X0i. We want
to show that for each i, the image of this map is αi ·H1(X̃0i,Z)⊕k ⊂H1(X̃0i,Z)⊕k for some
αi ∈Mk(Z). We then combine these pieces of information obtained in the different degenerations
to conclude that αj = αiγij for some γij ∈GLk(Z) and that the image of H1(C,Z)→H1(X,Z)⊕k

is given by αi ·H1(X,Z)⊕k. In this last step, we use the linear algebra and lattice theory worked
out in § 7. More precisely, this is where Lemmas 7.5 and 7.9 enter the picture.

8.1 Degeneration of the isogeny: moving the extension class

In this section, we prove the following result.

Proposition 8.1. Let Δ be a connected normal complex analytic space, and let p : X →Δ
be a family of semi-stable curves of arithmetic genus g≥ 2. Assume that there is a family of
semi-stable curves q : C →Δ together with, for some k≥ 1, an isogeny

ψ : (JX )k := JX ×Δ · · · ×Δ JX −→ JC
of semi-abelian schemes over Δ, where JX and JC denote the respective relative Jacobians over
Δ, such that the following conditions are satisfied.
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(I) For all s∈Δ, Xs = p−1(s) is an irreducible one-nodal hyperelliptic curve.

(II) The moduli map Δ→Mg induced by the family p : X →Δ is generically finite onto its
image, where Mg is the moduli stack of stable curves of genus g.

(III) For any simultaneous normalization ν : X̃ →X of p (see Proposition 3.1), the map from
Δ to the moduli stack of smooth hyperelliptic curves of genus g− 1 induced by the family
of hyperelliptic curves p ◦ ν : X̃ →Δ is dominant with positive-dimensional generic fibre.

Then for any general point 0∈Δ, there is an isomorphism of abelian varieties

JC̃0 � (JX̃0)
k,

and the composition (JX̃0)
k

˜ψ0−→ JC̃0 � (JX̃0)
k is given by a matrix α∈Mk(Z). Here, C̃0 and

X̃0 are the normalizations of C0 and X0, and ψ̃0 : (JX̃0)
k→ JC̃0 is the isogeny induced by ψ.

Proof. Let Hg−1 be the moduli stack of smooth hyperelliptic curves of genus g− 1. Let

f : Δ−→Hg−1

be the map induced by a simultaneous normalization of p : X →Δ; see Proposition 3.1. Then
for 0 in a dense open subset of Δ, the closed analytic subset

H ′
0 := f−1(f(0))⊂Δ

is positive-dimensional by condition (III). For each u∈H ′
0, the normalization X̃u of Xu is iso-

morphic to X̃0. Moreover, as the map Δ→Mg is generically finite onto its image (see condition
(II)), the same holds for the composition H ′

0 ↪→Δ→Mg. In particular, for general 0∈Δ as
above, there exists a connected normal complex analytic space H0 and a dominant generically
finite morphism

H0 −→H ′
0 (8.1)

with the following properties, where p|H0
: X|H0

→H0 denotes the pull-back of p along (8.1)

and X̃ |H0
→X|H0

the simultaneous normalization of p|H0
(see Proposition 3.1): there is an

isomorphism

X̃ |H0
� X̃0 ×H0

of families of curves over H0 and a non-constant morphism H0→ X̃0, u �→ xu, such that for any
u∈H0, the fibre Xu is obtained from X̃u by gluing the pair of points (xu, ι(xu)), where ι denotes
the hyperelliptic involution on X̃0.

Let C̃0,i for i= 1, . . . , n be the non-rational irreducible components of the normalization C̃0

of the fibre C0 = q−1(0). We apply Proposition 3.2 to the family p|H0
: X|H0

→H0. This yields
an integer N ∈Z≥1 such that for each i∈ {1, . . . , n}, there is a non-constant morphism

X̃0 −→N · (C̃0,i − C̃0,i).

By Proposition 2.8, this implies that the curve C̃0,i is hyperelliptic for each i. Moreover, the

assumption that g= g(Xt)≥ 4 implies that g(X̃0)≥ 3 for the genus g(X̃0) of the X̃0.
By condition (III), the curve X̃0 is a very general hyperelliptic curve of genus g− 1≥ 3. Thus,

by Theorem 4.4, the fact that there exists an isogeny

ψ̃0 : (JX̃0)
k −→ JC̃0,1 × · · · × JC̃0,n

implies that for each i∈ {1, . . . , n} we have an isomorphism C̃0,i � X̃0 and that the composition

(JX̃0)
k→ JC̃0,1 × · · · × JC̃0,n � (JX̃0)

k is given by a matrix in Mk(Z). �
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8.2 Degeneration of the isogeny: one-dimensional base

Let D⊂C be a sufficiently small open disc around 0∈C. Let
p : X −→D and q : C −→D

be families of semi-stable curves over D; see § 1.2. Let ψ be an isogeny

ψ : (JX )k := JX ×D · · · ×D JX −→ JC (8.2)

of semi-abelian schemes over D, where JX and JC denote the relative Jacobians over D. Assume
that:

(1) for each s∈D∗ =D− {0}, the fibre Xs = p−1(s) is a curve of compact type;

(2) there exists an isomorphism JC̃0 � (JX̃0)
k and a matrix α∈Mk(Z) such that the composi-

tion

(JX̃0)
k ψ̃0−→ JC̃0 � (JX̃0)

k

is given by the multiplication by α.

Recall that, possibly up to shrinking D around 0, the natural map H1(X ,Z)→H1(X0,Z) is an
isomorphism (cf. Proposition 2.15). For such a sufficiently small D, let t∈D∗, and consider the
natural embeddings

H1(X0,Z)⊂H1(Xt,Z) and H1(Ct,Z)⊂H1(Xt,Z)
⊕k (8.3)

induced by the specialization map

spX : H1(X0,Z)
∼←−H1(X ,Z)−→H1(Xt,Z) (8.4)

and the isogeny ψt : (JXt)
k→ JCt.

Proposition 8.2. Under the above assumptions, up to possibly shrinking D around 0 and using
the maps in (8.3) and (8.4), the following identity holds in H1(Xt,Z)⊕k modulo W0H

1(X0,Z)⊕k:

H1(Ct,Z)∩H1(X0,Z)
⊕k ≡ α ·H1(X0,Z)

⊕k mod W0H
1(X0,Z)

⊕k, (8.5)

where W0H
1(X0,Z) =W0H

1(X0,Q)∩H1(X0,Z) and α is the matrix from (2) above.

Before we prove Proposition 8.2, which is the main result of this section, we need the following
lemma. To state it, for s∈D let

ψ∗
s : H

1(Cs,Z)−→H1(Xs,Z)
⊕k

denote the morphism on cohomology induced by the isogeny ψs : (JXs)
k→ JCs.

Lemma 8.3. Up to possibly shrinking D around 0, we have the following equality:

Im(H1(Ct,Z)
ψ∗

t−→H1(Xt,Z)
⊕k)∩ Im(H1(X0,Z)

⊕k sp⊕k
X−→H1(Xt,Z)

⊕k)

= Im(H1(C0,Z)
ψ∗

0−→H1(X0,Z)
⊕k sp⊕k

X−−−→H1(Xt,Z)
⊕k). (8.6)

Here, spX is the specialization map defined in (8.4).

Assuming Lemma 8.3, we can prove Proposition 8.2 as follows.

Proof of Proposition 8.2. By Proposition 2.15, we may shrink D around 0 so that the natural
map H1(X ,Z)→H1(X0,Z) is an isomorphism. By assumption (2), there is an isomorphism
H1(C̃0,Z)�H1(X̃0,Z)⊕k such that the following diagram commutes, and its rows are exact.
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0 W0H
1(C0,Z)

ψ∗
0

H1(C0,Z)

ψ∗
0

H1(C̃0,Z) � H1(X̃0,Z)⊕k

α

0

0 W0H
1(X0,Z)⊕k H1(X0,Z)⊕k H1(X0,Z)⊕k 0

Here,W0H
1(C0,Z) =W0H

1(C0,Q)∩H1(C0,Z). By the above commutative diagram with exact
rows, we get

Im(H1(C0,Z)
ψ∗

0−→H1(X0,Z)
⊕k −→H1(X̃0,Z)

⊕k) = α ·H1(X̃0,Z)
⊕k.

Consequently, we have

Im(H1(C0,Z)
ψ∗

0−→H1(X0,Z)
⊕k)≡ α ·H1(X0,Z)

⊕k mod W0H
1(X0,Z)

⊕k. (8.7)

Combining (8.6) with (8.7), we obtain

Im(H1(Ct,Z)
ψ∗

t−→H1(Xt,Z)
⊕k)∩ Im(H1(X0,Z)

⊕k sp⊕k
X−→H1(Xt,Z)

⊕k)

= Im(H1(C0,Z)
ψ∗

0−→H1(X0,Z)
⊕k sp⊕k

X−→H1(Xt,Z)
⊕k)

≡ α · Im(H1(X0,Z)
spX−→H1(Xt,Z))

⊕k mod W0H
1(X0,Z)

⊕k.

Thus, (8.5) holds, and hence the proposition is proved. �

It remains to prove Lemma 8.3.

Proof of Lemma 8.3. By the existence of the isogeny (8.2), the restriction JC|D∗→D∗ is an
abelian scheme over D∗. In particular, q|D∗ : C|D∗→D∗ is a family of compact-type curves.
Thus, R1(q|D∗)∗Z is a local system on D∗ and in fact a sublocal system of (R1(p|D∗)Z)⊕k. Let
S ∈Aut(H1(Ct,Z)) and T ∈Aut(H1(Xt,Z)) be generators of the monodromy groups attached
to R1(q|D∗)∗Z and R1(p|D∗)∗Z, such that

T⊕k|H1(Ct,Z) = S ∈Aut(H1(Ct,Z))

with respect to the inclusion H1(Ct,Z)⊂H1(Xt,Z)⊕k given by ψ∗
t . Then we have

Im(H1(Ct,Z)
ψ∗

t−→H1(Xt,Z)
⊕k)∩ (H1(Xt,Z)

⊕k)T
⊕k

= Im(H1(Ct,Z)
S −→H1(Ct,Z)

ψ∗
t−→H1(Xt,Z)

⊕k). (8.8)

By Proposition 2.15, we may shrink D around 0 so that pulling back along the inclusions X0 ↪→
X and C0 ↪→C yields isomorphisms H1(X ,Z)�H1(X0,Z) and H1(C,Z)�H1(C0,Z). Define
spX : H1(X0,Z)→H1(X ,Z) as in (8.4), and define in a similar way

spC : H
1(C0,Z)−→H1(Ct,Z).

Thus, spC is the composition of the inverse of the restriction map H1(C,Z) ∼−→H1(C0,Z) with the
restriction map H1(C,Z)→H1(Ct,Z). Then Lemma 2.22 applied to p : X →D and to q : C →D
implies that, possibly after further shrinking D around 0,

Im(sp⊕kX : H1(X0,Z)⊕k→H1(Xt,Z)⊕k) = (H1(Xt,Z)⊕k)T
⊕k ⊂H1(Xt,Z)⊕k,

Im
(
spC : H1(C0,Z)→H1(Ct,Z)

)
=H1(Ct,Z)S ⊂H1(Ct,Z).

(8.9)

Claim 8.4. We have ψ∗
t ◦ spC = sp⊕kX ◦ψ∗

0 as maps H1(C0,Z)→H1(Xt,Z)⊕k.
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Proof of Claim 8.4. The Leray spectral sequence provides canonical morphisms H1(X ,Z)→
H0(D,R1p∗Z) and H1(C,Z)→H0(D,R1q∗Z). These make the following diagram commute.

H1(C0,Z)

ψ∗
0

H1(C,Z)∼
H0(D,R1g∗Z) H1(Ct,Z)

ψ∗
t

H1(X0,Z)⊕k H1(X ,Z)⊕k∼
H0(D,R1f∗Z)⊕k H1(Xt,Z)⊕k

As the specialization maps spC and sp⊕kX are obtained by following the horizontal arrows in this

diagram from left to right, it follows that ψ∗
t ◦ spC = sp⊕kX ◦ψ∗

0 as desired. �

We can finish the proof of Lemma 8.3. It suffices to prove the following sequence of equalities:

Im(H1(Ct,Z)
ψ∗

t−→H1(Xt,Z)
⊕k)∩ Im(H1(X0,Z)

⊕k sp⊕k
X−→H1(Xt,Z)

⊕k)

= Im(H1(Ct,Z)
ψ∗

t−→H1(Xt,Z)
⊕k)∩ Im((H1(Xt,Z)

⊕k)T
⊕k −→H1(Xt,Z)

⊕k)

= Im(H1(Ct,Z)
S −→H1(Ct,Z)

ψ∗
t−→H1(Xt,Z)

⊕k)

= Im(H1(C0,Z)
spC−→H1(Ct,Z)

ψ∗
t−→H1(Xt,Z)

⊕k)

= Im(H1(C0,Z)
ψ∗

0−→H1(X0,Z)
⊕k sp⊕k

X−→H1(Xt,Z)
⊕k).

The first equality follows from (8.9), the second equality from (8.8), the third equality from (8.9)
again, and the last equality from Claim 8.4. �

8.3 Symplectic bases adapted to paths

Let U be a complex analytic space and let t∈U be a sufficiently general point. Let n and g be
positive integers with n≤ g, and for i∈ {1, . . . , n} let Δi ⊂U be an effective divisor. For each i,
consider a sufficiently small disc Di ⊂U that intersects the divisor Δ :=

⋃
iΔi transversally in

a general point 0i ∈Δi.
Let p : X →U be a family of nodal curves of arithmetic genus g over U . Assume that p is

smooth over U −Δ. For each i, shrink the disc Di around 0i so that the natural map

H1(X|Di
,Z)−→H1(X0i

,Z)

is an isomorphism (see Proposition 2.15). Consider a point ti ∈Di − {0i} sufficiently close to 0i,
and let

ρi : [0, 1]−→U −Δ (8.10)

be a path from t to ti. The path ρi together with a single counter-clockwise loop on Di induces
a loop on U −Δ, and we let Ti ∈Aut(H1(Xt,Z)) denote the associated monodromy operator.
Moreover, the path ρi induces a canonical isomorphism H1(Xti ,Z)

∼−→H1(Xt,Z), and we let
spiX : H1(X0i

,Z)→H1(Xt,Z) denote the composition

spiX : H1(X0i
,Z)

∼←−H1(X|Di
,Z)−→H1(Xti ,Z)

∼−→H1(Xt,Z). (8.11)

Define W0H
1(X0i

,Z) =W0H
1(X0i

,Q)∩H1(X0i
,Z).

Definition 8.5. Consider the above notation. We say that a symplectic basis

{δ1, . . . , δg; γ1, . . . , γg} ⊂H1(Xt,Z) (8.12)
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is adapted to the paths ρ1, . . . , ρn : [0, 1]→U −Δ defined in (8.10) if for each i∈ {1, . . . , n} we
have

Im(H1(X0i
,Z)

spi
X−→H1(Xt,Z)) =H1(Xt,Z)

Ti = 〈δ1, . . . , δg; γ1, . . . , γi−1, γ̂i, γi+1, . . . , γg〉,
Im(W0H

1(X0i
,Z)

spi
X−→H1(Xt,Z)) =Z · δi = 〈δi〉 .

Continue with the above notation. Let U ′ be a complex analytic space with a surjective
generically finite morphism

π : U ′ −→U

of complex analytic spaces. Let t′, 0′i ∈U ′ be points on U ′ (i= 1, . . . , n) with π(t′) = t and
π(0′i) = 0i for i= 1, . . . , n. Let Δ′

i = π−1(Δi) and Δ′ =
⋃
iΔ

′
i = π−1(Δ).

As 0i ∈Δi is a general point, the map π looks analytically locally at 0i like the product of a
ramified cover of a disc with the identity on a ball of dimension dim(U)− 1.

Let D′
i ⊂U ′ be the unique connected component of π−1(Di) that contains 0

′
i. Up to shrinking

Di, D
′
i is a disc and D′

i→Di is a finite cover of discs, totally ramified at 0′i and étale outside of
0′i. Let t

′
i ∈D′

i be a lift of ti ∈Di. Note that t
′
i is automatically in the étale locus of π. Since t∈U

is general, we may assume that t is in the étale locus of π as well. Up to a small deformation of
the path ρi which does not change its homotopy class nor its beginning and end points, we can
assume that ρi lies also in the étale locus of π. Under these assumptions, there is a unique path

ρ′i : [0, 1]−→U ′ −Δ′ (i= 1, . . . , n)

from t′ to t′i that lifts ρi. We then let T ′
i ∈Aut(H1(X ′

t′ ,Z) be the monodromy operator induced
by the path ρ′i and the pointed disc (D′

i, 0
′
i).

Lemma 8.6. Consider the above notation and assumptions. Let {δ1, . . . , δg; γ1, . . . , γg} ⊂
H1(Xt,Z) be a symplectic basis adapted to the paths ρ1, . . . , ρn; see Definition 8.5. Then the
image of {δ1, . . . , δg; γ1, . . . , γg} under the canonical isomorphism

H1(Xt,Z)�H1(X ′
t′ ,Z)

is a symplectic basis of H1(X ′
t′ ,Z) adapted to the paths ρ′1, . . . , ρ′n.

Proof. Notice that D′
i→Di is a finite cover of discs, of the form z �→ zmi for some mi ∈Z≥1. If

we identify H1(X ′
t′ ,Z) with H1(Xt,Z), then the monodromy operator T ′

i satisfies T ′
i = Tmi

i as
elements of Aut(H1(Xt,Z)). The first thing to show is that

H1(Xt,Z)
T p
i = 〈δ1, . . . , δg; γ1, . . . , γi−1, γ̂i, γi+1, . . . , γg〉 (8.13)

for p=mi, knowing that it holds for p= 1. To prove this, let x∈H1(Xt,Z), and write

x= a · γi + y, a∈Z, y ∈ 〈δ1, . . . , δg; γ1, . . . , γi−1, γ̂i, γi+1, . . . , γg〉=H1(Xt,Z)
Ti .

Wemust show that Tmi

i (x) = x if and only if a= 0. In other words, we must prove that T pi (γi) �= γi
for p=mi, knowing that it holds for p= 1. But this is clear: if Tmi

i (γi) = γi, then T
mi

i acts trivially
on H1(Xt,Z), which is absurd since Ti does not act trivially on H1(Xt,Z). We conclude that
for each i, (8.13) holds for p=mi.

Finally, if f : H1(Xt,Z)
∼−→H1(X ′

t′ ,Z) is the isomorphism induced by the canonical isomor-
phism X ′

t′ �Xt, then f identifies the images of W0H
1(X0i

,Z) and W0H
1(X ′

0′
i
,Z). �

8.4 Extending the isogeny

To prove Theorem 1.1, we would like to apply Proposition 8.1. To do so, we will need the
following lemma.
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Abelian varieties with no power isogenous to a Jacobian

Let n and g be integers with g≥ 2 and 1≤ n≤ g. Consider a normal algebraic variety U of
dimension 2g− 1, irreducible divisors Δi ⊂U for i∈ {1, . . . , n}, and a family of stable genus g
hyperelliptic curves

p : X −→U (8.14)

satisfying the conditions of Lemma 2.23.

Lemma 8.7. Consider the above notation and let t∈U be a very general point. Assume that
for the fibre Xt of (8.14), there is a smooth projective curve C and an isogeny ϕ : (JXt)

k→ JC.
Then up to replacing U by a normal variety with surjective generically finite morphism π : U ′→
U , p by its pull-back along π, t by a point in U ′ that lies over it, and Δi by an irreducible divisor
in U ′ that dominates it, there exists a family of stable curves

q : C −→U such that Ct = q−1(t) =C,

together with an isogeny

ψ : (JX )k := JX ×U · · · ×U JX −→ JC (8.15)

of semi-abelian schemes over U that extends the given isogeny ϕ : (JXt)
k→ JC, such that the

following conditions are satisfied.

(i) For each i∈ {1, . . . , n}, the family p : X|
˜Δi
→ Δ̃i obtained by pulling back p : X →U along

the normalization Δ̃i→Δi ⊂U satisfies conditions (I)–(III) in Proposition 8.1.

(ii) For general 0i ∈Δi (i∈ {1, . . . , n}), there is a disc Di ⊂U that intersects Δ transversally
in 0i ∈Δi such that for general ti ∈Di − {0i}, there is a path ρi : [0, 1]→U −Δ from t to ti
with the following property: there is a symplectic basis {δ1, . . . , δg; γ1, . . . , γg} ⊂H1(Xt,Z)
which is adapted to the paths ρ1, . . . , ρn; see Definition 8.5.

Proof. We need to spread out the curve C and the isogeny ϕ : (JXt)
k→ JC, and our plan is to

do this after a suitable base change U ′→U .

Claim 8.8. There is a normal variety U ′, a generically finite surjective map π : U ′→U and a
family of stable curves

q′ : C′ −→U ′ (8.16)

such that for a point t′ ∈U ′ lying over t∈U , the fibre C ′
t′ = (q′)−1(t′) is isomorphic to C and

the following holds. If p′ : X ′→U ′ is the pull-back of the family (8.14) along π, then there is
a dense open subset V ′ ⊂U ′ such that the family of curves (8.16) is smooth over V ′, and the
isogeny ϕ : (JX)k→ JC extends to an isogeny of abelian schemes

(JX ′)k|V ′ −→ JC′|V ′ . (8.17)

Proof of Claim 8.8. This follows from standard spreading-out arguments and the properness of
the stackMkg of stable genus kg curves. �

Claim 8.9. Let U ′, q′ : C′→U ′ and p′ : X ′→U ′ be as in Claim 8.8. The isogeny (8.17), which
is an isogeny of abelian schemes over the open subset V ′ ⊂U ′, extends to an isogeny

ψ′ : (JX ′)k = JX ′ ×U ′ · · · ×U ′ JX ′ −→ JC′

of semi-abelian schemes over U ′.

Proof of Claim 8.9. As U ′ is normal, this follows from [FC90, Chapter I, Proposition 2.7]. �
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Finally, to finish the proof of Lemma 8.7, it remains to prove that properties (i) and (ii) hold.
Property (i) holds by Lemma 2.23 and the fact that it is stable under base change. Property (ii)
follows from Lemmas 2.23, 2.24 and 8.6. �

8.5 Proof of the main theorem

We are now in a position to prove our main theorem.

Proof of Theorem 1.1. To prove the theorem, we begin with the following reduction step.

Claim 8.10. Theorem 1.1 is implied by the following statement.
(∗) Let k be a positive integer. If for a very general hyperelliptic curve X of genus g≥ 4 there

exists a smooth projective curve C and an isogeny (JX)k→ JC, then k= 1 and C �X.

Proof of Claim 8.10. Let g≥ 4 and let Z ⊂Mg be an irreducible closed subvariety that contains
the hyperelliptic locus. Let [X]∈Z be a very general point, corresponding to a smooth curve
X of genus g. As mentioned in the introduction, because JX is simple, Theorem 1.1 readily
reduces to the case of n= 1: there is an isogeny (JX)k→ JC between (JX)k and the Jacobian
JC of a smooth projective connected curve C. We need to show, under the assumption that
(∗) holds, that k= 1 and C �X. We specialize X to a very general hyperelliptic curve Y . This
yields a specialization of C into a compact-type curve D, together with an isogeny (JY )k→
JD= JD1 × · · · × JDn, where the Di are the non-rational irreducible components of D. As JY
is simple, there is for each i an integer ki ≤ k and an isogeny ϕi : (JY )ki→ JDi. Then (∗) implies
ki = 1 and Di � Y for each i, and hence JD� (JY )k. Lemma 2.2 implies JC � (JX)k, and then
Theorem 1.7 implies k= 1 and C �X as wanted. �

Our goal is to prove (∗). Thus, let k≥ 1 be an integer, and assume that for a very general
hyperelliptic curve X of genus g≥ 4, there exists a smooth projective curve C and an isogeny
ϕ : (JX)k→ JC. We aim to show that k= 1 and C �X. The strategy is to spread out the isogeny
ϕ to an isogeny of families. To this end, we apply Lemma 8.7 and we get a normal algebraic
variety U with irreducible divisors Δi ⊂U (i= 1, 2, 3, 4), families of stable curves

p : X −→U and q : C −→U

with smooth general fibres, and an isogeny

ψ : (JX )k −→ JC
of semi-abelian schemes over U , such that for some t∈U we have Xt =X and Ct =C and ψ
restricts to the given isogeny ϕ : (JX)k→ JC, and such that all the conditions in Lemma 8.7
are satisfied. In particular, p : X →U is smooth over the complement U −Δ of the divisor
Δ=

⋃
iΔi, and the morphism U −Δ→Hg induced by p is dominant. At this point, in order to

prove Theorem 1.1, it suffices to show that k= 1 and Ct �Xt (see Claim 8.10).

Claim 8.11. For i∈ {1, 2, 3, 4} and general 0i ∈Δi, there is an isomorphism of abelian
varieties

JC̃0i
� (JX̃0i

)k,

and the composition (JX̃0i
)k

˜ψ0i−−→ JC̃0i
� (JX̃0i

)k is given by a matrix

αi ∈Mk(Z). (8.18)

Here, the curves C̃0i
and X̃0i

are the normalizations of C0i
and X0i

, respectively, and the
morphism ψ̃0i

: (JX̃0i
)k→ JC̃0i

is the isogeny induced by ψ.
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Proof of Claim 8.11. For i∈ {1, . . . , 4}, the family p : X|
˜Δi
→ Δ̃i obtained by pulling back

p : X →U along the normalization Δ̃i→Δi ⊂U of the divisor Δi satisfies conditions (I)–(III) in
Proposition 8.1; see Lemma 8.7. Therefore, the claim follows from Proposition 8.1. �

By construction (see Lemma 8.7), for each i∈ {1, 2, 3, 4} and general 0i ∈Δi, the fibre X0i

is an irreducible one-nodal hyperelliptic curve, and there exists a disc Di ⊂U intersecting Δ
transversally in 0i ∈Δi, a path ρi from t∈U to a point ti ∈Di − {0i}, and a symplectic basis

{δ1, . . . , δg; γ1, . . . , γg} ⊂H1(Xt,Z)

which is adapted to the paths ρ1, . . . , ρ4 in the sense of Definition 8.5. For i∈ {1, 2, 3, 4}, shrink
D around 0 so that the path ρi induces a well-defined specialization map

spiX : H1(Xti ,Z)→H1(Xt,Z);

see (8.11). Consider the group H1(X0i
,Z) as a submodule H1(X0i

,Z)⊂H1(Xt,Z) via spiX
and consider H1(Ct,Z) as a submodule H1(Ct,Z)⊂H1(Xt,Z)⊕k of H1(Xt,Z)⊕k via the map
ψ∗
t : H

1(Ct,Z)→H1(Xt,Z)⊕k induced by the isogeny ψt : (JXt)
k→ JCt. Define

W0H
1(X0i

,Z) =W0H
1(X0i

,Q)∩H1(X0i
,Z).

Thus,W0H
1(X0i

,Z) is the integral part of the zeroth piece of the weight filtration onH1(X0i
,Q).

Claim 8.12. For each i∈ {1, 2, 3, 4}, consider the matrix αi ∈Mk(Z) of Claim 8.11; see (8.18).
We have

H1(Ct,Z)∩H1(X0i
,Z)⊕k ≡ αi ·H1(X0i

,Z)⊕k mod W0H
1(X0i

,Z)⊕k. (8.19)

Proof of Claim 8.12. By Proposition 8.2, the claim follows from Claim 8.11. �

We can finish the proof of Theorem 1.1. By Claim 8.12, we know that (8.19) holds for
the matrices αi ∈Mk(Z) of Claim 8.11. Moreover, by Lemma 8.7, the monodromy operators
T1, . . . , T4 ∈Aut(H1(Xt,Z)) induced by the paths ρi and the discs Di satisfy the property that

Im(H1(X0i
,Z)

spi
X−→H1(Xt,Z)) =H1(Xt,Z)

Ti = 〈δ1, . . . , δg; γ1, . . . , γi−1, γ̂i, γi+1, . . . , γg〉,
Im(W0H

1(X0i
,Z)

spi
X−→H1(Xt,Z)) =Z · δi = 〈δi〉 .

Thus, by Lemma 7.5, we have αi ·H1(Xt,Z)⊕k = αj ·H1(Xt,Z)⊕k ⊂H1(Ct,Z)⊂H1(Xt,Z)⊕k.
In view of Lemma 7.1, there exist invertible matrices γij ∈GLk(Z) for i, j ∈ {1, 2, 3, 4} such that
αj = αiγij for each i and j. Moreover, as αj ·H1(Xt,Z)⊕k ⊂H1(Ct,Z), Lemma 7.9 implies

H1(Ct,Z) = αi ·H1(Xt,Z)
⊕k ⊂H1(Xt,Z)

⊕k ∀i= 1, 2, 3, 4.

Consequently, by Lemma 2.1, there exists an isomorphism of abelian schemes

JC � (JX )k
over U . By Theorem 1.7, it follows that k= 1 and Ct �Xt.

We have proven that (∗) holds. By Claim 8.10, we are done. �

9. Abelian varieties with no power isogenous to a Jacobian

The goal of this section is to prove Theorem 1.2 and Corollaries 1.3, 1.4 and 1.5 stated in the
introduction.

Proof of Theorem 1.2. First, we deal with the case where A= J3Y is the intermediate Jacobian
of a very general cubic threefold Y . We claim that there is no integer k≥ 1 for which there
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exists an isogeny between (J3Y )k and a product of Jacobians. To prove this, assume that such
an integer and such an isogeny exist. As Y is very general, J3Y is simple; in particular, we
may assume that there exists a curve C and an isogeny φ : JC→ (J3Y )k. Degenerate Y into
a singular cubic Y0 such that J3Y0 = JX is the Jacobian of a very general hyperelliptic curve
X; see [Col82]. This leads to a degeneration of C into a compact-type curve D and an isogeny
φ0 : JD→ (JX)k. By Theorem 1.1, this implies JD� (JX)k, and hence by Lemma 2.2 we get
JC � (J3Y )k, which contradicts Corollary 6.2.

It remains to show that if A is a very general principally polarized abelian variety of dimension
g≥ 4, then there is no integer k≥ 1 for which there exists an isogeny between Ak and a product
of Jacobians. To arrive at a contradiction, we may assume that for some k ∈Z≥1, there exists an
isogeny φ : JC→Ak for some smooth projective curve C. Specialize A to the Jacobian A0 = JX
of a very general hyperelliptic curve of genus g. The curve C specializes to a compact-type curve
D, so we obtain an isogeny φ0 : JD→ (JX)k. By Theorem 1.1, we have JD� (JX)k; hence there
exists an isomorphism of abelian varieties JC �Ak by Lemma 2.2. This implies, by Theorem 6.1,
that A is isomorphic as a polarized abelian variety to the Jacobian of a curve, which is absurd
for dimension reasons, because g≥ 4. The theorem follows. �

Proof of Corollary 1.3. The fact that Z ⊂Ag is special is well known to experts; we include an
argument in Lemma B.5 in Appendix B. The fact that Z ⊂Ag satisfies the Coleman–Oort
conjecture follows from the fact that for a very general principally polarized abelian vari-
ety A of dimension g≥ 4, the kth power Ak is not isogenous to a Jacobian of a curve; see
Theorem 1.2. �

Proof of Corollary 1.4. Let A be either the intermediate Jacobian of a very general cubic three-
fold or a very general principally polarized abelian variety of dimension at least 4. Let A1 be an
abelian variety isogenous to a power of A, and let A2 be an abelian variety with Hom(A, A2) = 0.

Suppose that there are smooth projective curves C1, . . . , Cn and an isomorphism

A1 ×A2 � JC1 × · · · × JCn. (9.1)

We claim that there exists a non-empty subset I ⊂ {1, . . . , n} such that A1 �
∏
i∈I JCi. Indeed,

the product polarization on
∏n
i=1 JCi and the isomorphism (9.1) equip A1 ×A2 with a princi-

pal polarization, call it λ. We have NS(A1 ×A2) =NS(A1)×NS(A2) because Hom(A1, A2) = 0.
Hence λ= λ1 × λ2 for principal polarizations λi on Ai. By [CG72, Corollary 3.23] (see also
[Deb96]), the decomposition of a principally polarized abelian variety into a product of princi-
pally polarized abelian subvarieties is unique. Therefore, (A1, λ1) is isomorphic to

∏n
i=1 JCi for

some non-empty subset I ⊂ {1, . . . , n}, proving the claim.
Since A1 is isogenous to a power of A, we find that

∏n
i=1 JCi is isogenous to a power of A,

which contradicts Theorem 1.2. This concludes the proof of Corollary 1.4. �

Proof of Corollary 1.5. This is a direct consequence of Corollary 1.4. �

Appendix A. Remark on the degeneration method

In an influential work, Bardelli and Pirola [BP89] proved that for a very general curve X of
genus g≥ 4, the Jacobian JX is not isogenous to a Jacobian of any smooth curve C with C ��X.
Their argument is based on the following idea, which also played an important role in subsequent
papers (including this paper). If f : JC→ JX is an isogeny, then the goal is to show that there
is an integer n such that the image of f∗ : H1(JX,Z)→H1(JC,Z) satisfies

im(f∗) = n ·H1(JC,Z)⊂H1(JC,Z). (A.1)
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Indeed, (A.1) implies the existence of an isomorphism JX � JC with respect to which the
isogeny f is given by multiplication by n. As X is very general, this isomorphism has to respect
the polarizations, and thereby C �X because of the Torelli theorem for curves.

To prove (A.1), a degeneration argument to nodal curves is used to show that there are
suitable monodromy operators T1 and T2 corresponding to two different Picard–Lefschetz degen-
erations of X, such that (A.1) holds when intersected with the Ti-invariant subspaces for i= 1, 2.
To get (A.1) from this, it is then used without proof in [BP89, Proposition 4.1.3] that

im(f∗) = im(f∗)T1 + im(f∗)T2 . (A.2)

The argument is formalized in [Mar13, Proposition 3.6], but also here, the identity (A.2) (which
is the identity H1 +H2 =Hx in the notation of loc. cit.) is assumed implicitly in the proof. The
same identity is used in the proof of Theorem 4.1 in [NP18]; see also Remark 4.3 in § 4.

It turns out that the version in [Mar13, Proposition 3.6] is incorrect; see Proposition A.7
below. Nonetheless, it is possible to prove (A.2) under the additional assumption that f∗ΘX

is a multiple of the theta divisor ΘC of JC (which is the case in [BP89, NP18]). For this,
one can use the lattice-theoretic results provided in § 7; see in particular Lemmas 7.5 and 7.9.
These statements and their proofs greatly simplify if one is only interested in the k= 1 case.
For convenience of the reader, we state and prove the precise statement that one needs to prove
(A.2) in the aforementioned applications in [BP89, NP18] in Proposition A.1 below.

Proposition A.1. Let H ⊂G be free Z-modules of the same finite rank, and let EG and EH
be unimodular symplectic forms on G and H, respectively. Let {δ1, . . . , δg; γ1, . . . , γg} ⊂G be a
symplectic basis of G. Let Ti ∈Aut(G) for i= 1, 2 be linear automorphisms with Ti(H)⊂H for
all i= 1, 2. Assume the following conditions.

(i) For each i, there is a positive integer ni such that HTi = niG
Ti .

(ii) The Ti-invariant subspaces of G are given by

GT1 = 〈δ1, . . . , δg, γ2, . . . , γg〉 and GT2 = 〈δ1, . . . , δg, γ1, γ3, . . . , γg〉.
(iii) The form EG on G restricts to a multiple of the form EH on H ⊂G.
Then n := n1 = n2 and H = nG⊂G.

Before we prove Proposition A.1, we consider the following result, due to Marcucci.

Proposition A.2 (Marcucci). Let H ⊂G be free Z-modules of the same finite rank. Let Ti ∈
Aut(G) for i= 1, 2 be linear automorphisms with Ti(H)⊂H for all i= 1, 2. Assume that:

(1) GT1 +GT2 =G;

(2) GT1 ∩GT2 �= 0;

(3) for each i, there is a positive integer ni such that HTi = niG
Ti .

Then n := n1 = n2 and nG⊂H ⊂G.
Proof. See the proof of [Mar13, Proposition 3.6] (or see the more general Lemma 7.5). �

Next, we prove Proposition A.1.

Proof of Proposition A.1. Note that n1 = n2 and n1G⊂H by Proposition A.2. By Lemma 7.9,
this implies nG1 =H as we want. For convenience of the reader, let us sketch the proof in
this particular situation. Let n := n1 and U := 〈ne1, ne2〉 ⊂G. Then U is a saturated, isotropic
subspace of H; by Lemma 7.6, there are g1, g2 ∈G such that U ⊕ 〈g1, g2〉 ⊂H is a unimodular
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sublattice of H. By condition (iii), there exists m∈Z≥1 such that EH(x, y) =EG(m
−1x, y) for

x, y ∈H. Thus, [G : H] =mg (cf. Lemma 7.7), and g2 ∈ 〈δ1, . . . , δg; γ2, . . . , γg〉=GT1 .
In view of condition (i), there exists g′2 ∈H1 such that g2 = ng′2. As we have an equality

EH(ne2, g2) =EG(m
−1ne2, ng

′
2) = 1, we must have n2 |m. Moreover, the inclusion nG⊂H shows

that mg = [G : H] | [G : nG] = n2g. Thus, m= n2, and the equality H = nG follows. �

A.1 Counter-example

In this section we show that, in contrast to what is claimed in [Mar13, Proposition 3.6], the
equality nG=H does not follow in general from the conditions (1)–(3) of Proposition A.2. We
try to keep our notation as compatible as possible with loc. cit .

Notation A.3. Let G be a free Z-module of rank four, with basis {e1, e2, f1, f2} ⊂G. We equip
G with the symplectic form

(−,−) : G×G−→Z

that has {e1, e2, f1, f2} as symplectic basis. In other words, for i, j ∈ {1, 2}, we have

(ei, fj) = δij , (ei, ej) = 0= (fi, fj), (y, x) =−(x, y) ∀x, y ∈G.
Let k and n be positive integers such that

k | n, 1< k≤ n. (A.3)

We define a submodule H ⊂G as follows:

H =
〈
ne1, ne2, nf1,

n

k
f2 +

n

k
f1

〉
⊂ 〈e1, e2, f1, f2〉=G.

Notice that

nG= 〈ne1, ne2, nf1, nf2〉 ⊂
〈
ne1, ne2, nf1,

n

k
f2 +

n

k
f1

〉
=H.

Lemma A.4. The inequality nG⊂H is strict. More precisely, the quotient H/nG is a finite
cyclic group of order k > 1.

Proof. This follows from (A.3). �

Consider the free abelian group Z⊕2. We are going to define an action of Z⊕2 onG. For i= 1, 2,
define an operator Ti : G→G by Ti(x) = x+ (x, kei)kei. Then T1 and T2 are automorphisms of
G. As (e1, e2) = 0, we obtain an action of Z⊕2 on G:

Z⊕2 −→Aut(G), bi �→ Ti, (A.4)

where b1 = (1, 0)∈Z⊕2 and b2 = (0, 1)∈Z⊕2.

Lemma A.5. The action of Z⊕2 on G preserves the submodule H ⊂G.
Proof. We have T1(ne1) = ne1 and T1(ne2) = ne2. Moreover, we have T1(nf1) = nf1 − k2ne1 and
T1((n/k)f2 + (n/k)f1) = (n/k)f2 + (n/k)f1 − kne1. In a similar way, T2(ne1) = ne1, T2(ne2) =
ne2, T2(nf1) = nf1 and T2 ((n/k)f2 + (n/k)f1) = (n/k)f2 + (n/k)f1 − kne2. These are all ele-
ments of H. �

Next, we would like to calculate HTi =H ∩GTi for i= 1, 2.

Lemma A.6. We have HTi = n ·GTi for i= 1, 2.
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Proof. Notice that GTi = {x∈G | Ti(x) = x}= {x∈G | (x, ei) = 0} . Hence,

GT1 = 〈e1, e2, f2〉 and GT2 = 〈e1, e2, f1〉. (A.5)

Therefore, HT1 =H ∩GT1 =H ∩ 〈e1, e2, f2〉= 〈ne1, ne2, nf2〉= nGT1 . Similarly, we have HT2 =
H ∩GT2 =H ∩ 〈e1, e2, f1〉= 〈ne1, ne2, nf1〉= nGT2 . �

From the previous results, we deduce the following result, which shows that [Mar13,
Proposition 3.6] fails in the generality stated. For a corrected version with stronger hypotheses,
which seems to suffice for most of the applications, see Proposition A.1.

Proposition A.7. There exist a connected and path-connected pointed topological space
(X, x), two local systems H and G of free abelian groups of rank four on X, an injective mor-
phism of local systems H ↪→G, and two elements γi ∈ π1(X, x) (i= 1, 2) such that the following
holds. If the monodromy representations attached to H and G are denoted by

ρ : π1(X, x)−→Aut(Hx) and σ : π1(X, x)−→Aut(Gx)
and if Gi ⊂Gx and Hi ⊂Hx are defined as

Gi := Inv(σ(γi)) = {a∈ Gx | σ(γi)(a) = a} ,
Hi := Inv(ρ(γi)) = {a∈Hx | ρ(γi)(a) = a} , (A.6)

then the following conditions are satisfied:

(1) G1 +G2 = Gx;
(2) G1 ∩G2 �= 0;

(3) there exists an integer n∈Z≥1 such that Hi = nGi for i= 1, 2;

(4) with respect to the integer n in condition (3), we have

Hx �= nGx
as submodules of Gx.

Proof. Let D∗ = {z ∈C | 0< |z|< 1}, and define X =D∗ ×D∗. Let x∈X be any point. Then
π1(X, x) =Z⊕2.

Define two free Z-modules H ⊂G of rank four as in Notation A.3. Let Z⊕2 act on G as in
(A.4). In particular, the action of Z⊕2 on G restricts to an action of Z⊕2 on H ⊂G; see Lemma
A.5. This yields two representations ρ : π1(X, x)→Aut(H) and σ : π1(X, x)→Aut(G).

LetH and G be the local systems on X attached to the representations ρ : π1(X, x)→Aut(H)
and σ : π1(X, x)→Aut(G), respectively. Define Gi and Hi as in (A.6).

We claim that conditions (1)–(4) are satisfied. Conditions (1) and (2) follow from (A.5).
Condition (3) follows from Lemma A.6. Condition (4) follows from Lemma A.4. �

Appendix B. Jacobians isogenous to a power of an elliptic curve

In [LZ19], Lu and Zuo prove that for a very general elliptic curve E, no power Eg with g≥ 12 is
in the Hecke orbit of the Jacobian of a smooth projective connected curve of genus g (see [LZ19,
Theorem A] and Remark B.2 below). The goal of this appendix is to show that the methods of
[LZ19] in fact imply the following stronger result.

Theorem B.1. For an elliptic curve E with transcendental j-invariant, the following hold.
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(1) There exists no integer g≥ 12 such that Eg is isogenous to the Jacobian of a smooth
projective connected curve.

(2) There exists no integer g≥ 5 such that Eg is isogenous to the Jacobian of a smooth projective
connected hyperelliptic curve.

Remark B.2. At most places in [LZ19] the term ‘isogenous’ means ‘to lie in the same Hecke
orbit’ see [LZ19, paragraph below Definition 2.12] and [LZ19, Lemma 2.13]. If the points in
Ag associated to two principally polarized abelian varieties (A, λA) and (B, λB) lie in the same
Hecke orbit, then A and B are isogenous, but the converse is not necessarily true. In fact, one
can show that the following are equivalent.

(1) The associated moduli points [A], [B]∈Ag lie in the same Hecke orbit, that is, they admit
lifts x, y ∈Hg to the Siegel upper half space Hg that lie in the same GSp(Q)+-orbit.

(2) There is an isomorphism of rational Hodge structures H1(A,Q)�H1(B,Q) that preserves
the polarizations up to a positive rational multiple.

(3) There is an isogeny φ : A→B such that φ∗(λB) = n · λA for some n∈Z≥1.

Remark B.3. One can show that if (A, λ) is a very general principally polarized abelian variety
of dimension g, then for any integer k≥ 1 and any principal polarization μ on the kth power Ak

of A, the principally polarized abelian varieties (Ak, μ) and (Ak, λk) have isomorphic polarized
rational Hodge structures (where λk denotes the product polarization on Ak associated to λ).
To prove this, notice that by Lemma 5.2, μ coincides with the polarization λα associated to
a unimodular positive-definite symmetric matrix α∈GLk(Z). We thus need to show that the
principally polarized abelian varieties (Ak, λα) and (Ak, λk) have isomorphic polarized rational
Hodge structures. By a suitable analogue of Lemma 5.2 that considers rational equivalence
classes of polarizations on Ak, this comes down to proving that for each matrix α∈GLk(Z) as
above, there exists a matrix γ ∈GLk(Q) such that γαγt is the identity matrix, where γt denotes
the transpose of γ. This turns out to be true and can be deduced from the results in [Ser73,
Chapter V, §§ 1.3.5 and 1.3.6].

Remark B.4. We used Theorem B.1 in the proof of Theorem 6.1, which in turn is used in the
proofs of Theorems 1.1 and 1.2. In fact, for these applications, one only needs the special case of
statement (1) in Theorem B.1, in which the isogeny Eg→ JC is an isomorphism of unpolarized
abelian varieties, and this special case could alternatively be deduced directly from Remark B.3
and [LZ19, Theorem A]. We decided to give the proof of Theorem B.1 (instead of spelling out
the details of the result alluded to in Remark B.3), since Theorem B.1 seems of independent
interest and naturally complements Theorem 1.2.

B.1 Special subvarieties in moduli spaces of abelian varieties

We need to gather some results on special subvarieties in Ag. Let us start by recalling the
definition. For integers g≥ 1 and n≥ 1, let Ag,[n] be the moduli space of principally polarized
abelian varieties of dimension g with level n structure (which is a scheme if n≥ 3 and an algebraic
stack in general). A closed subvariety Z ⊂Ag,[n] is called a special subvariety if it is a Hodge
locus of the Q-variation of Hodge structure R1h∗Q, where h : Xg,[n]→Ag,[n] denotes the universal
family; see [MO13, Definition 3.7]. Special subvarieties of Ag,δ,[n] for some polarization type δ
are defined similarly. By way of example, we have the following result.

Lemma B.5. Let n≥ 3 be an integer and let h, k, g be positive integers with g= hk. Let Z ⊂
Ag,[n] be a subvariety such that the general element of Z is isogenous to the kth power of
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a general polarized abelian variety of dimension h. Then Z ⊂Ag,[n] is a special subvariety of
dimension h(h+ 1)/2.

Proof. By [MO13, Remark 3.13], this easily reduces to the case where Z ⊂Ag,[n] is the image
of the diagonal embedding Ah,[n] ↪→Ahk,[n] =Ag,[n], in which case the result is clear. �

We are grateful to Kang Zuo for pointing us to assertion (1) of the following lemma.

Lemma B.6. Let g≥ 1 and n≥ 3 be integers. Let Z ⊂Ag,[n] be a special subvariety. Then the
following assertions are true.

(1) There exists an integer m≥ 3 with n |m and a smooth special subvariety Y ⊂Ag,[m] such
that Y is an irreducible component of the preimage of Z under the natural finite étale map
Ag,[m]→Ag,[n].

(2) If Z ⊂Ag,[n] is one-dimensional, then there are m≥ 3 and Y ⊂Ag,[m] as in (1) with the addi-
tional property that the pull-back of the universal weight-one Q-local system on Ag,[m] to
the smooth one-dimensional subvariety Y ⊂Ag,[m] has unipotent local monodromy around

each point of Y − Y , where Y is the smooth projective model of Y .

Proof. This is well known; assertion (1) follows e.g. from [Moo98, Lemma 3.3], and assertion
(2) follows from (1) together with [YZ14, Proposition 1.6(2)]. �

B.2 Arakelov inequality for a family of abelian varieties over a curve

To prove Theorem B.1, the idea is to apply the following result due to Lu and Zuo [LZ19]. To
state it, we need to introduce the following notation. Let C be a smooth projective connected
curve, and let C ⊂C be an open subscheme. Let h : A→C be a family of abelian varieties.
Define ΔC =C −C and assume that the local monodromy of R1h∗Q around each point of ΔC is
unipotent. Consider the Deligne extension (R1h∗Q⊗Q OC)ext of the vector bundle R1h∗Q⊗Q OC
(see [Del70, Proposition 5.2, p. 91]), which is a vector bundle on C that extends R1h∗Q⊗Q OC .
The Hodge filtration

0⊂E1,0 ⊂R1h∗Q⊗Q OC (E1,0 = h∗Ω1
A/C)

extends, in view of the nilpotent orbit theorem (see [CK89, Theorem 2.1]), to a filtration

0⊂E1,0

C
⊂ (R1h∗Q⊗Q OC)ext. (B.1)

By [Fal83], we have that

deg(E1,0

C
)≤ g

2
· deg Ω1

C
(log ΔC). (B.2)

Theorem B.7 (Lu–Zuo). Let n≥ 3 and g≥ 5 be integers. Let C ⊂Ag,[n] be a smooth subvariety

of dimension one with smooth projective model C ⊂C. Let h : A→C be the pull-back of the
universal abelian scheme over Ag,[n] and assume that the local monodromy of R1h∗Q around

each point of ΔC =C −C is unipotent. Let E1,0

C
be the vector bundle defined in (B.1) above.

Assume that C is generically contained in the Torelli locus and that g≥ 12 if C is not contained
in the hyperelliptic locus. Then (B.2) is a strict inequality.

Proof. See [LZ19, Theorem 1.4] and its proof. Although the statement of [LZ19, Theorem 1.4]
only covers the g≥ 12 cases, its proof also deals with the 5≤ g < 12 cases under the additional
hypothesis that the curve C ⊂Ag,[n] is generically contained in the hyperelliptic locus. �
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Lemma B.8. Let g≥ 1 and n≥ 3 be integers. Let C ⊂Ag,[n] be a smooth subvariety of dimension
one and assume that the general element of C is isogenous to the gth power of an elliptic curve.
Let h : A→C be the pull-back of the universal abelian scheme over Ag,[n] and assume that the

local monodromy of R1h∗Q around each point of ΔC =C −C is unipotent. Let E1,0

C
be the

vector bundle defined in (B.1) above. Then (B.2) is an equality.

Proof. The vector bundle E1,0

C
is a direct summand of a vector bundle E on C that has a

natural Higgs bundle structure (see [VZ03, VZ04]), which by [Kol87] decomposes as a direct
sum E = F ⊕N of Higgs bundles such that F 1,0

C
:= F ∩E1,0

C
is ample and the Higgs field of

E vanishes on N . By Lemma B.5, C ⊂Ag,[n] is a one-dimensional special subvariety of Ag,[n].
Therefore, by [Möl11], we have

deg F 1,0

C
=
g0
2
· deg Ω1

C
(ΔC) where g0 := rank F 1,0

C
. (B.3)

We claim that ΔC is non-empty. Indeed, the universal family of Ag,[n] restricted to C is a
non-isotrivial abelian scheme h : A→C. By assumption, this abelian scheme is (up to a finite
surjective base change) isogenous to a self-fibre product of a family of elliptic curves. If C were
proper, then one would conclude the properness of the moduli space of elliptic curves, which is
absurd. Hence, ΔC is non-empty, so we can apply [VZ04, Theorem 0.2] to conclude that there
exists an étale covering π : C ′→C such that if h′ : A′ =A×C C ′→C ′ denotes the pull-back
of our family h : A→C along π, then h′ : A′→C ′ is isogenous over C ′ to a fibre product of
the form B′ ×C′ E ′ ×C′ × · · · ×C′ E ′, where B′→C ′ is a constant family of b-dimensional abelian
varieties over Y ′ and E ′→C ′ is a non-isotrivial family of semi-stable elliptic curves over Y ′. Here,
b= g− g0 = g− rank(F 1,0

C
). Since the general fibre of h : A→C is isogenous to the gth power of

an elliptic curve and h : A→C is non-isotrivial, we see that b= 0 and hence g= g0. Thus, N = 0
and E = F , so that (B.3) implies that degE1,0

C
= (g/2) · deg Ω1

C
(ΔC). In other words, (B.2) is an

equality, and we are done. �

B.3 Elliptic curves with no power isogenous to a Jacobian

Proof of Theorem B.1. Let E be an elliptic curve with transcendental j-invariant. Assume that
for some integer g≥ 2, we have an isogeny ϕ : Eg→ JX whereX is a smooth projective connected
curve. We must show that g < 12 and that g < 5 if X is hyperelliptic.

Since E has transcendental j-invariant, the isogeny ϕ : Eg→ JX spreads out to a one-
dimensional family. More precisely, there is a one-dimensional variety B, a family of smooth
projective connected curves X →B whose fibres are hyperelliptic if X is hyperelliptic, a non-
isotrivial family of elliptic curves E →B and an isogeny of abelian schemes ϕ : Eg→ JX over B
that extends the isogeny ϕ : Eg→ JX. Up to replacing B by an étale cover, we may assume that
JX →B is equipped with a level n structure for some n≥ 3, so that it gives rise to a morphism
B→Ag,[n]. Let Z ⊂Ag,[n] denote the closure of the image of this map. By Lemma B.5, Z is a
special subvariety of Ag,[n].

By Lemma B.6, there is an integer m≥ 3 with n |m such that the following holds. There is a
one-dimensional smooth special subvariety C ⊂Ag,[m] that dominates Z such that the universal

weight-one Q-local system on C has unipotent monodromy at each point of ΔC =C −C, where
C denotes the smooth projective model of C. Let E1,0

C
be the vector bundle defined in (B.1)

above. By Lemma B.8, we have

deg(E1,0

C
) =

g

2
· deg Ω1

C
(log ΔC). (B.4)
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Notice that C ⊂Ag,[m] is generically contained in the Torelli locus. Thus, by Theorem B.7, the
equality (B.4) implies that g < 12. Moreover, if the curve X is hyperelliptic, then C ⊂Ag,[m]

is generically contained in the hyperelliptic Torelli locus. Therefore, we get g < 5 if X is
hyperelliptic; see Theorem B.7. This concludes the proof of the theorem. �
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