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ABSTRACT

Let X be a curve of genus at least 4 that is very general or very general hyperelliptic.
We classify all the ways in which a power (JX)F of the Jacobian of X can be isogenous
to a product of Jacobians of curves. As an application, we show that if A is a very
general principally polarized abelian variety of dimension at least 4 or the intermediate
Jacobian of a very general cubic threefold, then no power A* is isogenous to a product
of Jacobians of curves. This confirms various cases of the Coleman—Qort conjecture.
We further deduce from our results some progress on the question of whether the
integral Hodge conjecture fails for A as above.
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1. Introduction

In this paper we work over the field of complex numbers. For a positive integer g, let M, be
the moduli space of smooth projective connected curves of genus g. If C' is a smooth projective
curve, let JC' denote its Jacobian. Our main result is the following theorem.

THEOREM 1.1. Let Z C M, be an irreducible subvariety containing the hyperelliptic locus and
let X be a curve that defines a very general point in Z. Assume that there is an isogeny

o: (JX)F— JC, x---x JC,

for some positive integers k and n and some smooth projective connected curves C1,...,Cy of
positive genus. If g >4, then k=n and there is an isomorphism C; ~ X for each i€ {1,...,n}.

Theorem 1.1 generalizes in various directions the main result of Bardelli and Pirola in [BP89],
which says that the Jacobian JX of a very general curve of genus g > 4 is not isogenous to the
Jacobian of any other curve C' with C' 2 X.

The case k=1 of Theorem 1.1 is due to Naranjo and Pirola; see [NP18, Theorem 1.1]. By
proving Theorem 1.1, we fix a gap in their proof (cf. Remark 4.2) and generalize their theorem
to arbitrary powers (JX)¥ with k> 1. For k> 2, additional difficulties appear and the proof
requires new ingredients, most notably work of Kneser [Kne57] on the classification of integral
inner product spaces of dimension at most 16, a generalization of a theorem of Lu and Zuo [LZ19]
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on Shimura curves in the Torelli locus, and a recent result of Lazarsfeld and Martin [LM23] that
grew out from their study of various measures of irrationality.
We will use Theorem 1.1 to prove the following.

THEOREM 1.2. Let A be either the intermediate Jacobian of a very general cubic threefold,
or a very general principally polarized abelian variety of dimension g > 4. Then there exists no
integer k> 1 such that AF is isogenous to a product of Jacobians of smooth projective curves.

Theorem 1.2 implies that no power of a very general principally polarized abelian variety of
dimension g >4 is isogenous to the Jacobian of a smooth projective curve. In particular, this
proves an instance of the Coleman—Oort conjecture [MO13, Expectation 4.2], which predicts
that for g > 8, no positive-dimensional special subvariety Z C A, is generically contained in the
Torelli locus. More precisely, Theorem 1.2 has the following consequence.

COROLLARY 1.3. Let g=hk with h>4 and k>2. Let Z C A, be a subvariety such that the
general element of Z is isogenous to the kth power of a general principally polarized abelian
variety of dimension h. Then Z C A, is a special subvariety that satisfies the Coleman—Qort
conjecture. In particular, the generic point of Z does not lie in the Torelli locus.

Notice that the union of all subvarieties Z C A, as in the above corollary is stable under
Hecke translation, and hence dense in A, for the euclidean topology.

The assertion of Theorem 1.2 that concerns intermediate Jacobians of cubic threefolds seems
to go beyond what is predicted by the Coleman—QOort conjecture.

Another consequence of Theorem 1.1 is the following result.

COROLLARY 1.4. Let A be either the intermediate Jacobian of a very general cubic threefold,
or a very general principally polarized abelian variety of dimension g > 4. Let Ay be an abelian
variety isogenous to a power of A, and let Ay be an abelian variety with Hom(A, A) =0. Then
A1 x Ajg is not isomorphic (as unpolarized abelian varieties) to a product of Jacobians of curves.

In the above corollary, we cannot exclude that A; x As is isogenous to a product of
Jacobians. In fact, for any abelian variety A, a sufficiently general complete intersection curve
C C A has the property that JC is isogenous to A x As for some abelian variety A, with
Hom(A, Ag) =0.

It is a famous open problem to decide whether the integral Hodge conjecture for curve classes
holds on any principally polarized abelian variety. This is partly motivated by [Voil7], where it is
shown that a smooth cubic threefold is not stably rational if the minimal class of its intermediate
Jacobian is not algebraic. The question of the stable rationality of cubic threefolds is in turn
open since the work of Clemens and Griffiths in the 1970s [CGT72].

It is shown in [BGF23, Voi24] that a principally polarized abelian variety A satisfies the
integral Hodge conjecture for curve classes if and only if there is an abelian variety B such that
A x B is isomorphic to a product of Jacobians of curves. If dim(A) >4 and A is very general or
the intermediate Jacobian of a very general cubic threefold, then Corollary 1.4 excludes several
possibilities for the abelian variety B, as follows. Since A is simple, we know that B is an
extension 0 — B; — B — By — 0 of an abelian variety By with Hom(A, Bs) =0 (i.e. By does
not have A as an isogeny factor) by an abelian variety B that is isogenous to a power of A.
Corollary 1.4 shows that this extension cannot be split.

COROLLARY 1.5. Let A be either the intermediate Jacobian of a very general cubic threefold,
or a very general principally polarized abelian variety of dimension g > 4. Let B be an abelian
variety. Assume that B = By X By, where By is isogenous to a power of A and Bs does not have
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A as an isogeny factor. Then A x B is not isomorphic (as unpolarized abelian varieties) to a
product of Jacobians of curves.

The above corollary implies for instance that A x B is not isomorphic to a product of
Jacobians whenever A is as in the corollary and B is a product of simple abelian varieties.

A natural strategy for proving the integral Hodge conjecture for curve classes on an abelian
variety A is to construct isogenies of coprime degrees from kth powers of A to Jacobians of curves.
This approach for k =1 allowed Voisin to prove the property for special families of intermediate
Jacobians of cubic threefolds in [Voil7]. Similarly, Beckmann and the first named author used
this approach in [BGF23] to prove that the locus of principally polarized abelian varieties that
satisfy the integral Hodge conjecture for curve classes is dense in moduli. Theorem 1.2 above
shows that such an approach does not work for a very general abelian variety of dimension at
least four, nor for the intermediate Jacobian of a very general cubic threefold.

Remark 1.6. A simple dimension count shows that there are complex abelian varieties of dimen-
sion at least 4 that are not isogenous to the Jacobian of a curve. While such an argument cannot
work over countable fields, the statement remains true over Q by work of Chai and Oort [CO12]
and Tsimerman [T'si12] and, via a different method, by work of Masser and Zannier [MZ20]. Our
paper shows that there are abelian varieties A over C such that no power of A is isogenous to
the Jacobian of a curve; see Theorem 1.2. It is reasonable to ask whether such examples exist
over Q as well; first results in this direction have been proven by Chen, Lu and Zuo in [CLZ21].

As aforementioned, an ingredient in the proofs of Theorems 1.1 and 1.2 is a generalization
of a result of Lu and Zuo on Shimura curves in the Torelli locus. To be precise, note that [LZ19,
Theorem A] implies that for an elliptic curve F with transcendental j-invariant and for g > 12,
the gth power EY yields a point in A, that is not in the same Hecke orbit as the Jacobian of
a smooth projective connected curve. In other words, there is no smooth projective connected
curve C for which there exists an isogeny FY — JC' that respects the natural polarizations up
to a positive integer multiple (cf. Remark B.2). In Appendix B of this paper, we show how to
deduce from the results of Lu and Zuo [LZ19] the stronger statement, where the compatibility
assumption on the polarizations is dropped; see Theorem B.1 for the precise statement.

1.1 Outline of the argument

1.1.1 Theorem 1.1 implies Theorem 1.2. Let us first explain how to deduce Theorem 1.2
from Theorem 1.1. To this end, let A be either the intermediate Jacobian of a very general
cubic threefold or a very general principally polarized abelian variety of dimension at least 4. We
assume for a contradiction that there is a smooth projective curve C' and an isogeny f: A* — JC
for some k> 1.

Our assumptions on A ensure by [Col82] that A specializes to JX, where X is a very general
hyperelliptic curve of genus g = dim(A). This yields a specialization of C' to a compact-type curve
Cy and an isogeny fo: (JX)* = JCy. Applying Theorem 1.1 to fy, we see that there exists an
isomorphism go: JCy =~ (JX)F. The composition gg o fo is an isogeny (JX)* — (JX)*, given by a
matrix My(Z) with non-zero determinant as End(JX) =Z. By an idea from [BP89] (generalized
in Lemma 2.1), we deduce that JC ~ A* as unpolarized abelian varieties.

By the above step, we are reduced to the case where f: A¥ — JC is an isomorphism of
complex tori. Using this isomorphism, the canonical principal polarization on JC induces an
indecomposable principal polarization on A*. We will study all principal polarizations on A* in
§5 and see that such polarizations correspond to indecomposable integral inner product spaces,
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that is, indecomposable pairs (Z*, o) where oo € My(Z) is symmetric and the bilinear form it
defines on Z* is positive definite and unimodular. Kneser classified such pairs for k <16 (see
[Kneb7]): there is one such space in dimension k=1, 8,12, 14 or 15 and there are two for k = 16.
(As an aside, we point out that the number of such spaces grows exponentially with k, e.g. there
are more than 10%! such spaces for k =40, and there is no classification for large k, see [MH?73,
p. 28, Remark 1].)

The aforementioned classification implies that the isomorphism f: A¥ = JC is actually an
isomorphism of principally polarized abelian varieties f: (A*, a) = (JC,©¢), where (AF,a)
denotes the principally polarized abelian variety associated to A* and some indecomposable
integral inner product space (Zk, a). To conclude the argument, we specialize A to a product
E x B where E is a very general elliptic curve and B is a principally polarized abelian variety
with Hom(E, B) =0. We find that (A*, a) specializes to the product of principally polarized
abelian varieties (E* x B¥, o) ~ (E*, a) x (B*, a), and this principally polarized abelian variety
is isomorphic to the Jacobian of the specialization of the curve C. Since (Z*, ) is indecompos-
able, so is the principally polarized abelian variety (E¥, o), which must therefore be isomorphic
to the Jacobian of an irreducible curve. In particular, as F is very general, we get k < 11 in view
of Theorem B.1 in Appendix B, which generalizes work of Lu and Zuo [LZ19].

At this point Kneser’s classification can be applied and we are reduced to the case where
either k=1, or k=8 and « is induced by the FEjg-lattice. The latter is ruled out by comparing
the automorphism group of the Fjg-lattice with the automorphism group of the Jacobian of a
smooth curve of genus eight. We thus arrive at k = 1. This yields an isomorphism f: A~ JC of
unpolarized abelian varieties, which has to respect the polarizations on both sides (because A is
very general and hence has Picard rank one). We have finally arrived at a contradiction because
the principally polarized abelian variety A is not isomorphic to a Jacobian by our assumptions
(when A is the intermediate Jacobian of a smooth cubic threefold, this follows from [CGT72]).

1.1.2 Sketch of the proof of Theorem 1.1. This is the technical heart of the paper. The
assumptions that Z C M, contains the hyperelliptic locus H, C M, and that [X]| e Z is very
general quickly reduce the proof of Theorem 1.1 to the case where n =1 and Z =H,. Thus, we
may assume X is a very general hyperelliptic curve and there exists an isogeny ¢: (JX)¥ — JC
for some smooth projective connected curve C. We then have to show that k=1 and C' ~ X.
For this, the idea is to split the proof into two steps and prove that:

(i) there exists an isomorphism of unpolarized abelian varieties (JX)* ~ JC; and
(ii) if ¢: (JX)* ~ JC is an isomorphism, then k=1 and C' ~ X.

Let us first sketch how to prove (i). Define H := H'(JX,Z). The isogeny ¢: (JX)¥ — JC
induces an embedding ¢*: H'(JC, Z) — H®* whose image we denote by M C H®*. We remark
that to prove (i), it suffices to prove that:

(i) M =a- H® for some o € My,(Z) with non-zero determinant.

At the core of the proof of statement (i’) lies a carefully chosen degeneration of X to four different
one-nodal hyperelliptic curves Xo1, X2, Xo3 and Xg4. These degenerations induce degenerations
of C to nodal curves Coi, . . ., Cos. In fact, for each i € {1, 2, 3,4}, we deform the curve Xo; while
keeping its normalization Xy, fixed, which moves the extension class on J Xy, associated to J Xo;.
We compare the latter with the extension class on JCp; associated to JCp;. More precisely, in
Proposition 3.2 we use the induced isogeny @;: (JXo;)¥ — JCo; to compare the two extension
classes and the way they move to conclude that each irrational connected component K C Cy;
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of the smooth curve 5’01' must be hyperelliptic since )Z'Oi is hyperelliptic. Consequently, a result
of Lazarsfeld and Martin (see Proposition 4.6) implies that the genus of K equals the genus of
the curve Xg;. We then apply a simpler version of Theorem 1.1 due to Naranjo and Pirola (see
Theorem 4.1), in which one has the additional assumptions that k =n =1 and both curves are
hyperelliptic. This allows us to conclude that K ~ Xo; for each irrational connected component
K C Cy;, which implies that (JXo;)¥ ~ JCp;. In other words, (i) holds for the normalizations of
Xo; and Cy; for each i, and we aim to deduce from this the statement in (i').

The degenerations come together with specialization maps H'(X;, Z) — H'(X,Z) = H. The
above implies that for each i€ {1,2,3,4}, there exists a matrix «; € My(Z) with non-zero
determinant such that if WoH'(Xo;, Z) := H' (X0, Z) N WoH! (X0, Q), then

M N HY(Xo;, 2)%* = o - H (X045, 2)®%  mod (WoH (X0, 2))%* Vie{1,2,3,4}.

The way in which we chose our four degenerations X ~» Xy, allows us to apply two technical
linear algebra statements to the above congruences see Lemmas 7.5 and 7.9. The result is that
M = «; - H®* for each i. In particular, this proves the above assertion (i) as desired.

To finish the proof of Theorem 1.1, it remains to prove assertion (ii) above. For this, we
establish the following result of independent interest; for a more general version of the statement,
see Theorem 6.1 in §6.

THEOREM 1.7. Let g € Z>1 and let Z C My be an irreducible subvariety which contains the
hyperelliptic locus. Let X be a curve that defines a very general point in Z. If for some k,n > 1,
there is an isomorphism of unpolarized abelian varieties JCy x -+ x JCp =~ (JX)* for some
smooth projective connected curves C; of positive genus, then k=n and C; ~ X for each 1.

We emphasize that Theorem 1.7 works in any genus g > 1, while the assumption g >4 in
Theorem 1.1 is necessary. For instance, Theorem 1.7 implies that for an elliptic curve E with
transcendental j-invariant, no power E¥ with k& > 2 is isomorphic as unpolarized abelian varieties
to the Jacobian of a smooth projective connected curve.

The assumption in Theorem 1.7 cannot be weakened to require only that (JX)* be isogenous
to a product of Jacobians of curves; for example, the third power of a very general elliptic curve
is isogenous to countably many Jacobians of smooth projective connected curves of genus three.
The subtlety of the result lies in the fact that for k > 2, the abelian variety (JX)* carries various
principal polarizations and so the Torelli theorem can a priori not be applied directly. Besides
Theorem B.1 and the aforementioned result from [Kne57], our proof depends on various fortunate
numerical coincidences; see §6.2.

1.2 Conventions

We work over the field of complex numbers. Varieties are integral separated schemes of finite
type over C. In particular, varieties (and subvarieties) are integral and hence irreducible by
convention.

Let X be a variety defined over a subfield K C C which is finitely generated over Q and
such that X cannot be defined over a subfield of smaller transcendence degree. A complex point
x : Spec C — X is very general if the image of the composition Spec C — X¢ — X is the generic
point of X. This notion does not depend on the choice of the finitely generated subfield K C C.
It therefore makes sense to talk about very general points of a complex variety. The set of all
very general points of a complex variety is the complement of a countable union of proper closed
subsets. If M is an integral moduli space parametrizing complex varieties (e.g. curves) with some
properties, then an object of M is said to be very general if the corresponding moduli point in
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M is a very general point. If the moduli space M is fine, we may thus think about a very general
object of M as (a base change of) the geometric generic fibre of the universal family. This allows
us to specialize very general objects of M to any other given object, which is the key property
that we will use in this paper. For instance, an elliptic curve is very general if and only if its
j-invariant is transcendental.

A curve is a reduced projective scheme of pure dimension one over C, or the analytification
of such a scheme. A curve X of arithmetic genus g > 2 is semi-stable (respectively, stable) if
its singularities are at most nodal and each rational connected component of its normalization
contains at least two (respectively, three) points lying over nodes of X. A curve is of compact
type if its dual graph is a tree. A family of curves is a proper flat morphism p: X — B of finite-
type schemes, or complex analytic spaces, such that for each b€ B, the fibre X, =p~1(b) is a
curve which is (unless mentioned otherwise) connected. We say that a family of curves p: X — B
is a family of semi-stable (respectively, stable, smooth, compact-type, nodal) curves if the curve
X, is semi-stable (respectively, is stable, is smooth, is of compact type, has at most nodal
singularities) for each b € B. If X denotes a complex quasi-projective variety, then we denote by
Wi H (X, Q) the kth piece of the weight filtration of the associated mixed Hodge structure; see
e.g. [PSO8]. If H!(X, Z) is torsion-free (e.g. if i = 1), then we also write Wy H'(X, Z) := H*(X, Z) N
Wi, H'(X,Q). If A is an abelian variety with dual abelian variety AV, then a polarization on A is
the isogeny A: A — AV associated to an ample line bundle £ on A; thus \(x) = [ti(£) ® L] €
Pic’(A) = AY for x € A, where t,: A — A denotes the translation-by-z map.

2. Preliminaries

In this section, we gather various preliminary results.

2.1 Isogenies between powers of abelian schemes and cohomology

We start with the following lemma.

LEMMA 2.1. Let k€ Z>;. Let S be a connected complex manifold, f: A—S and g: B— S
families of compact complex tori, and v: A¥ — B a family of isogenies over S, where AF
denotes the k-fold fibre product of A over S. Suppose that for some t € S, the induced map
VF: HY(By, Z) — H'(Ay, Z)%F satisfies 1} (HY(By, Z)) = a- HY (A, Z)®* € HY(Ay, Z)®* for some
« € My(Z). Then there is an isomorphism B~ A* over S.

Proof. The k=1 case goes back to [BP89]; the more general version stated above is similar.

First of all, in order to prove B~ A¥ over S, it suffices to show that the variation of inte-
gral Hodge structure R'g.Z on S is isomorphic to (R!f.Z)®*. The matrix o has full rank,
because ; is an isogeny and ¢} (H'(B;, 7)) =a- H'(As, Z)®* by assumption. Hence, fibre-
wise multiplication by « yields an embedding of integral Hodge structures a: (R!f.Z)®F —
(R f.Z)®*. Similarly, fibrewise push-forward along the family of isogenies 1/ yields an embed-
ding ©*: R'g.7Z — (R' f.Z)®*. To prove that R'g,Z ~ (R' f.Z)%*, it thus suffices to prove that
the images of the above embeddings coincide, i.e. that the following equality holds:

im(¢*: R'g.Z — (R*f,.2)%%) = im(a: (R f,2)%% — (R f,2)%F).

Since S is connected, the above identity can be checked at the single point ¢ € S, where it holds
by assumption. This concludes the proof of the lemma. O

As a corollary, we obtain the following useful criterion.

1410

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.166, on 14 Nov 2025 at 19:33:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25007171


https://doi.org/10.1112/S0010437X25007171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ABELIAN VARIETIES WITH NO POWER ISOGENOUS TO A JACOBIAN

LEMMA 2.2. Let S be a smooth connected complex manifold and let f: A— S and g: B— S
be families of compact complex tori. Let 1: A¥ — B be a family of isogenies of complex tori over
S. Suppose that for some t € S, we have End(A;) =Z and By ~ A} for some k € Z>1. Then there
is an isomorphism B~ A* over S.

Proof. By Lemma 2.1, it suffices to show that the induced map 1y : H'(By, Z) — H'(As, Z)%F
has image o - H'(Ay, Z)®* ¢ H'(Ay, Z)®* for some o € M, (Z). This is clear: as End(A;) = Z, the
composition

AR By~ Ak

is given by a matrix o € My(Z), and hence the same is true on cohomology. O

2.2 Gaufl maps

The goal of this section is to prove Proposition 2.8 below. This proposition says that if C
is a smooth connected non-hyperelliptic curve and m € Z>1, then the surface m(C — C) C JC
contains no hyperelliptic curves.

For a dominant morphism of varieties f: X — Y with dim(X) = dim(Y"), let the branch locus
B(f) CY be the reduced closed subscheme which is the complement of the largest open subset of
Y over which f is étale. Similarly, define the ramification locus R(f) C X of f as the complement
of the largest open subset U C X such that f|y: U — X is étale. These definitions readily extend
to the case of a dominant rational map f: X --» Y of varieties of the same dimension. Specifically,
if U C X is a non-empty open subset on which f restricts to a morphism f|y: U — Y, then we
define R(f) as the closure of R(f|y) in X and B(f) as the closure of B(f|y) in Y.

Let C be a smooth connected non-hyperelliptic curve (hence of genus g > 3), and let

¢k C—PH(C,K¢)) =P (IpJC)
be the canonical embedding. This gives a morphism

s: Cx C— Gr(1,P(TpJC)), (p,q)+ (line spanned by ¢k, (p) and ¢x.(q)) -

LEMMA 2.3. In the above notation, the morphism s: C x C'— s(C x C) is generically finite.
Moreover, if we let deg(s) denote its degree, then we have

2 if g>4,
deg(s):{m if g=3

The ramification locus R(s) of s is the diagonal Ac C C x C, and the branch locus B(s) of s
is the curve D in Gr(1,P(TyJC)) parametrizing lines which are tangent to the canonical curve
oK. (C) CP (T JC). Moreover, the induced map C' = Ac = R(s) — B(s)= D is birational.

Proof. This is well known (see e.g. [BP89, Remark 3.1.2]). O

LEMMA 2.4. Let C be a smooth connected non-hyperelliptic curve. Let Ac C C x C' be the diag-
onal, and consider the origin 0 € C — C C JC. The difference map a: C x C — C — C restricts
to an isomorphism (C x C)\ A¢ = (C — C) \ {0}.

Proof. Let p,q,p',q' € C. Then [p—q] = [p' — ¢'] € JC implies that the divisors p+ ¢’ and p' + ¢
on C' are linearly equivalent. Hence they are equal, because C' is not hyperelliptic. O
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LEMMA 2.5. Let C be a smooth connected non-hyperelliptic curve of genus three, with canonical
embedding C < P2. Let £ C P? be a very general line and let py, pa, p3, ps be four distinct points
on C such that £ N C = {p1, p2, p3, pa} C C. Then for any integer m > 1, the 12 points m[p; — p;] €
JC (i#j€{1,2,3,4}) are pairwise distinct.

Proof. Assume that there is a very general line ¢ C P? and points p, q,p’, ¢ € C N ¢ with p#q
and p' # ¢ such that m[p —q] =mlp’ —¢'] € JC for some m >1. We need to show p=7p’ and
q=¢ . For a contradiction, we assume that this is not the case.

The line ¢ is spanned by the two points p and ¢. Since ¢ is very general, so is (p,q) € C x C.
In a first step, we note that p=¢' and g =p’ is impossible, as it leads to 2m[p — q] =0€ JC for
very general (p,q) € C' x C, which is absurd. Since (p, q) # (p, ¢') by assumption, we get that
{p,a} #{v', ¢’}

We specialize the line ¢ to a line £y so that p and ¢ collapse to a single very general point
po € C and { is the tangent line of C' at py. We denote the limit points of p’ and ¢’ by p(, and ¢,
respectively. Since {p, ¢} # {p’, ¢}, the equality pf, = ¢{, would imply that ¢; is a bitangent, which
is impossible as their number is finite (there are exactly 28 such lines). Hence, pj, # ¢(,- Moreover,
the identity m[p — ¢} =m[p’ — ¢'] € JC specializes to the identity 0=m/[p, — ¢y € JC. We can
further specialize the point pg € C' at which £ is tangent and find that there is a one-dimensional
family of points (pf), ¢)) € C x C such that 0 =m/[p) — q] € JC and pj # g Since the m-torsion
points of JC' are discrete, taking the closure of the above one-dimensional family yields a curve
in C' x C which is different from the diagonal and which is contracted by the difference map
C x C'— C — C. This contradicts Lemma 2.4 and hence concludes the proof. O

Let A be an abelian variety of dimension g >2 and let V C A be a closed subvariety of
dimension k, with 1 <k <g— 1. Let Tp A be the tangent space of A at the origin, and consider
the canonical trivialization TA ~ Ty A x A of the tangent bundle T'A of A. Define Gr(k, TpA) as
the Grassmannian of k-planes in ThA. Recall that, in this setting, the Gaufl map

Gya: V - -+ CGr(k, ToA) = Gr(k — 1, P(TpA))

is the rational map defined as follows. For a point z in the smooth locus of V', the induced map
on tangent spaces 1,V — T, A is an embedding, whose image can be identified with a k-plane in
ToA via t; we let 9y 4(x) € Gr(k, TpA) be the induced point of the Grassmannian.

Let C be a smooth connected non-hyperelliptic curve. Define a morphism

a: CxC—JC, a(x,y)=[z—y] €Pic®(C)=JC. (2.1)

For m € Z>1, let m(C' — C) C JC be the image of the morphism m-a: C x C — JC, and put
C—-C=1(C~-C)cCJC. Consider the Gaul map Gy, =%, (c—c), ¢, Which is a rational map.

Gm:m(C—C)---Gr(1,P(TpJC)) (2.2)
By [BP89, Lemma 3.1.1 and Remark 3.1.2], the following diagram commutes.
CxC——%(C-C—"—sm(C-0)
\ [
} | G | G, (2.3)
v v
Gr(1, P(TpJC)) == Gr(2, TpJC) == Gr(2, TpJC)

In particular, we obtain the rational maps

G1:C—C--5>s(CxC), Gp:m(C-=C)--+s(CxC). (2.4)
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PRrROPOSITION 2.6. Let C' be a smooth connected non-hyperelliptic curve and let m > 1 be an
integer. Consider the commutative diagram (2.3) above and the resulting morphisms (2.4). The
following assertions are true.

(1) The morphisms a: C x C — C —C and m: C — C — m(C — C) are birational.
(2) The rational maps Gi: C —C --»s(C x C) and G,: m(C —C) --»s(C x C) are generi-
cally finite.

Proof. By Lemma 2.3, the morphism s: C' x C' — s(C x C) is generically finite. Hence, the
commutativity of diagram (2.3) shows that assertion (2) follows from assertion (1).

Let us prove assertion (1). By Lemma 2.4, the map a is birational, so it remains to prove that
the map m: C — C' — m(C — C) is birational. Since diagram (2.3) commutes and a is birational,
we get that deg(s) =deg(G1) =deg(m) - deg(G,,). To prove deg(m) =1 it thus suffices to show
deg(s) < deg(G,,). Assume first that g > 4. Let p € C' be any point, and let ¢ € C' be a point such
that [p—¢] € JC is not 2m-torsion. Then, on the one hand, m[p — q] # m[q — p] € JC and, on
the other hand, G, (m[p — q]) = Gm(m[q — p]) € Gr(2, ToJC). Therefore 2 < deg(G,,), and since
deg(s) =2 by Lemma 2.3, we get deg(s) < deg(G,,), proving what we want.

Next, assume that g =3, and consider the canonical embedding C < P?. Let ¢ C P? be a
very general line, so that £ N C = {p1, pa2, p3, pa} C C for distinct points pi1, p2, ps and py on C.
The elements m[p; — p;] € m(C — C) for i # j are all sent to the same element in Gr(2,7pJC)
under the rational map G,,. Moreover, the twelve points m[p; —p;] € JC (i #j€{1,2,3,4})
are pairwise distinct by Lemma 2.5. We conclude that 12 < deg(G,,), and since deg(s) =12 by
Lemma 2.3, we get deg(s) < deg(G,,) and we are done. O

Remark 2.7. In [NP18], assertion (1) of Proposition 2.6 is proven for g > 4. We gave some details
of the arguments above because we will need the case of g =3, in which case the claim in loc.
cit. that deg(s) =2 is incorrect; see Lemma 2.3.

We are now in a position to prove the following proposition.

ProprosITION 2.8. Let C be a smooth connected curve of genus g > 3. Suppose that for some
m € Z>1 there is a non-constant morphism

[+ X—m(C-C)cCJC,
where X is a smooth connected hyperelliptic curve. Then C' is hyperelliptic.

Proof. Assume that C' is non-hyperelliptic; our goal is to arrive at a contradiction. Recall that
m: C —C —m(C — C) is birational; see statement (1) of Proposition 2.6. Assume first that
f(X) is contained in the branch locus B(m) of m. The commutativity of diagram (2.3) yields a
rational map X --+ B(s) defined as the composition

X - L5 Bm) -9 B(Gyom) —— B(Gh) € B(G1 0 a) —— B(s).

This rational map is non-constant as B(m) must be a curve (as f is non-constant) and Gy, is
generically finite; see statement (2) in Proposition 2.6. As B(s) is birational to C' by Lemma 2.3,
one obtains a non-constant morphism X — C, proving that C' is hyperelliptic (see e.g. [Sch90,
Lemma 1.1]), which yields the desired contradiction.

Therefore, the curve f(X)C m(C —C) is not contained in B(m), and we obtain a non-
constant rational map X --+ C' — C defined as the composition

m—1

x-Tsmec-c)™ho-c
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Note that R(a)=A¢ CC x C and B(a)={0} C C —C. Consequently, composing the non-
constant rational map m~!o f with the rational map a=': C —C --» C x C, one obtains a
non-constant rational map X --» C' defined as the composition

atom™tof: X-->m(C—-C)--»C—-C--»CxC.
Thus, X admits a non-constant morphism X — C'. This is a contradiction, and we are done. [J

Remark 2.9. Let C' be a non-hyperelliptic curve of genus g>3. Essential in the proof of
Proposition 2.8 above is the exploitation of the birational map (moa)™t: m(C —C) --» C x C.
This idea was inspired by [NP18, p. 902]. We have provided some additional details of the
argument for convenience of the reader.

2.3 Extensions of abelian varieties

Let A be an abelian variety with dual abelian variety AV. Recall that, by the Barsotti-Weil
formula, there is a canonical isomorphism Ext(A, G,,)=AY. If T~G!, is a torus, G a con-
nected commutative algebraic group, and 0 =T — G — A — 0 an exact sequence of commutative
algebraic groups, then by applying Hom(—, G,,) one obtains a homomorphism

c': Hom(T, G,,) — Ext(A, G,,) = AY

from the character group of T to the dual abelian variety AV, and this construction induces a
bijection (compare [Car80, Proposition 2] and [Cha85, Chapter II, §2]):

Ext(A, T) = Hom (Hom(T, G,,), A) . (2.5)

LEMMA 2.10. For i€ {1,2}, let 0 —T; — G; — A; — 0 be an exact sequence of algebraic groups,
where A; is an abelian variety and T; >~ GJ a torus. Let f: G1 — G2 be a morphism of algebraic
groups. Then f restricts to a homomorphism f|r,: T1 — T and hence induces a homomorphism
f: A1 — Ay, Moreover, if ct € Hom(Hom(T}, G,,), AY) is the homomorphism that corresponds
to the class of G; in Ext(A;,T;) via (2.5), then the following diagram commutes.

(flry)*
Hom(7T», G,,) — Hom(T1,G,,)

J@ N Jq (2.6)

()
A3 !

Proof. The first statement follows from the fact that Hom(77, A2) = 0. For the second statement,
consider the following commutative diagram with exact rows.

0 T G1 Aq 0
0 T Gy Ag 0

Applying Hom(—, G,,) to this diagram and using the fact that for an abelian variety A, the
isomorphism Ext(4, G,,) = AV is functorial in A, the commutativity of (2.6) follows. O

2.4 Extension classes of nodal curves

Next, we recall some known results on extensions of Jacobians of smooth projective connected
curves, following [Ale04, §§2.2-2.4]. We will make use of the following definition.
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DEFINITION 2.11. Let X be a connected nodal curve, and let I'( X)) be its dual graph. An orien-
tation of I'(X) is the choice of an ordering (P*, P~) on every pair of points on the normalization
X of X lying above the same node.

_ Let X be a connected nodal curve. Let X1, ..., X, be the irreducible components of X and
X; — X; their normalizations. We denote the dual graph of X by I'=T(X) and fix any
orientation of I'. Let

i | B
=1

be the normalization of X. The dual abelian variety of JX is identified with itself via the
principal polarization, and the character group of the torus 7T'=Ker(JX — JX) is canonically
identified with Hy(T',Z). Hence,

Ext(JX,T) =Hom(Hom(T, G,,), JX) = Hom(H, (T, Z), J X). (2.7)
Moreover, the homomorphism
¢ Hi(D,Z) — JX (2.8)

corresponding to [JX]| € Ext(J X, T ) via (2.7) is described explicitly in the following way. Every
edge e of I' corresponds to a node P of X, and the orientation defines an ordered pair of points
(P*,P7) on X. Put

c'(e) = Pt — P~ € Pic(X),

and extend this by linearity to the free module C(I', Z) on the edges of I'. Let Cyp(I',Z) be the
free Z-module on the set of vertices of I'. For an edge e, let end(e) and beg(e) be the end-vertex
and begin-vertex of e, as determined by the orientation of e, and define

0: C1(I',Z) — Cp(I',Z) by 0O(e)=end(e) —beg(e) for an edge e of T

If he Hy(T,Z) =Ker(d: C1(T', Z) — Cy(T', Z)), one has ¢!(h) € JX, and this construction defines
the homomorphism (2.8); see [Ale04, §2.4].

2.5 Graph homology and extension classes

We continue with the notation of §2.4. Let vy, ..., vy be a set of vertices and ey, ..., e, a set
of edges of I, such that for each j € {1,...,m — 1}, the edge e; connects the vertices v; and
vj+1, and ey, connects v, and vy. In particular, if m =1, then e; is a loop connecting v; to
itself.
Let
Xiyy Xiyy ooy Xi,

be the connected components of the normalization X of X that correspond to the vertices
U1, ...,Un. For je{l,...,m—1}, the orientation of e; defines an ordered pair of points

(Pj+, P;") such that PjJr lies either on X, or on X;
ej €{1,—1} by declaring that ; =1 if P lies on )?ij and €; = —1 otherwise. We obtain a cycle

415 and the opposite is true for P define

’YZZEj'ejGCl(F,Z), (2.9)
j=1

and one readily observes that 9(y) =0, so that v H(I',Z) C C1(T', Z).
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LEMMA 2.12. Let X be a connected nodal curve with dual graph I'. Then the following hold.

(1) There exists a linearly independent subset S ={v1,...,v} C Hi(I', Z) consisting of homol-
ogy classes of the form (2.9) such that S defines a basis of Hi(T', Q).

(2) Let X1, ..., Xy be the connected components of the normalization X of X. Let v € H(T,Z)
be a class of the form (2.9), and consider the homomorphism ¢': Hy(T',Z) — JX; see (2.7)
and (2.8). There are points p;,q; € X; for each i € {1,...,n} such that

ct(’Y) = (pl —dq1y.--yPn— Qn) € szl XX szn - JX (210)
Note that we do not require that all the points p; and ¢; be distinct.

Proof. To prove (1), first recall the following fact. Let Y be a path-connected one-dimensional

CW complex with basepoint yg, a 0-cell. Then every loop in Y is homotopic to a loop consisting of

a finite sequence of edges traversed monotonically; see [Hat02, § 1.1, Exercise 19]. Consequently,

homology classes of the form (2.9) generate H;(I',Z), yielding the lemma. (We do not require

that S be an integral basis, because not any generating set of a free Z-module contains a basis.)
To prove (2), we note that in the notation used above (2.9), we have

m
=B =P By P By =P P B e [[ X cIX.
j=1

The lemma follows. O

2.6 Extension classes of nodal hyperelliptic curves

We turn to the hyperelliptic case.

LEMMA 2.13. Let X be an irreducible one-nodal hypere]hpmc curve of genus g > 1, with nor-
malization X — X. Consider the homomorphism ¢t: Hj r,z)y—J X, where T denotes the dual
graph of X; see (2.8). If v is a generator for Hi(I',Z) ~Z, there is a point x € X such that
ct(y) =x — u(x), where t: X — X is the hyperelliptic involution.

Proof. By the description of the map ¢!, we have c!(y) = p — ¢, where p and ¢ denote the points
on the normalization X of X that are glued to form the nodal curve X. As X is hyperel-
liptic, the hyperelliptic involution on X descends to an involution on X, which implies that

q=1u(p)- O
LEMMA 2.14. Let X be a very general one-nodal hyperelliptic curve. There is no positive-

dimensional abelian subvariety of JX.

Proof. Let T =Ker(JX — JX) and consider the extension
0—T—JX — JX —0. (2.11)

Since X is very general, J)Z is simple. Hence any positive-dimensional abelian subvariety of
JX must be isogenous to JX. If such a subvariety exists, then the extension (2.11) splits up to
isogeny, and so it suffices to exclude the latter. By Lemma 2.13, the isomorphism Ext(JX,T') ~

JX (cf. §2.3) identifies [JX]| with x — ¢(x) for some z € X, so (2.11) splits up to isogeny if and
only if z —v(x) € J X is torsion. As the one-nodal hyperelliptic curve X is very general, this is
not the case. O
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2.7 Nodal degeneration and vanishing cycles

Recall the following result.

PROPOSITION 2.15. Let D be the open unit disc with origin 0 € D. Let X be a complex analytic
space and f: X — D a proper map. Put Xo= f~1(0). If X is smooth and f is smooth over
D — {0}, then the inclusion Xy < X is a homotopy equivalence. If X is any complex analytic
space and f any proper map X — D, then the same is true up to shrinking D around 0.

Proof. See for instance [PS08, Proposition C.11 and Remark C.12.ii]. O

LEMMA 2.16. Let X be an analytic space, (D, 0) the pointed unit disc, and f: X — D a family
of nodal curves over D which is smooth over D* =D —{0}. There exists a complex manifold
X and a projective morphism h: X — X which is an isomorphism over the regular locus of X,
such that f o h defines a family of nodal curves X — D which is smooth over D*.

Proof. See [Jon96, Lemma 3.2}, the main point being that we can find a resolution X of X such
that the fibres of X — D are reduced. O

Consider a proper holomorphic map
f:X—D

from an n-dimensional complex manifold X to a disc D. Assume that f is a submersion over
the punctured disc D* and that over 0 € D there are k critical points 1, ...,z € Xo= f~1(0)
for some k € Z>; that are non-degenerate. Assume that X' is regular (something we can always
achieve by modifying X'; see Lemma 2.16).

LEMMA 2.17. Continue with the above notation, and let t € D*. There are k disjoint spheres
S{L*l, ceey 5'3371 C X; and a deformation retraction of X onto the union of X; and k disjoint
n-dimensional balls BY, ..., B}, where the ball B is glued to X; along the sphere S{‘*l C X;.

Proof. This is a straightforward generalization of [Voi07, Theorem 2.16]. O

COROLLARY 2.18. Continue with the above notation. Let t € D* and let i: X; — X be the
inclusion. Then i,: Hy,, (X, Z) — Hp(X,7Z) is an isomorphism for m <n —1. For m=n—1,
the map i, is surjective, with kernel generated by the cohomology classes of the spheres
Syt s e X

Proof. This is a straightforward generalization of [Voi07, Corollary 2.17]. O

LEMMA 2.19. Continue with the above notation and let t € D*. Let 61, ...,6, € H" Y(X;,Z)
be the Poincaré duals of the homology classes of the vanishing spheres S?_l, R Sg_l C X;; see
Lemma 2.17. Let (—, —): H" }(Xy,7Z) x H"Y(Xy, Z) — Z be the cup-product pairing. For some
én € {#1}, depending only on n, the natural generator T € Aut(H'(X;,Z)) of the monodromy
group satisfies

k
T(a)=a+e€y,- Z (o, 8;)0; VYaec H" (X, 7).
i=1
Proof. This is a straightforward generalization of [Voi07, Theorem 3.16]. O

Next, we verify that for a nodal degeneration of curves over a disc with smooth general fibre,
the monodromy invariant part of the first integral cohomology group of the general fibre does
not change after any finite base change.
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LEMMA 2.20. Let D 3 0 be the pointed unit disc. Let X — D be a family of nodal curves, smooth
over D* =D\ {0}. Let 7: D' =D — D be the map z+— 2™, let 0' € D’ be the preimage of 0 € D,
and consider the base change X' := X xp D’. Let t #0 € D and fix a preimage t' € D' of t € D.
Let T € Aut(HY(Xy,Z)) and T' € Aut(H*(X],,Z) be the monodromy operators induced by the
restrictions of the families to D* and D'*. Then the invariant subspaces of T and T’ coincide,
that is,

HY (X, 72)T = H\(X],, 7)T".

Proof. 'To prove the lemma, we may assume that X is regular; see Lemma 2.16. Suppose that the
central fibre Xy has k nodes, and let 61, ..., 6, € H' (X}, Z) be the cohomology classes attached
to the vanishing spheres Sy, . . ., Sk C X¢; see Lemma 2.17. By Lemma 2.19, we have the following
generalization of the Picard-Lefschetz formula: for each a € H'(X},Z), one has

k
T(a)=a+Y (a-6)8; € H'(X;, Z).
i=1
On the one hand, the monodromy operator 7" on H'(X/,, Z) = H*(Xy, Z) satisfies T" =T™. On
the other hand, we have

k
T™a)=a+m-» (a-6)5 € H(X,,Z), acH'(X,,Z).

=1

This implies that for o € H'(Xy, Z) one has

k k
T'@)=a <= m-Y (@6)5i=0 <= > (a:6)5i=0 <= T(a)=a.
i=1 =1

This proves the lemma. [l

Remark 2.21. In the course of the proof of Theorem 1.1 we will be forced to perform various
base changes. This is a priori a subtle issue for the following reasons. We plan to degenerate to
different nodal fibres, which is equivalent to the degeneration to one fixed nodal fibre followed
by the application of a monodromy operator. However, the monodromy action on cohomology
with finite coefficients may become trivial after a base change, while the basic criterion in
Lemma 2.1 that we aim to exploit is in fact equivalent to the analogous assertion for (sufficiently
divisible) finite coefficients. For this reason, the fact that even after an arbitrary base change one
can deduce additional information from degeneration to various nodal fibres (a fact which was
already exploited in [BP89, NP18]) seems somewhat surprising. The key reason which makes
these arguments work is given in Lemma 2.20 above, which says that the monodromy invariant
subspace is not affected by any finite base change.

We conclude the section with the following lemma.

LEMMA 2.22. Let C be a complex analytic space, D C C an open disc around 0¢€ C, and
q: C— D a family of nodal curves over D. Suppose that for each s € D* = D — {0}, the curve
Cs = q~(s) is of compact type. Then up to shrinking D around 0, the following holds: for t € D*
and T € Aut(H'(Cy, 7)) a generator of the monodromy group, the natural map

HY(C,z) — HY(Cy, 7)T

is surjective.
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Proof. Let C; (i €1I) denote the irreducible components of C. By flatness of ¢, the induced
morphism ¢;: C; — D is surjective. We claim that the general fibre of ¢; is irreducible. Clearly,
it suffices to prove this after shrinking the disc D. The main point is then that C — D is a
family of nodal curves, and hence the fibre above 0 is reduced. This in turn implies that for each
irreducible component Cp ; of the special fibre of ¢, there is up to shrinking a section of ¢ that
passes through a general point of Cp ;. This shows that the component C; of C that contains Cp ;
admits a section and hence has irreducible general fibre. Running through all components Cj ;
of the special fibre of ¢, we get in this way that each ¢;: C; = D has irreducible general fibre.

Since the general fibre of ¢: C — D is of compact type, the general fibre of ¢; is smooth and
the index set I forms the vertices of a tree that indicates which components of a general fibre of
g meet. If 4, j € I are joined by an edge e; ;, or equivalently if the general fibres of C; and C; are
glued at a point, then we get a section e; j : D* — C, which has to extend across the puncture
by properness of g. Since the arithmetic genus of the fibres of each ¢;: C; — D is constant, and
because the same holds for g: C — D, we see that C is given by the quotient

= (e
i€l
where we glue for each edge e; ; between some indices 4, j € I according to the section constructed
above. Since the fibres of g are nodal, we see moreover that the points that are glued via ~ on
the special fibre lie in the smooth locus of | |;.; C; — D.
A simple Mayer—Vietoris argument now reduces us to showing that

HY(C;, 7Z) — HY(Cy, Z)T

is surjective for each i € I. In other words, we have reduced the result to the case where ¢ is
smooth over the punctured disc D*. In this case we apply Lemma 2.16 and get a modification
7:C — C given by successive blow-ups of the singular points in the central fibre, such that the
fibres of C — D are reduced and hence nodal curves. By [Kol93, Theorem 7.8], 7.: m(C) —
71(C) is an isomorphism. Passing to the abelianization and applying Hom(—, Z), we find that
™: HY(C,Z) — H'(C,Z) is an isomorphism. This reduces us to the case where C is regular
and ¢ is smooth over D*. By Corollary 2.18, H,(C}, Z) — H1(C,Z) is surjective. It follows that
HY(C,7Z) — H'(Cy, Z) is injective with torsion-free cokernel. By the local invariant cycle theorem
(cf. [Mor84]), the map H'(C,Z) — H*(Cy, Z)T becomes surjective after tensoring with Q; as its
cokernel is torsion-free, it is surjective. This concludes the proof of the lemma. O

2.8 Degenerations of hyperelliptic curves

In this section, we construct a family of stable hyperelliptic curves satisfying suitable properties.
The base will be higher-dimensional with several divisors, each of which gives rise to a family
of one-nodal hyperelliptic curves, allowing us to degenerate a very general hyperelliptic curve
in different directions. We will ultimately need these different degenerations in order to prove
Theorem 1.1; see §8.

The following lemma is certainly well known; we include some details for convenience of the
reader.

LEMMA 2.23. Let n, g > 2 be positive integers with n < g. Consider the affine space A9~ with

coordinates z1, ..., za4—1. There exists a non-empty Zariski open subset U C A29~1 " irreducible
divisors A; C U for i=1,...,n, and a family of genus g stable hyperelliptic curves
p: X —U (2.12)

such that the following hold.
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(1) Let A:=J; A;. The family (2.12) is smooth over U — A, the fibre X;=p~1(t) for very
general t € U is a very general hyperelliptic curve of genus g, and for each i € {1, ...,n} the
fibre Xy, above a very general point 0; € A; is a very general one-nodal hyperelliptic curve
of arithmetic genus g.

(2) For 0,€A; (i€{l,...,n}), there exists a one-dimensional disc D; C U intersecting A
transversally in 0; € A; such that the restriction p|p,: X|p, — D; is a Lefschetz degeneration
with nodal central fibre above 0; € D;.

(3) Let teU — A and t; € D; — {0;} be base points. Let §; € H'(X;,, Z) be the vanishing cycle
associated to p|p.: X|p, — D;, and view &; as an element of H'(Xy,Z) via parallel transport

along a path p; from t to t;. Then 01,...,0, can be completed to a symplectic basis
HY X, Z) = (01,1 6gi Y1y - s Yg)- (2.13)
Proof. Let ap—1,...,a29-1 €C be general complex numbers, and consider the following
equation:
n—2 2g—1
V¥=(z—an-1)?—21) ((z—an)* = 2) [[((@ = 2nsi — angi)® —zi42) - [] (2= 2 —ay).
i=1 j=2n—1

(The slight asymmetry in the quadratic terms reflects automorphisms of P! and stems from
the fact that we want to have a family that depends on 2g — 1 parameters 21, ..., 2z24—1.) This
defines a family of affine hyperelliptic curves over A29~!, branched at the 2g + 2 points

T=00, T=%21+apn-1, T=E\ 20+ an, T=1\/Zit2+ Znti T anti, T=25+a;

fori=1,...,n—2and j=2n—1,...,29 — 1. This extends to a projective family of hyperelliptic
curves, and we denote by U C A?9~! the open subset where the corresponding hyperelliptic curve
attains at most one node. The corresponding projective family of hyperelliptic curves is denoted
by p: X = U, and we note that & is regular. By construction, for u=(z1,..., 229—1) € U, the
fibre X,, = p~!(u) either is smooth or attains exactly one node; the latter happens if and only
if z; =0 for some i € {1,...,n}. Let A;:=UnN{z; =0} for i € {1,...,n}. The above description
of the ramification points of the hyperelliptic covering X, — P! for u € U shows that the moduli
map A; — M, is generically finite onto its image (because the hyperelliptic locus in M, has
dimension 2g — 1). Altogether this proves assertion (1) in the lemma.

For ie{1l,...,n}, let D; CU be a disc that intersects A transversally in a general point
0; € A;. Up to shrinking the disc D;, we can assume that the total space X|p, of the restriction
X|p, — D; is regular: the only possible singularity is at the node of the central fibre, where
analytically locally an equation of X|p. is given by t =22 — 32, which yields a regular surface.
Thus, X|p, — D; is a Lefschetz degeneration, proving assertion (2).

The fibre X; is a double covering X; — P! branched along 2g + 2 points po, p1, . . . , P2g+1-
By construction, X — U is given by an equation of the form y* =[], f;(z)- H?g;_l gi(z),
where gj(z) =2 — z; —a; and f;(z) is quadratic in z. Up to reordering, we can assume that
{p2i—1,p2i} corresponds to the roots of f;(x). In particular, po;—1 and po; collide along the
Lefschetz degeneration over the disc D; for i=1,...,n.

We pick a path of shortest distance between po;_1 and py; on P! for i=1,...,¢ and note
that the preimage of this path in the hyperelliptic curve X; gives rise to a homology class in
H1(X;,7) (well-defined up to sign) whose Poincaré dual §; € H'(X;,Z) is for i=1,...,n the

vanishing cycle that corresponds to colliding p2; 1 and po;. The classes 61, ..., d, are orthogonal
to each other and can be completed to a symplectic basis, proving assertion (3). O
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Let p: X - U be a family of hyperelliptic curves of genus g as in Lemma 2.23. For i€
{1,...,n}, consider the embedding H'(Xy,,Z) < H'(X;,Z) defined as the composition of the
inverse of the map H'(X|p,, Z) — H*(Xy,,Z) (which is an isomorphism by Proposition 2.15), the
restriction HY(X|p,,Z) — H'(Xy,,Z) and the parallel transport H'(Xy,,Z) — H'(X;,Z) along
Pi- Let

WoH(Xo,,Z) = WoH(Xo,, Q) N H' (X,,, Z)

be the integral part of the zeroth piece of the weight filtration. For i€ {1,... ,n}, let T; €
Aut(H'(X;,7Z)) be the monodromy operator associated to the path p; and the pointed disc

LEMMA 2.24. Consider the above notation. With respect to the symplectic basis (2.13), we have

Im (HY(Xo,,Z) = H (X}, Z)) = H' (X, Z)"
= (01,3005 Y15+ Yiels Vis Yitls--->Vg)s (2.14)
Im (WoH"(Xo,,Z) — H (X4, Z)) =Im (T; —id) = (8;) = Z - ;. (2.15)
Here, the module on the right in (2.14) denotes the submodule of H'(X;,7) obtained from
H'(X;,Z) by removing ~y; from the symplectic basis (2.13).
Proof. For each i €{1,...,n}, define
H:=Im (H'(X,,Z) = H'(X;,Z)) and V;:=Im (WoH"(Xo,,Z) — H' (X, Z)) .
Consider the monodromy operator T;: HY(Xy,Z) — HY(X;,Z). In view of statements (2) and
(3) in Lemma 2.23, T; is given by the formula
Ti(a)=a+ (a-6)8, ac€H' (X, Z),
where the §; are the vanishing cycles 6; € H'(Xy,Z) attached to the Lefschetz degenerations
X|p, = D; and the path p;. It is well known that
V;®Q=Im(T; —id) ® Q C Ker(T; —id) ® Q= H; ® Q Cc H' (X}, Q). (2.16)

In fact, (2.16) holds integrally because the respective spaces are saturated in H'(Xy, Z). In partic-
ular, (2.14) follows. Note that (T; — id)(a) = (- §;)6; for each o € H'(Xy, Z). As we have ; - §; =
—1, this gives (T; —id) (y;) = (s - 0;)0; = —d;. Therefore, V; =Im (T; —id) = (;) =Z-6; C H},
proving (2.15) and thereby the lemma. O

3. Moving the extension class

Let f: X =Y be a flat morphism of complex analytic spaces with reduced fibres. Following
[CHLO6, Definition 5.3|, a simultaneous normalization of f is a finite morphism of analytic
spaces v: Z — X such that f:= fov is a flat morphism Z — Y whose non-empty fibres are
normal and such that for each y € f(X), the induced morphism of fibres v,: f~1(y) — f~(y) is
a normalization map. We say that f: X — Y is equinormalizable if a simultaneous normalization
of f exists. If Y is normal, f: X — Y is flat with reduced fibres, and the connected components
of X are equidimensional, then any simultaneous normalization v: Z — X of f is a normalization
of X; see [CHLO6, Proposition 5.4]. In particular, v: Z — X is then unique up to isomorphism.

PropPOSITION 3.1. Let X and Y be complex analytic spaces with Y normal. Let f: X —Y be
a (proper) family of nodal curves with irreducible fibres (cf. § 1.2). Assume that the number of
nodes of the curve X, = f~1(y) is constant for y € Y. Then f is equinormalizable.
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Proof. This can for instance be deduced from [CHLO06, Theorem 5.6, Corollary 5.4.2 and
Definition 5.1]; we include some details for convenience of the reader. Since f is a proper family
of nodal curves, Sing(f) — Y is finite and unramified; see e.g. [Jon96, §2.21]. Since the number
of nodes is constant in the family, it follows that each component of Sing(f) dominates Y. Using
this we see that for each x € Sing(f) with image y = f(x), there is a suitable neighbourhood
U C X such that Sing(f) NU N f~1(y) = {z}. Up to shrinking U, we can assume that the fibres
of U =Y have at most one node. Up to replacing U by the intersection with the preimage of
a suitable neighbourhood of y in Y, we can moreover assume that U N Sing(f) — f(U) is finite
and surjective. Moreover, since f is flat, so is U — f(U). We may then apply Theorem 5.6 in loc.
cit. to conclude that f is equinormalizable at z (in the sense of the paragraph above Corollary
5.4.2 in loc. cit.). Since x € X was arbitrary, it follows from Corollary 5.4.2(ii) in loc. cit. that f
is equinormalizable. O

Let p: X — H be a family of one-nodal hyperelliptic curves of arithmetic genus g > 2 over a
connected normal complex analytic space H. Assume that the following hold.

(1) For some k> 1 and some family of semi-stable curves q:C — H, there is an isogeny
U (JX) =JX xy - xg JX — JC
of semi-abelian varieties over H, where JX and JC are the relative Jacobians over H.
(2) If v: X — X is a simultaneous normalization (cf. Proposition 3.1), then:
(i) there is an isomorphism
X~Xox H (3.1)

over H, where 5(,0 C X is the fibre above a general base point 0 € H;

(ii) there is a non-constant morphism H — Xo, u >y, such that for any u € H the fibre
X, is obtained from its normalization X, by gluing the images of the points wy, t(x,) €
Xo, under the isomorphism X~ X, induced by (3.1). Here, ¢: X9 — Xy denotes the
hyperelliptic involution on Xj.

ProposiTION 3.2. In the above notation, let 60,1, cee 60771 be the non-rational connected
components of the normalization 50 of the curve Cy=q *(0). Then there is an integer N > 1
and a matrix o= (a;;)ij € My(Z) with non-zero determinant such that for each j€{1,...,k}
the image of the composition

gj- 5(:0 L> (J)?())k i) (Jj(v'o)k & Jéo = J5071 X X Jé(]m
is contained in
N - (6’0,1 — 5’071) XX N - (60771 — 507,1) C Jé(),l X oo X Jé@m

where fj(z)=(0,...,z—(x),...,0) with x — «(z) placed on the jth coordinate and where Yo
is the isogeny induced by 1. Moreover, for each i € {1,...,n} there exists j €{1,...,k} such
that the resulting morphism

pr; o gj : X() — N (C(),i — CO,i)
is non-constant.

Proof. The image of g; is analytic and the image of f; is one-dimensional. Hence, in order to
prove the proposition, we are allowed to perform a base change along an arbitrary morphism
7: H' — H of complex analytic spaces as long as 0 € im(7) and the point z,, € Xy from (ii) moves
if w runs along H Nim(7). This easily reduces us to the situation where H is a one-dimensional
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disc and the number of irreducible components of the curve C,, = ¢~ !(u) is constant for u € H.
By the existence of the isogeny 1: (JX)*¥ — JC, this implies that the number of nodes of C, is
constant for u € H. Indeed, if v is the number of nodes of C, and ¢ the number of irreducible
components of Cy, then one has the formula k=v — c+ 1.

Since the fibres of p: X — H are one-nodal and : (JX)¥ — JC is an isogeny, we have
that k =ranky(H1(T'(Cy),Z)), where I'(Cy) denotes the dual graph on Cp. By statement (1) in
Lemma 2.12, there is a linearly independent subset {71(0),...,7vx(0)} C H1(I'(Cp), Z) of homol-
ogy classes of the form (2.9). Since C — H is equisingular, the groups H;(I'(Cy),Z) for we H
form a local system on H. Since H is a disc, the corresponding local system is trivial and so
each v;(0) extends to a section of classes v;(u) € Hi(I'(Cy), Z). Hence, for each v € H we get a
linearly independent subset

{n(u),...,m(u)} € Hi(T'(Cu), Z) (3.2)
of homology classes of the form (2.9). O

CrAIM 3.3. There exists a family of abelian varieties A — H with fibre A, ~ Jéu above a point
u € H, such that the semi-abelian scheme JC is globally over H the extension of A by the torus
Gk x H over H, and the isogeny v: (JX)* — JC induces an isogeny

O (JX)F— A
of families of abelian varieties over H.
Proof of Claim 3.3. The claim follows easily once the existence of A — H is established. In the
algebraic setting, this is [FC90, Chapter I, Corollary 2.11]. As we are working in the analytic
setting, we provide an argument for convenience of the reader.
Let (V, W, F) be the polarized integral variation of mixed Hodge structure on H (cf. [PSO0S,
Definitions 14.44 and 14.45]) defined by the family of curves ¢: C — H. In particular, the under-

lying local system of Z-modules V has stalk V,, = H'(C,,,Z) for a point u € H. The quotient
V/Wy(V) is a local system on H with stalk

HY(C,,7)/WoH" (Cy,Z) = H'(Cy, Z.)

for w€ H, and the filtration F induces a filtration F on the holomorphic vector bundle
(V/Wy(V)) @z Op that extends to a principally polarized integral variation of Hodge structure
of weight one over H. This concludes the proof of the claim. O

Since (JX)¥ ~ (JXo)* x H as families of abelian varieties over H, in view of the isogeny
1 above, the polarized abelian scheme A — H from the above claim is isotrivial, and hence
constant, since H is simply connected. Thus, we get a canonical isomorphism

A%J@()XH

of principally polarized abelian schemes over H, yielding a canonical isomorphism of principally
polarized abelian varieties

JCy= Ay = JCy (3.3)

for each u € H.
Consider the homomorphism

ce: Hi(D(Cu), Z) — JCy = JCo =[] ICos
=1
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see §2.4 and in particular (2.7) and (2.8). Here, the isomorphism JC,, ~ JCj is the one defined in
(3.3) above. By statement (2) in Lemma 2.12, for each u € H there are points p; ;(u), ¢; j(u) € Co
forie{l,...,n} and je€{1,...,k} such that

(5 () = (prj () — g1 (w), - -, Pnj () — gnj(u)) €JCo1 X -+ x JCop. (3.4)

Up to a suitable base change we may assume that the points p;j(u) and ¢; j(u) depend
holomorphically on u and give rise to sections of C — H.

By Lemma 2.10 and (2.7), for each u € H the isogeny of semi-abelian varieties 1, : (JX,)* —
JC, induces a canonical morphism (1y)«: H1(I'(X,), Z)®* — H1(['(C,),Z) such that the
following diagram commutes.

H(T(X,), )% — 1 (0(Cy), 2)

ct ¢
l (JXu)k Jcmu (3.5)

(JXo)k v JCo
By the assumptions, for u € H we have 550 ~ X’u, and the curve X, is obtained from its normal-
ization X, by gluing the images in X,, of the points x,, and ¢(x,) on Xy. In particular, the dual
graph I'(X,,) consists of a single loop. We fix an orientation of this dual graph (see Definition
2.11) and obtain a canonical identification H;(I'(X,),Z) =Z. Let

(), = (0,...,0,1,0,...,0) € H (T'(X,), Z)%*,

where 1 is placed on the rth coordinate. Then

ctyxy ((w)e) = (0, -y — 1(x4), .., 0) € (JX,)F = (JXo)F,

where x, — t(x,) is placed on the rth coordinate. Recall the set of classes v;(u) € Hi(I'(Cy), Z)
from (3.2). As the elements u(u)1, ..., u(u); form a basis of Hy(I'(X,),Z)®* and the cokernel
of the embedding

(Yu)s: Hi(D(Xu), Z)** — Hi(D(Cu), Z)

is finite (because 1), is an isogeny), there exists an integer N € Z>; and integers ay j, ..., ax j € Z
for each j €{1,...,k} such that

N -v;(u Zaw ()« (1u(w)y) € Hi(T(C), Z) (3.6)

for each j € {1, ..., k}. By the commutativity of the diagram (3.5), together with (3.4), we obtain
the following equalities for each uw € H and each j € {1,..., k}:

JO(al,j (u = (Ty)), - - y Qg - (T — (7))
k
:ZCLT’]"QZ()(O,... —L.Tu ZaT’,] ¢0 JX ( ()))
r=1

k
= Z Qrj CSC,u (Yu) s (p(u)r)) = CSCu <Z Qrj - (¢U)*(N(U)r)>
r=1 r=1

=che, (N-7)=N-che, ()
=N-(p1;(u) —qj(u), ... ,Pnj(u) —qnj(u) € JCo1 X -+ x JCop.
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We may now consider the integral k x k matrix a :=(a;;);;, and we note that this matrix
has non-zero determinant because vi(u),...,vp(u) € H1(I'(Cy),Z) from (3.2) form a rational
basis. Then

o fi(zu) = (a1 - (2u = Uzw)), - - - aky - (Ta — t(zn)))

and so we conclude that
Yo (- fi(xn)) =N - (prj(w) — q1j(w), ..., Pnj(uw) — gnj(u) € JCo1 X -+ X JCppp.

As %Zo is an isogeny, 7:!;0 (- fj(zy,)) moves with u € H because the map H — Xo, U 2y is non-
constant by assumption. This shows that the restriction of g;: )?0 —J 50 to some analytically
open non-empty subset of )?0 has the property claimed in the proposition, which suffices to
conclude.

It remains to prove the last assertion. Note that the curves f; ()Afo) for j=1,...,k gen-
erate (J)~(0) As wo and « are isogenies, the curves g; (Xo) for j=1,...,k generate JCo =
I, JC’OZ Thus, for i € {1,...,n} the projection pr;: g; (Xo) — JCOZ, and hence the projec-

tion pr;: g; (Xo) = N - (C’o i C’O i), is non-constant for some j € {1,...,k}. This concludes the
proof of the proposition. O

4. Hyperelliptic curves on hyperelliptic Jacobians
The following result is due to Naranjo and Pirola; see [NP18, Theorem 1.1].

THEOREM 4.1 (Naranjo-Pirola). Let X be a very general hyperelliptic curve of genus g > 3.
Suppose that the Jacobian JC of some hyperelliptic curve C' is isogenous to JX. Then C' ~ X.

Remark 4.2. The statement of [NP18, Theorem 1.1] is more general than the above Theorem
4.1, but the proof of [NP18, Theorem 1.1] contains a gap; see [NP18, fifth line from the end in
the proof of Theorem 1.1]. Here, it is claimed that the nodal curves Cy and Dy in loc. cit. are
isomorphic, while the given arguments only suffice to conclude that their normalizations Cy and
Do are isomorphic. (Note that the authors do indeed prove that Co ~ Do Indeed, they show that
Dy is hyperelliptic, and so one can apply Theorem 4.1 to the isogeny fo JDg — JCj. ) Proving
Theorem 1.1 will in particular fix the gap in loc. cit. Naranjo and Pirola have informed us that it
is possible to find an alternative fix via the study of infinitesimal variations of Hodge structures
due to Griffiths and Voisin.

Remark 4.3. Theorem 4.1 is the part of [NP18, Theorem 1.1] that is not affected by the afore-
mentioned gap. To explain this, in the notation of [NP18, Theorem 1.1], assume that for a very
general hyperelliptic curve C' there exists an isogeny f: JD — JC where D is a smooth hyper-
elliptic curve of genus g > 3. The moduli count on [NP18, p. 901] is used to show that the map
¢: Dy — JDy defined as y — m(y — tp,(y)) (see p. 901 in loc. cit.) is birational onto its image.
Although this moduli count is incorrect, ¢ is birational onto its image for the following reason: if
omDy C J Do denotes the image of ¢, then the geometric genera of Do and 2mDy are the same
because 2mDy is dominated by Dy and generates JDy. The isogeny f0 JCy— JDy in loc. cit.
sends, by comparison of the respective extension classes, the curve 2Cy into the curve 2mD.
By the above, this provides us with a dominant rational map Cy --» Dy, which must be an iso-
morphism because both curves have the same genus of at least two. The remaining arguments
in loc. cit. (together with Proposition A.1 in Appendix A) suffice to prove that JD ~ JC, and
hence D ~ C' by Torelli and the genericity assumptions.

The goal of this section is to deduce from Theorem 4.1 the following generalization.
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THEOREM 4.4. Let X be a very general hyperelliptic curve of genus at least 3. Let Cy,...,Cy
be hyperelliptic curves of genus at least one such that there exists an isogeny JC7p X --- X
JCp — (JX)F for some k>1. Then n=k, there is an isomorphism C;~ X for each i€
{1,...,n}, and the induced isogeny (JX)¥~JCy x ---x JC, — (JX)* is given by a matrix
a € My, (Z)

The proof of Theorem 4.4 relies on Theorem 4.1 and the following two results, the first
of which is probably well known, and the second of which is due to Lazarsfeld and Martin

[LM23].
LEMMA 4.5. Let A be an abelian variety with End(A) = Z. The natural maps My,(Z) — End(A¥)
and GLy(Z) — Aut(AF) are isomorphisms. Moreover, if there exist abelian varieties By, .. ., By,

and an isomorphism ¢: [[I-, B; = A¥, then there exists o € Aut(A*) = GLy(Z) such that the
composition cco¢: [[; | Bi — AF respects the product structures on both sides. In particular,
in that case, there is a partition k=kj + - - - + ky, such that B; ~ A¥: for each i.

Proof. The space of endomorphisms End(AF) is naturally given by k x k matrices whose entries
are endomorphisms of A. Since End(A) =7, we find that End(A*) ~ M(Z), which proves the
first claim in the lemma. This also implies Aut(A*) ~ GL(Z).

The ith factor B; yields a projector p; € End(AF). By what we have said above, p; can be
identified with a k x k matrix with p; - p; = p; and p; o p; = p; o p; for all i and j. By simultaneous
diagonalization of permuting projectors, we find a change of coordinates, i.e. an automorphism
o € Aut(A*) = GL,(Z), such that o o ¢ has the property claimed in the lemma. O

PROPOSITION 4.6 (Lazarsfeld-Martin). Let X be a very general hyperelliptic curve of genus
g>3 and let Z C JX x JX be an irreducible curve whose normalization is hyperelliptic. Then
Z generates a proper subtorus of JX x JX.

Proof. See [LM23, Proposition 3.1]. In the statement of that proposition, there is the additional
assumption that Z lifts to a curve on X x X, but this assumption is not used in the proof.
Indeed, the proof in loc. cit. immediately starts with the hyperelliptic curve Z inside JX x JX
and spreads this out to a family of hyperelliptic curves Z;, C J X, x JX;. Then the hyperelliptic
Jacobian JXj is specialized to JX; = Bs X E, where F is a fixed elliptic curve and By is the
Jacobian of a very general hyperelliptic curve of genus g — 1 which varies with s. Under the
assumption that Z generates JX x JX, the same will be true for Z; for all s. In particular,
under this assumption, the image of Z; via the projection JXs x JX; — E x E is a curve in
E x E. It is then shown (see [LM23, Claim in §3]) that this curve varies with s. Since the
normalization of Z is hyperelliptic, its image in F X F yields a rational curve on the Kummer
surface associated to F x E. The latter are rigid, because Kummer surfaces are not ruled. This
contradiction concludes the argument. [l

Proof of Theorem /.4. As JX is simple, we have ¢g(C;) > g(X) for each i, and n < k. If g(C;) >
g(X) for some i, then k > 2 and there exists a surjection

JC; - JX x JX.

As C; is hyperelliptic and X is very general hyperelliptic, this contradicts Proposition 4.6. We
conclude that ¢g(C;) = g(X) for each ¢ and that n = k. In particular, for each i, there exists an
isogeny JC; — JX. By Theorem 4.1, we have C; ~ X for each i. As the hyperelliptic curve X
is very general, the composition (JX)¥ ~[[r, JC; — (JX)* is given by a matrix in Mg(Z); see
Lemma 4.5. U
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5. Polarizations on powers of abelian varieties and bilinear forms

This section has two goals. Consider a principally polarized abelian variety A with endomorphism
ring Z. Firstly, we classify isomorphism classes of principal polarizations on any power of A; see
§5. Secondly, we investigate principal polarizations on any abelian variety B isogenous to a
power of A; see §5.2.

5.1 Polarizations on powers of a very general abelian variety

Let A be an abelian variety with dual abelian variety AY. For a line bundle £ on A, the map
¢r: A—Pic®(A) = AV defined as x> t*(£) ® L~ is a homomorphism of abelian varieties, and
the association £ +— ¢, induces an injective map

®: NS(A) — Hom(A, AY).

The image of ® is contained in the subset Hom™™ (A4, AY) C Hom(A4, AY) of maps ¢: A— AV
that satisfy ¢V = ¢ (viewed as maps AVY = A — AY). A line bundle £ on A is ample if and only if
or: A— AY is an isogeny, in which case the class [£] € NS(A) (respectively, the homomorphism
@r) is called a polarization. The polarization [£] is principal if h°(A, £) =1 or, equivalently, if
¢ is an isomorphism. See e.g. [Mil86] or [BLO04] for more details.

LEMMA 5.1. Let A=V/A be a complex torus. Let k€ Z>; and consider the natural
embedding
ta: Mp(Z) = End(A").

Let oo € My (Z) with attached endomorphism 14(c) € End(AF). Let 14(a)" € End((A%)Y) be the
endomorphism dual to t4(a). Then, with respect to the canonical isomorphism (AF)Y = (AY)*,

we have 14(a)Y = 1av(al) where o € My(Z) is the transpose of the matrix .

Proof. The lemma follows from the following well-known linear algebra statement: if A is a free
Z-module of positive and finite rank and if o € M,(Z), then the endomorphism fa(a): AF — A¥
that o induces satisfies fa(a)Y = fav(al) as morphisms (AY)* — (AV)¥. Here, fov(al) is the
endomorphism of (AY)* attached to the transpose af € My (Z) of a. O

Let k€Z>1 and let A be an abelian variety, principally polarized by A: A = AY. Let
Mo AR — (A*)Y be the product polarization on A*. From now on we drop the notation ¢4 intro-
duced in Lemma 5.1 by letting o € End(A*) denote the endomorphism attached to a matrix
a € My(Z). We define an injective map

My (Z) — Hom(AF, (AF)V),

5.1
ar A :=Noa. (5-1)

Observe that any v € GLg(A) acts naturally on the set of morphisms p: A¥ — (A*)Y via
p—yopont, (5.2)

where we view 7 as an automorphism of A*, y as a morphism A¥ — (AY)* and the transpose
7t € GLi(Z) of v as an automorphism of (AY)*. If yu is a polarization, then v o po~t is again
a polarization. Indeed, it is clear that (7*)Y o uo~! is a polarization, where the automorphism
(v4)V: (AV)F 5= (AY)F is the automorphism of (AY)* induced by ~* via duality; moreover, by
Lemma 5.1 we have (7)Y = (v%)! = v as automorphisms (AY)* = (AV)*.

If End(A) = Z, then End(A¥) = M(Z) and Aut(A*) = GLx(Z) by Lemma 4.5, and the map
@+ )\, yields an isomorphism My, (Z) = Hom(A*, (A¥)V).

LEMMA 5.2. Let (A, \) be a principally polarized abelian variety. Then the following hold.

1427

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.166, on 14 Nov 2025 at 19:33:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25007171


https://doi.org/10.1112/S0010437X25007171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

O. DE GAAY FORTMAN AND S. SCHREIEDER

(1) Let o € My(Z) such that o has non-zero determinant. Then the map \,: A¥ — (A*)V asso-
ciated to « is a polarization on AF if and only if « is symmetric and positive definite. In
particular, the map (5.1) restricts to an injective map

Pw(Z) — {polarizations on A},

5.3
a > A, (5:3)

where Py (Z) C My(Z) denotes the subset of positive-definite symmetric matrices.

(2) The map (5.1) is equivariant with respect to the GLy(Z)-action on both sides, where GLy(Z)
acts on Pi(Z) by v-a=~ay! for a € Pi(Z) and v € GLg(Z), and where GLg(Z) acts on
A¥ via (5.2) and the natural embedding GLy(Z) C Aut(AF).

(3) If End(A) =2, then (5.3) defines a bijection

Pi(Z) — {polarizations on A*}, (5.4)
= A .
(4) Assume End(A)=7Z. Let a, 8 € Pr(Z) and v € GLy(Z) = Aut(A*). Then a=~B4! if and
only if 4 defines an isomorphism of polarized abelian varieties (A*, \,) = (A*, \p).
(5) If End(A)=7Z, then the map (5.1) induces a bijection between the set of (isomorphism
classes of) unimodular positive-definite symmetric bilinear forms on Z* and the set of
(isomorphism classes of) principal polarizations on Ak,

Proof. Let us prove assertion (1). Let & € My (Z) such that o has non-zero determinant. We need
to show that A,: A¥ — (A*)V is a polarization on A* if and only if o is symmetric and positive
definite. For this, in view of [BL04, Theorem 5.2.4], it suffices to prove that « is symmetric
and positive definite if and only if the endomorphism « € End(A*) is symmetric and totally
positive. Here, symmetric is understood to be with respect to the Rosati involution 1: End(A*) —
End(A*) defined by the product principal polarization \* on A* attached to A (thus, f € End(A¥)
is symmetric if fT = f), and an endomorphism ¢: X — X of an abelian variety X is said to
be totally positive if the zeros of the characteristic polynomial of the analytic representation
@ Lie(X) — Lie(X) of ¢ are all positive.
Consider the canonical embedding

My (Z) — End(A").
The above shows that to prove (1), it suffices to prove the following assertions.

(a) A matrix o € My(Z) is symmetric if and only if the associated endomorphism « € End(A*)
is symmetric.

(b) Let o€ My(Z) be a symmetric matrix with non-zero determinant. Then the induced R-
linear transformation a:: R¥ =5 R* has positive real eigenvalues if and only if the associated
endomorphism a € End(A*) is totally positive.

Assertion (a) follows from Lemma 5.1. Let us prove (b). Let a®": Lie(A)* — Lie(A)* denote the
analytic representation of the endomorphism o € End(A*). We must show that the eigenvalues of
the induced R-linear transformation o: R¥ = R¥ are positive if and only if the eigenvalues of the
complex linear map a®”: Lie(A)* — Lie(A)* are positive. This follows readily from the fact that if
V' is a complex vector space of finite positive dimension and k£ > 1 an integer, then any symmetric
matrix o € GLg(R) has positive real eigenvalues when viewed as an R-linear transformation
a: R¥ = R* if and only if the induced C-linear map V¥ =R* @ V=5 R* @r V = V¥ has positive
real eigenvalues.
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Next, we prove assertion (2). Let o € Pi(Z) with associated polarization \,: A% — (A*)Y.
Let (ai,...,a) € AF. Then \*oy=~o0A¥ as maps A¥ — (AY)* since A* is the image of the
identity matrix under the map (5.1). Therefore,

Mayt = A oyoaoy’=yoX oaoq =yor 07,

and hence (2) follows.

We now prove (3). For this, we assume End(A) =Z. Note that this assumption implies that
the map (5.1) is a bijection. Hence any polarization u: A¥ — (A¥)Y is of the form p =\, for a
unique a € GLg(Z), and by (1) such a matrix « is symmetric and positive definite, proving what
we want.

To prove (4), assume End(A)=7Z. Let «a,B¢€Py(Z) and v € GL.(Z) = Aut(A¥). Then
7' defines an isomorphism of polarized abelian varieties (A, \y) =~ (A¥, \g) if and only if
Aa =70 Ago~t. Since yo Ag oyt = A,z by (2), this happens if and only if A, = Ay, which in
turn happens if and only if a =~3~" by the injectivity of (5.3). Assertion (4) follows.

Finally, for a € Px(Z), the polarization A, is a principal if and only if « is unimodular.
Assertion (5) of the lemma then follows from (4), and we are done. O

LEMMA 5.3. Let (A, \) a principally polarized abelian variety with End(A)=Z. Let k be a
positive integer, let o € Py(Z), and consider the associated polarization A, on A*. Consider the
positive-definite integral quadratic space (Zk , ) associated to the matrix a.

(1) The association a— A, in (5.4) induces a bijection between the set of isomorphism classes
of decompositions (A*, \y) ~]1;(Bi, \;) for some polarized abelian varieties (B;, \;) and
the set of isomorphism classes of decompositions (Z*, o) ~@D,(Z*, ;) of (Z*,a) into an
orthogonal direct sum of positive-definite integral quadratic spaces.

(2) The polarized abelian variety (AF,\,) is indecomposable as a polarized abelian variety if
and only if (Z*, «) is an indecomposable positive-definite integral quadratic space.

Proof. 1f (ZF,a) ~@,(Z*, o) as integral quadratic spaces, then (AF \,)~T[.(4%, \,,) by
Lemma 5.2. Conversely, consider an isomorphism [[;(B;, A;) = (A*, Ay of polarized abelian vari-
eties. By Lemma 4.5, for each ¢ there exists a non-negative integer k; < k and an isomorphism
of abelian varieties B; ~ A% . Thus, there is a polarization A; on the abelian variety AFi for each
i such that [[,(Bi, \i) ~[[;(A%, \)). Each )\, is again of the form ;= \,, for a; € P,(Z), and
the resulting isomorphism of polarized abelian varieties (A%, o) ~ [],(4%, A,,) is induced by an
isomorphism of positive-definite integral quadratic spaces (Z*, a) ~ @i(Zki, «;); see Lemma 5.2.
Assertion (1) follows, and (2) is a direct consequence of (1). O

5.2 Polarizations on abelian varieties isogenous to a power of an abelian variety

LEMMA 5.4. Let A be an abelian variety and let \: A— AV be a polarization. There is a
canonical isomorphism Hy(AY,Z) = H1(A,Z)". Moreover, if E: H1(A,Z) x H1(A,Z) — Z is the
alternating form corresponding to A\, then the push-forward

Ast Hl(A, Z) — Hl(AV, Z) = H1<A, Z)v
satisfies A\«(z)(y) = E(x,y) for all x,y € H1(A,Z).
Proof. This is well known and follows for instance from [BL04, Lemma 2.4.5]. O

Let (A, A\4) and (B, Ap) be principally polarized abelian varieties. Let A¥ — B be an isogeny
for some integer k> 1, and suppose that the principal polarization Ap of B pulls back to the
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polarization - Ax on AF defined as
ﬁ-)\Ak:Ak—)(Av)k, .’EP—)B')\Ak(l‘),

where [ is a positive-definite symmetric integral k x k matrix and A4+ is the natural product
polarization on A¥ induced by 4.

LEMMA 5.5. In the above notation, let M := Hy(B,Z) and H := H1(A,Z), and let E); and Ef{k
be the symplectic forms on M and H®* associated to the respective principal polarizations. With
respect to the natural embedding M C H®* induced by the isogeny A*¥ — B, we have

EM(x7y) :Egk(xa 5_1 -Y) :E%k(/g_l © L, y) for each x,y € M.

Proof. Via the principal polarizations, the given isogeny ¢: A¥ — B induces an isogeny 1: B —
A¥. We claim that 1 o ¢ = 3 as isogenies A¥ — A*. To see this, recall that the pull-back ¢*(\g)
of the principal polarization Ag of B is the isogeny A¥ — (A*)V given by the composition

¢ AB ¢

Ak B » BY (AF)V,
As this is 8 times the natural principal polarization on A*, the claim follows.
On the level of lattices, the maps ¢ and 1 induce embeddings

ok, pc 2, ek,
The claim above implies that go f =3 as linear maps H®* — H®* By assumption, we have
¢*(AB) = - Aar. Therefore, by Lemma 5.4, we have

Ex(f(@), f) = (f*Eum) (2, y) = EG*(B-x,y) Va,yec HO.

If we view M as a sublattice of H®* via ¢, then the above equality implies that

Exm(B-x,8-y)=Eu(f(z), f(y) =E5"(B-x,y) Va,ye H,

In particular, Ey(8-x,5-y)= E;‘;k(ﬁ x,y) for all xz,ye M, and hence FEp(z,y)=
E;‘?k(w, BL-y) forx,y € M. As E%k(x, pLy)= E%k(ﬂ_l -x,y) for each =,y € HP*, the lemma
follows. O

6. Powers of abelian varieties isomorphic to products of Jacobians

The goal of this section is to prove the following theorem, which will be used in the proofs of
Theorems 1.1 and 1.2.

THEOREM 6.1. Let g € Z>1 and let Z C Ag be a subvariety of the moduli space of principally
polarized abelian varieties of dimension g with the following properties:

— there is a point [(Ag, A\o)] € Z such that Ay~ Ey x By (as polarized abelian varieties), where
By is a principally polarized abelian variety of dimension g — 1 and Fy is an elliptic curve
with transcendental j-invariant;

— a very general point [(A, \)] € Z satisfies End(A) =Z.
If for some very general point [(A, )] € Z and some integers k,n > 1, there are some smooth
projective connected curves C1, . .., C,, of positive genus and an isomorphism []}"_; JC; ~ AF of

unpolarized abelian varieties, then k=mn and for each i we have an isomorphism (JCj, ©¢,) ~
(A, \) of polarized abelian varieties.
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6.1 Applications of Theorem 6.1

Before we turn to the proof of Theorem 6.1, we show that it implies Theorem 1.7 stated in the
introduction.

Proof of Theorem 1.7. Let Z C A, be the closure in A, of the image of Z under the Torelli map
My — A,. By assumption, Z contains the hyperelliptic Torelli locus. Since the Jacobian JX of
a very general hyperelliptic curve X satisfies End(JX ) =Z, we conclude via specialization that
End(A) = Z for any very general point [(4, \)] € Z. Moreover, there are hyperelliptic compact-
type curves Xg with JXg~ Ey x By for an elliptic curve Ey with transcendental j-invariant.
Since Z is closed in Ay and contains the hyperelliptic locus, the point [J X, ©x,] is contained in
Z and so Theorem 6.1 applies to the subvariety Z of Ayg. Hence, for each i we have (JCj, O¢;,) ~
(JX,O©x) as polarized abelian varieties, and this implies C; ~ X by the Torelli theorem. This
concludes the proof. O

Another consequence of Theorem 6.1 is as follows.

COROLLARY 6.2. Let Y be a very general cubic threefold and k a positive integer. There exist
no smooth projective curves Cy, ..., C, such that JC; x --- x JCp, =~ (J3Y)k.

Proof. By [Col82, Theorem (0.1)], we can degenerate Y into a singular cubic threefold Yy such
that J3Yy = JX is the Jacobian of a very general hyperelliptic curve X of genus five. In particular,
the closure of the locus of intermediate Jacobians of cubics inside A5 contains the locus of
Jacobians of hyperelliptic curves. We can then argue as in the proof of Theorem 1.7 to deduce
from Theorem 6.1 that (J3Y, ©y) is isomorphic to the Jacobian of a curve, which contradicts
the main result of [CG72]. This concludes the proof of the corollary. 0

The remaining part of §6 will be devoted to a proof of Theorem 6.1.

6.2 Special subvarieties and powers of abelian varieties isomorphic to Jacobians
Proof of Theorem 6.1. Recall that Z C A, is a subvariety such that:

— there is a point [(Ag, A\g)] € Z such that Ay~ Ey x By and some elliptic curve Ey with
transcendental j-invariant;

— a very general point [(A, \)] € Z satisfies End(A) = Z.

We assume that for some k, n > 1, there are some smooth projective connected curves C, ..., C),
of positive genus and an isomorphism [[;", JC;~ Ak of unpolarized abelian varieties. By
Lemma 4.5, we reduce to the case of n =1 and get an isomorphism

f:JC =5 AP
for some k > 1, where C' := C1. We aim to prove that k = 1. Since End(A) = Z, this already implies
(JC,0¢) ~ (A, \) as polarized varieties, because A carries only one principal polarization, since
NS(A) =Z.

The above isomorphism f: JC — A* provides A¥ with an indecomposable principal polar-
ization, say p. Since End(A)=7Z, one has p=\,, the polarization on A* associated to a
positive-definite symmetric unimodular bilinear form o on Z¥; see Lemma 5.2. With an abuse
of notation, we will denote the principal polarization A, by «a for simplicity and hence write
(AF )= (AF \,).

As the principally polarized abelian variety (A*,a) is indecomposable, the positive-definite
integral quadratic space (Zk, «) is indecomposable; see Lemma 5.3. Kneser’s classification of
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indecomposable integral inner product spaces of rank at most 16 then implies that k=1 or
k> 8; see [MHT73, p. 28, Remark 1] and [Kne57].

As explained above, we only need to show k=1, and so we assume for a contradiction that
k > 8. By our assumptions there is a degeneration of A to Ag~ Ey x By, where Ej is an elliptic
curve with transcendental j-invariant. This yields an isomorphism (Eg x Bg)* ~ JCq for some
compact-type degeneration Co of C. If C 1, . . ., Cp, are the non-rational irreducible components
of Cp, then we can write

(Eo x Bo)*=El x B~ JCy1 x - x JCyp.

This is an isomorphism of principally polarized abelian varieties, where the polarization on E(')C
(respectively, BE) is the one induced by a and the principal polarization of Ey (respectively, By);
see Lemma 5.2 (this step uses that Ay~ Fy x By as principally polarized abelian varieties). By
Lemma 5.3, the principally polarized abelian variety (E(])f, «) is an indecomposable principally
polarized abelian variety because (Z*, ) is an indecomposable integral inner product space. By
uniqueness of the decomposition of any principally polarized abelian variety into a product of
indecomposable principally polarized abelian subvarieties [CG72, Deb96], it follows that for some
i, there is an isomorphism of principally polarized abelian varieties (JCo;, O¢, ) ~ (EE, ).

To simplify notation, we write E:=Ey and C:=Cp; and get an isomorphism (EF, a)~
(JC,O¢) of principally polarized abelian varieties where E is a very general elliptic curve. By
Theorem B.1 in Appendix B, we conclude that k£ < 11.

For 8 <k <11, the only indecomposable integral inner product space is, by Kneser’s classifi-
cation, given by the Eg-lattice; see [MHT73, p. 28, Remark 1] and [Kne57]. Hence we are reduced to
the case of k =8 and we have (E®, o) ~ (JC, ©¢) for a smooth projective curve C of genus eight,
with a induced by the Eg-lattice. In particular, the automorphism group of (E®, «) is isomorphic
to W(Es), the Weyl group of type Eg, and so |[Aut(E, a)| = |W(Eg)| =4!- 6! - 8! =696 729 600 by
[Hum90, §2.12]. Since (E®, )~ (JC, ©¢) as principally polarized abelian varieties, the Torelli
theorem implies Aut(C) =W (Eg) or Aut(C) x (£1) = W(Ejg). This is absurd: the genus g(C)
of C' is equal to eight, and hence |Aut(C)|<84(g(C)—1)=84-7=>588. This contradiction
concludes the proof of the theorem. O

7. Modules and lattice theory

The goal of this section is to prove Lemmas 7.5 and 7.9 below. We consider unimodular symplectic
lattices M and H such that M C H®* as well as four matrices a; € Mg(Z) for i=1,2,3,4.
In Lemma 7.5 we give sufficient conditions that guarantee the inclusions o H®* € M, and in
Lemma 7.9 we give sufficient conditions for the inclusions a; H®* C M to be an equality. When
combined, these lemmas provide a key technical step in the proof of our main theorem, which
will be provided in the next section, §8.

7.1 Preliminary lemmas

We start by collecting three basic lemmas for future reference.

LEMMA 7.1. Let A be a free Z-module of positive rank. Let n € Z>1 and let a1, ag € My, (Z) be
matrices with non-zero determinant. The following assertions are equivalent.

(1) We have ay - A®" = g - A®™ for the natural actions of the o; on A®™.

(2) There exists an invertible matrix v € GL,(Z) such that as = a1y € M, (Z).
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Proof. Clearly, (2) implies (1). To prove the other implication, assume that (1) holds. Define
v =aj as € GL,(Q). One readily shows that v € GL,(Z). O

LEMMA 7.2. Let M be a free Z-module of finite rank and N C M a saturated submodule. For
k>1, let « € My(Z) be a matrix with non-zero determinant. Then N®* N (o - M®*) = o - Nk,

Proof. We may assume that N # M. In particular, M /N is a non-zero free Z-module. Moreover,
the matrix o € Mg (Z) induces an endomorphism

a: (M/N)®* = (M/N)PF, (7.1)
As o has non-zero determinant and (M/N)®* is torsion-free, the endomorphism (7.1) is injective.

Therefore, N®% N (- M®*) C a.- N®*. The other inclusion is clear. O

LEMMA 7.3. Let A be a Z-module. Let My, My and N be submodules of A with My C M.
Suppose that M7 + N = Ms + N and that M1 "N = MsNN. Then My = M C A.

Proof. Tt suffices to prove that Ms C M. Let x9 € Ms. The hypotheses imply that there exists
an element z € N such that x9 =1 + 2z for some x1 € M. As My C My, we have x1 € Ms, and
hence o — z1 =z € My NN = M; N N. Therefore, z € My, so that xo =x1 + z € M;. O

7.2 Matrices and saturated submodules

Consider finite free Z-modules M and H such that M c H®*. For matrices o; € My(Z) (i =
1,2,3,4), we would like to know whether a; H®* C M, assuming that this holds in certain sub-
quotients of H®*. The goal of this section is to provide some sufficient conditions. The main
result in this direction is Lemma 7.5 below.

LEMMA 7.4. Let H be a free Z-module of finite rank. Let W C H be a submodule, and let V; C H
be saturated submodules for i =1,2 such that ViNVo=0 and V1 Vo CW. Let M C H®F pe
a submodule such that for each i € {1,2} and some «; € My(Z) with non-zero determinant, we
have

MAW® =q; W mod Vi@k. (7.2)
Then the following hold.
(1) There exists v € GLg(Z) such that as = ay7.
(2) We have
MAWE =y WO = oy . WO, (7.3)
Proof. Replacing M by M N W®* and H by W, we may assume that M C W = H®* Notice
that
M=a;- W =ay - W mod V% @ VPk. (7.4)

As (W/(V1 @ Va))®* is torsion-free, assertion (1) follows from Lemma 7.1 because Vi @ V, # W.
Next, let us prove (2). Note that since ay = 17y for some v € GL,(Z) by (1), we may and do
assume that as = a1. We claim that

McCo - W where a:=a;=as. (7.5)

To prove this, let z € M C W, By (7.2), we can write = o - w1 +v1 = a - wa + vo € W with
wi, wy € W and v; € Vi@k . Therefore, we have

a- (w1 —wy) = —v1 +v2 € a- W N (VEF @ V) = o(VEF @ Vi) = aVPF @ a VPP,
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where we have used Lemma 7.2, which applies because Vka @V2@k is saturated in H®* by
assumption. In particular, v € onl@k and vy € on2@k. Thus, we have £ = awy +v; € aW®_ This
proves the inclusion (7.5).

Furthermore, we claim that

a- VPR c MnVER, (7.6)

To prove this, notice that « - Vl@k Coa- W% =MnNW® mod Vz@k , where we use the assumption
Vi C W for the inclusion and (7.2) for the congruence. As o - V% € V%% we obtain

a- VR MnVE mod ViPF. (7.7)

Notice that (7.7) implies (7.6), because V3 N V5 =0. Our claim is proved. In a similar way (or by
symmetry), one proves that a - V;Bk cMn V;Bk CcM.
As V1NV, =0, it follows that « - Vka @ a- VQ@k C M. Via Lemma 7.2, we thus obtain

- WE N (VEF o VPR = o - (VR @ VERY ¢ M N (VEF @ VPF). (7.8)
By (7.5), we have M C a- W so that
M (VEF o V) Ca- W 0 (VEF @ V). (7.9)
Combining (7.8) and (7.9), we see that
M N (VEF @ VIR = - WO 0 (VP @ VR, (7.10)

We are now in a position to apply Lemma 7.3 to the following Z-modules: let A :== W& M, =
MCA, My:=a- WP CA and N:=V @ V,P*. Observe that (7.4), (7.5) and (7.10) imply,
respectively, that My + N =My + N, M; C Ms and M; NN = M N N. Therefore, by Lemma
7.3, we have My = M,. That is, M = - W®*_ and the lemma follows. O

LEMMA 7.5. Let H be a free Z-module of finite rank. Assume that for each i € {1,2, 3,4}, there
exists a sequence of free submodules

VicW;CH
such that the following properties are satisfied.
(1) The natural map Vi & Vo @& Vs @ Vy — H is an embedding with torsion-free cokernel.
(2) We have (W1 NWa) + (WsnNW,)=H.
(3) The intersections
WinWsy, WsnWyg and WiNWenWsn Wy

are non-zero and saturated in H, and W1 N Wy (respectively, W3 N Wy and W1 N We N W3 N
W, ) strictly contains Vy @ Vo (respectively, Vs & Vy and Vi @ Vo & Vs @ Vy).

Let k>1 and let M C H®* be a submodule that satisfies the following condition: for each
i€{1,2,3,4} there exists a matrix «; € My(Z) with non-zero determinant such that

MAWP =a; - W& mod V. (7.11)
Then for each i,j € {1,2,3,4} we have
;- H%% = - H®* ¢ M. (7.12)
Proof. We claim that the following equality holds:
a1 (W1 NWa)/ (Vi & V2)) ™ =z - (W1 N Wa)/ (Vi @ Vo)) (7.13)
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To prove this, first observe that (W N Ws)/(V1 @ Va) is saturated in W; / (Vi @ Vi) for i = 1,2 and
that both modules are non-zero and torsion-free. Indeed, by condition (1), V; & V5 is saturated in
H and hence in any submodule that contains it; by condition (3), we have V1 @ Vo C W NW, C
W;, and hence the quotients (W1 NWs)/(V1 @ Va) and W;/(V1 @ V) are non-zero and torsion-
free. The saturation of (W NWa)/(Vi @ Vo) C W;/(V1 @ Va) follows from the saturation of Wi N
Wy C W;, which holds because of condition (3). In view of Lemma 7.2, we deduce that

ar - (WEEAWER) = (ar - WERY N WEF  mod VEF @ VEF, (7.14)
WE N (g W) = ag - (WEFAWER) mod VEF @ VPP, (7.15)
Moreover, because of (7.11), we have
(a1 - WERY N WPE = (M nWPF) n WPk = WPk 0 (M N WEF)

=W N (ag - W% mod V& @ VPF, (7.16)

Taken together, (7.14), (7.15) and (7.16) imply (7.13), proving the claim.
From Lemma 7.1 and (7.13), we conclude that there exists 712 € GLg(Z) such that ag=
a1712 € Mg (Z). By symmetry, there exists a matrix 34 € GLg(Z) such that oy = a3y34. Replacing

az by ag'yl_21 =1 and ay by oe4’y?;11 = a3, we may (and will) assume that oy = g and as = ay.
Consider, for 1 =1, 2, 3, 4, the inclusions

VieVeaaVsaViCcWinWenWsnNWy, C W;.
Both inclusions are saturated by conditions (1) and (3). Consequently, for each 7, the inclusion
WinWonWsnWy)/(VieVad Vs Vy) CcW;/(VieVa@ V3@ Vy)

is a saturated embedding of free Z-modules, which are non-zero in view of condition (3).
We obtain the following congruences:

ar - (W1 N W N W3 N W) EF = (ay - WER) 0 (W 0 Wa N Wa N, B

= (M NWI) N WP Wk nw ek

=W A WP 0 (M W) nwk

=W AWPF N (g - WEF) n Wk

=a3- (WiNWae N W3 N W) mod Vi & ViPF @ ViPF @ V,PF.
Here, the first congruence follows from Lemma 7.2, the second from (7.11), the third congru-
ence is clear, the fourth congruence follows from (7.11) again and the final congruence from
Lemma 7.2 again.

Therefore, by Lemma 7.1, using that (Wy N Wy N W3 N Wy)/(V1 & Vo & V3 & Vy) is a non-zero

free Z-module, there exists an invertible matrix v € GLg(Z) such that ag=ay7y. Let a=a;.
Replacing a3 by a3y~! = oy, we may and do assume that

o= =0y =03 =0y4. (7.17)
By (7.11) and (7.17), we get
MNW=a - WP mod VFF vie{1,2}. (7.18)

Combining (7.18) with Lemma 7.2, using that, for i = 1,2, (W3 NWa)/ (V1 & Vo) C W,/ (V1 & Va)
is a saturated inclusion of free Z-modules (see conditions (1) and (3)), we obtain:

MO WiNWe)®  =a- (W NnW)P*  mod V% Vie{1,2}. (7.19)
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By Lemma 7.4 and the fact that V3 N V2 =0, it follows from (7.19) that
MnN (W1 N Wg)e% =« (W1 N Wg)eak.
By symmetry, we obtain M N (W3 N Wy)®* = o+ (W5 0 W) ®F.

Finally, as we have an equality H®* = (W) N W5)®F + (W3 N W,)®* (see condition (2)), we
conclude that

a-H =a- (Wi n W) 4 a- (Ws N W) = M0 (W nW2) ™ + M 0 (Ws N W)™ € M.

In other words, the inclusion (7.12) is proved, and we are done. O

7.3 Sublattices of powers of unimodular symplectic lattices

We continue by investigating sublattices M C H®* of some power of a unimodular sym-
plectic lattice H. This section is independent of §7.2. The main result of this section is
Lemma 7.9.

LEMMA 7.6. Let (H, Efy) be a unimodular symplectic lattice of positive finite rank. Let U C H
be a saturated isotropic subspace. Then there is a saturated subspace U’ C H such that U ® U’ C
H is a unimodular subspace.

Proof. We argue by induction on the rank of U. If U has rank one, then U = (u). The map
Ey(u,—): H—Z is surjective because v is indivisible and Fpy is unimodular. Hence there is a
class v’ € H with Ey(u,u') =1, as we want.

If U has rank r > 2, then we pick a saturated subspace U; C U of rank » — 1 and apply the
induction hypothesis to U; to get a unimodular subspace Uy @ U C H. Any unimodular subspace
of a unimodular lattice admits a unimodular complement. Hence, we can extend any symplectic
basis of Uy & U] to a symplectic basis of H. It follows that there is a symplectic basis

{61,...,€g,f1,...,fg}

of H with U= (e1,...,e,—1)® (u) for some primitive element w € (e,,...,eq, fr,..., fg)
Applying the r =1 case of the lemma to the subspace (u) C (ey,...,eq, fr,..., fg), We get an
element v’ € (e, ..., eq, fr,..., fg) such that

<u,u/> C <eT7 . "7egaf7‘7" . 7f9>
is a unimodular subspace. This subspace has a complement, and hence up to change of basis we
can assume u = e, and v’ = f,.. At this point the lemma is clear. O

LEMMA 7.7. Let (H, Ep) be a unimodular symplectic lattice of rank 2g. Let k > 1 and consider
the induced unimodular symplectic lattice (H®*, ES¥). Let M C H®* be a sublattice such that
there is a matrix 5 € My(Z) with positive determinant such that the intersection form

Ey(—, =) =B (7~ ~)

is unimodular and integral on M. Assume that there is a matrix o € My(Z) with non-zero
determinant such that a H®* C M. Let [H®*: M] be the index of M in H®*. Then

[H®%: M) = det(8)? | det(a).

Proof. The inclusions a H®* ¢ M c H®*, together with the fact that the index of « H®* in H®*
equals det(a)?9, show that the index of M in H®* divides det(a)?9. Thus, it suffices to prove
that [HP*: M) = det(B)9.

To prove this, note that Ey; and v induce isomorphisms M ~ M" and H ~ H". In particular,
we can dualize the inclusion M C H®* to obtain an inclusion H®* C M, and, with respect to this
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embedding, the index of M in H®* equals the index of H®* in M. The fact that ES* (871 —, )
restricts to the unimodular pairing Ej; on M implies that Ej; restricts to E;‘;k (B-—,—) on
H®F ¢ M. This means precisely that the composition

HOkC M —= MVc (HOF)Y = (HV)®k (7.20)

is given by the map
ze (y = B (8- 2,y)).

Consequently, by identifying M and H®* with their respective duals M and (H®*)Y (via Ejs
and E%k) in (7.20), it follows that the composition

H®C— M——— HOF
is given by multiplication by the matrix . In particular, if [H Ok M | denotes the index of M
in H®* and [H®*: 3. H®*] denotes the index of 8- H®* in H®*, then
[H®*: M)? = [H®": 8- HP] = det(B)%.
As det(B) is positive, we get [H®*: M] = det(53)7 as desired. O
LEMMA 7.8. Let A be a free Z-module and put Ag =A ® Q. Let 1: Ag x Ag — Q be a bilinear

form that takes integral values on A x A. Let oy, f; € Mg(Z) (i =1,2) be matrices with non-
zero determinant. Let eq, . .., ek, fi, ..., fr € A. For v = (i) € My(Q), define vye; = Zj vjie; and

Vfi =Y, 7jifi, and assume (8, ' anes, By 'aafy) = bij for all i, j € {1,.. . k}.
Then det(a1) det(az) | det(B1) det(52).

Proof. Let {hy,...,hy} be the canonical basis of Z%%  and define a bilinear form
U: Q% x Q¥ 5 Q by W(hi, hy)=(es f)-
Then W takes integral values on Z®* x Z. Let Q = (Qi;) be the k x k matrix with entries
Qij = Y (hi, hj). Then Q € Mg(Z), and for x,y € Q®* we have
V(z,y)=='Qy.
Moreover, \I/(/Bl_lalhi, Bz_laghj) = w(ﬁl_lalei, ,Bz_lagfj) = 6;5. Therefore,
0ij = W(By ' anhi, By tashy) = (B tanhi) T - Q- (B3 azhy) = hi (of By T QBy  a)hy.

Hence, the matrix aIﬁfTQﬁglag € My(Q) is the identity matrix. In particular,

det(af 87 T QBy 'a) = det(an) det(ag) det(Br) " det(B2) ™" det(Q) =1,

which implies that det(aq)det(az)det(Q) =det(S1) det(B2). We have det(Q)€Z because
Q € My(Z), and the lemma follows. O

We now come to the main result of §7.3, which is the following lemma. A proof of a simpler
version of this lemma is contained in the appendix; see Proposition A.1.

Let (H,Epy) be a unimodular symplectic lattice of rank 2g. Let k£ >1 and consider the
unimodular lattice (H, Eg)®* = (HY* ESF) with symplectic basis

{eliv"'7€gi7f1i7"'7fgi}7 22177k

Let
k k

H{ ::@<61i7 ey egiv f2i7f3i7 .. '7fgi>7 Hé = @<61i7 .. '7€gi7f1i7 f3i7 ey fgi>7

i=1 i=1
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and define
k k

V1= @(611% Vo= @<€2i>-

=1 =1

LEMMA 7.9. In the above notation, let M C H®* be a sublattice such that there is a matrix
B € My(Z) with positive determinant such that the intersection form

EM(_v _) = Egk(ﬂil_v _)

is unimodular and integral on M. Assume that there are matrices oy, g € My (Z) with non-zero
determinant such that o; H®* C M for i =1,2 and such that

MNH!=o;H, modV; fori=1,2. (7.21)

Then there exists v € GLg(Z) such that as =17, and we have (det o;)?=det 8 for i=1,2.
Furthermore, we have M = o; H®* for i =1, 2.

Proof. As a first step, we aim to show that there exists v € GLg(Z) such that ay =a;y. To
prove this, notice that by Lemma 7.2 we have, for : =1, 2,

(- HY) NHy =0y - (H] N Hy) =H{ N (a;- Hy) . (7.22)
Moreover, Vi @ Vo C Hy N H). Modulo Vi @ Va, the equality (7.22) combined with (7.21) gives
or - (H{NH)) = (eq - HY) NHy= (M N HY) NHy=H{ N (M N H))
=HiN(ag- Hy) =ag- (HNH) mod Vi ® Va. (7.23)

Observe that Vi & Vo C Hi N H) is saturated in H{ N H). Thus, by Lemma 7.1, (7.23) implies
that there exists v € GLg(Z) such that as = a1, as we want.
As a second step, we let

U:za-(vl@VQ)CM, a::oquk(Z)

and claim that U is saturated in M. To prove this, let x € M and assume that rz € U for some
r € Z>1. We need to show that z € U. As rz € U, we have x € V] & Va. In particular, x € H/ for
i=1,2, and hence z € M N H{ N Hj. By (7.21), this means that we can write

x=oahi +v; for some b} € H] and vy € V7,
x=ahf,+vy for some hy € Hj and vy € Va.

As z € Vi @ Vi, we get that b € Vi ® V5 and hence
a(hh —hy) =—v1 + vy € (e1,€2) ¥ =V © Vs

As the action of « respects the decomposition V; @ V5, this implies v € aV; and vy € alVs.
Therefore, © = ah) +v1 € afeq, e2)®% = U, proving our claim that U is saturated in M.

Next, observe that the subspace U of M is isotropic. As we have just proved that U C M is
saturated in M, we conclude from Lemma 7.6 that there are classes gi;, g2; € M such that

k
U o Pg1i: gai)
i=1

is a unimodular sublattice of M. More precisely, we can assume that the g4 (a € {1,2}) are
chosen such that Ens(ceqi, gnj) = dapdij. Hence

EF* (B aeai, gb;) = Savdij.- (7.24)
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Since the e,s and f,s form a basis of H®*, we can write
9ij = Z (aijrsers + bijrs frs)
T,
for uniquely determined a;jrs, bijrs € Z. By (7.24), we have
E;‘?k(ﬁ_laeli, g25) =0 for all 4 and j.

Since a and 8 have non-zero determinants, the classes 3 'aey; with i =1, ..., k span rationally
the space @f:1<eli), and so we find that go; contains the basis element fy; trivially, that is,
we have bgji1s =0 for all j,s=1,..., k. This implies go; € M N H{ for all j=1,..., k. Hence, by
(7.21), there exist classes géj € Hj such that, for all j, we have

925 = agy; + € for some €} € V. (7.25)
By (7.24), we have
E;‘;k(ﬁilaegi, ggj) == (5” (726)
Combining (7.25) and (7.26), and noticing that Egk(ﬁ_laegi, e;) =0, we get

8ij = ERF (B aeai, g25) = EFF (B aveai, goj — €)) = EFF (B ' aveas, augh;)
for all 4,5 € {1,...,k}. By Lemma 7.8, this implies that det(«)? | det(5).

Conversely, by Lemma 7.7, we have that det(3)? | det(a)?9. We conclude that det(a)?9 =
det(B)9. As det(B) is positive, it follows that det(B)=det(a)?. Finally, by Lemma 7.7
again, we have that [H®*: M] = det(B)9. Consequently, [H®*: M]=det(a)? = [H®*: o H®F].
As aH®% M, we must have M = oH®*. This finishes the proof of the lemma. O

8. Proof of the main theorem

The goal of this section is to prove Theorem 1.1, the main result of this paper. The idea is
to degenerate the given isogeny JC — (JX)* in four different directions; these are provided
by Lemma 2.23. For each such degeneration JCo; — (JXo;)* (i € {1,2,3,4}), we consider the
induced map on the compact quotients, or equivalently the map HY(Coi, Z) — H (Xos, Z)®*
between the cohomology groups of the normalizations Co; and Xo; of Cp; and Xo;. We want
to show that for each i, the image of this map is oy - H(Xo;, Z)®* C H(Xo;, Z)®* for some
a; € Mg(Z). We then combine these pieces of information obtained in the different degenerations
to conclude that a; = ;75 for some 7;; € GLy(Z) and that the image of H(C, Z) — H'(X, Z)%*
is given by «; - H'(X, Z)®*. In this last step, we use the linear algebra and lattice theory worked
out in § 7. More precisely, this is where Lemmas 7.5 and 7.9 enter the picture.

8.1 Degeneration of the isogeny: moving the extension class

In this section, we prove the following result.

PropoSITION 8.1. Let A be a connected normal complex analytic space, and let p: X — A
be a family of semi-stable curves of arithmetic genus g > 2. Assume that there is a family of
semi-stable curves q: C — A together with, for some k > 1, an isogeny

Y (JX):=JX xpa -+ xa JX — JC

of semi-abelian schemes over A, where JX and JC denote the respective relative Jacobians over
A, such that the following conditions are satisfied.
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(I) For all s€ A, X, =p~!(s) is an irreducible one-nodal hyperelliptic curve.
(II) The moduli map A — M, induced by the family p: X — A is generically finite onto its
image, where M is the moduli stack of stable curves of genus g.

(III) For any simultaneous normalization v: X — X of p (see Proposition 3.1), the map from
A to the moduli stack of smooth hyperelliptic curves of genus g — 1 induced by the family
of hyperelliptic curves pov: X — A is dominant with positive-dimensional generic fibre.

Then for any general point 0 € A, there is an isomorphism of abelian varieties
JCo~ (JXo)*,

and the composition (JX)k o, JCo~ (JXo)* is given by a matrix a € My(Z). Here, Cy and
X are the normalizations of Cy and Xg, and 1g: (JXo)* — JCy is the isogeny induced by ).

Proof. Let H,_1 be the moduli stack of smooth hyperelliptic curves of genus g — 1. Let
f A — Hg—l

be the map induced by a simultaneous normalization of p: X — A; see Proposition 3.1. Then
for 0 in a dense open subset of A, the closed analytic subset

Hg:=f~1(f(0)) A
is positive-dimensional by condition (III). For each u € H{), the normalization X, of X, is iso-
morphic to )N(O. Moreover, as the map A — ﬂg is generically finite onto its image (see condition
(IT)), the same holds for the composition H)— A — M. In particular, for general 0 € A as

above, there exists a connected normal complex analytic space Hy and a dominant generically
finite morphism

Ho — H} (8.1)
with the following properties, where p|g,: X'|m, — Ho denotes the pull-back of p along (8.1)

and X|g, — X|g, the simultaneous normalization of p|pg, (see Proposition 3.1): there is an
isomorphism
X|H0 ~ XO X H()

of families of curves over Hy and a non-constant morphism Hy — )?0, U > Ty, such that for any
u € Ho, the fibre X, is obtained from X, by gluing the pair of points (x, ¢(x,)), where ¢ denotes
the hyperelliptic involution on Xj. B

Let Cy; for i =1,...,n be the non-rational irreducible components of the normalization Cy
of the fibre Cy = ¢~1(0). We apply Proposition 3.2 to the family p|y,: X|g, — Ho. This yields
an integer N € Z>; such that for each i € {1,...,n}, there is a non-constant morphism

Xo — N - (6071' — 6071').

By Proposition 2.8, this implies that the curve 50,2‘ is hyperelliptic for each i. Moreover, the
assumption that g = g(X;) >4 implies that g()zo) > 3 for the genus g()?o) of the X.

By condition (III), the curve Xoisa very general hyperelliptic curve of genus g — 1 > 3. Thus,
by Theorem 4.4, the fact that there exists an isogeny

7:50: (J)?o)k —>J5071 XX Ja()m

implies that for each i € {1,...,n} we have an isomorphism 50’1» ~ X, and that the composition
(JX0)* — JCp1 x -+ x JCo =~ (JXo)¥ is given by a matrix in M(Z). O
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8.2 Degeneration of the isogeny: one-dimensional base
Let D C C be a sufficiently small open disc around 0 € C. Let
p:X—D and ¢q:C—D
be families of semi-stable curves over D; see §1.2. Let ¢ be an isogeny
Y: (JX):=JX xp---xpJX — JC (8.2)

of semi-abelian schemes over D, where JX and JC denote the relative Jacobians over D. Assume
that:

(1) for each s € D* = D — {0}, the fibre X; =p~!(s) is a curve of compact type;
(2) there exists an isomorphism JCp ~ (JXo)* and a matrix o € My(Z) such that the composi-
tion
(JXo)k 22 JCo ~ (T Xo)*
is given by the multiplication by «.
Recall that, possibly up to shrinking D around 0, the natural map H'(X,Z) — H'(Xy, Z) is an

isomorphism (cf. Proposition 2.15). For such a sufficiently small D, let ¢t € D*, and consider the
natural embeddings

HY(Xy,7Z)c HY(X;,Z) and HY(Cy,7Z)cC HY(X;, 7)%* (8.3)
induced by the specialization map
spy: H'(Xo,Z) <~ HY(X,Z) — H'(X;,Z) (8.4)

and the isogeny vy : (JX;)* — JCy.

PRrROPOSITION 8.2. Under the above assumptions, up to possibly shrinking D around 0 and using
the maps in (8.3) and (8.4), the following identity holds in H'(X;, Z)®* modulo WoH' (X, Z)®*:

HY(C,,Z)NHY( Xy, 2)%* = a - H (X, Z)®* mod WoH(Xy, Z)®*, (8.5)
where WoH'(Xo, Z) = WoH' (X0, Q) N HY(X0,Z) and « is the matrix from (2) above.

Before we prove Proposition 8.2, which is the main result of this section, we need the following
lemma. To state it, for s € D let

Y HY(Cy, Z) — HY(X,, Z)%*
denote the morphism on cohomology induced by the isogeny ts: (JX 5)”c — JC.
LEmMA 8.3. Up to possibly shrinking D around 0, we have the following equality:
* bk
Im(HY(Cy, Z) 25 HY(X,, 2)PF) 0 Im(H (X, Z)®* % HY(X,, Z)%)
* Sk
= Im(HY(Co, Z) 225 H(Xo, 2)%F 2 HY(X,, 2)®). (8.6)

Here, spy is the specialization map defined in (8.4).

Assuming Lemma 8.3, we can prove Proposition 8.2 as follows.
Proof of Proposition 8.2. By Proposition 2.15, we may shrink D around 0 so that the natural

map H Yx,7) — H (X, Z) is an isomorphism. By assumption (2), there is an isomorphism
HY(Cy,Z) ~ H' (X0, Z)®* such that the following diagram commutes, and its rows are exact.

1441

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.166, on 14 Nov 2025 at 19:33:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25007171


https://doi.org/10.1112/S0010437X25007171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

O. DE GAAY FORTMAN AND S. SCHREIEDER

0 —— WoHY(Cy, Z) —— HY(Cy, Z) — H(Cy,Z) ~ H (Xy, Z)%F —— 0
[+ [« -
0 —— WoHY (X0, Z)%* —— HY(Xo,2)%* ————— HY(Xo,Z)% ———— 0

Here, WoH'(Cy, Z) = WoH*(Cy, Q) N H'(Cy, Z). By the above commutative diagram with exact
rows, we get

Tm(H' (Co, Z) 5 H'(Xo, Z)® — H'(Xo, Z)®*) = a- H'(Xo, Z)®*.
Consequently, we have
Im(H(Co, Z) 25 H (X0, 2)®) = a- H' (X0, Z)®* mod WoH(Xo, Z)®*. (8.7)
Combining (8.6) with (8.7), we obtain
Im(HY(Cy, Z) Y5 HY(X,, 2)%) A Tm(H (X0, Z)%* 2% H(X,, 2)%F)
—Tm(H'(Co, Z) 5 H' (X0, )% 7% H'(X,,2)%%)
=a-Im(H (X0, Z) 2% HY (X, Z))**  mod WoH" (X, Z)®*.
Thus, (8.5) holds, and hence the proposition is proved. [l
It remains to prove Lemma 8.3.

Proof of Lemma 8.3. By the existence of the isogeny (8.2), the restriction JC|p- — D* is an
abelian scheme over D*. In particular, ¢|p-: C|p- — D* is a family of compact-type curves.
Thus, R'(q|p-)«Z is a local system on D* and in fact a sublocal system of (R'(p|p-)Z)®*. Let
S e Aut(HY(Cy,Z)) and T € Aut(H*(Xy,Z)) be generators of the monodromy groups attached
to R'(q|p-)+Z and R*(p|p-)+Z, such that

T@k|H1(Ct,Z) =5 € Aut(Hl (Ct, Z))

with respect to the inclusion H'(Cy, Z) € H' (X, Z)®* given by v;. Then we have
Im(HY(C,, Z) Y5 HY(X,, 2)%%) 0 (HY(X,, 2)P) T
—Im(HY(C,, 2)5 — HY(C,, 2) Vs HY(X,, 2)®"). (8.8)

By Proposition 2.15, we may shrink D around 0 so that pulling back along the inclusions Xy —
X and Cy < C yields isomorphisms H'(X,Z)~ H'(Xo,Z) and H'(C,Z)~ H'(Cy,7Z). Define
spy: HY(Xo,Z) — H'(X,Z) as in (8.4), and define in a similar way

spe: HY(Co, Z) — HY(Cy, Z.).
Thus, spe is the composition of the inverse of the restriction map H'(C, Z) = H*(Cy, Z) with the

restriction map H'(C,Z) — H'(Cy, Z). Then Lemma 2.22 applied to p: X — D and to ¢: C — D
implies that, possibly after further shrinking D around 0,

Im(spP™: H' (X0, Z)®* — H'(X3, Z)®%) = (H'(Xy, Z)PF) " ¢ HY(Xy, Z)®, (5.9)
Im (spc: HY(Co,Z) — HY(Cy, Z)) = H'(Cy, )% € HY(Cy, Z). '
CraMm 8.4. We have ] o spc = spik oy as maps HY(Cy, Z) — HY (X, Z)®*.
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Proof of Claim 8.4. The Leray spectral sequence provides canonical morphisms H!(X,Z) —
H°(D, R'p,Z) and H'(C,Z) — H°(D, R'q.Z). These make the following diagram commute.

H'(Cy,Z) +—— H'(C,Z) —— H°(D, R'¢.Z) ——— H'(C}, Z)
J%‘ J J{’t/)f
Hl(X(]aZ)@k - Hl(X,Z)GBk HO(D7R1f*Z)®k Hl(XhZ)@k

As the specialization maps sp, and sp?ék are obtained by following the horizontal arrows in this
diagram from left to right, it follows that v} o sp, = spg'ék o as desired. O

We can finish the proof of Lemma 8.3. It suffices to prove the following sequence of equalities:

Im(Hl(Ct,Z)ﬁHl(Xt,Z)@k)mIm(Hl(XO,Z)@k P (X, 7))

— Im(HY(C,, 2) 25 HY(X, 2)®%) N Im((H(X,, 2)%5YT™ — HY(X,, Z)®F)
:Im(Hl(Ct,Z)S—>H1(Ct, 7) Y5 B (X,, 7))
=TIm(H'(Cy, ) =5 HY(C,Z) z<H1(X1taz)@k)

— Im(H(Co, Z) 25 H' (X, Z)™ 25 H1(X,, Z)).

The first equality follows from (8.9), the second equality from (8.8), the third equality from (8.9)
again, and the last equality from Claim 8.4. O

8.3 Symplectic bases adapted to paths

Let U be a complex analytic space and let t € U be a sufficiently general point. Let n and g be
positive integers with n < g, and for i € {1, ..., n} let A; C U be an effective divisor. For each i,
consider a sufficiently small disc D; C U that intersects the divisor A :=|J; A; transversally in
a general point 0; € A;.

Let p: X = U be a family of nodal curves of arithmetic genus g over U. Assume that p is
smooth over U — A. For each i, shrink the disc D; around 0; so that the natural map

HY(X|p,,Z) — HY(Xo,,Z)

is an isomorphism (see Proposition 2.15). Consider a point t; € D; — {0;} sufficiently close to 0;,
and let

pi: [0,1] —U—-A (8.10)

be a path from ¢ to ¢;. The path p; together with a single counter-clockwise loop on D; induces
a loop on U — A, and we let T; € Aut(H'(X¢,Z)) denote the associated monodromy operator.
Moreover, the path p; induces a canonical isomorphism H'(X;,,Z) — H'(X;,Z), and we let
sply: HY(Xo,,Z) — H(Xt,Z) denote the composition

sphy: HY(X,,, 7)< HY(X|p,, Z) — H'(X,,,7) = H (X}, 7). (8.11)
Define ‘/V()EI1 (Xo,,7Z) = WoHl(Xoi, Q)N Hl(Xoi, 7).
DEFINITION 8.5. Consider the above notation. We say that a symplectic basis

{61,y 80571, -+ s g} CHY Xy, Z) (8.12)
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is adapted to the paths p1,...,pn: [0,1] = U — A defined in (8.10) if for each i € {1,...,n} we
have

Im(Hl(XONZ) Sp—X> Hl(Xt7Z)) = Hl(Xta Z)Tl = <517 e 769;717 s 7,)/1'—17572'772'4-17 cee 779>7
Im(WoH"(Xo,,2) % H'(X,, 2)) = Z- 5 = (5;) .

Continue with the above notation. Let U’ be a complex analytic space with a surjective

generically finite morphism

.U —U
of complex analytic spaces. Let ¢/,0; €U’ be points on U’ (i=1,...,n) with n(t')=t and
m(0;)=0; for i=1,...,n. Let Al=n"1(A;) and A" =J; Al =7"1(A).

As 0; € A; is a general point, the map 7 looks analytically locally at 0; like the product of a
ramified cover of a disc with the identity on a ball of dimension dim(U) — 1.

Let D] C U’ be the unique connected component of 7~1(D;) that contains 0’. Up to shrinking
D;, D) is a disc and D — D; is a finite cover of discs, totally ramified at 0; and étale outside of
0/. Let t; € D} be a lift of t; € D;. Note that ¢/ is automatically in the étale locus of 7. Since t € U
is general, we may assume that ¢ is in the étale locus of 7 as well. Up to a small deformation of
the path p; which does not change its homotopy class nor its beginning and end points, we can
assume that p; lies also in the étale locus of 7. Under these assumptions, there is a unique path

00,1 — U —A" (i=1,...,n)

from ¢’ to t; that lifts p;. We then let T/ € Aut(H'(X},,Z) be the monodromy operator induced
by the path p! and the pointed disc (D}, 0}).

[ REe}
LEMMA 8.6. Consider the above notation and assumptions. Let {d1,...,04;71,...,7%} C
HY(X4,7) be a symplectic basis adapted to the paths p1, ..., pn; see Definition 8.5. Then the
image of {d1,...,04;71,...,7g} under the canonical isomorphism

HY(X;,7)~HY(X],,7)
is a symplectic basis of H'(X},,Z) adapted to the paths p}, ..., pl,.
Proof. Notice that D} — D; is a finite cover of discs, of the form z +— 2™ for some m; € Z>1. If
we identify H'(X],,Z) with H'(X;,Z), then the monodromy operator T} satisfies T/ =T," as
elements of Aut(H'(X;,Z)). The first thing to show is that
Hl(Xta Z)Tip = <517 cee 7595 Ty Vi1, 5/\1'7 Yit+1s - - - ,7g> (813)
for p =m;, knowing that it holds for p = 1. To prove this, let z € H'(X;, Z), and write

r=a-%+Y, a€ZL, YE(O1,.-30gV1s--)YielsVis Vitls--->Vg) :Hl(Xt,Z)Ti.
We must show that 7)™ (z) = z if and only if @ = 0. In other words, we must prove that 77 (v;) # i
for p = m;, knowing that it holds for p = 1. But this is clear: if T, (v;) = ~;, then T,™ acts trivially
on H'(X;,Z), which is absurd since T; does not act trivially on H'(X;,Z). We conclude that
for each i, (8.13) holds for p=m;,.
Finally, if f: HY(Xy,Z) — H'(X},,Z) is the isomorphism induced by the canonical isomor-
phism X, ~ X;, then f identifies the images of WoH'(Xy,,Z) and WoH*( 0, Z)- O

8.4 Extending the isogeny

To prove Theorem 1.1, we would like to apply Proposition 8.1. To do so, we will need the
following lemma.
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Let n and g be integers with ¢ > 2 and 1 <n <g. Consider a normal algebraic variety U of
dimension 2¢g — 1, irreducible divisors A; CU for i € {1,...,n}, and a family of stable genus ¢
hyperelliptic curves

p: X —U (8.14)
satisfying the conditions of Lemma 2.23.

LEMMA 8.7. Consider the above notation and let t € U be a very general point. Assume that
for the fibre X; of (8.14), there is a smooth projective curve C and an isogeny ¢: (JX;)* — JC.
Then up to replacing U by a normal variety with surjective generically finite morphism 7: U’ —
U, p by its pull-back along , t by a point in U’ that lies over it, and A; by an irreducible divisor
in U’ that dominates it, there exists a family of stable curves

q:C—U suchthat Cy=q '(t)=C,
together with an isogeny
v (JX) =JX xy - xp JX — JC (8.15)

of semi-abelian schemes over U that extends the given isogeny ¢: (JX;)* — JC, such that the
following conditions are satisfied.

(i) For eachi€{l,...,n}, the family p: X|& — A, obtained by pulling back p: X — U along
the normalization A; — A; C U satisfies conditions (I)-(III) in Proposition 8.1.

(ii) For general 0; € A; (i € {1,...,n}), there is a disc D; CU that intersects A transversally
in 0; € A; such that for general t; € D; — {0;}, there is a path p;: [0,1] = U — A from t to t;
with the following property: there is a symplectic basis {01, ...,0571, .., 7y} C H (X¢, Z)
which is adapted to the paths p1, ..., pn; see Definition 8.5.

Proof. We need to spread out the curve C' and the isogeny ¢: (JX;)¥ — JC, and our plan is to
do this after a suitable base change U’ — U.

CLAIM 8.8. There is a normal variety U’, a generically finite surjective map w: U’ — U and a
family of stable curves
q:C—U (8.16)

such that for a point t' € U’ lying over t € U, the fibre C!, = (¢')~*(t') is isomorphic to C' and
the following holds. If p': X' — U’ is the pull-back of the family (8.14) along w, then there is
a dense open subset V' C U’ such that the family of curves (8.16) is smooth over V', and the
isogeny ¢: (JX)¥ — JC extends to an isogeny of abelian schemes

(JXYF|yr — JC |y (8.17)

Proof of Claim 8.8. This follows from standard spreading-out arguments and the properness of
the stack ﬂkg of stable genus kg curves. O

CrLAaM 8.9. LetU', ¢ :C'—=U" and p': X' — U’ be as in Claim 8.8. The isogeny (8.17), which
is an isogeny of abelian schemes over the open subset V' C U’, extends to an isogeny

V' (JXNE=JX xpr - xp JX — JC
of semi-abelian schemes over U’.

Proof of Claim 8.9. As U’ is normal, this follows from [FC90, Chapter I, Proposition 2.7]. [
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Finally, to finish the proof of Lemma 8.7, it remains to prove that properties (i) and (ii) hold.
Property (i) holds by Lemma 2.23 and the fact that it is stable under base change. Property (ii)
follows from Lemmas 2.23, 2.24 and 8.6. O

8.5 Proof of the main theorem

We are now in a position to prove our main theorem.
Proof of Theorem 1.1. To prove the theorem, we begin with the following reduction step.

CramM 8.10. Theorem 1.1 is implied by the following statement.
(x) Let k be a positive integer. If for a very general hyperelliptic curve X of genus g > 4 there
exists a smooth projective curve C and an isogeny (JX)* — JC, then k=1 and C ~ X.

Proof of Claim 8.10. Let g >4 and let Z C M, be an irreducible closed subvariety that contains
the hyperelliptic locus. Let [X] € Z be a very general point, corresponding to a smooth curve
X of genus g. As mentioned in the introduction, because JX is simple, Theorem 1.1 readily
reduces to the case of n = 1: there is an isogeny (JX)* — JC between (JX)* and the Jacobian
JC of a smooth projective connected curve C'. We need to show, under the assumption that
(*) holds, that k=1 and C' ~ X. We specialize X to a very general hyperelliptic curve Y. This
yields a specialization of C' into a compact-type curve D, together with an isogeny (JY)k —
JD=JDy x --- x JD,, where the D; are the non-rational irreducible components of D. As JY
is simple, there is for each i an integer k; < k and an isogeny ¢;: (J Y)ki — JD;. Then (*) implies
ki=1and D;~Y for each i, and hence JD ~ (JY)¥. Lemma 2.2 implies JC ~ (JX)*, and then
Theorem 1.7 implies k=1 and C' ~ X as wanted. O

Our goal is to prove (). Thus, let £ >1 be an integer, and assume that for a very general
hyperelliptic curve X of genus g >4, there exists a smooth projective curve C and an isogeny
¢: (JX)*¥ = JC. We aim to show that k = 1 and C ~ X. The strategy is to spread out the isogeny
© to an isogeny of families. To this end, we apply Lemma 8.7 and we get a normal algebraic
variety U with irreducible divisors A; CU (i = 1,2, 3,4), families of stable curves

p: X—U and q:C—U
with smooth general fibres, and an isogeny
Y (JX)F —JC

of semi-abelian schemes over U, such that for some t € U we have X; =X and C; =C and v
restricts to the given isogeny ¢: (JX)¥ — JC, and such that all the conditions in Lemma 8.7
are satisfied. In particular, p: X — U is smooth over the complement U — A of the divisor
A ={J; A, and the morphism U — A — H, induced by p is dominant. At this point, in order to
prove Theorem 1.1, it suffices to show that k=1 and C; ~ X; (see Claim 8.10).

Cramv 8.11. For i€ {1,2,3,4} and general 0; € A;, there is an isomorphism of abelian
varieties

JéOi = (J)?O)k?

and the composition (J X, )" Yo, JCo, ~ (JXo,)* is given by a matrix
Q; € Mk(Z) (8'18)

Here, the curves goi and )N@i are the normalizations of Cp, and Xy,, respectively, and the
morphism vy, : (JXo,)¥ — JCy, is the isogeny induced by ).
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Proof of Claim 8.11. For i€ {l,...,4}, the family p: X|& — A; obtained by pulling back

p: X — U along the normalization A; — A; C U of the divisor A; satisfies conditions (I)—(III) in
Proposition 8.1; see Lemma, 8.7. Therefore, the claim follows from Proposition 8.1. O

By construction (see Lemma 8.7), for each i € {1, 2, 3,4} and general 0; € A;, the fibre X,
is an irreducible one-nodal hyperelliptic curve, and there exists a disc D; C U intersecting A
transversally in 0; € A;, a path p; from t € U to a point ¢; € D; — {0;}, and a symplectic basis

{61,y 60571, -+ s g} C HY Xy, Z)

which is adapted to the paths p1, ..., ps in the sense of Definition 8.5. For ¢ € {1, 2, 3,4}, shrink
D around 0 so that the path p; induces a well-defined specialization map

sphy: HY(Xy,, Z) — HY (X4, Z);

see (8.11). Consider the group H'(Xy,,Z) as a submodule H'(Xy,,Z) C H' (X}, Z) via sp',
and consider H'(Cy,Z) as a submodule H'(Cy, Z) C H' (X, Z)®* of H' (X, Z)®* via the map
VF: HY(Cy, Z) — HY(Xy, Z)®* induced by the isogeny v;: (JX;)* — JCy. Define

WoH (Xo,,Z) = WoH' (Xo,,Q) N H'(Xo,, Z).
Thus, WoH*(Xy,, Z) is the integral part of the zeroth piece of the weight filtration on H*(Xy,, Q).

CrAIM 8.12. For each i € {1,2,3,4}, consider the matrix «; € Mg(Z) of Claim 8.11; see (8.18).
We have

HY(C:,Z) N HY(Xo,, 2)% = oy - HY(Xy,,2)®* mod WoH(Xo,, Z)%*. (8.19)
Proof of Claim 8.12. By Proposition 8.2, the claim follows from Claim 8.11. [l

We can finish the proof of Theorem 1.1. By Claim 8.12, we know that (8.19) holds for
the matrices «; € Mg(Z) of Claim 8.11. Moreover, by Lemma 8.7, the monodromy operators
Ty, ..., Ty € Aut(H' (X, Z)) induced by the paths p; and the discs D; satisfy the property that

Im(Hl(XO”Z) ﬂHl(XhZ)) :Hl(XtaZ)Ti = <615 e 75g;’yl7 v )fyi—17:y\i7’yi+17 e 7’Yg>>
Im(WoH (Xo,,Z) 2% H'(X,,2)) = Z - 6; = (5) .

Thus, by Lemma 7.5, we have o; - H'(Xy, Z)%* = o - HY(X3, Z)®% ¢ HY(Cy, Z) € HY (X4, Z)®F.
In view of Lemma 7.1, there exist invertible matrices v;; € GLi(Z) for 4, j € {1, 2, 3,4} such that
o = a;y;; for each i and j. Moreover, as a; - HY(X;, Z)®* € H'(Cy, Z), Lemma 7.9 implies

HYCy, 7) = o - HY(X, Z)®F ¢ HY(Xy, Z)®* Vi=1,2,3,4.
Consequently, by Lemma 2.1, there exists an isomorphism of abelian schemes
JC~ (JX)*

over U. By Theorem 1.7, it follows that k=1 and C} ~ X;.
We have proven that (*) holds. By Claim 8.10, we are done. O

9. Abelian varieties with no power isogenous to a Jacobian

The goal of this section is to prove Theorem 1.2 and Corollaries 1.3, 1.4 and 1.5 stated in the
introduction.

Proof of Theorem 1.2. First, we deal with the case where A = J3Y is the intermediate Jacobian
of a very general cubic threefold Y. We claim that there is no integer k> 1 for which there
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exists an isogeny between (J3Y)* and a product of Jacobians. To prove this, assume that such
an integer and such an isogeny exist. As Y is very general, J3Y is simple; in particular, we
may assume that there exists a curve C' and an isogeny ¢: JC — (J3Y)¥. Degenerate Y into
a singular cubic Yy such that J3Yy = JX is the Jacobian of a very general hyperelliptic curve
X; see [Col82]. This leads to a degeneration of C' into a compact-type curve D and an isogeny
¢o0: JD — (JX)*. By Theorem 1.1, this implies JD ~ (JX)*, and hence by Lemma 2.2 we get
JC ~ (J3Y)¥, which contradicts Corollary 6.2.

It remains to show that if A is a very general principally polarized abelian variety of dimension
g >4, then there is no integer k > 1 for which there exists an isogeny between A* and a product
of Jacobians. To arrive at a contradiction, we may assume that for some k € Z>1, there exists an
isogeny ¢: JC — AF for some smooth projective curve C. Specialize A to the Jacobian Ay = JX
of a very general hyperelliptic curve of genus g. The curve C specializes to a compact-type curve
D, so we obtain an isogeny ¢o: JD — (JX)¥. By Theorem 1.1, we have JD =~ (J X)*; hence there
exists an isomorphism of abelian varieties JC ~ A* by Lemma 2.2. This implies, by Theorem 6.1,
that A is isomorphic as a polarized abelian variety to the Jacobian of a curve, which is absurd
for dimension reasons, because g > 4. The theorem follows. [l

Proof of Corollary 1.3. The fact that Z C Ay is special is well known to experts; we include an
argument in Lemma B.5 in Appendix B. The fact that Z C A, satisfies the Coleman-Oort
conjecture follows from the fact that for a very general principally polarized abelian vari-
ety A of dimension g >4, the kth power A* is not isogenous to a Jacobian of a curve; see
Theorem 1.2. O

Proof of Corollary 1.4. Let A be either the intermediate Jacobian of a very general cubic three-
fold or a very general principally polarized abelian variety of dimension at least 4. Let A; be an
abelian variety isogenous to a power of A, and let Ay be an abelian variety with Hom(A, A) =0.

Suppose that there are smooth projective curves C1, ..., C), and an isomorphism
A1><A22J01X"-><Jcn. (91)
We claim that there exists a non-empty subset I C {1,...,n} such that A; ~[[,.; JC;. Indeed,

the product polarization on [[; ; JC; and the isomorphism (9.1) equip A; x Az with a princi-
pal polarization, call it A\. We have NS(A; x As) =NS(A4;) x NS(Az) because Hom(A;, A2) =0.
Hence A= \; x A9 for principal polarizations A\; on A;. By [CGT72, Corollary 3.23] (see also
[Deb96]), the decomposition of a principally polarized abelian variety into a product of princi-
pally polarized abelian subvarieties is unique. Therefore, (A1, A1) is isomorphic to []}"_; JC; for

some non-empty subset I C {1,...,n}, proving the claim.

Since A; is isogenous to a power of A, we find that [, JC; is isogenous to a power of A,
which contradicts Theorem 1.2. This concludes the proof of Corollary 1.4. O
Proof of Corollary 1.5. This is a direct consequence of Corollary 1.4. O

Appendix A. Remark on the degeneration method

In an influential work, Bardelli and Pirola [BP89] proved that for a very general curve X of
genus g > 4, the Jacobian JX is not isogenous to a Jacobian of any smooth curve C' with C % X.
Their argument is based on the following idea, which also played an important role in subsequent
papers (including this paper). If f: JC' — JX is an isogeny, then the goal is to show that there
is an integer n such that the image of f*: H'(JX,Z) — H'(JC, Z) satisfies

im(f*)=n-HY(JC,Z)c H'(JC,Z). (A1)
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Indeed, (A.1) implies the existence of an isomorphism JX ~ JC with respect to which the
isogeny f is given by multiplication by n. As X is very general, this isomorphism has to respect
the polarizations, and thereby C'~ X because of the Torelli theorem for curves.

To prove (A.1), a degeneration argument to nodal curves is used to show that there are
suitable monodromy operators T and T5 corresponding to two different Picard—Lefschetz degen-
erations of X, such that (A.1) holds when intersected with the T;-invariant subspaces for i =1, 2.
To get (A.1) from this, it is then used without proof in [BP89, Proposition 4.1.3] that

im(f*) = im(f)" + im(f)". (A2)

The argument is formalized in [Mar13, Proposition 3.6], but also here, the identity (A.2) (which
is the identity Hy + Hy = H, in the notation of loc. cit.) is assumed implicitly in the proof. The
same identity is used in the proof of Theorem 4.1 in [NP18]; see also Remark 4.3 in §4.

It turns out that the version in [Marl3, Proposition 3.6] is incorrect; see Proposition A.7
below. Nonetheless, it is possible to prove (A.2) under the additional assumption that f*Ox
is a multiple of the theta divisor ©¢ of JC (which is the case in [BP89, NP18]). For this,
one can use the lattice-theoretic results provided in §7; see in particular Lemmas 7.5 and 7.9.
These statements and their proofs greatly simplify if one is only interested in the k=1 case.
For convenience of the reader, we state and prove the precise statement that one needs to prove
(A.2) in the aforementioned applications in [BP89, NP18] in Proposition A.1 below.

PrOPOSITION A.1. Let H C G be free Z-modules of the same finite rank, and let Eg and Eg
be unimodular symplectic forms on G and H, respectively. Let {01, ...,0¢;71,...,79} CG be a
symplectic basis of G. Let T; € Aut(G) for i = 1,2 be linear automorphisms with T;(H) C H for
all i=1,2. Assume the following conditions.

(i) For each i, there is a positive integer n; such that H'i =n;G":.
(ii) The T;-invariant subspaces of G are given by
el =(01,...,0g,72,.--,7) and ek = (01,0, 71,73, - -5 Vg)-
(iii) The form Eg on G restricts to a multiple of the form Ex on H C G.
Then n:=n1=n9 and H =nG C G.
Before we prove Proposition A.1, we consider the following result, due to Marcucci.

PROPOSITION A.2 (Marcucci). Let H C G be free Z-modules of the same finite rank. Let T; €
Aut(G) for i =1,2 be linear automorphisms with T;(H) C H for all i =1, 2. Assume that:

(1) G + G =G;

(2) GT'nG*: #£0;

(3) for each i, there is a positive integer n; such that H'* = n;GT.

Then n:=ny =ng and nG C H C G.

Proof. See the proof of [Marl3, Proposition 3.6] (or see the more general Lemma 7.5). O
Next, we prove Proposition A.1.

Proof of Proposition A.1. Note that n; =ns and n1G C H by Proposition A.2. By Lemma 7.9,
this implies nG1 = H as we want. For convenience of the reader, let us sketch the proof in
this particular situation. Let n:=n; and U := (nej, nes) C G. Then U is a saturated, isotropic
subspace of H; by Lemma 7.6, there are g1, go € G such that U @ (g1, g2) C H is a unimodular
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sublattice of H. By condition (iii), there exists m € Z>1 such that Eg(x,y) = Eq(m 1lz,y) for
z,y € H. Thus, [G: H|=m9 (cf. Lemma 7.7), and ga € (01, ..., 0572, ., 7g) = GT".

In view of condition (i), there exists g} € H; such that go =ngh. As we have an equality
Eg(nes, g2) = Eq(m™1nes, ngh) = 1, we must have n? | m. Moreover, the inclusion nG C H shows
that m9 = [G: H]|[G: nG] =n?9. Thus, m =n?, and the equality H =nG follows. O

A.1 Counter-example

In this section we show that, in contrast to what is claimed in [Marl3, Proposition 3.6], the
equality nG = H does not follow in general from the conditions (1)-(3) of Proposition A.2. We
try to keep our notation as compatible as possible with loc. cit.

Notation A.3. Let G be a free Z-module of rank four, with basis {ej, ea, f1, fo} C G. We equip
G with the symplectic form

(—,—):GxG—1Z
that has {ey, ea, f1, fo} as symplectic basis. In other words, for 4, j € {1, 2}, we have
(ei, f5) =6ij,  (eiej) =0=(fi, fj), (,2)=—(2,y) Va,yeq.
Let k and n be positive integers such that
kln, 1<k<n. (A.3)
We define a submodule H C G as follows:
H= <nel,neg, nfi, %fQ + %f1> C (e1, ez, f1, f2) =G.
Notice that
nG = (ney, neg, nfi, nfa) C <n61, nes, nfi, %fg + %f1> =H.

LEMMA A.4. The inequality nG C H is strict. More precisely, the quotient H/nG is a finite
cyclic group of order k > 1.

Proof. This follows from (A.3). O

Consider the free abelian group Z%2. We are going to define an action of Z®? on G. Fori =1, 2,
define an operator T;: G — G by T;(z) = x + (z, ke;)ke;. Then T and T are automorphisms of
G. As (e1,e2) =0, we obtain an action of Z%2 on G

7% — Aut(G), b Ty (A.4)
where by = (1,0) € Z®% and by = (0, 1) € Z2.
LEMMA A.5. The action of Z%? on G preserves the submodule H C G.

Proof. We have Ty (ne1) = ne; and Ty (nes) = nea. Moreover, we have Ty (n.f1) = nfi — k?ne; and
Ti((n/k)fa+ (n/k)f1) = (n/k) fa+ (n/k) fi — knei. In a similar way, Ta(ne;) =nei, Tr(nez) =
nes, To(nf1) =nfi and Ts ((n/k)fo+ (n/k)f1) = (n/k)fo + (n/k) f1 — knes. These are all ele-
ments of H. t

Next, we would like to calculate H: = H N GT: for i =1, 2.
LEMMA A.6. We have H': =n -G for i=1,2.

1450

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.166, on 14 Nov 2025 at 19:33:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/50010437X25007171


https://doi.org/10.1112/S0010437X25007171
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ABELIAN VARIETIES WITH NO POWER ISOGENOUS TO A JACOBIAN

Proof. Notice that GT' = {z € G | Tj(z) =2} ={z € G | (x,¢;) =0} . Hence,

GTl = <€1, €9, f2> and GT2 = <€1, €2, f1> (A5)
Therefore, H'* = H N G™ = H N {eq, ez, f2) = (ne1, nez, nfa) =nG . Similarly, we have H'> =
HNG™ =HnN (e, eq, f1) = (ney, nea, nf1) = nG*=. O

From the previous results, we deduce the following result, which shows that [Marl3,
Proposition 3.6] fails in the generality stated. For a corrected version with stronger hypotheses,
which seems to suffice for most of the applications, see Proposition A.1.

PRroPOSITION A.7. There exist a connected and path-connected pointed topological space
(X, x), two local systems H and G of free abelian groups of rank four on X, an injective mor-
phism of local systems H — G, and two elements ~; € m1 (X, z) (i =1, 2) such that the following
holds. If the monodromy representations attached to H and G are denoted by

p:m(X,x) — Aut(Hz) and o: m(X,z) — Aut(G,)
and if G; C G, and H; C H, are defined as

Gi:=Tnv(o(vi)) ={a € G |o(vi)(a) = a},
H;:=TInv(p(vi)) ={a € Ha | p(vi)(a) =a},

then the following conditions are satisfied:

(1) Gl + G2 = gz;

(2) G1NGsy #0;

(3) there exists an integer n € Z>; such that H; =nG; for i=1,2;
(4)

4) with respect to the integer n in condition (3), we have

as submodules of G,.

Proof. Let D*={z€C|0<|z| <1}, and define X = D* x D*. Let € X be any point. Then
m (X, 1) =792

Define two free Z-modules H C G of rank four as in Notation A.3. Let Z%? act on G as in
(A.4). In particular, the action of Z®2 on G restricts to an action of Z®2 on H C G; see Lemma
A.5. This yields two representations p: m (X, x) = Aut(H) and o: 7 (X, z) = Aut(G).

Let ‘H and G be the local systems on X attached to the representations p: m (X, z) — Aut(H)
and o: w1 (X, z) = Aut(G), respectively. Define G; and H; as in (A.6).

We claim that conditions (1)-(4) are satisfied. Conditions (1) and (2) follow from (A.5).
Condition (3) follows from Lemma A.6. Condition (4) follows from Lemma A.4. O

Appendix B. Jacobians isogenous to a power of an elliptic curve

In [LZ19], Lu and Zuo prove that for a very general elliptic curve E, no power EY with g > 12 is
in the Hecke orbit of the Jacobian of a smooth projective connected curve of genus g (see [LZ19,
Theorem A] and Remark B.2 below). The goal of this appendix is to show that the methods of
[LZ19] in fact imply the following stronger result.

THEOREM B.1. For an elliptic curve E with transcendental j-invariant, the following hold.
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(1) There exists no integer g>12 such that EY9 is isogenous to the Jacobian of a smooth
projective connected curve.

(2) There exists no integer g > 5 such that EY is isogenous to the Jacobian of a smooth projective
connected hyperelliptic curve.

Remark B.2. At most places in [LZ19] the term ‘isogenous’ means ‘to lie in the same Hecke
orbit’ see [LZ19, paragraph below Definition 2.12] and [LZ19, Lemma 2.13]. If the points in
Ay associated to two principally polarized abelian varieties (A, A4) and (B, Ag) lie in the same
Hecke orbit, then A and B are isogenous, but the converse is not necessarily true. In fact, one
can show that the following are equivalent.

(1) The associated moduli points [A], [B] € Ay lie in the same Hecke orbit, that is, they admit
lifts , y € Hy to the Siegel upper half space Hy that lie in the same GSp(Q).-orbit.

(2) There is an isomorphism of rational Hodge structures Hi(A, Q) ~ H;(B, Q) that preserves
the polarizations up to a positive rational multiple.

(3) There is an isogeny ¢: A — B such that ¢*(Ag) =n- A4 for some n € Z>1.

Remark B.3. One can show that if (A, \) is a very general principally polarized abelian variety
of dimension g, then for any integer k > 1 and any principal polarization x on the kth power A*
of A, the principally polarized abelian varieties (A, 1) and (A*, \¥) have isomorphic polarized
rational Hodge structures (where A\* denotes the product polarization on A* associated to \).
To prove this, notice that by Lemma 5.2, y coincides with the polarization A\, associated to
a unimodular positive-definite symmetric matrix « € GLg(Z). We thus need to show that the
principally polarized abelian varieties (A*, \,) and (A*, A\¥) have isomorphic polarized rational
Hodge structures. By a suitable analogue of Lemma 5.2 that considers rational equivalence
classes of polarizations on A¥, this comes down to proving that for each matrix a € GLx(Z) as
above, there exists a matrix v € GLg(Q) such that yaq! is the identity matrix, where v¢ denotes
the transpose of ~. This turns out to be true and can be deduced from the results in [Ser73,
Chapter V, §§ 1.3.5 and 1.3.6].

Remark B.4. We used Theorem B.1 in the proof of Theorem 6.1, which in turn is used in the
proofs of Theorems 1.1 and 1.2. In fact, for these applications, one only needs the special case of
statement (1) in Theorem B.1, in which the isogeny EY — JC' is an isomorphism of unpolarized
abelian varieties, and this special case could alternatively be deduced directly from Remark B.3
and [LZ19, Theorem A]. We decided to give the proof of Theorem B.1 (instead of spelling out
the details of the result alluded to in Remark B.3), since Theorem B.1 seems of independent
interest and naturally complements Theorem 1.2.

B.1 Special subvarieties in moduli spaces of abelian varieties

We need to gather some results on special subvarieties in A,. Let us start by recalling the
definition. For integers g >1 and n > 1, let Ay ,,) be the moduli space of principally polarized
abelian varieties of dimension g with level n structure (which is a scheme if n > 3 and an algebraic
stack in general). A closed subvariety Z C A, [, is called a special subvariety if it is a Hodge
locus of the Q-variation of Hodge structure R, Q, where bh: Xy in) = Ag,[n] denotes the universal
family; see [MO13, Definition 3.7]. Special subvarieties of Ay s, for some polarization type d
are defined similarly. By way of example, we have the following result.

LEMMA B.5. Let n >3 be an integer and let h, k, g be positive integers with g = hk. Let Z C

Ay n) be a subvariety such that the general element of Z is isogenous to the kth power of
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a general polarized abelian variety of dimension h. Then Z C Ay, is a special subvariety of
dimension h(h +1)/2.

Proof. By [MO13, Remark 3.13], this easily reduces to the case where Z C Ay [n) is the image
of the diagonal embedding Ay, (] = Apg, (0] = Ag,[n), in Which case the result is clear. O

We are grateful to Kang Zuo for pointing us to assertion (1) of the following lemma.

LEMMA B.6. Let g >1 and n >3 be integers. Let Z C A
following assertions are true.

g¢.[n] be a special subvariety. Then the

(1) There exists an integer m > 3 with n|[m and a smooth special subvariety Y C A (,,] such
that Y is an irreducible component of the preimage of Z under the natural finite étale map
Ag fm) = Ag,[n)-

(2) If Z C Ay ) is one-dimensional, then there are m > 3 and Y C Ay [, as in (1) with the addi-
tional property that the pull-back of the universal weight-one Q-local system on Ay, to
the smooth one-dimensional subvariety Y C Ay (., has unipotent local monodromy around
each point of Y — Y, where Y is the smooth projective model of Y.

Proof. This is well known; assertion (1) follows e.g. from [Mo0098, Lemma 3.3], and assertion
(2) follows from (1) together with [YZ14, Proposition 1.6(2)]. O

B.2 Arakelov inequality for a family of abelian varieties over a curve

To prove Theorem B.1, the idea is to apply the following result due to Lu and Zuo [LZ19]. To
state it, we need to introduce the following notation. Let C' be a smooth projective connected
curve, and let C' C C be an open subscheme. Let h: A— C be a family of abelian varieties.
Define Az = C — C and assume that the local monodromy of R'Ah,Q around each point of Ag is
unipotent. Consider the Deligne extension (R'h.Q ®g O¢)ext of the vector bundle R'%.,.Q ®q Oc
(see [Del70, Proposition 5.2, p. 91]), which is a vector bundle on C' that extends R'7.Q ®g O¢.
The Hodge filtration

0CEY CR'MhQ&oO0c (EY =h.0)
extends, in view of the nilpotent orbit theorem (see [CK89, Theorem 2.1]), to a filtration

0C EZ” C (R'h.Q@g O¢)ext.- (B.1)
By [Fal83], we have that
deg( ) < % deg QL. c(log Aw). (B.2)

THEOREM B.7 (Lu-Zuo). Let n >3 and g > 5 be integers. Let C' C Ay ]
of dimension one with smooth projective model C C C. Let h: A— C be the pull-back of the
universal abelian scheme over Ay, and assume that the local monodromy of R'h,Q around
each point of Az =C — C is unipotent. Let E%O be the vector bundle defined in (B.1) above.
Assume that C is generically contained in the Torelli locus and that g > 12 if C' is not contained
in the hyperelliptic locus. Then (B.2) is a strict inequality.

be a smooth subvariety

Proof. See [LZ19, Theorem 1.4] and its proof. Although the statement of [LZ19, Theorem 1.4]
only covers the g > 12 cases, its proof also deals with the 5 < g < 12 cases under the additional

hypothesis that the curve C'C Ay [, is generically contained in the hyperelliptic locus. O
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LEMMA B.8. Let g > 1 and n > 3 be integers. Let C' C Ay [,, be a smooth subvariety of dimension
one and assume that the general element of C' is isogenous to the gth power of an elliptic curve.
Let h: A— C be the pull-back of the universal abelian scheme over A [,,) and assume that the

local monodromy of R'h,Q around each point of Agzé— C' is unipotent. Let E%O be the
vector bundle defined in (B.1) above. Then (B.2) is an equality.

Proof. The vector bundle EL% is a direct summand of a vector bundle E on C that has a
natural Higgs bundle structure (see [VZ03, VZ04]), which by [Kol87] decomposes as a direct
sum F=F & N of Higgs bundles such that F%’O =F OE%O is ample and the Higgs field of
E vanishes on N. By Lemma B.5, C' C Ay, is a one-dimensional special subvariety of A, p,.
Therefore, by [Mo6l11], we have

g
deg F%’O = 50 -deg Q%(Ag) where g¢o :=rank Fé’o. (B.3)

We claim that A is non-empty. Indeed, the universal family of A [, restricted to C' is a
non-isotrivial abelian scheme h: A — C. By assumption, this abelian scheme is (up to a finite
surjective base change) isogenous to a self-fibre product of a family of elliptic curves. If C' were
proper, then one would conclude the properness of the moduli space of elliptic curves, which is
absurd. Hence, A is non-empty, so we can apply [VZ04, Theorem 0.2] to conclude that there
exists an étale covering w: C' — C such that if h': A’=A x¢o C’ — C’ denotes the pull-back
of our family h: A— C along 7, then h': A’ — C’ is isogenous over C’ to a fibre product of
the form B’ x¢ &' x¢cr X -+ - X €', where B’ — C' is a constant family of b-dimensional abelian
varieties over Y’ and £ — C’ is a non-isotrivial family of semi-stable elliptic curves over Y’. Here,
b=g—go=9g— rank(F%’O). Since the general fibre of h: A — C' is isogenous to the gth power of
an elliptic curve and h: A — C' is non-isotrivial, we see that b =0 and hence g = gg. Thus, N =0
and E = F, so that (B.3) implies that deg E%O =(g/2) - deg Q%(Ag). In other words, (B.2) is an
equality, and we are done. O

B.3 Elliptic curves with no power isogenous to a Jacobian

Proof of Theorem B.1. Let E be an elliptic curve with transcendental j-invariant. Assume that
for some integer g > 2, we have an isogeny ¢: EY — JX where X is a smooth projective connected
curve. We must show that g < 12 and that g <5 if X is hyperelliptic.

Since E has transcendental j-invariant, the isogeny ¢: E9 — JX spreads out to a one-
dimensional family. More precisely, there is a one-dimensional variety B, a family of smooth
projective connected curves X — B whose fibres are hyperelliptic if X is hyperelliptic, a non-
isotrivial family of elliptic curves £ — B and an isogeny of abelian schemes ¢: £9 — JX over B
that extends the isogeny ¢: F9 — JX. Up to replacing B by an étale cover, we may assume that
JX — B is equipped with a level n structure for some n > 3, so that it gives rise to a morphism
B — Ay - Let Z C Ay ) denote the closure of the image of this map. By Lemma B.5, Z is a
special subvariety of A |-

By Lemma B.6, there is an integer m > 3 with n | m such that the following holds. There is a
one-dimensional smooth special subvariety C'C A [,,] that dominates Z such that the universal
weight-one Q-local system on C' has unipotent monodromy at each point of Az = C — C, where
C denotes the smooth projective model of C. Let E%O be the vector bundle defined in (B.1)
above. By Lemma B.8, we have

deg(EL") = % - deg QL (log Ag). (B.4)
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Notice that C'C Ay ) is generically contained in the Torelli locus. Thus, by Theorem B.7, the
equality (B.4) implies that g < 12. Moreover, if the curve X is hyperelliptic, then C'C Ay |,
is generically contained in the hyperelliptic Torelli locus. Therefore, we get g <5 if X is
hyperelliptic; see Theorem B.7. This concludes the proof of the theorem. O
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