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Abstract

Bifactor Item Response Theory (IRT) models are the usual option for modeling composite constructs.
However, in application, researchers typically must assume that all dimensions of person parameter space
are orthogonal. This can result in absurd model interpretations. We propose a new bifactor model—the
Completely Oblique Rasch Bifactor (CORB) model—which allows for estimation of correlations between
all dimensions. We discuss relations of this model to other oblique bifactor models and study the conditions
for its identification in the dichotomous case. We analytically prove that this model is identified in the case
that (a) at least one item loads solely on the general factor and no items are shared between any pair of
specific factors (we call this the G-structure), or (b) if no items load solely on the general factor, but at least
one item is shared between every pair of the specific factors (the S-structure). Using simulated and real
data, we show that this model outperforms the other partially oblique bifactor models in terms of model fit
because it corresponds to the more realistic assumptions about construct structure. We also discuss possible
difficulties in the interpretation of the CORB model’s parameters using, by analogy, the “explaining away”
phenomenon from Bayesian reasoning.

Keywords: bifactor models; item response theory; multidimensional random coefficients multinominal logit model; oblique
bifactor models; Rasch models

Bifactor models (Holzinger & Swineford, 1937) are a common approach in IRT for modeling composite
constructs. These models enable the simultaneous estimation of a general factor, which is measured
by all items, and specific factors, which are measured by subsets of them (see, for example, Figure 1).
Bifactor models are particularly useful for capturing a general factor in tests with varied item types or
in testlet-based assessments, where groups of items are linked by a common stimulus (Reise, 2012).
They are also a popular focus in psychometric research because they generalize higher-order models
mathematically (Gignac, 2016). Additionally, bifactor models have a constrained form known as the
testlet model, which is equivalent to higher-order models (Rijmen, 2010).

Traditional bifactor models are constrained by a restrictive assumption: the general and specific
factors must be orthogonal, meaning they are uncorrelated. According to the traditional frame-
work, this assumption is necessary to ensure model identification (Reise et al, 2010). However,
from an interpretational and substantive perspective, this assumption is often nonsensical despite

© The Author(s), 2025. Published by Cambridge University Press on behalf of Psychometric Society.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/psy.2025.14 Published online by Cambridge University Press


www.doi.org/10.1017/psy.2025.14
https://orcid.org/0000-0003-0993-5315
https://orcid.org/0000-0002-0425-5305
mailto:denis.federiakin@uni-mainz.de
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/psy.2025.14&domain=pdf
https://doi.org/10.1017/psy.2025.14

Psychometrika 1285

Specific
factor 1

Specific
factor 2

Specific
factor 3

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9

General
factor

Figure 1. A bifactor structure with three specific factors. All items load on the general factors and on one specific factor.

its mathematical justification. For example, consider a bifactor model applied to a test comprising
items that measure algebra and geometry to derive a general mathematics score. This approach
requires assuming that the general mathematics factor is uncorrelated with both algebra and geometry
scores. Additionally, it demands that algebra and geometry scores themselves be uncorrelated. Such
assumptions make it challenging to interpret the resulting factor scores as meaningful representations
of content domains (Wilson & Gochyyev, 2020).

Eid et al. (2017) highlighted a related paradox using stochastic measurement theory, demonstrating
that orthogonal bifactor models should only be applied when the specific factors are interchangeable—
essentially drawn at random from the universe of specific factors. This assumption, however, does not
hold when specific factors represent distinct subject matter domains, such as algebra and geometry. Eid
et al. (2017) further concluded that this requirement is rarely met in practice, leading to the overuse of
bifactor models due to inappropriate measurement design.

To address this limitation, researchers often justify their use of bifactor models by aligning their
application with specific modeling objectives. Frequently, the focus is on the general factor, with specific
factors serving as a mathematical tool to account for local dependencies among items caused by
shared content or stimuli (e.g., DeMars, 2013). Alternatively, some researchers emphasize the specific
factors and view the general factor as a common source of error variance across all items (Hendy &
Biderman, 2019). In such cases, the assumption of total orthogonality contradicts theoretical models of
the construct.

Still, psychometricians often treat secondary factors as nuisance dimensions, enabling them to
overlook interpretational challenges. However, this approach is suboptimal for modeling composite
constructs, as it prioritizes mathematical convenience over an accurate representation of the relation-
ships between components. Attempts have been made to differentiate the contexts in which orthogonal
bifactor models are applied. For example, these models have been shown to perform exceptionally well
in measurement contexts (Cai et al., 2011; Jeon et al., 2018; Wang & Zhang, 2019) but fail to yield reliable
estimates in predictive contexts (Zhang et al., 2021; Zhang, Luo, Sun, et al., 2023).

To address these limitations, several extensions of bifactor IRT models have been proposed, pro-
viding partial solutions to the challenges of traditional bifactor models. These extensions allow for the
direct estimation of specific entries in the variance-covariance matrix of the latent person parameter
space. Notable examples include the Extended Rasch Testlet Model (ETM; Paek et al., 2009) and the
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Generalized Subdimensional Model (GSM; Brandt & Duckor, 2013), both of which have been developed
within the Rasch modeling framework (Rasch, 1993).

The ETM permits the estimation of covariances between specific factors and the general factor while
maintaining orthogonality among the specific factors. In contrast, the GSM enforces orthogonality
between the general factor and the specific factors but allows correlations among the specific factors,
albeit under complex constraints. More recently, partially oblique bifactor models, such as GSM (but
without those constraints), have been shown to be analytically identified within the covariance structure
modeling framework if the factor loading matrix satisfies certain stringent requirements (Fang et al.,
2021). However, these models have demonstrated high numerical instability in practice (Zhang, Luo,
Zhang, et al., 2023), leading researchers to advise caution in their use. Furthermore, none of these
partially oblique bifactor models allow for the unrestricted estimation of the entire variance-covariance
matrix. As a result, the interpretation of factor scores and correlations remains as challenging as it is in
traditional bifactor models.

The purpose of this article is twofold. First, from a theoretical perspective, we introduce the CORB
model within the confirmatory IRT paradigm. This model, with certain limitations, enables the direct
estimation of all entries in the variance-covariance matrix of person parameters, simplifying the
interpretation of model parameters. We explore the structure and interpretation of the CORB model
in relation to existing oblique bifactor models. As a special case of the Multidimensional Random
Coefficients Multinomial Logit Model (MRCMLM; Adams et al., 1997), the CORB model can be
calibrated using dedicated software such as the ConQuest program (Adams et al., 2020), the TAM
package for the R language (Robitzsch et al., 2025), or other tools for Generalized Linear Mixed Effect
Modeling (e.g., de Boeck et al., 2011).

Second, this article makes a practical contribution by describing two specific test dimensionality
structures that facilitate the estimation of all correlations among person parameters. The first structure
involves having at least one item that does not load on any specific factor, effectively serving as an
indicator for the general factor. The second structure requires that every pair of specific factors share at
least one item. We demonstrate how these two structures ensure the identification of the CORB model
and discuss their practical implications.

The article is organized as follows: First, we describe the MRCMLM framework and outline the
conditions necessary for identifying multidimensional Rasch models derived from this framework.
Second, we present the CORB model and examine the conditions under which it is identified. Third, we
compare the CORB model with other oblique bifactor models. Fourth, we conduct a simulation study to
demonstrate that the CORB model is more flexible and performs better than other oblique Rasch models
in terms of technical characteristics. Fifth, we provide a real data example using a reading assessment
for first-graders and discuss challenges in interpreting the CORB model. Finally, we conclude with a
discussion of the CORB model and potential directions for future research and application.

1. MRCMLM framework

Assume a test consists of I items (i = 1,...,I), where each item has K; categories (ki = 1;,...,K;), and the
total number of categories in the test is K (so that K = 2] in the case of a dichotomous test). Without
loss of generality, we assume all items are dichotomous. Consequently, each item is described by a single
parameter (§;), and the total number of item parameters, P, equals the number of items, I.

Further, let the test measure D latent factors 8, (d = 1,...,D). Each of D test scores, 6, is assumed
to follow a distribution marginalized to have a mean (u) of zero for model identification (i.e., u = 0).
For simplicity, this distribution is assumed to be normal with an estimated variance var (6,). However,
this normality assumption is not necessary in the general case (Le & Adams, 2013). The latent space
of person parameters is then defined by a multivariate normal distribution characterized by a vector of
means p and a variance-covariance matrix X.

According to the reflective perspective on measurement, we assume a predetermined correspon-
dence between every response category of each test item and a specific latent factor. This correspondence
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is governed by a scoring matrix B (explained below). The first category of every item is scored as zero,
which serves to identify the model and establishes this category as the reference category.

Formally, the MRCMLM is expressed as follows:

exp (bgﬁ + aif)
Yo, exp (bj0+alf) ’
where X; is a vector-valued random variable indicating Xj, = 1 if a response to item i is in category k
(out of all possible K; categories) and 0 otherwise,
& is a vector of P item parameters (= I item difficulties in the dichotomous case),
A is the design matrix (K X P), composed of design vectors a; (each of length P),
0 is the vector of person parameters, representing a D-dimensional latent space,
B is the scoring matrix (K X D), composed of scoring vectors b (each of length D).

The design matrix A defines the relationships between item categories and item parameters, while
the scoring matrix B links item categories to the test dimensions. If non-zero entries of B are estimated
as free parameters, they are interpreted as discrimination (or scoring) parameters, and the model
corresponds to the 2PL approach in IRT. Conversely, if these entries are constrained to unity, the model
follows the Rasch approach.’ Generally, the B matrix is structured as a factor loading matrix. The
MRCMLM framework encompasses a wide range of models, including multidimensional, dichotomous,
and polytomous models (using the adjacent logit link function), as well as other specialized models from
the exponential family, within both the Rasch and 2PL paradigms.

P(Xik = 1’A5B7£|0) =

(1)

1.1. Volodin and Adams condition for Identifying a D-dimensional Rasch model

Volodin and Adams (2002) outlined the condition required for identifying multidimensional Rasch
models with all correlated dimensions. They demonstrated that an oblique multidimensional Rasch
model is identifiable if the following condition is met”:

rank[Ag|B] =D+Pr<K-1, (2)

where Ap is a reduced design matrix, carefully constructed to preserve the original model’s structure,
and Py is the length of the reduced vector of item parameters corresponding to Ar.

If Equation 2 holds, the model permits the direct estimation of all entries in the variance-covariance
matrix. However, constructing Ar involves systematically dropping D item parameters from A to impose
the necessary constraints for identification. To establish this result, Volodin and Adams (2002) derived
a series of theorems, which we reproduce and discuss in detail in this section. In Section 1.2, we provide
a detailed illustration of this procedure for the test dimensionality structure from Figure 1.

For the dichotomous multidimensional model described in Equation 1, model identification is
typically achieved by constraining the average ability in each dimension to 0 (4 = 0). However, this
constraint is not strictly necessary. In the general case, these averages can be estimated as part of the
Rasch model, and the resulting vector of constants ¢ can then be subtracted from the corresponding
item difficulties without altering the likelihood of the data:

§ =&-Bc,
uo=pte
then,
P(Xx=1LABE  p'2)=P(Xy=LABE uX).

More generally, they can be assigned to any real number values, as necessary for the Partial Credit Model.

2We use the symbol | (solid vertical line) within square brackets to denote row-based matrix concatenation, ensuring clarity
and avoiding confusion with matrix multiplication. Matrix multiplication is not possible in this context due to the non-
conformable dimensions of the matrices involved. Similarly, Volodin and Adams (2002) addressed this potential ambiguity by
using spacing between the symbols denoting matrices for the same purpose.
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Naturally, the problem of model identification reduces to demonstrating that £* = E€and g* = p for any
response profile x in a vector-valued variable X. In other words, if the model is identified, the matrices
A and B must satisfy the condition x (Bu+A&) = x" (By* +A& *). Voloding and Adams propose a
sequence of theorems to establish when this condition holds. To do so, they consider the vector { of
length P+ D, which concatenates the vectors & and u", and the corresponding vector {* of the same

. T
length, which concatenates the vectors £*~ and y*T.

Theorem 1. The model (1) can only be identified if P+ D < K - 1I.

Proof. Assume, P+D > K —I. Then, [A|B] cannot be of full column rank, as it can have at most K —I
non-zero rows. Consequently, there would be no unique solution for the vector {, contradicting the
definition of £* = € and p* = p or an identified model (1). Therefore, P+ D < K — I must hold. O

Theorem 2. The model (1) can only be identified if rank[A] = P, rank [B] = D, and rank[A|B] = P+ D.

Proof. The matrix A must conform to the vector & of length P, it should have rank[A] < P. Assume,
rank[A] < P. In this case, A& does not provide a unique solution for &, and the model (1) cannot be
identified. Therefore, if the model is identified, rank[A] = P must hold. Similarly, rank [ B] = D must
also hold. Consequently, rank [A|B] = P + D also must be true. ]

Theorem 3. The model (1) can be identified only if rank [A|B] =P+ D<K -I.

Proof. The necessary conditions directly follow from Theorems 1 and 2. To prove the sufficiency,
consider the identification condition for model (1)

x"[AB]({-¢") =0Vx < {={"

The matrix [A|B] is of size (K—1I) x (P+ D) with rank[A|B] = P+ D, and P+ D < K - I. Thus, it is
possible to remove (K —I) — (P+ D) rows from [A|B] to construct a square submatrix of size (P + D) x
(P+D) in full rank. Denote this matrix as Z.

Let x* be a vector corresponding to x with the same elements removed as the rows excluded from
[A|B] to construct Z. To avoid trivial solutions, we constrain x (and x*) to not be entirely zero. Then,
x"[A|B] (¢-¢) = x*TZ(C—(*) = 0Vx is equivalent to Z ({—¢™) = 0. This holds iff{ = {*, meaning
that £* = & and p* = puVx, which is the target of showing that the model is identified. O

It follows that, in general, the special cases of model (1) are not identified unless the vector g is not
constrained to all zeros. Additionally, this procedure does not address the covariance matrix X, which
spans the latent space of person parameters. Instead, it emphasizes that item parameters play the central
role in the identification of Rasch models. This procedure applies broadly to any completely oblique
multidimensional Rasch model, including the CORB model.

However, in many scenarios, the constraint of g = 0 still might be insufficient for identification. For
instance, if the test dimensionality structure aligns with that shown in Figure 1, the matrix [A|B] fails to
satisfy the condition in Equation 2. More generally, avoiding the constraint g = 0 can be advantageous.
In such cases, as noted in Theorem 3, the full matrix [A|B] will not suffice for identification. This is
where the construction of the reduced design matrix Ag becomes essential.

After substituting A with Ag in [A|B] (resulting in [Ag|B]), Theorem 3 can often be proven in the
marginal case where rank [Ag|B] = Pr + D = K — I, as demonstrated in this article. The key question,
then, is how to construct Ar so that it fully preserves the structural properties of A, up to a vector of
additive constants ¢, while still enabling the proof of Theorem 3. The process of construction Ar lies at
the core of the Volodin-Adams procedure.

For the Volodin-Adams procedure D subsets of items (J5, . ..,Jp) are defined, each of size n; > 1. It
is not necessary that JenIy=02,8% h; but it is necessary that Je ¢ Jj,, g #+ h. Next, matrix E of size D x D
is constructed, where dth row is represented by the vector e;, consisting of the column sums of values
in B for the items in J;. Additionally, a set of D items, F, is identified such that J,nF # gVd.
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Theorem 4. If det (E) # 0, then the completely oblique multidimensional dichotomous model can still
be specified if A is substituted with Ag, where Ag is reduced by D columns compared to A, such that
rank[Ar] =Pr=P-D.

Proof. Assume, J;NF =i, 4. Now, set &-ndd =— Zj”jl_l Z;',-jd, where ijg € J;. Under this assumption, the i, 4th
row of Ag will contain value “~1” in the columns corresponding to ij; (j=1,...,n4— 1), and “0” in the
column corresponding to i, 4. Repeat this procedure D times, such that A contains D all-zero columns.
Delete these all-zero columns, to obtain Ag with rank[Ag] = Pr = P-D.

Now suppose 3¢ such that x” (Bu+ Agé) = x" (By* +AR£*)Vx. For an extreme case, select x such

that it contains values of “1” in positions i,y (n=1,...,n4) and “0” elsewhere. Then, xTArE=xTARE* =0,
and x"B ([4* - y) = x"Bc = ejc = 0¥d. Now if det (E) # 0, then the only solution is ¢ = 0, which implies
E=tandp* =p. O

This completes the proof of Equation 2. Essentially, Volodin and Adams (2002) demonstrated that
the matrix E function as a scaling and rotation matrix for the vector ¢ (of length D), which consists of
constants that can be added to the vector of means p and subtracted from the item parameters in each
corresponding dimension without affecting the overall likelihood of the data. If the determinant of E is
non-zero, the vector ¢ can only contain zeros, indicating that the model under the given A is identified.
The challenge of constructing the matrix A relies on a well-known result in the partial identification of
Rasch models. According to this result, constraining the averages of latent dimensions to zero, or fixing
one of the item parameters to zero, does not affect the relative rank order of items and respondents.
Instead, it merely shifts the latent scale numerically, leaving the model’s interpretability and validity
unaffected.

The full description of the procedure for the general case (including the polytomous case) is beyond
the scope of this article; for further details, refer to Volodin and Adams (2002). The Supplemen-
tary Materials for this article include the R code for a function that automates this procedure in the
dichotomous case.

1.2. An Example of test dimensionality structure from Figure 1

Using the Volodin and Adams procedure, it can be shown that if a test has a structure similar to the one
presented in Figure 1, it is impossible to construct non-nested sets of item parameters with a non-zero
determinant of E when all dimensions are oblique. For the structure in Figure 1 under a dichotomous
test, D=4,K=18,1=9.

The complete design matrix A is of 9X9 size, where each column corresponds to a single item
difficulty parameter, and each row corresponds to a single item. Strictly speaking, in the design matrix A,
each row should describe a single category for a single item, resulting in a matrix of 18 X 9 size. However,
since all rows corresponding to zero categories are redundant (composed entirely of zeros), they can be
excluded from the design matrix for simplicity. In this simplified representation, an entry of “0” in the
matrix indicates that the corresponding parameter is not applied to the respective item category, and an
entry of “1” indicates that the item parameter is applied. The resulting design matrix A is as follows:

[1
0

o
o
(=)
o
(=)
O‘

3)

O O O OO OO~ O
O OO~ OO O OO

OO = OO O OO
O P O O O O OO
— O O O O O O O

S O O OO oo
[N eNeolBoBoRaol =
O OO OO —~= OO
(==l elal = =]
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The scoring matrix B for Figure 1 is of 9 X 4 size (analogous to the design matrix A, it would typically
be 18X 4 but, again, zero rows can be excluded for simplicity). Each row in B corresponds to a single
item, and each column corresponds to a single latent factor. The general factor is represented by the
first column. In this matrix, an entry of “0” indicates that the corresponding category does not load on
the respective factor, and an entry of “1” indicates that the item does load on the respective factor. The
resulting scoring matrix B is as follows:

(=}
J

4

=

1}
e e e e e
O O O OO O -
S OO~ KH P OOO

— = -0 O O O O

To construct the reduced design matrix A, define four sets of item parameters: (i) items 1 and 2,
(ii) items 3 and 4, (iii) items 5 and 6, and (iv) items 7, 8, and 9. These sets correspond to the grouping
indicated by the dashed lines in Equation 5, which illustrate how the item parameters are partitioned
into subsets for constructing Ar:

1 0,0 0,0 0,0 0 O

0 110 0'0 010 0 0

0 0,1 0,0 0,0 0 0

0O 0:10 110 O0Or0 O O

A= 0 070 0O]1 0;0 0 0 (5)

0 010 010 110 0 0

0 070 00 0O]1 0 O

0 0,0 0,0 0,0 1 0

[0 0'0 0'0 0'0 O 1 |

In this case, the reduced design matrix A is defined as follows, with the length of the reduced vector
of items parameters Py = 5:

1 ,0,0,0 o0
-1 01010 0
"o 10,0 o
0O =110 10 0
Ag=[ 0 [0 [ 1,0 o0 (6)
0O 1+ 01110 0
0700 1 0
0O 0,0 ,0 1
[ o to oo -]
The corresponding partitioning of the matrix B is
[ 1 1 0 0]
1 1 0 O
11 0 0
1 0 1 0
B=[1 0 1 0 (7)
1 0 1 O
10 0 1
1 0 0 1
[ 1 0 0 1 |
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Then, the matrix E, consisting of the set-wise sums of the entries in B is given by
2 2
(8)

[SSI NS I NS}
SN = O
w o o o

1
0
0

Consequently, det (E) = 0, which effectively terminates the Volodin-Adams procedure by showing
that A does not fully preserve the structure of the original model. As a result, rank [ Ag|B] fails to satisfy
Equation 2, confirming that the reduced design matrix does not enable the identification of the model:

1 ,0,0,0 O0]1 1 0 o0
1101010 0|1 1 0 0
"o 1T 7070 o110 0
0 1 =11 010 O0/]1 0 1 0
rank[Ag|B]=rank| 0 7 0 [ 1 [0 0 |1 0 1 0 [=8#D+Pz )
010 1 -110 011 0 1 0
070701 01 0 0 I
0O, 0,00 1 1 0 0 1
| 0" 00 '-1 -1|1 0 0 1 |

Repeating this procedure for any arbitrary partitioning of items into sets demonstrates that such
a test dimensionality structure does not permit the identification of the oblique bifactor model.
Consequently, constraining all covariances among person dimensions to zero becomes necessary for
model identification, leading to the orthogonal bifactor Rasch model (Wang & Wilson, 2005).

However, it is important to note that this procedure describes an analytical approach to model
identification. In practice, the general principles of modeling suggest that some constraints can be
introduced into analytically unidentified models to achieve empirical identification (Kenny, 1979;
Rindskopf, 1984). The Volodin-Adams procedure does not account for such constraints; it specifically
evaluates whether the completely oblique multidimensional Rasch model is analytically identified.

The orthogonal Rasch bifactor model represents an extreme yet common solution for identifying
bifactor models, where all factor covariances are simultaneously constrained to zero. In Section 3.3, we
discuss that while this solution ensures identification, it may be overly restrictive and unsuitable for
certain purposes.

2. The completely oblique Rasch bifactor model
The CORB model is distinguished from the orthogonal bifactor Rasch model by two key features.

2.1. Distinction 1: the variance-covariance matrix

The first distinction is that, unlike the orthogonal bifactor Rasch model, the CORB model enables the
simultaneous estimation of all entries in the variance-covariance matrix X of latent factors. For example,
in a test consisting of three specific factors, the variance-covariance matrix of the dimensions in the
latent person parameter space for the CORB model takes the form shown in Equation 10. This contrasts
with the orthogonal bifactor model, where the corresponding variance-covariance matrix is restricted
as shown in Equation 11 (Wang & Wilson, 2005).

var (6g) cov(8g,0s)  cov(b,,6s,)  cov(b,,6s,)
| cov(6s,,6,) var (6s,) cov(6s,,0s,) cov(6s,0s,)
| cov(6s,,6,)  cov(b,,6;) var (6,) cov(6s,,6,) |’
cov(8s,,0;)  cov(bs,.6s,) cov(bs,,6s,) var (6s,)

(10)
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Specific
factor 1

Specific
factor 2

Specific
factor 3

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10

General
factor

Figure 2. A bifactor structure for identifying the CORB model. Item 1 loads solely on the general factor, while no items are shared
between any pair of specific factors. Factor covariances are non-zero but are not depicted in the figure.

var (60;) 0 0 0
B 0 var (0;,) 0 0
z= 0 0 var (6;,) 0 (1)
0 0 0 var (0s,)

From the comparison of the variance-covariance matrices, it is evident that the orthogonal bifactor
Rasch model is a special case of the CORB model. Specifically, constraining all off-diagonal elements in
Equation 10 to zero results in the matrix form given in Equation 11.

2.2. Distinction 2: the structure of test dimensionality

The orthogonal bifactor Rasch model (Wang & Wilson, 2005), when specified for the structure of test
dimensionality similar to Figure 1, can be expressed in scalar notation as follows’:

P(Xi=1]0) o< exp (g +6;, - &), (12)

where P (X; = 1|0) is the probability of a response of 1 to item i, given the vector-valued latent variable
0 of dimensionality D,

8¢ is the value of the general factor,

0, is the value of the specific factor d (d = 1,...,D;s, where D; is the number of specific factors, so that
D = D; +1 due to the general factor), and

&; is the difficulty of item .

We refer to test dimensionality structures similar to Figure 1 as “clear bifactor structures™ no items
load solely on the general factor without also loading on specific factors, and no specific factors share
any items. Jennrich and Bentler (2012) describe such bifactor structures as “perfect cluster structures,”
referring to item clustering logic.

The CORB model is not identified for all such clear bifactor structures. However, the CORB model
becomes identifiable when the test dimensionality structure resembles the one shown in Figure 2—that
is, when there is at least one item that loads on the general factor but not on any specific factor.

3For simplicity, from this point forward, the model equations will be expressed in terms of proportionality functions to
avoid specifying the full model denominator as in Equation 1.
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To define the test dimensionality structure for a case like Figure 2, researchers must identify two sets
of items: G—the set of items (consisting of at least one item) that loads only on the general factor and not
on any specific factor, and T—the set of items that load on both the general factor and one specific factor.

The complete scalar formulation of this model is as follows:

S exp (0 +6,,—&), if ieT,
p(x,_1|e)o<{ (B 6. i .

For the structure shown in Figure 2, T = {2,3,4,5,6,7,8,9,10}, representing items that load on both
the general and specific factors, and G = {1}, representing the item that loads solely on the general factor.
We call CORB models with such structures “G-structures.”

The implementation of the Volodin-Adams procedure, analogous to the outline provided for
Equations 3-9, is illustrated below for the G-structure depicted in Figure 2. This implementation
demonstrates that the procedure enables the construction of Ar, where the corresponding E matrix
has a non-zero determinant, thereby satisfying Equation 2.

1
]
1
Il

1 0,0 0,0 0 0,0 0 0 1 0 0 O
o 110 O0r0o O 010 0 O 1 1 0 O
’6767717707:707707707‘%77676’ 1 1 0 0
o 0,0 1,0 O O;0 O O 1 1 0 O

A:’6767707707:717707707:767676’ Bzfifﬁfifﬁf
0 0,0 0,0 1 0,0 0 0 [ 1 01 0
o 00 0ro O 110 0 O 1 0 1 O
’6767707707:707707707‘%77676’ 1 0 0 1
O 0,0 0,0 O O:0 1 O 1 0 0 1
[0 0'0 0'0 0 0'0 O 1 | [ 1 0 0 1 ]

[ 1 , 0,0 0,0 0]
-1 0 10 010 0
77077‘717‘T707767:7677077
0 -1, 0 0 0 0
0o '"o "1 0'o0 0
A=l o 'o o 1o o [frTS
0O "0 1-1 -110 0
77077‘707T7077(7)7:71777077
0O 00 010 1
o000 0 '-1 -1 |
2 1 0 0
2 2 0 0
det(E)—det3 0 3 0 =18+0.
3 0 0 3
[ 1 , 0,0 0,0 O0]1 0 0 0]
-1 0 10 010 0 1 1 0 O
77077‘717‘r7()7767}76770747717676’
0O -1,0 0. 0 0 1 1 0 0
| | |
rank[Ag|B] = rank 8 : g : (1) (1) : 8 8 i 8 1 8 =10=D+Pr=K-1I.
0O 101 -1 -110 0 1 0 1 0
WofT707T707767:7177707“1767671’
0 0 0 0.1 0 1 1 0 0 1
| 0o'0 "0 0 '-1 -1|1 0 0 1 |
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Specific
factor 1

Specific
factor 2

Specific
factor 3

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9

General
factor

Figure 3. A bifactor structure for identifying the CORB model. No single item loads solely on the general factor, but at least one item
is shared between each pair of specific factors (i.e., item 1 for specific factors 1 and 3, item 4 for specific factors 1 and 2, and item 7 for
specific factors 2 and 3). Factor covariances are non-zero but are not depicted in the figure.

The intuitive explanation for this logic can be drawn from the work of Zhang, Luo, Zhang, et al.
(2023). They demonstrated that the identification of partially oblique bifactor factor-analytical models
hinges on the factor loadings matrix. In Rasch modeling, however, all discrimination parameters are
constrained to unity. Now, consider a “clear,;” completely oblique bifactor structure. As shown earlier
(Equations 3-9), such a Rasch bifactor model is not identifiable. However, adding a “construct item”
(from the G set) to this bifactor structure increases the number of observed variables without increasing
the number of estimated factor loadings. This adjustment renders the model identifiable.

That said, the G-structure requires at least one item that loads solely on the general factor, effectively
defining it. Eid et al. (2017) refer to such items as “reference indicators,” as all other indicators’
parameters are estimated relative to this reference. Including general construct items, however, may
be impractical when the test is purely composite and comprises distinct components. While Eid et al.
(2017) emphasize the necessity of such items and Zhang, Luo, Zhang, et al. (2023) provide detailed
guidance on selecting them (including real-world examples, which interested readers may consult in
their work). Overall, however, this requirement poses a challenge for test developers and item writers.

Fortunately, an alternative test dimensionality structure can identify the CORB model, as shown in
Figure 3. This structure requires that every pair of dimensions share at least one item.

To specify the structure of test dimensionality for a case similar to Figure 3, one must define two sets
of items: S—the set of items that load on two specific factors, and T—the set of items that load on one
specific factor.

The complete scalar formulation of this model is given as

exp(6,+0s,-&),ifieT,

P(Xi=1]6) o< exp (6, +65, +6,, ~&), if ieSusy.

(14)

For the structure depicted in Figure 3: T = {2,3,5,6,8,9}, representing items that load on the general
factor and one specific factor, and S = {1,4,7}, representing items that load on the general factor and
two specific factors. We call CORB models with such structures “S-structures”
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The calculations below illustrate the implementation of the Volodin and Adams procedure for the
test dimensionality structure shown in Figure 3:

1 0,0 0,0 0,0 0 0 1 1 0 1
0 110 010 010 0 O 1 1 0 0
0 071 0,0 0,0 0 0 11 0 0
0 010 110 010 0 0 1 1 1 0

A= 0 070 O]1 0;0 0 O [B=|1 0 I 0
0 0:/0 0/0 110 0 O 1 0 1 0
0 070 070 01 0 0 1 0 1 1
o 0,0 0,0 O,0 1 O 1 0 0 1
[ 0 0'0 0'0 0'0 O 1 | [ 1 0 0 1 |

[ 1, 0,0 ,0 0 ]
-1 01010 0
"o 1 o0 o
0O 1 =11 010 0
Ag=[ 0 70 [ 1,0 0 [P=5
0O 1 0 +-110 0
0700 1 0
0 0,0 ,0 1
[ 07070 -1 -1 ]
2 2 0 1
2 2 1 0
det (E) = det 5 0 2 0 =4+0.
30 1 3
[ 1 ,0,0,0 O01]1 1 0 1]
-1 01010 0|1 1 0 0
"o 717070 "o [110 0
0O r-110 10 0 1 1 1 0
rank[Ag|B]=rank| 0 | 0 [ 1 [ 0 0 [1 0 1 0 [=9=D+Pr=K-I
010 -110 0|1 0 1 0
o0 0701 o1l 0 1 1
o ,0, 0,0 1 1 0 0 1
[ 0o'0 "0 '-1 1|1 0 0 1 |

To intuitively understand why the S-structure allows for CORB model identification, we turn to the
geometric interpretation of the multidimensional Item Characteristic Surface (ICS; Ackerman, 1994;
Reckase & McKinley, 1991). In this framework, the shape of the multidimensional ICS is determined by
two key factors: (1) the angle between the latent dimensions (represented as the arccosine of the Pearson
correlation between the factors) measured by the items with within-item multidimensionality, and (2)
the discrimination parameters of these items on the respective factors.

In Rasch models, however, the discrimination parameters are constrained to unity. As a result, the
structure of item response variance in the shared items directly defines the correlations between the
latent factors, since the discriminations cannot vary freely. This fixed discrimination ensures that shared
items play a critical role in establishing the relationships among the latent dimensions, making the
S-structure effective for CORB model identification.

When a test consists of multiple content areas, the S-structure of test dimensionality may offer a
more practical approach to CORB model identification. To specify this structure, a test developer can
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enhance the existing test by adding new items that combine, in a compensatory manner, pairs of specific
factors. Alternatively, Bifactor Exploratory Structural Equation Modeling (Morin et al., 2016) can aid in
identifying items suitable for inclusion in the S set. Such items should exhibit significant and relatively
similar factor loadings to the “main” items associated with the specific factors. This approach is often
more feasible than creating “construct items” to define the general factor, which can be challenging in
most testing contexts.

It is crucial to note that not all items are suitable to serve as “construct items” in G-structures or
“shared items” in S-structures. A defining feature of Rasch modeling is that all items with the same
dimensionality structure share the same discrimination parameters. This concept, when related to the
logic of factor analysis, implies that all items with the same dimensionality structure allocate the same
proportions of response variance to the different latent factors.

For example, if a “shared item” in an S-structure has a distribution of response variance across
latent factors that does not align with the variance-covariance structure of other items loading on these
factors, it is likely to be flagged as a misfitting item in item fit analyses. Similarly, “construct items” in
G-structures are subject to the same requirement. As a result, modifying the dimensionality structure
of existing test items or developing new tests identifying the CORB model remains a challenging task.

In both cases, deviations from the clear bifactor structure (Figure 1) are necessary to identify the
CORB model. However, it is important to note that the G-structure and S-structure do not exhaust the
possible dimensionality structures capable of identifying the CORB model. To determine whether
the CORB model is identifiable for a particular test structure, it is necessary to apply the Volodin-Adams
procedure.

Additionally, both the G-structure and S-structure also identify the orthogonal Rasch bifactor model.
This is because the orthogonal Rasch bifactor model is a special case of the more general CORB model,
which is identifiable under these structures. In such cases, instead of being defined solely by Equation 12,
the orthogonal Rasch bifactor model would also be described by Equations 13 or 14, depending on the
structure.

3. Other oblique bifactor models

3.1. The Extended Rasch Testlet model

The closest relative of the CORB model in the literature is the Extended Rasch Testlet model (ETM;
Paek et al,, 2009). The ETM allows for the estimation of non-zero correlations between the specific
factors and the general factor while maintaining orthogonality among the specific factors. The variance-
covariance matrix X of person parameters for the same number of dimensions as in Equations 10 and 11
is represented as follows:

var (60,) cov(0;,65,) cov(0,,6s,) cov(b,,6s)

_|cov(6s,6,)  var(6) 0 0 (15)
cov (6s,,6,) 0 var (6s,) 0
cov (0,,6,) 0 0 var (0s,)

The scalar specification of the ETM follows the same form as Equations 13 or 14. The only difference
between the CORB model and the ETM lies in their variance-covariance structures. Specifically, the
ETM is a special case of the CORB model: constraining all off-diagonal elements in Equation 10, except
for those corresponding to the covariances between the general factor and specific factors (i.e., the
first row and the first column), results in Equation 15. This implies that the same test dimensionality
structures that identify the CORB model also identify the ETM. Furthermore, in the original paper
(Paek et al., 2009), the G-structure of the ETM was used for model identification, corresponding to
Equation 13, as several “construct items” were included.

At the same time, the original orthogonal Rasch bifactor model (originally called the Rasch Testlet
Model or RTM; Wang & Wilson, 2005) is a special case of the ETM. Constraining all oft-diagonal
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elements in Equation 15 to zero results in Equation 11, which represents the variance-covariance matrix
of the RTM. Consequently, these models form a hierarchy of nested models, enabling their comparison
using a likelihood ratio test.

3.2. The Subdimensional family of models

The GSM (Brandt, Duckor, 2013) and the Subdimensional Rasch Model (SRM; Brandt, 2008) allow
for the estimation of correlations between specific factors while maintaining orthogonality between the
specific factors and the general factor. To achieve this, these models require the exclusion of one specific
factor from estimation:

var (0;) 0 0 NA

B 0 var (0s,) cov(0s,,0,) NA
z= 0 cov(0s,0s,)  var(6s,) NA| (16)

NA NA NA NA

In this setup, the last specific factor in Equation 16 is defined as the negative sum of all remaining
specific factors. This constraint necessitates a modification of the scoring matrix B, as shown in
Equation 17. Below is an example of the scoring matrix B for a clear bifactor structure (Figure 1):

(11 0 7
1 1 0
11 0
1 0 1
B=|'1 0 1 (17)
1 0 1
1 -1 -1
1 -1 -1
[ 1 -1 -1 ]

Comparing Equation 17 with Equation 4 shows that this modification of the scoring matrix B makes
the GSM not a special case of the CORB model, as it does not simply constrain some parameters to zero.

Due to the exclusion of a specific factor, it is necessary to recalibrate the GSM with alternative
reparameterizations at least three times to obtain the complete variance-covariance matrix of the
specific factors (i.e., GSM and SRM require D; > 3). This process involves:

(1) Excluding the last specific factor (sp,) to recover all covariances between specific except those
involving last specific factor (sp,), as described by Equations 16 and 17.

(2) Excluding the second to last specific factor (sp.—1) to recover all covariances involving the last
specific factor (sp,), except for the covariance between specific factors sp, and sp,—;. This step results in

var (6,) 0 NA 0
5 0 var (6s,) NA  cov(6,,0;) (18)
NA NA NA NA ’
0 cov(0s,0;,) NA var (0s,)
[ 1 1 0 7
1 1 0
11 0
1 -1 -1
B=|1 -1 -1 |, (19)
1 -1 -1
1 0 1
1 0 1
| 1 0 1 ]
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(3) Excluding the third to last specific factor (sp,—») to recover the covariance of the specific factors
sp, and sp,—1. This step results in

var(6;) NA 0 0
NA NA NA NA
Y= 0 NA var (6s,) cov (0s,,05,) |’ (20)

0 NA  cov(6,0s,) var (0s,)

T 1 -1 -1 7
1 -1 -1
1 -1 -1
1 1 0
B=|1 1 0 (21)
1 1 0
1 0 1
1 0 1
1 0 1 |

These different reparameterizations describe the same latent space of person parameters, differing
only in which parameters are directly estimated. This is possible because all reparameterizations satisfy
the constraint Z?;l 0;, = 0 for every respondent. The choice of which factor to exclude is arbitrary and
does not affect model fit. This can also be verified using the Volodin-Adams procedure across different
reparameterizations.

Equation 22 applies to all reparameterizations since they differ only in the scoring matrix B:

T 1, 0,0 0 0 0 7
-1 0010 0 0 0
’7077717‘*70”6”6”0”
01 =110 0 0 0
Ar = ’7077707‘*71”6”6”0” ,Pr=6. (22)
0010 1 0 0
0 } 0 } 0 0 1 0
0,0 ,0 0 0 1
[ 0’0 '-1 -1 -1 -1 |

Equations 23-25 demonstrate that the determinants of the E matrices are non-zero when the
partitioning specified in Equation 22 is applied to Equations 17, 19, and 21:

2 2 0

det(E)=det|2 1 1 [=18=%0, (23)
5 -3 -1
2 2 0

det(E)=det[2 0 -1|=-18%0, (24)
5 =2 1
2 -2 =2

det(E)=det|2 0 -1|=18=%0. (25)
5 2 3

The absolute values of all determinants are identical, indicating that not only does Ar fully specify
the model represented by A, but also that the same partitioning of the A matrix across different
parameterizations of the same GSM model results in the same latent person parameter space. This
property arises from the nature of the E matrix, which moderates the scaling and rotation of the
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constants vector c. Equation 26 confirms that all reparameterizations of the GSM model are identifiable.

1 ,0,0 0 O O0/|1 1 0
—14 040 0 0 0|1 1 0
0o ,1,0 0 0 0|1 1 0
0 1-110 0 0 0|1 0 1
rank[Ag|B]=rank| "0 70 |1 0 0 0 |1 0 1
0O 10 10 1 0 0 1 0 1
0 } 0 } 0o 0 1 o0 |1 -1 -1
0O, 0,0 0 0 1 1 -1 -1
[ 0'0'-1 -1 -1 -1]|1 -1 -1
-1 ,0,0 0 0 O01]1 1 0 T
-1170 10 0 0 0|1 1 o0
07170 0 o o110
0 1-110 0 0 O0 |1 -1 -1
=rank|" 0 701 0 0 0|1 -1 -1
01010 1 0 011 -1 -1
0 } 0 } 0 0 1 01 o0 1
0 ,0,0 O 0 1|1 o0 1
[ 0 ' 0 '-1 -1 -1 -1|1 0 1 |
1,0 ,0 0 0 O0]1 -1 -117
117010 0 0 0|1 -1 -1
"o 7170 "0 o o1 A A1
0 1-110 0 0 0|1 1 o0
=rank| 0 ] 0 [ 1 0 0 0|1 1 0 [=9=D+Pr=K-1. (26)
01010 1 0 0|1 1 0
0 } 0 } 0 0 1 0|1 o0 1
0 ,0,0 O o0 1|1 0 1
L 0’0 '-1 -1 -1 -1|1 0 1 |

Moreover, empirical comparisons of parameters estimated multiple times across different reparam-
eterizations demonstrate that they converge to the same values (Federiakin, 2020).

From the model definitions described above, it follows that calibrating the GSM to study the
variance-covariance matrix becomes meaningless when the number of specific factors is two. In such
cases, one of the two specific factors will always be excluded from calibration under any parameteriza-
tion, and their correlation will necessarily be constrained to —1, since the sum of the specific factors is
fixed to zero for every respondent.

Unlike the ETM and the CORB model, the GSM can be identified in cases of clear bifactor structures.
The GSM follows the scalar form:

P(Xi=1]0) o< exp (ka(0g +65,) = &), @7)
or equivalently:
P(X; = 110) o exp (ka (6 + 6, — &)). 28)

The parameter k, distinguishes the GSM from the SRM (which follows Equation 12) and highlights
that the GSM is not a special case of the CORB model. The parameter k; is essential for addressing
an implicit assumption in the SRM, which assumes equality of variances across all specific factors.
Consequently, the GSM requires an additional constraint of Z,I;i L k4* = D;. The notation in Equation 27
was initially proposed by Brandt and Duckor (2013), while the notation in Equation 28 was introduced
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later by Robitzsch et al. (2025, p. 145) for simplicity in estimation. It is important to note, however, that
these two notations are equivalent and both align with the Rasch modeling paradigm.

Additionally, the GSM differs from the ETM and the CORB model in its interpretation of the latent
parameter space. In the GSM, the specific factors are orthogonal to the general factor, and their sum is
constrained to zero. As a result, the GSM models the relationships among the components within the
general factor (see Brandt, 2017, for the algebraic formalization). The construct components themselves,
under this unidimensional interpretation, are represented as the sums of the corresponding specific
factors and the general factor. In contrast, the ETM and, by extension, the CORB model describe
components that are additional to the general factor. In this sense, the GSM is conceptually closer
to a unidimensional model, while the ETM and CORB models are “more multidimensional” in their
interpretation.

Consequently, the GSM does not belong to the model hierarchy of RT-ETM-CORB. Comparisons
between the GSM and these models can only be conducted using information criteria such as AIC
(Akaike, 1974) and BIC (Schwarz, 1978). These criteria penalize model fit for additional parameters
(AIC) and adjust for sample size (BIC).

3.3. Other possibilities for oblique bifactor modeling

It is important to note that the models discussed so far do not represent the full range of oblique bifactor
models. Exploratory bifactor factor analysis offers additional oblique bifactor solutions. For example,
Jennrich and Bentler (2012) proposed two criteria for bifactor rotation of the factor loading matrix.
However, their approach has an approximating nature and comes with additional requirements.

First, their method constrains the specific factors to be orthogonal to the general factor, making
its interpretation the reverse of the ETM. Second, their approach is not identified in clear bifactor
cases. When the data structure is truly bifactor, Jennrich and Bentler’s criteria fail to provide a
unique factor solution. Finally, this approach belongs to the exploratory data analysis paradigm, which
poses challenges for its application in hypothesis testing, modeling growth and change, or conducting
measurement invariance analysis. As a result, the practical application of these models in testing
scenarios remains limited.

Lorenzo-Seva and Ferrando (2019) proposed a somewhat similar logic for partially oblique
exploratory bifactor modeling. Their approach involves a sequence of rotation steps designed to build
upon one another, stabilizing the results of their procedure.

Partially oblique confirmatory bifactor models have recently gained attention in the field of factor
analysis. Fang et al. (2021) demonstrated that, within the covariance structure model (applicable to both
identity and probit link functions), it is not analytically necessary for bifactor models to have orthogonal
specific factors if the factor loading matrix satisfies certain conditions of linear independence. A key
condition for their identification is the linear independence of columns in the submatrices of the factor
loadings matrix. Specifically, if the submatrices corresponding to the specific factors have a column rank
of at least 2, models with correlated specific factors can be identified (for details, see Fang et al., 2021).

In their work, Fang et al. (2021) adapted the general results of Anderson and Rubin (1956) and the
conclusions of Grayson and Marsh (1994) for Multitrait-Multimethod (MTMM) models to bifactor
models. However, more recently, Zhang, Luo, Zhang, et al. (2023) revealed that these models are
highly numerically unstable in practice, highlighting the need for more rigorous investigation into their
empirical identifiability and cautioning against their unchecked use. Interestingly, Zhang et al. (2021)
and Zhang, Luo, Zhang, et al. (2023) also proposed a model augmentation approach equivalent to the
G-structures of test dimensionality described in this article. They demonstrated that this approach
stabilizes estimation algorithms and resolves many convergence issues in the case of freely estimated
factor loadings. Notably, these suggestions follow the structure of partially oblique bifactor models—
specifically Bifactor-(S-1) and Bifactor-(S*I-1) models with correlated specific factors (Eid et al., 2017)—
which have been critically discussed by Koch and Eid (2024).
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In the context of this article, these findings suggest that while there are structural parallels between
factor analysis and logistic IRT, the identification strategies can differ significantly (Bee et al., 2023). Fur-
ther exploration of these differences and their implications for model stability and practical application
remains a promising area for future research.

Opverall, the Bifactor-(S-1) and Bifactor-(S*I-1) models (Eid et al., 2017), the augmentation approach
by Zhang et al. (2021) and Zhang, Luo, Zhang, et al. (2023), and G-structures all fit within a common
structural framework. However, by fixing factor loadings to known values, researchers are able to esti-
mate correlations among all latent factors. Crucially, this alters the interpretation of these correlations.
In traditional partially oblique bifactor models (such as Bifactor-(S-1) or Bifactor-(SI-1)), correlations
between specific factors are partial correlations—conditional on the general factor—similar to the
correlations between general and specific factors in the ETM model. In contrast, in the CORB model the
latent dimensions are not treated as residuals; they are not conditioned on one another. As a result, their
variances are not strictly separated, allowing for a more holistic interpretation of the latent structure.

Additionally, the literature describes other CORBs that impose specific constraints on the variance-
covariance matrix of person parameters. For example, Robitzsch et al. (2025) introduce models with
a zero constraint on the sum of covariances across all dimensions (Robitzsch et al., 2025, p. 143), or a
zero constraint on the sum of variances and covariances of all dimensions (Robitzsch et al., 2025, pp.
143-144). These models appear to be identifiable under clear bifactor structures, though this conclusion
does not directly follow from the Volodin-Adams procedure.

This suggests that certain constraints on the variance-covariance matrix can render analytically
unidentified multidimensional Rasch models empirically identifiable. Consequently, some special cases
of the CORB model—such as the ETM—may also be empirically identified under clear bifactor
structures.

In contrast, the G-structures and S-structures of test dimensionality described in this paper provide
analytical (in this context—definitive) identification for the CORB model and all its special cases, includ-
ing the ETM. However, the models introduced by Robitzsch et al. (2025) have only been described in the
software literature and have not yet been thoroughly studied. Moreover, their practical interpretation
remains unclear, as it is nearly impossible to align such constraints with realistic expectations from the
data or the structure of the construct being measured.

Finally, a wide range of longitudinal and MTMM models are relevant to this type of bifactor mod-
eling. Specifically, within the longitudinal framework, derivations of Joreskog’s (1970) simplex model
(Wilson et al., 2012) can be viewed as nested bifactor models with G-structures. These models produce
latent estimates of difference scores that reflect changes in ability across measurement occasions. This
is conceptually similar to bifactor models in which specific factor estimates represent the difference
between the general ability and the ability required to solve the items associated with a given specific
factor.

While longitudinal models can estimate the full correlation matrix of latent dimensions—thanks to
constraints placed on the factor loadings of anchor items (Duncan & Duncan, 2004)—the reliability
of the resulting difference scores has been a longstanding concern (e.g., Cronbach & Furby, 1970).
Although the debate on the reliability of factor scores continues (see Trafimow, 2015), we explore this
issue in the context of the CORB model through our simulation study.

Several special cases of MTMM models are also highly relevant to partially oblique bifactor models.
In particular, some MTMM models adopt a latent difference score approach by imposing constraints
on factor loadings (e.g., Pohl et al., 2008). Other models have modified these constraints so that specific
factors do not reflect the difference between two abilities but rather the deviation from a person-specific
average across all specific abilities—resulting in latent mean models (e.g., Pohl & Steyer, 2010).

More broadly, a growing body of research is investigating the conditions under which correlation
matrices in these models are identifiable (see Bee et al., 2023, for a recent review). These modeling
approaches have been extended to a variety of applications, ranging from survey validation to rater
assessments (Eid et al., 2024), and now represent one of the most prominent and rapidly evolving areas
in psychometrics.
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4. The simulation study
4.1. Design

We conducted a simulation study to examine the recovery of model parameters by the CORB model
and compare it to existing partially oblique bifactor models. For simplicity in comparing model fits,
the simulations utilized only the G-structure of test dimensionality. The study addressed three Research
Questions related to parameter recovery:

RQ1: How does the number of “construct items” affect parameter recovery?

RQ2: How does the number of specific factors affect parameter recovery?

RQ3: How does the number of items per specific factor affect parameter recovery?

To address the research questions:

1. For RQ1, we varied the number of construct items from 1 to 2 to 3, while keeping the number of
items per specific factor and the number of specific factors constant (5 and 3, respectively).

2. For RQ2, we varied the number of specific factors from 3 to 4 to 5, while keeping the number of
items per specific factor and the number of construct items constant (3 and 1, respectively).

3. For RQ3, we varied the number of items per specific factor from 3 to 5 to 7, while keeping the
number of specific factors and the number of construct items constant (5 and 3, respectively).

Overall, we designed 9 simulation conditions, with 100 replications for each condition. In each
replication, we calibrated the CORB model, the ETM, three reparameterizations of the GSM (averaging
the results across them), and the orthogonal RTM, all using the same test dimensionality structures for
comparison.

In the replications of these conditions, we randomly varied the variance—covariance matrices of the
latent person parameter space, ensuring they were positive-definite. The variances ranged from 0.3 to
4 logits, with all dimensions (including the general factor) being oblique, reflecting a realistic setup.
Across all simulations, the sample size was fixed at 2,000, and the item difficulties were spaced equally
from -2 to 2 logits. Items were assigned alternating loads on specific factors, though the number of
items varied.

To compare the simulation results, we utilized the following metrics:

« AIC and BIC indices: To assess model fit while accounting for parameter complexity and sample
size.

o Pearson correlation: Between Expected a Posteriori (EAP; Bock & Mislevy, 1982) ability estimates
and their true values.

o EAP reliabilities: To assess the consistency of EAP estimates (Adams, 2005).

« Root Mean Squared Error (RMSE) of the factor correlation matrix was estimated as the Root Mean
Squared Frobenius norm of the difference matrix between estimated and true covariance matrices
across all replications, providing inherent normalization to its values and robustness to the varying

covariance scale:
RMSE < ° ‘ S ”fr_ErH;
R b

where HZ, -X, || F is the Frobenius norm of the difference matrix between the true covariance matrix X,

in replication r and the estimated covariance matrix Z,,
R is the total number of replications.

« Bias in the variance estimates:

z =
Bias:—zrzlgr (r,
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where (; is a true value of the parameter in the replication 7, {, is an estimate of the parameter in the
replication r.

Since RMSE was essentially estimated in the correlation matrix, it does not account for potential
biases in the variance estimates of latent dimensions. Bias in the variances was used to account for this
limitation. It allows us to evaluate the general tendency of a model to overestimate or underestimate the
variances of latent dimensions, as well as the expected magnitude of this over- or underestimation.

First, we expect the CORB model to yield the most accurate parameter estimates compared to other
partially oblique bifactor models, since it was used as the data-generating model and reflects the most
realistic assumptions about the construct structure. Specifically, we anticipate that the CORB model will
recover the most accurate correlation estimates. Also, we expect the CORB model to demonstrate the
best global model-data fit across all conditions.

Second, we expect that the number of specific factors and the number of construct items will have the
greatest impact on model fit, as these elements directly influence the dimensionality of the test structure.
Therefore, in RQs 1 and 2, we expect the CORB model to outperform the other oblique bifactor models
most significantly.

Third, we expect the CORB model to achieve the highest EAP reliabilities of test scores. This is
because EAP estimation can incorporate information from the variance-covariance matrix of the
dimensions, allowing scores in the oblique multidimensional model to “reinforce” one another in
proportion to their correlations (de la Torre & Patz, 2005).

For the simulations we used TAM package v. 3.7-16 for R software (Robitzsch et al., 2021).

4.2. Results

4.2.1. RQI: how does the number of “construct items” affect parameter recovery?

The ETM failed to converge in 23% of cases when there was 1 construct item, 19% of cases with 2
construct items, and 22% of cases with 3 construct items. These results suggest that the number of
construct items does not significantly impact the ETM’s convergence behavior. In contrast, all other
models converged 100% of the time, regardless of the number of construct items. This indicates potential
distortions in the person parameter space during estimation, rendering the ETM difficult or impossible
to estimate consistently (Table 1).

In general, the results indicate that the CORB model outperforms other partially oblique bifactor
models in terms of the correlation of parameter estimates with their true values and global model fit.
Across all simulation conditions, the CORB model consistently provides better parameter recovery.
Interestingly, however, the reliability of the general factor in the CORB model is lower than that of
the GSM. This aligns with the fact that the GSM primarily focuses on a unidimensional interpretation
of the test, thereby forcing more information from item scores into the general factor.

Similarly, the general factor reliability in the ETM is higher than in the CORB model for a related
reason: the ETM’s orthogonality assumption between specific factors enhances the general factor’s
reliability while weakening the specific factor reliability compared to the CORB model. As expected,
the worst performance overall is observed for the completely orthogonal bifactor model, both in terms
of reliability and model fit.

When comparing the RMSE of the correlation matrix, the results align with expectations for the
RTM, the ETM, and the CORB model: the more general the model, the better it recovers correlations.
However, the GSM exhibits a surprising result. Despite fitting better than the ETM according to
AIC and BIC, the GSM produces a latent space of person dimensions that deviates the most from
the data-generating space. This outcome reflects the GSM’s modeling approach, which constrains the
components of the construct to lie within the general factor rather than treating them as additional
to it.

Interestingly, the RTM, the ETM, and the GSM show minimal systematic bias in variance estimates
(relative to the standard deviation of this bias). In contrast, the CORB model tends to slightly underes-
timate the variances of both the general and specific factors, particularly when the test includes only 1
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Table 1. Comparison of the bifactor models of interest for the first research question of the simulation study

Statistics Number of construct items Model
RT ETM GSM CORB
1 0.754 0.758 0.771 0.813
(0.145) (0.153) (0.137) (0.104)
Average correlation of the
general factor EAP point 5 0.776 0.788 0.787 0.827
estimates with their true values (0.145) (0.131) (0.139) (0.099)
50 B 0.806 0.832 0.803 0.848
(0.135) (0.099) (0.154) (0.087)
1 0.591 0.607 0.542 0.705
(0.164) (0.176) (0.196) (0.137)
Average correlation of specific (0.150) (0.154) (0.187) (0.120)
factors EAP point-estimates with 2
their true values (SD) 0.607 0.636 0.563 0.725
B 0.605 0.637 0.553 0.733
(0.152) (0.146) (0.199) (0.101)
) 0.615 0.696 0.789 0.698
(0.211) (0.140) (0.102) (0.129)
Average EAP reliability of the 5 0.625 0.725 0.783 0.695
general factor (SD) (0.215) (0.130) (0.122) (0.148)
: 0.660 0.750 0.789 0.721
(0.206) (0.130) (0.132) (0.139)
1 0.401 0.472 0.502 0.531
(0.178) (0.158) (0.141) (0.143)
Average EAP reliability of the 5 0.414 0.479 0.511 0.544
specific factors (SD) (0.163) (0.147) (0.136) (0.129)
B 0.411 0.475 0.493 0.539
(0.168) (0.142) (0.152) (0.128)
! 32538.81 32298.78 32264.23 32209.76
(1257.91)  (1275.37)  (1245.66)  (1252.28)
Average AIC (SD) 5 34178.04 33869.69 33878.67 33779.92
(1429.97)  (1351.05)  (1355.31)  (1356.78)
. 36444.85 36133.05 36153.31 36002.29
(1679.01)  (1617.01)  (1627.57)  (1619.58)
) 32650.83 32427.60 32387.45 32355.39
(1257.91)  (1275.37)  (1245.66)  (1252.28)
Average BIC (SD) 5 34295.66 34004.11 34007.49 33931.14
(1429.97)  (1351.05)  (1355.31)  (1356.78)
. 36568.07 36273.07 36287.74 36159.12
(1679.01)  (1617.01)  (1627.57)  (1619.58)
(Continued)
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Table 1. (Continued)

Statistics Number of construct items Model
RT ETM GSM CORB
) 0.377 0.303 0.445 0.154
(0.080) (0.112) (0.110) (0.081)
Average RMSE of correlation > 0.379 0.293 0.435 0.121
matrix (SD) (0.089) (0.115) (0.168) (0.056)
g 0.390 0.297 0.430 0.092
(0.090) (0.104) (0.138) (0.049)
) —0.043 0.062 0.658 —0.138
(1.170) (0.755) (1.138) (0.526)
Average bias of the general 2 —0.030 0.085 0.518 —0.093
factor variance (SD) (1.094) (0.588) (1.078) (0.390)
g —0.120 —0.017 0.339 —0.030
(1.008) (0.531) (0.979) (0.283)
) —0.170 —0.169 -0.614 —0.166
(1.234) (1.124) (1.210) (0.463)
Average bias of the specific 2 —0.202 —0.224 —0.603 —0.104
factor variances (SD) (1.083) (1.042) (1.403) (0.325)
g -0.224 —0.260 —0.546 —0.030

(0.890) (0.862) (1.540) (0.281)

construct item. Nevertheless, the CORB model demonstrates superior stability in terms of the bias-
variance trade-off compared to other models.

Regarding RQ1, increasing the number of construct items improves the performance of all models.
This global improvement can likely be attributed to test length—a well-established factor in improving
the precision of parameter estimates, as longer tests provide more data upon which parameter estimates
are based.

4.2.2. RQ2: how does the number of specific factors affect parameter recovery?

The ETM failed to converge in 8% of cases for 3 specific factors, 20% of cases for 4 specific factors, and
32% of cases for 5 specific factors. Unlike the results in the previous simulation (RQ1), this suggests
that the ETM’s convergence is influenced by the complexity of the latent person parameter space, with
higher numbers of specific factors leading to greater convergence issues. In contrast, all other models
converged 100% of the time, regardless of the number of specific factors (Table 2).

In general, the results are consistent with the previous simulation and indicate that the CORB model
outperforms the other partially oblique bifactor models across all key statistics—from the correlation
between parameter estimates and their true values to global model fit (with the exception of the general
factor reliability in the GSM model). The insights from the previous simulation study are repeated
here: the GSM tends to recover the most reliable general factor scores, but this comes at the expense
of interpreting the specific factors.

The CORB model provides a balance between the reliability of the general factor and the specific
factors. It improves the reliability of the general factor compared to the traditional orthogonal bifactor
model while simultaneously recovering the most reliable scores for the specific factors. As expected,
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Table 2. Comparison of the bifactor models of interest for the second research question of the simulation study

Statistics Number of specific factors Model
RTM ETM GSM CORB
5 0.695 0.688 0.710 0.750
(0.194) (0.180) (0.186) (0.147)
Average correlation of the
general factor EAP point . 0.767 0.768 0.771 0.795
estimates with their true values (0.135) (0.143) (0.130) (0.115)
(50 0.790 0.779 0.796 0.814
° (0.131) (0.148) (0.130) (0.110)
. 0.524 0.532 0.504 0.643
(0.164) (0.200) (0.188) (0.144)
Average correlation of specific 0.383 0.385 0.527 0.472
factors EAP point-estimates with 4
their true values (SD) (0.328) (0.348) (0.172) (0.384)
5 0.304 0.324 0.558 0.375
(0.350) (0.349) (0.168) (0.425)
5 0.517 0.601 0.673 0.601
(0.239) (0.180) (0.157) (0.171)
Average EAP reliability of the a 0.626 0.694 0.747 0.690
general factor (SD) (0.186) (0.122) (0.114) (0.131)
5 0.650 0.685 0.767 0.713
(0.193) (0.162) (0.125) (0.147)
. 0.320 0.378 0.395 0.466
(0.151) (0.142) (0.132) (0.130)
Average EAP reliability of the a 0.321 0.377 0.412 0.461
specific factors (SD) (0.144) (0.138) (0.120) (0.123)
5 0.338 0.379 0.439 0.482
(0.146) (0.121) (0.119) (0.113)
. 20256.51 20150.09 20095.42 20059.69
(691.54) (671.80) (668.94) (670.87)
Average AIC (SD) a 26347.71 26166.26 26028.61 25997.71
(689.87) (654.67) (653.10) (651.39)
5 32190.70 32043.03 31744.09 31726.26
(1042.07)  (1068.81)  (986.44) (992.03)
5 20334.93 20245.30 20185.03 20171.71
(691.54) (671.80) (668.94) (670.87)
Average BIC (SD) a 26448.52 26289.48 26157.44 26154.53
(689.87) (654.67) (653.10) (651.39)
5 32313.92 32194.26 31917.72 31933.49

(1042.07)  (1068.81)  (986.44)  (992.03)

(Continued)

https://doi.org/10.1017/psy.2025.14 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.14

Psychometrika 1307

Table 2. (Continued)

Statistics Number of specific factors Model
RTM ETM GSM CORB
5 0.392 0.343 0.423 0.170
(0.075) (0.097) (0.134) (0.093)
Average RMSE of correlation A 0.364 0.315 0.380 0.169
matrix (SD) (0.071) (0.072) (0.134) (0.077)
e 0.339 0.295 0.322 0.158
(0.051) (0.052) (0.087) (0.055)
5 -0.073 0.082 0.503 -0.191
(1.046) (0.787) (1.055) (0.541)
Average bias of the general A 0.037 0.074 0.574 -0.078
factor variance (SD) (0.843) (0.623) (0.837) (0.450)
g 0.056 0.053 0.548 —0.130
(0.685) (0.452) (0.679) (0.400)
5 —-0.203 —-0.253 —-0.662 —0.186
(1.224) (1.245) (1.341) (0.548)
Average bias of the specific A -0.192 —0.374 -0.316 —0.151
factor variances (SD) (1.081) (1.023) (1.554) (0.529)
g —0.102 —0.285 —0.085 -0.071
(1.064) (0.945) (1.705) (0.524)

the CORB model recovers the correlation matrix more accurately than all other bifactor models and
remains significantly more stable in terms of variance estimates.

Interestingly, while increasing the number of specific factors reduces the underestimation of the
general factor variance on average, the CORB model’s recovery of the general factor variance, although
improved and more stable, does not surpass that of its special cases (such as the ETM or GSM). This
may indicate that the CORB model requires special convergence criteria or longer estimation times to
achieve better performance in complex test structures.

Regarding RQ?2, increasing the number of specific factors tends to improve overall model perfor-
mance for all models. However, as in RQ1, this improvement may primarily result from the increased
test length, which enhances parameter precision by providing more data for estimation.

4.2.3. RQ3: how does the number of items per specific factor affect parameter recovery?

The ETM failed to converge in 19% of cases with 3 items per specific factor, 41% of cases with 5 items
per specific factor, and 66% of cases with 7 items per specific factor. These results indicate that the
convergence of the ETM strongly depends on the length of the testlet, with longer testlets significantly
reducing its likelihood of convergence. In contrast, all other models converged 100% of the time,
regardless of the number of items per specific factor (Table 3).

In general, the results are consistent with the previous simulations and once again demonstrate that
the CORB model outperforms other partially oblique bifactor models across all simulation conditions
and key statistics (with the exception of the general factor reliability in the GSM model). While the
GSM model consistently yields the highest reliabilities, the CORB model produces the most accurate
parameter estimates, as evidenced by the lower average RMSE of the correlation matrix and, in this
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Table 3. Comparison of the bifactor models of interest for the third research question of the simulation study

Statistics Length of specific factors Model
RTM ETM GSM CORB
. 0.850 0.846 0.850 0.868
3items
(0.083) (0.084) (0.084) (0.071)
Average correlation of the
general factor EAP point ETT— 0.865 0.866 0.862 0.893
Zessti)mates with their true values (0.098) (0.126) (0.101) (0.064)
D
i 0.849 0.862 0.849 0.894
7 items
(0.133) (0.153) (0.132) (0.072)
i 0.307 0.332 0.546 0.384
3items
(0.361) (0.371) (0.179) (0.438)
Average correlation of specific ‘ 0.349 0.360 0.624 0.421
factors EAP point-estimates with 5items
their true values (SD) (0.411) (0.405) (0.159) (0.462)
i 0.383 0.401 0.673 0.454
7 items
(0.430) (0.417) (0.148) (0.479)
i 0.740 0.769 0.813 0.768
3items
(0.128) (0.090) (0.090) (0.095)
Average EAP reliability of the ETT— 0.774 0.804 0.863 0.803
general factor (SD) (0.118) (0.078) (0.066) (0.102)
i 0.771 0.820 0.879 0.815
7 items
(0.152) (0.096) (0.089) (0.106)
. 0.339 0.392 0.430 0.493
3items
(0.138) (0.118) (0.113) (0.109)
Average EAP reliability of the ETT— 0.432 0.471 0.547 0.569
specific factors (SD) (0.154) (0.133) (0.119) (0.114)
i 0.508 0.531 0.633 0.642
7 items
(0.163) (0.148) (0.116) (0.113)
i 36133.58 35988.58 35664.30 35568.71
3items
(1398.77) (1337.36) (1315.10) (1323.55)
i 55848.24 55656.65 55099.90 54986.73
Average AIC (SD) 5 items
(2064.83)  (2088.40)  (2016.15)  (1994.92)
i 74980.44 74311.80 73853.91 73716.20
7 items
(3645.04)  (3527.21)  (3575.12)  (3570.18)
i 36268.00 36151.01 35849.13 35787.14
3items
(1398.77) (1337.36) (1315.10) (1323.55)
i 56038.68 55875.08 55340.73 55261.18
Average BIC (SD) 5 items
(2064.83)  (2088.40)  (2016.15)  (1994.92)
i 75226.88 T74586.25 74150.75 T74046.65
7 items

(3645.04)  (3527.21)  (3575.12)  (3570.18)

(Continued)
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Table 3. (Continued)

Statistics Length of specific factors Model

RTM ETM GSM CORB
. 0.343 0.295 0.347 0.101

3items
(0.054) (0.055) (0.149) (0.040)
Average RMSE of correlation TS 0.339 0.277 0.311 0.093
matrix (SD) (0.051) (0.051) (0.084) (0.033)
X 0.344 0.281 0.319 0.089

7 items
(0.051) (0.053) (0.094) (0.042)
. 0.073 0.011 0.408 —0.077

3items
(0.649) (0.429) (0.661) (0.260)
Average bias of the general TS, 0 -0.052 0.387 —0.093
factor variance () (0.541)  (0332)  (0.541)  (0.254)
X 0.009 —0.079 0.457 —0.126

7 items
(0.672) (0.290) (0.735) (0.280)
. —0.204 —0.455 —0.276 0.025

3items
(1.002) (0.867) (1.780) (0.411)
Average bias of the specific TS, —0.155 -0.143 -0.153 -0.014
factor variances (SD) (0.723) (0.652) (1.618) (0.280)
X —0.189 —0.094 —0.094 —0.060

7 items
(0.787) (0.654) (2.431) (0.284)

case, also by the lower bias in variance estimates. Both increasing the number of “construct items” and
lengthening the specific factors positively impact parameter recovery across all models.

Notably, while the GSM model consistently recovers a latent space that is furthest from the data-
generating space, it paradoxically exhibits better model fit than the orthogonal bifactor model and the
ETM, though not better than the CORB model. This highlights a critical limitation: a naive comparison
of the GSM with other models based solely on global model fit indices (such as AIC and BIC) can
lead to substantial distortion in the interpretation of test scores. Such distortion undermines the
intended construct validity that test developers aim for when designing the test. Therefore, we strongly
recommend exercising caution when using the GSM model alongside the orthogonal bifactor model,
the ETM, and the CORB model, as the GSM is fundamentally different from these models. Crude
comparisons may result in significant validity threats.

Regarding RQ3, we can again conclude that, in general, the longer the test, the better the results,
across all models.

5. Areal data example
5.1. The test and the data

For the real data example, we used data from a low-stakes computerized assessment of reading literacy
in Russian called “START” This test is designed to measure first-graders’ reading literacy, defined as
their ability to: (1) recognize letters of the Russian alphabet, (2) read words aloud, (3) read a short story
aloud (“mechanical” reading), and (4) comprehend reading material (Ivanova & Kardanova-Biryukova,
2019). The assessment is conducted by teachers, who assist each student by opening the test in an
internet browser and determining whether the student’s responses to each item are correct. All teachers
follow standardized test administration guidelines provided by the test developers. The test consists of 35
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dichotomous items, divided into four subsections based on the construct definition: letter recognition
(9 items), reading words aloud (9 items), mechanical reading (3 items), reading comprehension
(14 items).

For the sake of illustration, we calibrated the models without using a specific factor for reading
comprehension. This approach forces the models to rely solely on the G-structure of the test dimension-
ality. Initially, this simplification was necessary to identify the CORB model and the ETM. To ensure
consistency in model comparison, we applied the same G-structure to the RTM and GSM models.
Consequently, all reading comprehension items were treated as “construct items” defining the general
factor across all models. For the GSM, this meant that the k; parameter was not estimated for the
“construct items,” constraining their discrimination to unity.

This G-structure aligns with the construct definition, as reading literacy is conceptualized as the
ability to comprehend texts. In this framework, the “lower-order” skills (letter recognition, word reading
aloud, and mechanical reading) are considered prerequisites for reading comprehension.

The data was collected in November 2020 from a region in the Russian Federation. The sample
includes 1,000 first-grade students, though it is not representative of the broader population.

5.2. Results

The results of the model comparison are presented in Table 4.
The correlation matrix from the ETM is presented in Table 5.
The gathered correlation matrix from the GSM is presented in Table 6.
The correlation matrix from the CORB model is presented in Table 7.

Table 4. The results of the model comparison of the real data

Statistics Model
RTM ETM GSM CORB
Variant 1 Variant 2 Variant 3
Deviance 20,667.8 20,413.2 21,394.5 21,392.9 21,388.2 20,320.7
Number of parameters 39 42 42 42 42 45
Sample size 1,000
AlC 20,745.8 20,497.2 21,478.5 21,476.9 21,472.2 20,410.7
BIC 20,937.2 20,703.3 21,684.6 21,683.0 21,678.3 20,631.5
Reliability General factor 0.920 0.922 0.942 0.942 0.943 0.914
Letter recognition 0.466 0.620 - 0.391 0.395 0.619
Reading of words 0.346 0.348 0.355 - 0.358 0.416
Mechanical reading 0.390 0.520 0.422 0.404 - 0.539
Variance General factor 8.740 9.207 10.019 9.878 10.160 9.199
Letter recognition 6.168 5.678 - 4.223 4.588 5.809
Reading of words 4.934 5.144 3.104 - 3.342 5.682
Mechanical reading 5.101 6.778 3.098 2.814 - 6.987
K4 Letter recognition - - 0.315 0.350 0.330 -
Reading of words - - 0.477 0.452 0.467 -
Mechanical reading - - 1.635 1.635 1.635 -

Note. The results of the GSM are presented for 3 reparameterizations of it.
Likelihood Ratio Test confirmed that ETM fits better than RTM (X2=254‘6, df = 3, p-value <0.001).

Likelihood Ratio Test confirmed that CORB model fits better than both RTM (X2=347.1, df = 6, p-value <0.001) and ETM (X2=92.5, df = 3, p-value

<0.001).
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Table 5. The correlation matrix from the ETM

General factor  Letter recognition Reading of words ~ Mechanical reading

General factor 1 -0.643 0.076 0.427
Letter recognition —-0.643 1 0 0
Reading of words 0.076 0 1 0
Mechanical reading 0.427 0 0 1

Table 6. The gathered correlation matrix from all three reparameterizations of the GSM

General factor  Letter recognition ~ Readingof words ~ Mechanical reading

General factor 1 0 0 0
Letter recognition 0 1 -0.579 —-0.439
Reading of words 0 —-0.579 1 —-0.021
Mechanical reading 0 —0.439 —-0.021 1

Table 7. The correlation matrix from the CORB model

General factor  Letter recognition Reading of words ~ Mechanical reading

General factor 1 -0.650 0.043 0.390
Letter recognition —0.650 1 0.280 0.011
Reading of words 0.043 0.280 1 0.579
Mechanical reading 0.390 0.011 0.579 1

5.3. Interpretation of results

The results from the real data application indicate that the CORB model fits the data better than other
oblique bifactor models and the orthogonal bifactor model, which is expected since the CORB model is
more general. However, the most significant distinction of the CORB model lies in its interpretability.
Unlike other bifactor models, the CORB model allows for the direct interpretation of specific factors
as “components” of general reading skills, as it permits these factors to correlate freely. In contrast, the
assumptions of complete or partial orthogonality in other bifactor models imply that the extracted factor
scores are abstract constructs, statistically “purified” from the influence of other factors.

The variances of all latent factors appear relatively high compared to similar studies. This can be
attributed to the high “guttmanization” of students’ response profiles (Maggino, 2014) and the data
collection conditions. Guttmanization likely results from the theoretical framework of the test, which
presupposes a hierarchical structure of behavior indicators. In such a framework, a student is unlikely
to answer a subsequent item correctly if they have already failed a preceding one. Additionally, on the
practical side, the teacher (acting as the proctor) may end the testing session prematurely when a student
begins to struggle, reinforcing the hierarchical nature of the responses. These factors likely increase item
discriminations, and as a result, constraining discriminations to unity leads to relatively high variance
estimates.

The estimates from different reparameterizations of the GSM exhibit some numerical fluctuations
but tend to converge toward consistent values (albeit slightly less consistently than in previous studies;
Federiakin, 2020).

One of the most challenging results to interpret is the occurrence of negative correlations in the
correlation matrices. For example, a naive interpretation of Tables 5 and 7 might suggest that students
who excel in letter recognition tend to struggle with reading comprehension, and vice versa. This
apparent paradox affects both the ETM and CORB models. In the GSM case, the negative correlations in
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Table 6 can be explained from a technical standpoint: since the sum of specific dimensions is constrained
to zero for each student, increasing one specific factor necessarily decreases the others, thereby inducing
negative correlations.

Although the paradox of negative correlations appears puzzling from a content perspective, it is a
well-documented phenomenon in within-item multidimensional models (van Rijn & Rijmen, 2012).
This effect is known as the “explaining away phenomenon,” extensively studied within the framework of
Bayesian reasoning and the causal interpretation of IRT models (Marsman et al., 2018). The principle
behind this phenomenon is that “the confirmation of one cause of an observed event reduces the
need to invoke alternative causes” (Wellman & Henrion, 1993, p. 287). In the context of within-item
multidimensional IRT models, this implies that when an item loads on two latent dimensions in a
compensatory manner, a student can succeed in answering the item through three possible scenarios:

1. Compensating for low ability on dimension 1 by having high ability on dimension 2.
2. Compensating low ability on dimension 2 by having high ability on dimension 1.
3. Having high ability on both dimensions.

However, scenario 3 is less likely, as it requires more conditions to be simultaneously satisfied.
Therefore, negative correlations between dimensions arise because scenarios 1 and 2 dominate in the
sample. Hooker and Finkelman (2010) proved this result for bifactor models that do not comply with the
Schmid and Leiman (1957) constraints. Later, van der Linden (2012) provided a rigorous generalization
of this result, while van Rijn and Rijmen (2012) graphically demonstrated it for all compensatory within-
item multidimensional models.

Consequently, the negative correlations observed in the ETM and CORB models do not imply
that students who are better at reading are worse at recognizing letters, or vice versa. Instead, these
negative correlations are statistical artifacts resulting from the conditioning of parameter estimates on
the distribution of student abilities. Therefore, this paradoxical outcome does not require extensive
content interpretation or explanations based on substantial issues with the construct.

Interestingly, in both the ETM and CORB models, the correlations of the three specific factors
with the general factor support the theoretical hierarchy of reading skills proposed by Ivanova and
Kardanova-Biryukova (2019). Specifically, the closer a specific factor is to reading comprehension
(which defines the general factor) in the theoretical hierarchy of skills, the stronger its correlation with
the general factor becomes. It is important to note that the hierarchy of skills in this context is defined
purely in terms of theoretical interpretation and does not impose structural constraints on the model
itself. That is, although students are theoretically expected to acquire skills in a sequential manner, the
model treats all skills as independent but correlated dimensions.

Asaresult, the closer two skills are in terms of cognitive content (e.g., letter recognition is cognitively
closer to word reading than to mechanical reading), the stronger their correlation becomes. This effect
may act as a counterbalance to the explaining-away phenomenon, driven by the similarity of the
cognitive content across latent dimensions.

6. Discussion

Bifactor models are prevalent in psychometric literature because they directly extract the general factor
from a truly composite test structure while accounting for local item dependence. However, they are
notoriously difficult to interpret, as their identification requires highly restrictive constraints on the
variance—covariance matrix. Specifically, the assumption of total orthogonality often results in models
where only the general factor is practically interpretable, while the specific factors are typically treated
as nuisance dimensions and ignored.

In response to these limitations, several partially oblique bifactor models have been proposed and
studied. Notably, the ETM allows for direct estimation of correlations between the general factor and
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specific factors while maintaining orthogonality among the specific factors. Another well-documented
model is the GSM, which allows correlations between specific factors but constrains them to be orthog-
onal to the general factor. However, the theoretical interpretations of these models vary considerably,
as different constraints on the variance-covariance matrix lead to different conceptualizations of the
construct being measured. Additionally, other bifactor models similar to the GSM—but without such
constraints—can apparently be identified if the factor loading matrix satisfies specific conditions.
Despite this, the interpretation and practical application of these models are often as complicated as
those of orthogonal bifactor models due to the complexity of their underlying assumptions.
The purpose of this article was twofold:

1. To introduce the CORB model, which enables the direct estimation of all correlations between
latent factors.
2. To describe the structures of test dimensionality that allow for the CORB model’s identification.

Through simulation studies and a real data example, we demonstrated that the CORB model
outperforms other bifactor models in terms of model fit and the recovery of factor correlations.
However, successful identification of the CORB model requires a specific test design structure. In this
article, we introduced and analyzed two such structures:

1. G-structure (Figure 2): This structure requires that the test contain at least one “construct item”
that loads solely on the general factor.

2. S-structure (Figure 3): This structure requires that no items load solely on the general factor, but
at least one item is shared between every pair of specific factors.

These test dimensionality structures allow for direct estimation of all correlations between specific
factors, simplifying the interpretation of the latent person parameter space. To analytically establish
the identification of the CORB model, we applied the Volodin-Adams procedure, which verifies the
identification of oblique Rasch models by examining the rank and structure of the design and scoring
matrices.

However, as a within-item multidimensional compensatory IRT model, the CORB model is sus-
ceptible to paradoxical results, where two latent factors that are theoretically expected to correlate
positively may instead be estimated as negatively correlated. For example, in the real data application,
the specific factor “Letters recognition” was negatively correlated with the general factor, interpreted
as reading comprehension. Nevertheless, such results are not truly paradoxical; they can be explained
by the “explaining away” phenomenon from the Bayesian reasoning paradigm. From this perspective,
these results are merely statistical artifacts that do not require extensive content interpretation.

Broadly, this aricle addresses the topic of bifactor model identification. Most researchers, particularly
applied researchers and test developers, tend to assume that bifactor models must be orthogonal.
In certain contexts, such as testlets and item bundles, this assumption is appropriate. Moreover,
orthogonality significantly accelerates parameter estimation, as it prevents these models from falling
victim to the “curse of dimensionality;” which exponentially increases computational complexity and
slows down numerical integration as the number of correlated latent dimensions grows (Rijmen, 2009).
In such cases, factors secondary to the researcher’s primary interest are often treated as nuisance
dimensions that explain common variance across items.

However, our work demonstrates that deliberate modifications to the structure of test dimensionality
can enable researchers to estimate all entries in the variance-covariance matrix of a bifactor model.
This approach allows for models that align more closely with theoretical assumptions about the
constructs structure, particularly when the construct is intentionally composite rather than being
artificially defined by the stimuli. Although such models are more computationally demanding and less
advantageous from a technical standpoint due to their vulnerability to the curse of dimensionality, they
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offer significant theoretical benefits. Specifically, they are more useful in cases where researchers seek to
explore the nuances of the construct structure (especially the correlation matrix of person dimensions)
or apply the model in predictive measurement contexts (Zhang et al., 2021; Zhang, Luo, Sun, et al,,
2023).

Furthermore, recent advances in parameterizing IRT (Converse, 2021) and factor-analytical models
(Urban & Bauer, 2021) as artificial neural networks may help mitigate these computational challenges.
Neural networks are far less susceptible—if not entirely immune—to the curse of dimensionality
(Cheridito et al., 2021). Therefore, parameterizing the CORB model as a neural network could poten-
tially eliminate computational inefficiencies, rendering computational time a negligible concern.

In the context of model identification, our article highlights that the conditions for identifying
oblique bifactor models remain an area for further research. Notably, existing models that impose zero
constraints on the sum of covariances or on the sum of variances and covariances of person parameters
suggest that many oblique bifactor models that are analytically unidentified (under currently known
procedures) may, in fact, be empirically identified. Further exploration of identification conditions
could pave the way for the development of new oblique bifactor models with practical and theoretically
meaningful interpretations.

Additionally, while models with freely estimated discrimination parameters require linear inde-
pendence of factor loadings on the general and specific factors for identification (Fang et al., 2021;
Zhang, Luo, Zhang, et al,, 2023), this requirement appears irrelevant for Rasch models. In Rasch
models, discrimination parameters are constrained to unity by definition, resulting in linearly depen-
dent “factor loadings” on the general and specific factors. This distinction underscores the need
for a more detailed investigation into the identification conditions specific to Rasch-based bifactor
models.

Interestingly, since the ETM is a special case of the CORB model, it is conceptually possible to extend
the CORB framework by proposing the Subdimensional Oblique Rasch Bifactor (SORB) model. The
SORB model shares conceptual similarities with the GSM and is closely related to partially oblique
models in factor analysis (Fang et al., 2021; Zhang, Luo, Zhang, et al., 2023), while also being a special
case of the CORB model. Consequently, the SORB model follows the same identification requirements
as the CORB model, since it adheres to the general formulations of Equations 13 or 14, similar to the
ETM. However, instead of recovering the variance-covariance matrix in Equation 10, the SORB model
recovers the matrix given by Equation 29:

var (60,) 0 0 0
0 var (0;,) cov(0s,65,) cov(0s,0s,)
0 cov (0s,,05,) var (0s,) cov (0s,,0s,)
0 cov(0s,,05) cov(bs,0s,) var (0s,)

Y = (29)

The constraint of correlations between specific factors and the general factor to zero, combined with
the free estimation of correlations among specific factors, results in a “reversed” ETM, conceptually
similar to the oblique bifactor solutions proposed by Jennrich and Bentler (2012) and Lorenzo-Seva and
Ferrando (2019), but approached from a confirmatory modeling paradigm. This constraint also makes
the orthogonal RTM a special case of both the ETM and the SORB model, though without nesting these
models within one another.

This model is closer in interpretation to the ETM and CORB models than to the GSM. Specifically,
it models specific factors as additional to the general factor, rather than as components of the general
factor, as in the GSM. However, unlike the partially oblique bifactor models from factor analysis (Fang
etal., 2021; Zhang, Luo, Zhang, et al., 2023), it constrains discrimination parameters, potentially making
it easier to identify and more numerically stable. Further exploration of this model and its comparison to
the GSM could be a valuable area for future research. In particular, a multi-step estimation procedure
involving the following steps may improve numerical stability of parameter estimates and allow for
estimation of the 2PL counterparts of all models used in this paper:
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1. Preliminary estimation of a model.

2. Extraction of the estimated correlation matrix of the multivariate ability distribution from the
preliminary estimation.

3. Fixing the correlation matrix in subsequent bifactor models with free factor loadings.

4. Estimating discrimination parameters given the fixed correlation matrix.

This approach could yield further improved model fit, more stable parameter estimates, and
enhanced robustness of bifactor model applications.

This article has several limitations. First, we only considered dichotomous items. To identify the
CORB model in a test with polytomous items, at least one category of at least one item must load solely
on the general factor, or alternatively, at least one category of at least one item must be shared between
every pair of specific factors. However, this result is specific to the adjacent logit link function. Extending
these findings to other link functions, such as probit or cumulative link functions, represents a promising
avenue for future research.

Moreover, the proposed structures of test dimensionality reflect a complex but tractable process
of test development, particularly under partial credit scoring in educational assessments. Among the
two structures discussed in this paper, developing items for the S-structure appears more feasible. For
example, consider a test with a clear bifactor structure, where one subdimension represents addition
skills and another represents subtraction skills. In this scenario, a researcher could create items requiring
both skills (e.g., word problems combining addition and subtraction) to transform a clear bifactor
structure into an S-structure.

Conversely, developing items that measure only general arithmetic skills (i.e., not specific to addition
or subtraction) is likely more challenging. This example illustrates that while transforming an existing
test into an S-structure may be achievable, constructing items for a G-structure, which requires purely
general items, can be considerably more difficult.

Additionally, this paper does not delve into several important applied aspects of the CORB model.
For example, we do not explore how the CORB model relates to the intricate connections between
second-order models and bifactor models defined by the Schmid-Leiman constraints (Gignac, 2016;
Mansolf & Reise, 2017; Rijmen, 2010). Furthermore, we do not address the item development process
in detail and only briefly touch upon the topic of item fit.

A more in-depth discussion on the interpretation of the ETM and other partially oblique bifactor
models is also necessary. Currently, their detailed interpretation remains unclear—particularly regard-
ing when and how such complex variance-covariance matrix constraints can be expected to align with
the underlying construct. Additionally, this article does not examine the potential impact of the CORB
model on subscore reporting (Haberman et al., 2024). While the demand for interpretable scores on
specific factors motivates our work, further research is needed to assess the added value of subscores
derived from the CORB model.

Moreover, the CORB model is presented solely within the Rasch measurement paradigm, which
assumes that items with the same factor loading structure share identical factor loadings. This marks
a key point of divergence from the 2PNO paradigm, where discrimination parameters are freely
estimated. Investigating analogous models within the 2PNO paradigm, examining their properties, and
generalizing the Volodin—Adams procedure to this paradigm represent promising directions for future
research.

Finally, working in the confirmatory IRT paradigm, we do not discuss the consequences of the CORB
model for the exploratory paradigm. Developing further rotation methods for the exploratory oblique
bifactor analysis, determining the number of latent factors (Chen & Li, 2022), analyzing exploratory
model fit, and other issues in the exploratory modeling also present a perspective avenue for further
research.

Finally, since this paper operates within the confirmatory IRT paradigm, we do not discuss the
implications of the CORB model for the exploratory paradigm. Developing advanced rotation methods
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for exploratory oblique bifactor analysis, determining the appropriate number of latent factors (Chen &
Li, 2022), assessing exploratory model fit, and addressing other issues in exploratory modeling represent
promising avenues for future research.
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