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Abstract
A popular method to perform adversarial attacks on neural networks is the so-called fast gradient sign method and its
iterative variant. In this paper, we interpret this method as an explicit Euler discretization of a differential inclusion,
where we also show convergence of the discretization to the associated gradient flow. To do so, we consider the
concept of p-curves of maximal slope in the case p =∞. We prove existence of ∞-curves of maximum slope
and derive an alternative characterization via differential inclusions. Furthermore, we also consider Wasserstein
gradient flows for potential energies, where we show that curves in the Wasserstein space can be characterized by a
representing measure on the space of curves in the underlying Banach space, which fulfil the differential inclusion.
The application of our theory to the finite-dimensional setting is twofold: On the one hand, we show that a whole
class of normalized gradient descent methods (in particular, signed gradient descent) converge, up to subsequences,
to the flow when sending the step size to zero. On the other hand, in the distributional setting, we show that the
inner optimization task of adversarial training objective can be characterized via ∞-curves of maximum slope on
an appropriate optimal transport space.

1. Introduction

This paper considers gradient flows in metric spaces, following the seminal work by [2]. There, the
authors introduce the concept of p-curves of maximal slope, with origins dating back to [31]. This
concept is further generalized in [87]. As for our main contribution, we study the less-known limit
case p =∞ and adapt current theory to this setting. The main incentive for our work is the adversarial
attack problem as introduced in [46, 101]. Here one considers a classification task, where a classifier
h : X →Y – typically parametrized as a neural network – is given an input x ∈X , which it correctly
classifies as y ∈Y , where Y is assumed to be a subset of a finite dimensional vector space. The goal is to
obtain a perturbed input x̃ ∈X , the adversarial example, which is misclassified, while its difference to x
is “imperceptible”. In practice, the latter condition is enforced by requiring that x̃ has at most distance ε to
x in an �p distance, where ε > 0 is called the adversarial budget. Given some loss function � : Y ×Y →
R, one then formulates the adversarial attack problem [46, 101],

sup
x̃∈Bε (x)

�(h(x̃), y). (AdvAtt)

The above problem is also called an untargeted attack, since we are solely interested in the misclas-
sification. This is opposed to targeted attacks, where one prescribes ytarget ∈Y and wants to obtain an
adversarial example, s.t. h(x̃) = ytarget. This basically amounts to changing the loss function in (AdvAtt),
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namely to −�(·, ytarget), without changing the inherent structure of the problem, which is why we do not
consider it separately in the following. Methods for generating adversarial examples include first-order
attacks [12, 71, 80], momentum-variants [35], second-order attacks [55] or even zero-order attacks, not
employing the gradient of the classifier [11, 53]. Especially for classifiers induced by neural networks, it
was noticed in [101] that approximate maximizers of (AdvAtt) completely corrupt the classification per-
formance, even for a very small budget ε. This observation created severe concerns about the robustness
and reliability of neural networks (see e.g. [59]) and has sparked a general interest in both the adver-
sarial attack and the defence problem. The connection between the attack and defence task was already
introduced in [46], where the authors propose adversarial training (similarly derived in [58, 64]). Here,
the standard empirical risk minimization is modified to

inf
h∈H

∑
(x,y)∈T

sup
x̃∈Bε (x)

�(h(x̃), y) (AdvTrain)

for a training set T ⊂X ×Y and a hypothesis class H⊂ {h|h : X →Y}. Since this requires solving
(AdvAtt) for every data point x, the authors then propose an efficient one-step method, called fast gradient
sign method (FGSM),

xFGS = x + ε sign (∇x�(h(x), y)). (FGSM)

The motivation, as provided in [46], was to consider a linear model x �→ 〈w, x〉, with weights w. The max-
imum over the input x constrained to the budget ball B∞

ε
(x) is then attained in a corner of the hypercube,

which validates the use of the sign. From a practical perspective, also for more complicated models, the
sign operation ensures that xFGS ∈ ∂B∞

ε
(x), i.e., xFGS uses all the given budget in the �∞ distance after just

one update step. This adversarial training setup was similarly employed in [64, 88, 94, 105] and ana-
lyzed as regularization of the empirical risk in [18, 20]. For other strategies to obtain robust classifiers,
we refer, e.g., to [21, 47, 57, 77]. In situations where only the attack problem is of interest, multistep
methods are feasible, which led to the iterative FGS method [58, 59]

xk+1
IFGS =�Bp

ε (x)(x
k
IFGS + τ sign (∇x�(h(xk

IFGS), y))), (IFGSM)

where τ > 0 now defines a step size and �Bp
ε (x) denotes the orthogonal projection to the ε-ball in the

�p-norm around the original image. Originally, the case p =∞ was employed, where the projection is
then a simple clipping operation. Other choices of p are usually limited to {0, 1, 2}, which is also due
to the computational effort of computing the projection (see [80] for p = 0 and [36] for p = 1). Signed
gradient descent can also be interpreted as a form of normalized gradient descent in the �∞ topology as
in [27], where our framework allows considering a general �q norm. Apart from the adversarial setting,
signed gradient descent, without the projection step, is an established optimization algorithm itself,
see e.g., [70, 106] for other applications. The idea of using signed gradients can also be found in the
RPROP algorithm [83]. The convergence to minimizers of signed gradient descent and its variants was
analyzed in [5, 26, 61, 74]. A slightly different kind of projected version, using linear constraints, was
considered in [25], where the authors also considered a continuous time version; however, the results
therein and the considered flow are not directly connected to our work here. We consider the limit
τ → 0 of signed gradient descent and the projected variant (IFGSM), for which we derive a gradient
flow characterization. This is visualized in Figure 1. In the Euclidean setting with a differentiable energy
E : Rd →R and p ∈ (1, ∞), a differentiable curve u : [0, T] →R

d is a p-curve of maximum slope, if it
solves the p-gradient flow equation (∣∣u′∣∣ (t)

)p−2
u′(t) =−∇E(u(t)).

Here, we also refer to [14, 15] for a study of gradient-flow type equations in Hilbert spaces, for non-
differentiable functionals. Following the approach in [2, 31, 32, 65], the above equation is equivalent to

d
dt

(E ◦ u) ≤−1

p

∣∣u′∣∣p − 1

q
|∇E(u)|q ,
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(a) (b) (c) (d)

Figure 1. Behavior of (IFGSM) (top) and the minimizing movement scheme (MinMove) (bottom),
for a binary classifier – parametrized as a neural network – on R

2, a budget of ε= 0.2 and
τ ∈ {0.2, 0.1, 0.02, 0.001}. The white box indicates the maximal distance to the initial value, and
the pink boxes indicate the step size τ of the scheme. Details on this experiment can be found in
Appendix H.

where 1/p + 1/q = 1. The strength of this approach is that all derivatives in the above inequality have
meaningful generalizations to the metric space setting, which we repeat in the next section. Motivated
by signed gradient descent, in this paper, we draw the connection to the case p =∞. In the Euclidean
setting, with a differentiable functional E , the energy dissipation inequality we derive for p =∞ reads∣∣u′∣∣≤ 1,

d
dt

(E ◦ u) ≤− |∇E(u)| .

Intuitively, a ∞-curve of maximal slope minimizes the energy E as fast as possible under the restriction
that its velocity |u′| is bounded by 1. Like in [2], our results consider general metric spaces, Banach
spaces and Wasserstein spaces, which are further detailed in the following sections. Typically, curves of
maximum slope can be approximated via a minimizing movement scheme, which in our case translates
to

xk+1
τ

∈ arg min
x∈X

{E(x) :
∥∥x − xk

τ

∥∥≤ τ },

where x0
τ
= x0 is a given initial value. A main insight, explored in section 5, is that under certain assump-

tions, (FGSM) and (IFGSM) fulfil this scheme, if we replace the energy by a semi-implicit version.
A further aspect is the characterization of adversarial attacks in the distributional setting, where the

sum is replaced by an integral over the data distribution μ. Interchanging the integral and the supremum
(see Corollary 5.7) yields the characterization of adversarial training (AdvTrain) as a distributionally
robust optimization (DRO) problem,

inf
h∈H

sup
μ̃:D(μ,μ̃)≤ε

∫
�(h(x), y) dμ̃(x, y), (DRO)

where D denotes a distance on the space of distributions. This formulation of adversarial training was
the subject of many studies in recent years, see, e.g., [18, 20, 22, 23, 107]. Typically, the distance D is
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chosen as an optimal transport distance,

D(μ, μ̃) := inf
γ∈�(μ,μ̃)

∫
γ

c((x, y), (x̃, ỹ))2dγ ,

with �(μ, μ̃) denoting the set of all couplings and the cost

c((x, y), (x̃, ỹ)) :=
{
‖x − x̃‖ if y = ỹ,

+∞ if y �= ỹ.
(1.1)

The goal here is then to derive a characterization of curves μ : [0, T] →Wp, where Wp denotes the
p-Wasserstein space. In this regard, we mention the related work [107], where the authors proposed to
solve the inner optimization problem

sup
μ̃:D(μ,μ̃)≤ε

∫
�(h(x), y) dμ̃(x, y)

by disintegrating the data distribution dμ(x, y) = dμy(x)dν(y) (see Appendix E), and calculating for
ν-a.e. y ∈Y the corresponding 2-gradient flow in W2 with initial condition μ0

y . As shown in [2], solving
this gradient flow is equivalent to solving the partial differential equation

∂t(μy)t =∇ · ((μy)t∇x�(h(x), y)) on (0, T)

(μy)0 =μ0
y ,

(1.2)

which is to be understood in the distributional sense. The authors in [107] then approximate a maximizer
by dμ̃(x, y) ≈ d(μy)T(x)dν(y), where T has to be chosen small enough such that the approximation is still
within the ε ball around μ.

In the following, we first provide the necessary notions for gradient flows in metric spaces and then
proceed to discuss the main contributions and the outline of this paper.

1.1. Setup

We give a brief recap on classical notation and preliminaries on evolution in metric spaces. More
details can be found in [2, 68]. In the following, we denote by (S , d) a complete metric space, while
X denotes a Banach space. We consider a proper functional E : S → (−∞, +∞], i.e., the effec-
tive domain dom (E) := {x ∈ S : E(x)<∞} is assumed to be nonempty. Throughout this paper, we
denote by

Bτ (x) := {x̃ ∈ S : d(x, x̃)< τ }, Bτ (x) := {x̃ ∈ S : d(x, x̃) ≤ τ }
the ball and its closed variant, induced by the given metric d, where we employ the abbreviation Bτ (0) =
Bτ . In the finite-dimensional case, we write Bp

τ
to denote the ball induced by the �p norm on R

d. Note that
there is a notation conflict with d denoting both the distance and the dimension of the finite-dimensional
space R

d. However, the concrete meaning is always clear from the context.

Metric derivative. We consider curves u : [0, T] → S with T > 0 for which we want to have a notion
of velocity. For this purpose, we need a generalization of the absolute value of the derivatives, which
is provided by the metric derivative as introduced by [1]. Here, one usually considers p-absolutely
continuous curves [2], i.e., for p ∈ [1, ∞], there exists m ∈ Lp(0, T) such that

d(u(t), u(s)) ≤
∫ t

s

m(r) dr (1.3)

for all 0 ≤ s< t ≤ T . The set of all p-absolutely continuous curves is denoted by ACp(0, T;S). We are
especially interested in the case p =∞, where the condition in Equation (1.3) is equivalent to the
Lipschitzness of the curve, i.e., the existence of a constant L ≥ 0 such that

d(u(t), u(s)) ≤ L (t − s)
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for all 0 ≤ s< t ≤ T . For the special case p =∞, we have the following result as a special case of [2,
Theorem 1.1.2].

Lemma 1.1 (Metric derivative).Let u : [0, T] → S be a Lipschitz curve with Lipschitz constant L, then
the limit

|u′|(t) := lim
s→t

d(u(s), u(t))

|s − t|
exists for a.e. t ∈ [0, T] and is referred to as the metric derivative. Moreover, the function t �→ |u′|(t)
belongs to L∞(0, T) with ‖|u′|‖L∞(0,T) ≤ L, and

d(u(s), u(t)) ≤
∫ t

s

|u′|(r) dr for all 0 ≤ s ≤ t ≤ T .

Remark 1.2. The metric derivative |u′| is actually minimal in the sense that for every m satisfying (1.3),
|u′|(t) ≤ m(t) for a.e. t ∈ (0, T).

Remark 1.3. If S =X is a Banach space and satisfies the Radon–Nikodým property (c.f. [89, p. 106]),
e.g., if it is reflexive, then u ∈ ACp(0, T; X ) if and only if

• u is differentiable a.e. on (0, T)

• u′(t) ∈ Lp(0, T; X )

• u(t) − u(s) = ∫ t

s
u′(t) dr for 0 ≤ s ≤ t ≤ T .

Upper gradients We consider upper gradients as a generalization of the absolute value of the gradient
in the metric setting. Namely, we employ the following definitions from [2, Definition 1.2.1] and [2,
Definition 1.2.2].

Definition 1.4. A function g : S → [0, +∞] is called a strong upper gradient for E if, for every
absolutely continuous curve u : [0, T] → S , the function g ◦ u is Borel and

|E(u(t)) − E(u(s))| ≤
∫ t

s

g(u(r))|u′|(r) dr ∀ 0 ≤ s ≤ t ≤ T (1.4)

If (g ◦ u) |u′| ∈ L1(0, T), then E ◦ u is absolutely continuous and
|(E ◦ u)′(t)| ≤ g(u(t))|u′|(t) for a.e. t ∈ (0, T). (1.5)

Definition 1.5. A function g : S → [0, +∞] is called a weak upper gradient for E , if for every absolutely
continuous curve u : [0, T] → S that fulfils

(i) (g ◦ u) |u′| ∈ L1(0, T),
(ii) E ◦ u is a.e. in (0, T) equal to a function ψ : (0, T) →R with bounded variation,

it follows that ∣∣ψ ′∣∣≤ (g ◦ u)
∣∣u′∣∣ a.e. in (0, T).

Remark 1.6. We note that for a function ψ with bounded variation, i.e.,

sup

{
N−1∑
i=0

|ψ(ti+1) −ψ(ti)| : 0 = t0 < . . . < tN = T

}
<∞,

we have that the derivative ψ ′ exists a.e. in the interval (0, T), see [90, Theorem 9.6, Chapter IV].

Remark 1.7. Admissible curves u in the above definition fulfil that u−1(S \ dom (E)) is a null set,
because of (ii). Therefore, the behaviour of g outside of dom (E) is negligible.
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Metric slope We now consider the metric slope, as defined in [31], as a special realization of a weak
upper gradient. Intuitively, the slope gives the value of the maximal descent at a point u at an infinitesimal
small distance.

Definition 1.8. For a proper functional E : S → (−∞, +∞], the local slope of E at x ∈ dom (E) is
defined as

|∂E |(x) := lim sup
z→x

(E(x) − E(z))+

d(x, z)
.

The definition of the slope does, in fact, yield an upper gradient, which is provided by the following
statement from [2].

Theorem 1.9 [2, Theorem 1.2.5]. Let E be a proper functional, then the function |∂E | is a weak upper
gradient.

Curves of maximal slope Curves of maximal slope were introduced in [31] and are a possible general-
ization of a gradient evolution in metric spaces. They are usually formulated for the case p ∈ (1, ∞) as
follows, see, e.g., [2].

Definition 1.10 (p-Curves of maximal slope). For p ∈ (1, ∞), we say that an absolutely continuous
curve u : [0, T] → S is a p-curve of maximal slope, for the functional E with respect to an upper gradient
g, if E ◦ u is a.e. equal to a non-increasing map ψ and

ψ ′(t) ≤−1

p

∣∣u′∣∣p
(t) − 1

q
gq(u(t)) (1.6)

for almost every t ∈ (0, T) and 1 = 1
p
+ 1

q
.

For p ∈ (1, ∞), the existence of such curves is provided, see for example [2].

1.2. Main results

Here, we summarize the main contributions of this paper. The most important one is the development
and application of a gradient flow framework that allows for a theoretical study of adversarial attacks.
Concerning the theory of metric gradient flows, we introduce notions tailored to this application and also
provide adapted proofs, as detailed below. Here, it should be noted however that many of our results in
metric and Banach spaces can be obtained from the theory of doubly nonlinear equations [69, 87].
Therefore, the main contribution from this side is to draw the connection between the previously men-
tioned works and the field of adversarial attacks. On top of that, the proofs that are adapted to our
scenario allow for additional insights into the concrete application we consider. Beyond single adver-
sarial examples, we also treat distributional adversaries, which we link to curves of maximal slope in
the ∞ -Wasserstein space. For potential energies, we derive a (to our knowledge novel) characterization
of curves of maximal slope via the superposition principle, which highlights the connection between
single adversarial attacks and the distributional adversary. We give more details on the results below.

In section 2, we extend the notion of p-curves of maximal slope to the case p =∞, for Lipschitz
curves u. As hinted in the introduction, in the limit p →∞ of Definition 1.10, we replace (1.6) by the
following condition, ∣∣u′∣∣ (t) ≤ 1,

ψ ′(t) ≤−g(u(t)).

Such curves are then called∞-curves of maximal slope. We want to highlight that similar considerations
already appeared in the early works of De Giorgi, see for example, [31, Definition 1.2] and [43, Example
1.3]. For our concrete setup here, we dedicate section 2 to an existence proof of such curves. We note
that this can also be obtained as a corollary of a more general existence result in [87, Theorem 3.5].
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Therein, the authors prove existence of curves of maximal slope fulfilling

ψ ′(t) ≤−f ∗(g(u(t))) − f (
∣∣u′∣∣ (t))

for a convex and lower semicontinuous function f : [0, ∞) → [0, ∞]. When choosing f = χ[0,1], we
recover our notion of ∞-curves of maximal slope. Although the existence proof in section 2 employs
similar concepts, we choose to include it here. On the one hand, the treatment of this specific case allows
for certain arguments that are not directly possible in the general case. On the other hand, this already
introduces the main steps for the convergence proof in section 3, which can not directly be deduced from
[87]. The existence result in Theorem 2.11 is summarized below.

Existence: Under the assumptions specified in section 2, for every E : S → (−∞, +∞] and for every
x0 ∈ dom (E), there exists a 1-Lipschitz curve u : [0, T] → S with u(0) = x0, which is an ∞-curve of
maximum slope for E with respect to its strong upper gradient |∂E |.

In section 3, we consider the specific case of ∞-curves of maximal slope in a Banach space X , and
an energy E that is a C1 perturbation of a convex function. Note that here and in the following, when
the functional takes the role of a C1-perturbation as in section 3, we use the symbol E instead of E .
We derive an equivalent characterization of ∞-curves of maximal slope via a differential inclusion. We
note that this differential inclusion can be obtained from [87, Proposition 8.2], with the same choice
of f as for the existence result above. The statement in our setting can be found in Theorem 3.8 and is
summarized below.

Differential inclusion: Let E:X → (−∞, +∞] satisfy (3.7) and u : [0, 1] →X be an a.e. differentiable
Lipschitz curve. Let further E ◦ u be a.e. equal to a non-increasing function ψ , then the following are
equivalent:

(i) |u′|(t) ≤ 1 and ψ ′(t) ≤−|∂E|(u(t)) for a.e. t ∈ [0, 1],
(ii) u′(t) ∈ ∂‖ · ‖∗(−ξ ) ∀ξ ∈ ∂◦E(u(t)) �= ∅, for a.e. t ∈ [0, 1],

where ∂◦E(u(t)) denotes the elements of minimal norm of ∂E(u(t)).

For an energy E = Ed + Ec consisting of a differentiable part Ed and a convex part Ec, we consider
the linearization in the differentiable part around a point z,

Esl(x;z) := Ed(z) + 〈DEd(z), x − z〉 + Ec(x).

This then leads us to the semi-implicit minimizing movement scheme in Definition 3.10

xk+1
si,τ ∈ arg min

x∈Bτ (xk
si,τ )

Esl(x; xk
si,τ ),

which we also employ to approximate curves of maximal slope. In the case of p = 2, we refer to [40,
98] for other works that also consider approximate minimizing movement schemes. This semi-implicit
scheme is useful, since in the finite dimensional adversarial setting, it allows us to choose −�(h( · ), y)
as the differentiable part, and additionally to incorporate the budget constraint via the indicator function
χBε (x). We denote by x̄si,τ the step function associated to the iterates xk

si,τ , see Definition 3.10. We can show
that up to a subsequence, this scheme also converges to an ∞-curve of maximum slope in the topology
σ as specified in Assumption 1.a. The result can be found in Theorem 3.16, which we hint at below.

Convergence to curves of maximal slope: Under the assumptions specified in section 3, there exists
a ∞-curve of maximal slope u and a subsequence of τn = T/n such that

x̄si,τn (t)
σ

⇀ u(t) as n →∞ ∀t ∈ [0, T].

In order to better understand the connection between the differential inclusion and (IFGSM), we want
to highlight that ∞-curves of maximum slope yield a general concept, which is not directly tied to
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signed gradient descent and the choice of the projection. The intuition behind ∞-curves is rather con-
nected to employing normalized gradient descent (NGD) [27]. Choosing (Rd, ‖·‖p ) as the underlying
Banach space, in section 5 we see that for 1/p + 1/q = 1 the following iteration fulfils the semi-implicit
minimizing movement scheme,

xk+1 = xk + τ sign (∇xE(xk)) ·
( ∣∣∇xE(xk)

∣∣
‖∇xE(xk)‖q

)q−1

,

where the absolute value and multiplication are understood entrywise. Choosing p = 2 or p =∞ recov-
ers the notion of NGD as in [27]. Normalized gradient methods have gained significant attention outside
the adversarial context. For example, in the context of saddle point evasion [50, 60, 75], subgradient cor-
ruption [103], machine learning [28] and even variational quantum algorithms [100]. In the setting of
adversarial attacks, normalization means that we want to ensure that the iterates exploit the maximum
allowed budget (locally on Bτ (xk) ball) in each step. This was similarly observed in [35]. As long as the
iterates stay within the given budget ε, one can directly show that (IFGSM) is an explicit solution to the
semi-implicit scheme and therefore converges to ∞-curves of maximum slope. In the more interesting
case, where the projection has an effect, we need to ensure that minimizing on Bp

τ (x) and then project-
ing to Bp

ε(x0) is equivalent to directly minimizing on Bp
ε(x0) ∩ Bp

τ (x). We show this property for the case
p =∞ in Lemma 5.4. Employing the convergence result for the semi-implicit minimizing movement
scheme, then yields the convergence up to subsequences of (IFGSM), employing the �∞ norm. Denoting
by xk

IFGS,τ the k-th iterate obtained in (IFGSM) with stepsize τ , Corollary 5.3 then presents the following
result.

Convergence of IFGSM: Under the assumptions specified in section 5, for T > 0, there exists a ∞-
curve of maximal slope u : [0, T] →R

d, with respect to E, and a subsequence of τn := T/n such that∥∥∥x
�t/τni �
IFGS,τni

− u(t)
∥∥∥ i→∞−−→ 0 for all t ∈ [0, T].

In section 4, we consider potential energies

E : W∞(X ) �μ �→
∫

E(x) dμ(x),

where in our context, the potential E : X → (−∞, +∞] has the form E(x) =−�(h(x), y). The basis for
our main result in this section is given by [63, Theorem 3.1], which is repeated as Theorem 4.7 in this
paper. Namely, we characterize absolutely continuous curves μ ∈ACp(0, T;Wp) by a measure η on the
space of curves u : [0, T] →X , which is concentrated on ACp(0, T; X ). Using this representation, in
Theorem 4.18, we show that being a ∞-curve of maximum slope in the Wasserstein space is equivalent
to the differential inclusion on the underlying Banach space, for η-a.e. curve.

Characterization of curves in Wasserstein space: Under the assumptions specified in Theorem 4.18,
for a curve μ ∈AC∞(0, T;W∞) with η from Theorem 4.7, the following statements are equivalent:

(i) The curve μ is ∞-curve of maximal slope w.r.t. to the weak upper gradient |∂E |.
(ii) For η-a.e. curve u ∈ C(0, T; X ) it holds that E ◦ u is for a.e. t ∈ (0, T), equal to a non-increasing

map ψu and

u′(t) ∈ ∂‖ · ‖∗(−ξ ) ∀ξ ∈ ∂◦E(u(t)) �= ∅, for a.e. t ∈ (0, T).

When applying this result to adversarial training, we slightly deviate from the Wasserstein setting by
choosing the extended distance in (1.1) and the associated transport distance in order to prohibit mass
transport into the label direction.

Here, we want to refer to other works considering distributional adversarial attacks, e.g., [18, 23,
66, 81, 82, 96, 97, 107]. We can adjust the arguments in section 4 to derive an analogous result for
the energy E(μ) := ∫ −�(h(x), y) dμ(x, y), which we state in Theorem 5.10. Here, we only enforce the
budget constraint by setting the end time of the flow to T = ε.
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1.3. Outline

The paper is organized as follows: In section 2, we start by introducing ∞-curves of maximal slope,
as the limit case of p-curves of maximal slope. Section 2.3 then provides an existence result for those
curves in a general metric setting. The underlying assumptions for its proof are stated in Section 2.1.

In section 3, we consider ∞-curves of maximal slope when the underlying metric space is a Banach
space. Section 3.1 introduces C1-perturbations of convex functions as a convenient class of functionals
that covers most of the energies we consider in this paper. In section 3.2, we derive equivalent char-
acterizations of ∞-curves of maximal slope via a doubly nonlinear differential inclusion. This section
is concluded by investigating first-order approximation techniques of those differential inclusions in
section 3.3.

Section 4 is devoted to ∞-curves of maximal slope, when the underlying space is the ∞-Wasserstein
space. For potential energies, we give an equivalent characterization of ∞-curves of maximal slope via
a probability measures η on the space C(0, T; X ), which is concentrated on ∞-curves of maximal slope
on the underlying Banach space X . From η, we can then derive a corresponding continuity equation for
those curves of maximal slope.

In section 5, we discuss the application of differential inclusions derived in section 3 to generate
adversarial examples. We show that the popular FGSM and its iterative variant (IFGSM) are simple
first-order approximations of ∞-curves of maximal slope. Insection 5.2, we rewrite adversarial training
as a distributional robust optimization problem and discuss the usage of ∞-curves in the corresponding
probability space to generate distributional adversaries.

2. Infinity flows in metric spaces

In this section, we generalize the notion of p-curves of maximal slope to the case p =∞. We consider
the convex function f (x) = 1

p
|x|p, which allows us to express the energy dissipation inequality (1.6) in

Definition 1.10 as follows,
ψ ′(t) ≤−f (|u′|(t)) − f ∗(g(u(t))), (2.1)

where f ∗(x∗) = 1
q
|x∗|q denotes the convex conjugate of f . Considering the above inequality for arbitrary

convex functions f leads to the general framework as introduced in [87]. For our setting, we consider
the indicator function, which is obtained as the following pointwise limit,

1

p
|x|p p→∞−−→ χ[−1,1](x) =

{
0 if |x| ≤ 1,

+∞ else,

where χ[−1,1] is a convex function with conjugate χ ∗
[−1,1](x

∗) = x∗. Using f = χ[−1,1] in (2.1) forces the
curves of maximal slope to obey |u′| ≤ 1 almost everywhere and the energy dissipation inequality
becomes

ψ ′(t) ≤−(g ◦ u)(t),

which motivates the following definition.

Definition 2.1 (∞-Curve of maximal slope). We say an absolutely continuous curve u : [0, T] → S is
an ∞-curve of maximal slope for the functional E with respect to an upper gradient g, if E ◦ u is a.e.
equal to a non-increasing map ψ and

|u′|(t) ≤ 1,

ψ ′(t) ≤−(g ◦ u)(t), (InfFlow)
holds for a.e. t ∈ (0, T).

Remark 2.2. We note that the condition |u′| ≤ 1 a.e. implies that u is a Lipschitz curve with Lipschitz
constant 1, see Lemma 1.1.
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Remark 2.3. (Dissipation equality). If g is a strong upper gradient of E and ψ :[0, T] →R is finite then
by Definition 1.4 and (InfFlow)

|E(u(t)) − E(u(s))| ≤
∫ t

s

g(u(r))|u′|(r) dr ≤
∫ t

s

g(u(r)) dr ≤
∫ t

s

−ψ ′(r) dr ≤ψ(s) −ψ(t)<+∞,

where in the last inequality we use that non-increasing functions are differentiable a.e. and an upper
bound on the second fundamental theorem of calculus holds [102, Proposition 1.6.37]. This in partic-
ular implies that E ◦ u is absolutely continuous and ψ(t) = (E ◦ u)(t) for all t ∈ (0, T) (see Lemma E.1).
Furthermore, Remark 1.3 implies

E(u(t)) − E(u(s)) =
∫ t

s

(E ◦ u)′(r) dr for 0 ≤ s ≤ t ≤ T

and we can estimate

E(u(t)) − E(u(s)) =
∫ t

s

(E ◦ u)′(r) dr ≤
∫ t

s

−d(u(r)) dr for 0 ≤ s ≤ t ≤ T

and on the other hand, using (1.5), we obtain

E(u(t)) − E(u(s)) =
∫ t

s

(E ◦ u)′(r) dr ≥
∫ t

s

−|(E ◦ u)′(r)| dr

≥
∫ t

s

−g(u(r))|u′|(r) dr ≥
∫ t

s

−g(u(r)) dr

for 0 ≤ s ≤ t ≤ T . Therefore, the energy dissipation equality

E(u(t)) − E(u(s)) =
∫ t

s

−g(u(r)) dr (EnDisEq)

holds for every 0 ≤ s ≤ t ≤ T .

Example 1. As an easy example, let us look at the quadratic energy E : x �→ 1
2
x2 on the space (S , d) =

(R, | · − · |). Its metric slope and thus weak upper gradient is given by |∂E | (x) = ∣∣ d
dx
E

∣∣ (x) = |x|. We
choose x0 = 1 as the starting point, then the corresponding ∞-curve of maximal slope is

u(t) =
{

1 − t if 0 ≤ t ≤ 1,

0 if t> 1
.

We directly observe that |u′| ≤ 1 and

E(u(t)) =
{

1
2
(1 − t)2 if 0 ≤ t ≤ 1,

0 if t> 1,

is a non-increasing map with

d
dt
E(u(t)) =

{
t − 1 if 0 ≤ t< 1,

0 if t> 1,
=− |u(t)| =− |∂E | (u(t)),

and therefore the conditions (InfFlow) are fulfilled. Here we can already observe a typical behaviour
of ∞-curves of maximal slope. They have a constant velocity of 1 until they hit a local minimum where
they stop abruptly.

The rest of this section is devoted to an existence proof for ∞-curves of maximal slope.

2.1. Assumptions for existence

Here, we state the assumptions needed for the proof of existence. Approximations of curves of max-
imal slope are constructed via a minimizing movement scheme. To guarantee convergence of those
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approximations, a form of relative compactness is essential. This is guaranteed by Assumption 1.b.
Furthermore, relative compactness with respect to the topology induced by the metric d(·, ·) may not
be given. However, relative compactness with respect to a weaker topology σ is sufficient, as long as it
is compatible with the topology induced by the metric d(·, ·), Assumption 1.a. These assumptions were
also employed in [2].

Assumption 1.a (Weak topology). In addition to the metric topology, (S , d) is assumed to be endowed
with a Hausdorff topology σ . We assume that σ is compatible with the metric d, in the sense that σ is
weaker than the topology induced by d and d is sequentially σ -lower semicontinuous, i.e.,

(xn, zn)
σ

⇀ (x, z) =⇒ lim inf
n→∞

d(xn, zn) ≥ d(x, z).

Assumption 1.b (Relative compactness). Every d-bounded set contained in sublevels of E is relatively
σ -sequentially compact, i.e.,

if {xn}n∈N ⊂ S with sup
n∈N

E(xn)<+∞, sup
n,m

d(xn, xm)<+∞,

then (xn)n∈N admits a σ -convergent subsequence.

Assumptions 2.a and 2.b ensure the lower semicontinuity of the energy functional and the lower
semicontinuity of its metric slope. These regularity assumptions are required for the energy dissipation
inequality during the limiting process in the proof of Theorem 2.11.

Assumption 2.a (Lower semicontinuity). We assume sequential σ -lower semicontinuity of E for
bounded sequences, namely,

sup
n,m∈N

{d(xn, xm)}<+∞,

xn σ

⇀ x

⎫⎬
⎭=⇒ E(x) ≤ lim inf

n→∞
E(xn). (2.2)

Assumption 2.b (Lower semicontinuity of slope). In addition, we ask that |∂E | is a strong upper
gradient and it is sequentially σ -lower semicontinuous on d-bounded sublevels of E .

Remark 2.4. The proof of existence is possible with a wide variety of regularity assumptions on the
energy E , which can be tailored to a variety of different situations. For example, if the sequentially
σ -lower semicontinuous envelope of |∂E |

|∂−E | := {
lim inf

n→∞
|∂E |(xn) : xn σ

⇀ x, sup
n

d(xn, x), E(xn)<+∞}
is a strong upper gradient, one can drop Assumption 2.b and instead prove existence of curves of max-
imal slope with respect to |∂−E |. Further, if |∂E | (or |∂−E | respectively) is only a weak upper gradient
(compare [2, Theorem 2.3.3]), then Assumption 2.a has to be replaced by continuity of the energy.

2.2. Minimizing movement for p = ∞
The minimizing movement scheme is an implicit time discretization of curves of maximal slope. The
existence of curves of maximal slope is proven by sending the discrete time step τ of the minimiz-
ing movement scheme to 0. For the time interval [0, T] and some n ∈N, we use an equidistant time
discretization tk = k · τ for k ∈ {0, . . . , n} with τ = T/n. Starting with x0

τ
= x0 the classical minimizing

movement scheme to approximate p-curves of maximum slope reads

xk+1
τ

∈ arg min
x̃∈S

{
1

pτ p−1
dp(x̃, xk

τ
) + E(x̃)

}
.

Taking formally the limit p →∞ under the constraint d(x̃, xk
τ
) ≤ τ , we arrive at the corresponding

minimizing movement scheme for p =∞, which we define in the following.
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Definition 2.5 (Minimizing movement scheme for p =∞). For τ = T/n and x0
τ
= x0, we consider the

iteration defined for k ∈N0 as

xk+1
τ

∈ arg min
x̃∈S

{E(x̃) : d(x̃, xk
τ
) ≤ τ }. (MinMove)

We define the step function x̄τ by

x̄τ (0) = x0, x̄τ (t) = xk
τ

if t ∈ (tk−1
τ

, tk
τ
], k ≥ 1.

Furthermore, we define

|x′
τ
|(t) := d

(
xk
τ
, xk−1

τ

)
tk
τ
− tk−1

τ

if t ∈ (
tk−1
τ

, tk
τ

)
,

as the metric derivative of the corresponding piecewise affine linear interpolation.

Assumptions 2.a and 1.b guarantee the existence of minimizers in (MinMove) via the direct method
in the calculus of variations [30], which ensures that the minimizing movement scheme can be defined.
Now for all x ∈ S , we set

Eτ (x) := min
x̃∈Bτ (x)

E(x̃). (2.3)

Remark 2.6. The function defined in (2.3) is similarly employed in [3, 16, 17] and the proof strategy
as displayed in Figure 2 resembles the max-ball arguments as in the previously mentioned works. The
expression in (2.3) can also be seen as the infimal convolution [39, 49] of E and χBτ (0), i.e., Eτ = χBτ � E
and can also be considered as the limit p →∞ of the Moreau envelope [72],

inf
x̃

{
E(x̃) + 1

p
‖x − x̃‖p

}
which is typically defined for p = 2.

Remark 2.7. More recently, similar schemes to the one defined in (MinMove) have been introduced in
an optimization context in [48]. Here, the operation on the right-hand side of (MinMove) was labelled
the “ball-proximal” or “brox” operator.

The next lemma gives an equivalent characterization of the metric slope and provides its relation to
the minimizing movement scheme. In fact, it is a special case of [2, Lemma 3.1.5, Remark 3.1.7]. For
completeness, we provide an adapted proof in Appendix E.

Lemma 2.8. For all x ∈ dom (E), we have that

|∂E |(x) = lim sup
τ→0+

E(x) − Eτ (x)

τ
. (2.4)

Further, we are interested in the behaviour of the mapping τ �→ Eτ (x) when varying τ . By definition,
it is monotone decreasing in τ and thus differentiable a.e. This allows us to derive an integral inequality
that gives an upper bound to Eτ (x) as τ increases.

Lemma 2.9 (Differentiability of Eτ (x)). For x ∈ dom (E), the derivative d
dτ Eτ (x) exists for a.e. τ ∈

(0, +∞) and

Eτ1 (x) +
∫ τ2

τ1

d
dτ̃

Eτ̃ (x)dτ̃ ≥ Eτ2 (x) for 0 ≤ τ1 ≤ τ2 <+∞. (2.5)

Furthermore,
d
dτ

Eτ (x) ≤−|∂E |(xmin,τ ) for a.e. τ ∈ (0, +∞), (2.6)

where

xmin,τ ∈ arg min
x̃

{E(x̃) : d(x, x̃) ≤ τ }. (2.7)
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Figure 2. Visualization of the ball inclusion used for the proof of (2.6).

Proof. Let x ∈ dom (E), for any τ ∗ <∞ we know that the mapping τ �→ Eτ (x) is monotone decreasing
on [0, τ ∗] and thus its variation can be bounded,

E0(x) − Eτ∗ (x) = E(x) − E(xmin,τ∗)<∞.

Employing [90, Theorem 9.6, Chapter IV], this yields that the derivative exists for almost every t ∈ (0, τ ∗)
and that (2.5) holds. To show (2.6), we observe that

Br(xmin,τ ) ⊂ Bτ+r(x) and thus Eτ+r(x) ≤ Er(xmin,τ ),

see Figure 2, which yields

−
(E(xmin,τ ) − Eτ+r(x)

r

)
≤−

(E(xmin,τ ) − Er(xmin,τ )

r

)
.

It follows that
d
dτ

Eτ (x) = lim
r→0

Eτ+r(x) − Eτ (x)

r

=− lim
r→0

E(xmin,τ ) − Eτ+r(x)

r

≤− lim sup
r→0

E(xmin,τ ) − Er(xmin,τ )

r
=−|∂E |(xmin,τ ),

where we used the characterization of the slope from Lemma 2.8.

2.3. Proof of existence

Together with the previous lemmas, we are now able to prove the existence of ∞-curves of max-
imal slope. Besides the piecewise constant interpolation x̄, we use a variational interpolation. This
interpolation, combined with estimate in (2.9), later yields the differential inequality (InfFlow).
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Definition 2.10 (De Giorgi variational interpolation). We denote by x̃τ : [0, T] → S any interpolation
of the discrete values satisfying

x̃τ (t) ∈ arg min
x̃

{
E(x) : d

(
x̃, xk−1

τ

)≤ t − tk−1
τ

}
if t ∈ (tk−1

τ
, tk
τ
] and k ≥ 1. Furthermore, we define

Dτ (t) := d
dt
E(t−tk−1

τ )

(
xk−1
τ

)
if t ∈ (

tk−1
τ

, tk
τ

]
. (2.8)

Employing Lemma 2.9, the above definition directly yields

E(x̃τ (s)) +
∫ t

s

Dτ (r) dr ≥ E(x̃τ (t)) ∀ 0 ≤ s ≤ t ≤ T , (2.9)

which is used in the following existence proof, Theorem 2.11. We employ the arguments of [2, Ch. 3]
and transfer them to our setting, where a crucial statement is the refined version of Ascoli–Arzelà in [2,
Proposition 3.3.1], which is repeated for convenience, in the appendix, see Proposition B.1.

As detailed in section 1, this can also be obtained via the results in [87]. Nevertheless, we include a
proof here, since this introduces the main arguments for the proof of Theorem 3.16.

Theorem 2.11 (Existence of ∞-curves of maximal slope). Under the Assumptions 1.a to 2.b for every
x0 ∈ dom (E), there exists a 1-Lipschitz curve u : [0, T] → S with u(0) = x0, which is an ∞-curve of
maximum slope for E with respect to its strong upper gradient |∂E | and u satisfies the energy dissipation
equality

E(u(0)) = E(u(t)) +
∫ t

0

|∂E |(u(r)) dr for all t ∈ [0, T]. (2.10)

Proof. We consider the set of all possible iterates in the minimizing movement scheme K = {xi
τn

: 0 ≤
i ≤ n, n ∈N} ⊂ S . Recalling Definition 2.5, for every n ∈N and i, j ∈ {0, . . . , n}, we have the estimate

d(xi
τn

, xj
τn

) ≤
j−1∑
k=i

d
(
xk
τn

, xk+1
τn

)≤ (j − i) τn ≤ T ,

and therefore for every n, m ∈N and 0 ≤ i ≤ n, 0 ≤ j ≤ m, we have

d(xi
τn

, xj
τm

) ≤ d(xi
τn

, x0) + d(x0, xj
τm

) ≤ 2T .

Furthermore, since x0 ∈ dom (E), we also know that E(xi
τn

) ≤ E(x0)<∞ and thus K is a d-bounded set,
contained in sublevels of E . Using relative compactness, i.e., Assumption 1.b, this ensures that K is a σ -
sequentially compact set and therefore fulfils 1 of Proposition B.1. In order to apply the latter, it remains
to choose a function ω that fulfils 2. For this, we consider the sequence of curves

∣∣x′
τn

∣∣ : [0, T] →R,
which is by definition bounded in L∞(0, T), i.e.,∥∥∣∣x′

τn

∣∣∥∥
L∞(0,T)

≤ 1, for every n ∈N.

For fixed 0 ≤ s ≤ t ≤ T , let us define

s(n) := min
k∈{0,...,n}

{k · τn : s ≤ k · τn}, t(n) := min
k∈{0,...,n}

{k · τn : t ≤ k · τn}. (2.11)

Using the triangle inequality and the fact that the distance between two consecutive iterates is bounded
by τ , we obtain

lim sup
n→+∞

d(x̄τn (s), x̄τn (t)) ≤ lim sup
n→+∞

t(n)−s(n)
τn∑

i=1

d(x̄τn (s(n) + (i − 1)τ ), x̄τn (s(n) + iτn)) (2.12)

≤ lim
n→+∞

(t(n) − s(n)) = |t − s| =:ω(s, t). (2.13)

https://doi.org/10.1017/S0956792525100120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100120


European Journal of Applied Mathematics 15

Therefore, 2 in Proposition B.1 is fulfilled, allowing us to apply [2, Proposition 3.3.1] to extract
another subsequence such that

x̄τn (t)
σ

⇀ u(t) as n →∞ ∀t ∈ [0, T], u is d-continuous in [0, T].

This in particular ensures u(0) = x0 and (2.12) together with Assumption 1.a yields 1-Lipschitzness of
u, since for s ≤ t, we have

d(u(s), u(t)) ≤ lim inf
n→∞

d(x̄τn (s), x̄τn (t)) ≤ t − s.

By construction, it holds that d(x̄τn , x̃τn ) ≤ τ , which also yields

x̃τn (t)
σ

⇀ u(t) as n →∞ ∀t ∈ [0, T].

Observing that x̃τn (0) = x0 = u(0) independent of n, we take the limes inferior for (2.9) and use
Assumption 2.a and Fatou’s lemma to obtain for all t ∈ [0, T]

E(u(0)) ≥ lim inf
n→∞

{
E(x̃τn (t)) −

∫ t

0

Dτn (r) dr

}
≥ E(u(t)) +

∫ t

0

lim inf
n→∞

−Dτn (r) dr

≥ E(u(t)) +
∫ t

0

|∂E(u(r))| dr.

The last inequality follows by the estimate

|∂E |(u(t)) ≤ lim inf
n→∞

|∂E |(x̃τn (t)) ≤ lim inf
n→∞

−Dτn (t) for a.e. t ∈ (0, T),

which is a consequence of (2.8) and (2.6) and the σ -lower semicontinuity of the slope. On the other
hand, we know that |∂E | is a strong upper gradient and |u′|(r) ≤ 1 for a.e. r ∈ [0, T], such that

E(u(0)) ≤ E(u(t)) +
∫ t

0

|∂E |(u(r))|u′|(r) dr ≤ E(u(t)) +
∫ t

0

|∂E |(u(r)) dr.

In particular, the equality

E(u(0)) = E(u(t)) +
∫ t

0

|∂E |(u(r))|u′|(r) dr = E(u(t)) +
∫ t

0

|∂E |(u(r)) dr

must hold. It follows that t �→ E(u(t)) is locally absolutely continuous and
d
dt
E(u(t)) =−|∂E |(u(t))|u′|(t) =−|∂E |(u(t)) for a.e.t ∈ (0, T).

3. Banach space setting

In this section, we consider the Banach space setting, i.e., we assume that S =X , where X is a Banach
space with norm ‖ · ‖ and (X ∗, ‖ · ‖∗) denoting its dual. In this section, we assume the functional to be
a C1-perturbation (see section 3.1) and use the symbol E to distinguish it from general functionals E
in the previous section. We want to give an equivalent characterization of curves of maximum slope in
terms of differential inclusions. Following [2, Ch. 1], for a functional E : X → (−∞, ∞], we employ
the Fréchet subdifferential ∂E ⊂X ∗, where for x ∈ dom (E), we define

ξ ∈ ∂E(x) ⇔ lim inf
z→x

E(z) − E(x) − 〈ξ , z − x〉
‖z − x‖ ≥ 0 (3.1)

with dom (∂E) = {x ∈X : ∂E(x) �= ∅}. Assuming that ∂E(x) is weakly∗ closed for every x ∈ dom (∂E) –
which holds true in particular, if X is reflexive or E is a so called C1-perturbation of a convex function
(see Proposition 3.1) – we furthermore define

∂◦E(x) := arg min
ξ∈∂E(x)

‖ξ‖∗ ⊂ ∂E(x).
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Note that ∂◦E(x) is still potentially multivalued; however, all elements have the same dual norm. This
justifies using the notation ‖∂◦E(x)‖∗ = min{‖ξ‖∗ : ξ ∈ ∂E(x)} in the following.

3.1. On C1-perturbations of convex functions

Functions that can be split into a convex function Ec and a differentiable part Ed, i.e., E = Ec + Ed, are
called C1-perturbations of convex functions. This particular class of functions exhibits a variety of useful
properties. We collect the ones that are relevant for our setting in the following proposition, which is a
combination of Corollary 1.4.5 and Lemma 2.3.6 in [2].

Proposition 3.1 (C1-perturbations of convex functions). If E : X → (−∞, +∞] admits a decompo-
sition E = Ec + Ed, into a proper, lower semicontinuous convex function Ec and a C1-function Ed,
then

(i) ∂E = ∂Ec + DEd,
(ii)

ξ n ∈ ∂E(xn),

xn → x ∈ dom (∂E),

ξ n ⇀∗ ξ

⎫⎪⎬
⎪⎭⇒

{
ξ ∈ ∂E(x),

E(xn) → E(x),

(iii) |∂E|(x) = ‖∂◦E(x)‖∗ ∀x ∈X ,

(iv) |∂E| is ‖ · ‖-lower semicontinuous,
(v) |∂E| is a strong upper gradient of E.

Considering Banach spaces that fulfil Assumptions 1.a and 1.b with their strong topology and
energies that are C1 perturbations, the existence of ∞-curves of maximum slope follows directly by
Theorem 2.11.

An important example of such a Banach space X is the Euclidean space, since our motivating appli-
cation, namely adversarial attacks, usually employs a finite-dimensional image space. We formulate this
result in the following corollary.

Corollary 3.2 (Existence for C1-perturbations in finite dimensions). Let X = (Rd, ‖ · ‖) and E : Rd →
(−∞, +∞] admit a decomposition E = Ec + Ed into a proper, lower semicontinuous convex function
Ec and a C1-function Ed. For every x0 ∈ dom (E), there exists at least one curve of maximal slope in the
sense of Definition 2.1 with u(0) = x0. Further, this curve satisfies the energy dissipation equality (2.10).

Proof. We choose σ to be the norm topology, such that Assumptions 1.a and 1.b are fulfilled and E
fulfils Assumption 2.a. By Proposition 3.1, |∂E| is lower semicontinuous and a strong upper gradi-
ent. Therefore, also Assumption 2.b is fulfilled and the application of Theorem 2.11 yields the desired
result.

In the infinite-dimensional case, existence is harder to prove. Usually, σ is chosen as the weak or
weak∗ topology, such that whenX is reflexive or a dual space, the Banach–Alaoglu theorem yields com-
pactness and that Assumptions 1.a and 1.b are fulfilled. A desirable property for the energy functional
is the so-called σ -weak∗ closure property

ξ n ∈ ∂E(xn),

xn σ→ x ∈ dom (∂E),

ξ n ⇀∗ ξ

⎫⎪⎬
⎪⎭⇒

{
ξ ∈ ∂E(x),

E(xn) → E(x)

of its subdifferential, c.f. Item 2. The σ -lower semicontinuity of the slope Assumption 2.b and (3.7) are
almost immediate consequences of the closure property, as was shown in [2, Lemma 2.3.6, Theorem
2.3.8].

https://doi.org/10.1017/S0956792525100120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100120


European Journal of Applied Mathematics 17

Example 2. As an application of Corollary 3.2, we consider the finite-dimensional adversarial setting
introduced in section 1, i.e., we choose X =R

d. Let
E(x) := −�(h(x), y)︸ ︷︷ ︸

=Ed

+ χBε (x0)︸ ︷︷ ︸
Ec

,

then by the chain rule Ed ∈ C1(X ), if h ∈ C1(X ;Y) and � ∈ C1(Y ×Y). We consider a neural network
h = φL ◦ . . . ◦ φ1 with the lth layer being given as

φ l : Rdl →R
dl+1

, φl(z) := α(Wz + b),

for a weight matrix W ∈R
dl+1,dl , bias b ∈R

dl+1 and activation function α : R→R, which is applied entry-
wise. Therefore, the network h is C1 if its activation function is in C1(R). Typical examples that fulfil this
assumption are the Sigmoid function and smooth approximations to ReLU [42], such as GeLU [51],
see also Appendix H for more details on such activation functions. Furthermore, many popular loss
functions are in C1(Y ×Y), like the mean squared error (MSE) or Cross-Entropy paired with a Softmax
layer [9, 29, 45]. On the other hand, the root MSE is not differentiable whenever a component is 0.

Lemma 2.8 provides an alternative characterization of the metric slope, employing a lim sup formu-
lation. The next two lemmas show that C1-perturbations are regular enough, such that the limit superior
can be replaced by a standard limit. This is used in Lemma 4.17. The first lemma establishes the fact that
for convex functionals, there is a minimizing sequence for the value of Eτ (x) that lies on the boundary
∂Bτ (x).

Remark 3.3. Similar to [2, section 3.1], we remark some properties of Eτ (x) = infx̃∈Bτ (x) E(x̃) in the case,
when E is convex. Since Eτ (x) is defined via the infimal convolution, see Remark 2.6, we can directly
infer convexity in the x argument, if E was already convex. Furthermore, we also have convexity in τ ,
which can be seen as follows. Let τ1, τ2 ≥ 0 be arbitrary, where we also allow them to attain 0. For any
z1 ∈ Bτ1 (x), z2 ∈ Bτ2 (x), we have that λz1 + (1 − λ)z2 ∈ Bτ̃ (x) with τ̃ = λτ1 + (1 − λ)τ2 for any λ ∈ [0, 1].
The definition of Eτ and the convexity of E yield

Eτ̃ (x) ≤ E(λz1 + (1 − λ)z2) ≤ λE(z1) + (1 − λ)E(z2)

and since z1 ∈ Bτ1 (x), z2 ∈ Bτ2 (x) were arbitrary, we obtain
Eτ̃ (x) ≤ λEτ1 (x) + (1 − λ)Eτ2 (x).

If x ∈ dom (E)), we have that dom (τ �→ Eτ (x)) = [0, ∞) and thus τ → Eτ is continous on (0, ∞). If E is
lower semicontinuous, we also obtain continuity at 0.

Lemma 3.4. If E is a proper, convex, lower semicontinuous function, then for all x ∈ dom (E) with
|∂E(x)| �= 0, there is an ε > 0 such that for all 0< τ < ε, there exists a sequence (xn)n∈N with

E(xn) → Eτ (x) and ‖x − xn‖ = τ ∀n ∈N. (3.2)
If in addition the Banach space X is reflexive, then there exists xτ ∈X with

E(xτ ) = Eτ (x) and ‖x − xτ‖ = τ .

Proof. Let x ∈ dom (E) with |∂E(x)| �= 0, then the mapping τ �→ Eτ (x) is non-increasing and not con-
stant. Therefore, we can find an ε > 0 such that Eτ (x)> Eε(x) for all 0< τ < ε. Let (x̃n)n∈N be a sequence
such that

lim
n→∞

E(x̃n) = Eτ (x).

Since Eτ (x)> Eε(x), we can find an element x̂ that fulfils
E(x̃n)> E(x̂) for every n ∈N and τ <

∥∥x − x̂
∥∥≤ ε.

Since x̂ /∈ Bτ (x) and x̃n ∈ Bτ (x), the line between each pair (x̂, x̃n),
cn : t ∈ [0, 1] �→ tx̂ + (1 − t)x̃n
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has to intersect the sphere ∂Bτ (x) at some point tn ∈ [0, 1), where we define the intersection point as
xn = cn(tn) ∈ ∂Bτ (x). Due to convexity, we obtain

Eτ (x) ≤ E(xn) = E(tnx̂ + (1 − tn)x̃n) ≤ tnE(x̂) + (1 − tn)E(x̃n) ≤ E(x̃n).

Note that the last inequality would only be strict if tn �= 0; however, since x̃n might already be lying on
the sphere, we only obtain the weak inequality. The sequence xn now is the desired sequence in (3.2).

In the reflexive case, the weak compactness of the unit ball guarantees weak convergence of a
subsequence of (xn)n∈N to some xτ ∈ Bτ (x). Lower semicontinuity and convexity imply weak lower
semicontinuity of E and thus

Eτ (x) ≤ E(xτ ) ≤ lim inf
n→∞

E(xn) = Eτ (x).

As above, we can choose an element x̂ with
∥∥x̂ − x

∥∥> τ with E(xτ )> E(x̂). Applying the same argument
as above, there is some t ∈ [0, 1) such that tx̂ + (1 − t)xτ intersects ∂Bτ (x). As above, if t �= 0, convexity
yields

Eτ (x) ≤ E(tx̂ + (1 − t)xτ )< E(xτ ), (3.3)

which contradicts the fact that Eτ (x) = E(xτ ) and thus xτ must have already been on the boundary.

Using the previous lemma, we can now show that for C1-perturbations of convex functions, we can
replace the lim sup in Lemma 2.8 by a normal limit.

Lemma 3.5. Let E : X → (−∞, +∞] admit a decomposition E = Ec + Ed, into a proper, lower
semicontinuous convex function Ec and a C1-function Ed, then for all x ∈ dom (E), we have

|∂E|(x) = lim
τ→0+

E(x) − Eτ (x)

τ
. (3.4)

Proof. Step 1: The convex case.
We first assume that E is convex. We choose τ small enough such that by Lemma 3.4, we obtain a

sequence {xn}n with ‖x − xn‖ = τ and limn→∞ E(xn) = Eτ (x). For each n ∈N, we consider the line

cn(t) := t xn + (1 − t) x

evaluated at t̃ = τ̃ /τ for some 0< τ̃ < τ , which yields
∥∥x − cn(t̃)

∥∥= τ̃ /τ ‖x − xn‖ = τ̃ . Due to convexity,
we obtain

E(cn(t̃)) ≤ t̃ E(xn) + (
1 − t̃

)
E(x) ⇒ E(x) − E(cn(t̃)) ≥ t̃ (E(x) − E(xn)) .

Using the fact that Eτ̃ (x) ≤ E(cn(t̃)) and dividing by τ̃ in the above inequality yields

E(x) − Eτ̃ (x)

τ̃
≥ E(x) − E(cn(t̃))

τ̃
≥ E(x) − E(xn)

τ
.

Considering the limit n →∞, we obtain the following inequality,

E(x) − Eτ̃ (x)

τ̃
≥ lim sup

n→∞

E(x) − E(cn(t̃))

τ̃
≥ lim

n→∞
E(x) − E(xn)

τ
= E(x) − Eτ (x)

τ
.

This shows that τ �→ Q(τ ) := E(x)−Eτ (x)
τ

is decreasing in τ , and therefore, for a null sequence τn → 0,
Q(τn) is an increasing sequence. The monotone convergence theorem together with Lemma 2.8 shows
(3.4).

Step 2: Extension to C1-perturbations.
We now assume that E is a C1-perturbation of a convex function. By the definition of differentiability,

we can write

E(z) = Ec(z) + Ed(x) − 〈DEd(x), x − z〉︸ ︷︷ ︸
=: F(x)

+R(x, x − z),
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with R(x, x − z) ∈ o(|x − z|) for every z ∈ dom (E). We observe that F is again a convex function. Let
ε > 0, then we denote by xE

τ ,ε , xF
τ ,ε ∈ Bτ (x) the quasi-minimizers that fulfil

E(xE
τ ,ε) − Eτ (x) ≤ τε and F(xF

τ ,ε) − Fτ (x) ≤ τε respectively.

We use the estimate

Eτ (x) − Fτ (x) ≤ Eτ (x) − F(xF
τ ,ε) + τε

= Eτ (x) − E(xF
τ ,ε)︸ ︷︷ ︸

≤0

+R(x, x − xF
τ ,ε) + τε ≤ |R(x, x − xF

τ ,ε)| + τε

and analogously

Fτ (x) − Eτ (x) ≤ Fτ (x) − E(xE
τ ,ε) + τε

= Fτ (x) − F(xE
τ ,ε)︸ ︷︷ ︸

≤0

−R(x, x − xE
τ ,ε) + τε ≤ |R(x, x − xE

τ ,ε)| + τε,

to obtain

|Eτ (x) − Fτ (x)| ≤ max
{|R(x, x − xE

τ ,ε)|, |R(x, x − xF
τ ,ε)|

}+ τε. (3.5)

Using that E(x) = F(x) and dividing by τ in (3.5) yields the inequality∣∣∣∣E(x) − Eτ (x)

τ
− F(x) − Fτ (x)

τ

∣∣∣∣≤ max{|R(x, x − xE
τ
(ε))|, |R(x, x − xF

τ
(ε))|}

τ︸ ︷︷ ︸
:= r(τ )

+ε. (3.6)

Since
∣∣x − xE

τ
(ε)

∣∣= ∣∣x − xF
τ
(ε)

∣∣≤ τ , it holds limτ→0 r(τ ) = 0. Taking the lim sup of (3.6) and sending
ε to zero then yields,

lim
τ→0+

∣∣∣∣E(x) − Eτ (x)

τ
− F(x) − Fτ (x)

τ

∣∣∣∣= 0.

Therefore, the limit in (3.4) exists,

lim
τ→0+

E(x) − Eτ (x)

τ
= lim

τ→0+

E(x) − Eτ (x)

τ
− F(x) − Fτ (x)

τ
+ F(x) − Fτ (x)

τ

= lim
τ→0+

F(x) − Fτ (x)

τ
= |∂F| (x),

where in the last step, we used that F is convex together with Step 1.

3.2. Differential inclusions

Similar to [2, Proposition 1.4.1] for finite p, we now give a characterization of ∞-curves of maximal
slope via differential inclusions, whenever the slope of the energy E can be written as

|∂E|(x) = min{‖ξ‖∗ : ξ ∈ ∂E(x)} = ‖∂◦E(x)‖∗ ∀x ∈X . (3.7)

By Proposition 3.1, this is, e.g., the case for C1-perturbations. Let us start by defining a degenerate
duality mapping J∞:X → 2X ∗ ,

J∞(x) :=

⎧⎪⎨
⎪⎩
{ξ ∈X ∗ : 〈ξ , u〉 = ‖ξ‖∗} if ‖x‖ = 1,

{0} if ‖x‖< 1,

∅ if ‖x‖> 1,

as the limit case of the classical p-duality mapping [93, Definition 2.27]

Jp(x) := {
ζ ∈X ∗ : 〈ζ , u〉 = ‖x‖‖ζ‖∗, ‖ζ‖∗ = ‖x‖p−1

}
.

This definition allows us to extend the classical Asplund theorem [93, Theorem 2.28] to the limit case.
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Theorem 3.6 (Asplund theorem for p =∞). The following identity holds true,

J∞ = ∂χB1 .

Proof. For x ∈X with ‖x‖ �= 1, the equality holds trivially. Therefore, we consider ‖x‖ = 1.
Step 1: J∞(x) ⊂ ∂χB1 (x).
Let ξ ∈J∞(x), which means 〈ξ , x〉 = ‖ξ‖∗, and consider an arbitrary z ∈X . If ‖z‖ ≤ 1, we obtain

χB1 (z) − 〈ξ , z − x〉 =−〈ξ , z〉 + ‖ξ‖∗ ≥ ‖ξ‖∗ (1 − ‖z‖) ≥ 0 = χB1 (x),

while for ‖z‖> 1, the inequality holds trivially, thus we have ξ ∈ ∂χB1 (x).
Step 2: J∞(x) ⊃ ∂χB1 (x).
Let ξ ∈ ∂χB1 (x), then for all z ∈ B1 we get

∂χB1 (z)︸ ︷︷ ︸
=0

≥ ∂χB1 (x)︸ ︷︷ ︸
=0

+〈ξ , z − x〉⇐⇒ 〈ξ , z〉 ≤ 〈ξ , x〉 ≤ ‖ξ‖∗.

Taking the supremum over all z ∈ B1 yields the equality 〈ξ , x〉 = ‖ξ‖∗ and thus ξ ∈J∞(x).

Next, we are interested in the behaviour of the energy along curves of maximal slope. We derive a
more general chain rule for subdifferentiable energies that only requires differentiability along curves.

Lemma 3.7 (Chain rule). Let u : [0, T] → dom (E) be a curve, then at each point t where u and E ◦ u
are differentiable and ∂E(u(t)) �= ∅, we have

d
dt

E(u(t)) = 〈ξ , u′(t)〉 ∀ξ ∈ ∂E(u(t)). (3.8)

Proof. Let t ∈ [0, T] be a point, where u and E ◦ u are differentiable, then we use the definition of the
derivative to obtain

d
dt

E(u(t)) − 〈ξ , u′(t)〉 = lim
n→∞

E(u(t + hn)) − E(u(t)) − 〈ξ , u(t + hn) − u(t)〉
hn

=: (♠),

where {hn}n is a null sequence. We first consider only positive null sequences hn > 0, where we want to
ensure that u(t + hn) �= u(t). If such a sequence does not exist, we infer that

d
dt

E(u(t)) = 0 = u′(t)

and (3.8) holds. Now assuming that there exists a sequence with u(t + hn) �= u(t) we continue,

(♠) = lim
n→∞

E(u(t + hn)) − E(u(t)) − 〈ξ , u(t + hn) − u(t)〉
‖u(t + hn) − u(t)‖︸ ︷︷ ︸

=: ln

· ‖u(t + hn) − u(t)‖
hn︸ ︷︷ ︸
rn

.

Note that rn ≥ 0 for all n ∈N since we only allowed positive null sequences. Since u is differentiable and
in particular continuous at t and since ξ ∈ ∂E(u(t)) (3.1) yields

lim inf
n→∞

ln ≥ 0,

i.e., for every null sequence {hn}n, we can find a subsequence {hn}n such that ln either converges to some
limit l ≥ 0 or diverges to +∞. In the convergent case, we obtain

(♠) = l · ‖u′(t)‖ ≥ 0.

In the divergent case, we also have (♠) ≥ 0, since we can find a n0 such that ln is non-negative for all
n ≥ N. Using the same arguments as above, but only allowing negative null sequences hn < 0, we instead
obtain (♠) ≤ 0. This finally yields

d
dt

E(u(t)) − 〈ξ , u′(t)〉 = 0.
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The chain rule from Lemma 3.7, together with the characterization of the metric slope (3.7),
enables us to show that energy dissipation inequality (InfFlow) can be equivalently characterized via
a differential inclusion.

Theorem 3.8. Let E:X → (−∞, +∞] satisfy (3.7) and u : [0, 1] →X be an a.e. differentiable Lipschitz
curve. Let further E ◦ u be a.e. equal to a non-increasing function ψ , then the following are equivalent:

(i) |u′|(t) ≤ 1 and ψ ′(t) ≤−|∂E|(u(t)) for a.e. t ∈ [0, T],
(ii) J∞(u′(t)) ⊃−∂◦E(u(t)) �= ∅ for a.e. t ∈ [0, 1],
(iii) u′(t) ∈ ∂‖ · ‖∗(−ξ ) ∩X =− arg max

x∈B1

〈ξ , x〉 for all ξ ∈ ∂◦E(u(t)) �= ∅, and a.e. t ∈ (0, T).

Proof. Step 1: (i) ⇔ (iii).
Since ψ is a monotone function, it is differentiable a.e., and thus we can find a Lebesgue null set N ⊂

[0, T], such that u and ψ are differentiable and E(u(t)) =ψ(t) for every t ∈ [0, T] \ N. Using Lemma 3.7
and (3.7) for t ∈ [0, 1] \ N we obtain,

ψ ′(t) ≤−|∂E|(u(t))
|u′|(t) ≤ 1

}
⇔

{ 〈ξ , u′(t)〉 =ψ ′(t) ≤−‖ξ‖∗ for all ξ ∈ ∂◦E(u(t))
|u′|(t) ≤ 1

⇔〈ξ , u′(t)〉 ≤−‖ξ‖∗ − χB1 (u′(t)) for all ξ ∈ ∂◦E(u(t)).

For each ξ ∈ ∂◦E(u(t)), the last statement is Item 2 with f = χB1 and f ∗ = ‖ · ‖∗, which is equivalent
to Item 1, i.e.,

〈ξ , u′(t)〉 ≤−‖ξ‖∗ − χB1 (u′(t)) ⇔ u′(t) ∈ ∂‖ · ‖∗(−ξ ), (3.9)

and thus we have shown (i) ⇔ (iii). The set identity in (iii),

∂ ‖·‖∗ (−ξ ) ∩X =− arg max
x∈B1

〈ξ , x〉,

follows from Corollary A.5.
Step 2: (i) ⇔ (ii).
Using the equivalence of Item 2 and Item 1 in (3.9), we also obtain that for a.e. t ∈ [0, T] and all

ξ ∈ ∂E◦(u(t))

(i) ⇔ −ξ ∈ ∂χB1 (u′(t)).

From Asplund’s theorem (Theorem 3.6), we have that

−ξ ∈ ∂χB1 (u′(t)) ⇐⇒−ξ ∈J∞(u′(t))

which thus implies (i) ⇔ (ii).

3.3. Semi-implicit time stepping

The minimizing movement scheme in (MinMove) can be considered as an implicit time stepping scheme,
which is often computationally intractable in practice. Therefore, one may want to instead employ an
explicit scheme. In this regard, we are interested in minimizing movement schemes of the semi-implicit
energy, which in many cases can be computed explicitly. We consider a Banach space X that fulfils
Assumptions 1.a and 1.b and a C1-perturbation of a convex function E = Ed + Ec, fulfilling assumptions
Assumptions 2.a and 2.b. Furthermore, we assume:

Assumption 3.a (Lipschitz continuous differentiability). The differentiable part Ed has a Lipschitz
continuous first derivative.
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We can linearize the differentiable part of the energy around a point z and define the linearized energy
by

Esl(x;z) := Ed(z) + 〈DEd(z), x − z〉 + Ec(x).

To ensure that the minimizers in (3.10) are obtained, we assume:

Assumption 3.b (Lower semi-continuity). The semi linearization x �→ Esl(x;z) is σ -lower semicontin-
uous for every z ∈X .

Remark 3.9. In reflexive spaces, this is a very mild assumption, as the σ -topology is often chosen
to be the weak topology. In this case, we only need an assumption on the convex part Ec, namely
lower semicontinuity, which together with convexity implies weak lower semicontinuity. The linearized
part x �→ Ed(z) + 〈DEd(z), x − z〉 is even weakly continuous and therefore, we do not need additional
assumptions.

Definition 3.10 (Semi-implicit Scheme). For x0 ∈ dom (Ec), we define the semi-implicit scheme as

xk+1
si,τ ∈ arg min

x∈Bτ (xk
si,τ )

Esl(x; xk
si,τ

)
, (3.10)

for k ∈N with x0
si,τ = x0. We define the step function x̄si,τ by

x̄si,τ (0) = x0, x̄si,τ (t) = xk
si,τ if t ∈ (

tk−1
τ

, tk
τ

]
, k ≥ 1.

Furthermore, we define

|x′si,τ |(t) := d
(
xk

si,τ , xk−1
si,τ

)
tk
τ
− tk−1

τ

if t ∈ (
tk−1
τ

, tk
τ

)
as the metric derivative of the corresponding piecewise affine linear interpolation.

Remark 3.11. The above scheme can also be recovered via the theory of doubly non-linear equations
developed in [69]. Namely, by considering the state-dependent dissipation potential

�z(v) := χB1 (v) + Ed(z) + 〈DEd(z), v〉
the minimizing movement scheme defined in [69, Eq. (4.9)] is given as

xk+1
si,τ ∈ arg min

x∈X

{
τ�xk

si,τ

(
x − xk

si,τ

τ

)
+ Ec(x)

}
which exactly recovers the scheme defined in Definition 3.10. The authors show convergence of this
scheme towards solution of the equation

∂�u(t)(u
′(t)) + ∂Ec(u(t)) � 0

which corresponds to the inclusion derived in Theorem 3.8. However, we cannot directly apply the
results of [69] since the choice of dissipation potential as above violates condition (2.�1), since
dom (�) �=X , (2.�2) since in general �u(0) �= 0 and the growth condition on the Fenchel conjugate
�∗

z (ξ ) = ∥∥ξ − DEd(z)
∥∥
∗ − Ed(z) is not fulfilled and also (2.�3). In fact, a more detailed study on how

these assumptions could be relaxed would be very interesting, which we, however, leave for future work.

An important special case of the above scheme is a reflexive Banach space X together with a C1

energy E, i.e., we can choose Ec = 0. In this case, the scheme is fully explicit, as the following lemma
shows.

Lemma 3.12. If the Banach space X is reflexive and E ∈ C1(X ), then we can explicitly compute the
iterates in Definition 3.10 as

xk+1
si,τ ∈ xk

si,τ − τ ∂‖ · ‖∗(DE(xk
si,τ )).
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Proof. We compute
xk+1

si,τ ∈ arg min
x : ‖x−xk

si,τ ‖≤τ
E(xk

si,τ ) + 〈DE(xk
si,τ ), x − xk

si,τ 〉

= arg min
x : ‖x−xk

si,τ ‖≤τ
〈DE(xk

si,τ ), x〉

=− arg max
x : ‖x−xk

si,τ ‖≤τ
〈DE(xk

si,τ ), x〉

= xk
si,τ − τ arg max

x∈B1

〈DE(xk
si,τ ), x〉

= xk
si,τ − τ ∂‖ · ‖∗(DE(xk

si,τ )),

where for the last identity, we used A.5.

In section 5, we consider a case where Ec �= 0, but the scheme can still be computed explicitly. In
fact, the iteration then coincides with (IFGSM), which ultimately yields the desired convergence result.

It is easy to see that the metric slope of E and its semi linearization Esl( · ;z) coincide in the point of
linearization z, i.e. |∂E|(z) = |∂Esl( · ;z)|(z). The next lemma estimates the difference of their slope when
u is not the point of linearization.

Lemma 3.13. Let E be a C1-perturbation of a convex function satisfying Assumption 3.a, then for each
z, x ∈X , we have the following estimate∣∣|∂E|(x) − |∂Esl( · ;z)|(x)

∣∣≤ Lip(DEd)‖z − x‖. (3.11)

Proof. Let z, x ∈X , from Item 1 we know
∂E(x) = ∂Ec(x) + DEd(x),

∂Esl(x;z) = ∂Ec(x) + DEd(z),

and then Item 3 implies that there exists ξ1, ξ2 ∈ ∂Ec(x) such that
|∂E| (x) = min

{∥∥ξ + DEd(x)
∥∥
∗ : ξ ∈ ∂Ec(x)

}= ∥∥ξ1 + DEd(x)
∥∥
∗ ,∣∣∂Esl( · ;z)

∣∣ (x) = min
{∥∥ξ + DEd(z)

∥∥
∗ : ξ ∈ ∂Ec(x)

}= ∥∥ξ2 + DEd(z)
∥∥
∗ .

We can then estimate
|∂E| (x) ≤ ∥∥DEd(x) + ξ2

∥∥
∗ ≤ ‖DEd(x) − DEd(z)‖∗ + ‖DEd(z) + ξ2‖∗

≤ Lip(DEd)‖x − z‖ + ∣∣∂Esl( · ;z)
∣∣ (x),

and therefore
|∂E| (x) − ∣∣∂Esl( · ; z)

∣∣ (x) ≤ Lip(DEd)‖x − z‖.

Analogously, we estimate∣∣∂Esl(·, z)
∣∣ (x) ≤ ‖DEd(z) + ξ1‖ ≤ ‖DEd(z) − DEd(x)‖ + ‖DE(x) + ξ1‖

≤ Lip(DEd)‖x − z‖ + |∂E|(x).

and therefore ∣∣∂Esl( · ; z)
∣∣ (x) − |∂E| (x) ≤ Lip(DEd)‖x − z‖.

This concludes the proof.

In the following, we want to define a variational interpolation similar to Definition 2.10. Therefore,
we consider

Esl
τ
(x; z) = min

x̃∈Bτ (x)
Esl(x̃; z).

For better readability, if z and x coincide above, we set
Esl
τ
(x) := Esl

τ
(x; x) = min

x̃∈Bτ (x)
Esl(x̃; x).
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Definition 3.14 (Semi-implicit variational interpolation). We denote by x̃si,τ : [0, T] →X any interpo-
lation of the discrete values satisfying

x̃si,τ (t) ∈ arg min
x

{
Esl(x; xk−1

si,τ

)
: d

(
x, xk−1

si,τ

)≤ t − tk−1
τ

}
if t ∈ (tk−1

τ
, tk
τ
] and k ≥ 1. Furthermore, we define

Dτ (t) := d
dt

Esl
(t−tk−1

τ )
(xk−1

si,τ ). (3.12)

The following Lemma shows that the variational interpolation of the semi-implicit minimizing move-
ment scheme satisfies the same properties, (2.8) and (2.9), as the De Giorgi variational interpolation,
up to an error in O(τ ).

Lemma 3.15. We have that

Dτ (t) = d
dt

Esl(
t−tk−1

τ

)(
xk−1

si,τ

)≤−|∂Esl( · ; xk−1
si,τ

)|(x̃si,τ (t)) =−|∂E|(x̃si,τ (t)) +O(τ ) if t ∈ (tk−1
τ

, tk
τ
] (3.13)

and

E(x̃si,τ (s)) +
∫ t

s

Dτ (r) dr ≥ E(x̃si,τ (t)) +O(τ ) ∀ 0 ≤ s ≤ t ≤ T . (3.14)

Proof. For (3.13), we apply Lemma 2.9 to the mapping x �→ Esl(x; xk−1
si,τ ) to obtain

d
dt

Esl(
t−tk−1

τ

)(
x; xk−1

si,τ

)≤ |∂Esl(·, xk−1
si,τ

)| (
xmin,t−tk−1

τ

)
,

where xmin,t−tk−1
τ

∈ arg min
x̃

{Esl(x̃; xk−1
si,τ ) : x̃ ∈ Bτ (x)}. Choosing v = xk−1

si,τ then yields

d
dt

Esl
(t−tk−1

τ )
(xk−1

si,τ ) ≤−|∂Esl( · ; xk−1
si,τ )|(x̃si,τ (t)).

The last equality of (3.13) follows by Lemma 3.13. To show (3.14), we again use Lemma 2.9 and get

Esl(x̃si,τ (s); xk
si,τ

)+ ∫ t

s

Dτ (r) dr ≥ Esl(x̃si,τ (t), xk
si,τ

)
for all tk

τ
≤ s ≤ t ≤ tk+1

τ
.

Due to Theorem C.1∣∣Esl(x̃si,τ (s); xk
si,τ

)− E(x̃si,τ (s))
∣∣= ∣∣Ed(xk

si,τ

)+ 〈DEd(xk
si,τ ), x̃si,τ (s) − xk

si,τ 〉 − Ed(x̃si,τ (s))
∣∣

≤
∣∣∣∣
∫ 1

0

〈
DEd (

xk
si,τ + r(x̃si,τ (s) − xk

si,τ )
)

, xk
si,τ − x̃si,τ (s)

〉
− 〈DEd(xk

si,τ ), x̃si,τ (t) − xk
si,τ 〉 dr

∣∣∣∣
≤

∫ 1

0

rLip(DEd)‖x̃si,τ (s) − xk
si,τ‖2 dr

≤ 1

2
Lip(DEd)‖x̃si,τ (s) − xk

si,τ‖2 ≤ 1

2
Lip(DEd)τ 2

and analogusly |Esl(x̃si,τ (t), xk
si,τ ) − E(x̃si,τ (t))| ≤ 1

2
Lip(DEd)τ 2. Therefore, for all tk

τ
≤ s ≤ t ≤ tk+1

τ
, we have

that

E(x̃si,τ (s)) +
∫ t

s

Dτ (r) dr ≥ Esl(x̃si,τ (s); xk
τ
) +

∫ t

s

Dτ (r) dr − 1

2
Lip(DEd)τ 2

≥ Esl(x̃si,τ (t); xk
τ
) − 1

2
Lip(DEd)τ 2

≥ E(x̃si,τ (t)) − Lip(DEd)τ 2.

(3.15)
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Now for s ∈ [tm
τ

, tm+1
τ

] and t ∈ [tk
τ
, tk+1
τ

] with m ≤ k, we add up (3.15) to obtain

E(x̃si,τ (s)) +
∫ tm+1

τ

s

Dτ (r) dr +
k−1∑

i=m+1

∫ ti+1
τ

tiτ

Dτ (r) dr +
∫ t

tkτ

Dτ (r) dr

≥ E(x̃si,τ (t)) −
k∑

i=m

Lip(DEd)τ 2

= E(x̃si,τ (t)) − (k − m)Lip(DEd)τ 2

≥ E(x̃si,τ (t)) − TLip(DEd)τ

such that we finally obtain (3.14).

As an immediate consequence of Lemma 3.15, we can replace the minimizing movement scheme in
the proof of Theorem 2.11 by the semi-implicit scheme, as the error terms are of order O(τ ) and vanish
during the limiting process τ → 0. Then x̄si,τ σ -converges up to a subsequence to a ∞-curve of maximal
slope.

Theorem 3.16. Let E be a C1-perturbation of a convex function. Under Assumptions 1.a to 3.b, there
exists a ∞-curve of maximal slope u(t), with respect to the energy E and its upper gradient |∂E|, and a
subsequence of τn = T/n such that

x̄si,τn (t)
σ

⇀ u(t) as n →∞ ∀t ∈ [0, T].

Proof. We simply replace the minimizing movement scheme in Definition 2.5 and De Giorgis vari-
ational interpolation (see Definition 2.10) by the semi-implicit scheme in Definition 3.10 and its
corresponding variational interpolation of Lemma 3.15. Proceeding similarly as in the proof of
Theorem 2.11, we use Proposition B.1 to show

x̄si,τn (t)
σ

⇀ u(t) as n →∞ ∀t ∈ [0, T]

for a subsequence τn, where u is a 1-Lipschitz curve with u(0) = x0. Then the same holds true for x̃si,τn (t).
Taking for τn the limes inferior for n →∞ of (3.14) and using Assumption 2.a, Assumption 2.b and

(3.13) we again obtain

E(u(0)) ≥ E(u(t)) +
∫ t

0

|∂E|(u(r)) dr for all t ∈ [0, T].

Since on the other hand |∂E| is a strong upper gradient, equality in the above equation must hold.

Remark 3.17. Let τn be any sequence such that τn → 0. If the ∞-curve of maximal slope u is unique,
we can apply Theorem 3.16 to every subsequence of τn and find a further subsequence τ̃n such that

x̄si,τ̃n (t)
σ

⇀ u(t) as n →∞ ∀t ∈ [0, T].

This implies that already for τn

x̄si,τn (t)
σ

⇀ u(t) as n →∞ ∀t ∈ [0, T].

and the semi-implicit scheme converges.

4. Wasserstein infinity flows

The previous sections consider a “single particle”, x ∈X , trying to minimize an energy E , by following
an ∞-curve of maximal slope. This single particle may be drawn from a probability distribution μ0 ∈
P(X ), which over time also minimizes an energy E defined on the space of probabilities. In this section,
we choose the underlying metric space S to be the space of Borel probability measures with bounded
support P∞(X ), and equip it with the ∞-Wasserstein distance. We show that for potential energies, ∞-
curves of maximal slope can be expressed via a probability measures η on the space C(0, T; X ), which
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is concentrated on ∞-curves of maximal slope on the underlying Banach space X . From η, we can then
derive a corresponding continuity equation which those ∞-curves of maximal slope have to fulfil.

This concept is commonly referred to as the “superposition principle”, where our approach directly
follows the setup of [2, 62, 63]. We refer to [99] for an overview of different works in this direction, as
well as results that hold true in a much more general setting.

4.1. Preliminaries on Wasserstein spaces

We give a brief introduction to the basic properties of Wasserstein spaces. For more details, we refer to
[2, 44, 104]. In the following, (X , ‖ · ‖) is a separable Banach space. We denote by P(X ) the space of
Borel probability measures on X . For 1 ≤ p<∞, Pp(X ) ⊂P(X ) is the subset of measures with finite
p-momentum, while P∞(X ) ⊂P(X ) is the subset of measures with bounded support. For 1 ≤ p<∞
and μ, ν ∈Pp(X ), we define the p-Wasserstein distance as

Wp
p (μ, ν) := inf

γ∈�(μ,ν)

∫
‖x − z‖pdγ (x, z).

Here,

�(μ, ν) := {γ ∈P(X ×X ):π 1
#γ =μ, π 2

#γ = ν}, (4.1)

is the set of admissible transport plans and π 1(x, z) = x, π 2(x, z) = z denote the projection on the first
and second component. For μ, ν ∈P∞(X ), the ∞-Wasserstein distance is given by

W∞(μ, ν) := inf
γ∈�(μ,ν)

γ − ess sup ‖x − z‖. (4.2)

In both cases, the minimum of (4.1) and (4.2) is obtained (see, e.g., [2, 104] and [44, Proposition 1] for
the case p =∞) and �0(μ, ν) denotes the set of optimal transport plans where the minimum is reached.

Proposition 4.1 [44, Proposition 6.]. For p ∈ [1, ∞], Wp = (Pp(X ), Wp), i.e., Pp(X ) equipped with the
p-Wasserstein distance, is a complete metric space. For p<∞, Wp is separable.

The following lemma shows that Wasserstein distances are ordered in such a way that they get stronger
by increasing p, see [44, Proposition 3.].

Lemma 4.2 [44, Proposition 3.]. For 1 ≤ p ≤ q ≤∞ and μ, ν ∈P(X )

Wp(μ, ν) ≤ Wq(μ, ν) (4.3)

and in particular

W∞(μ, ν) = sup
p

Wp(μ, ν) = lim
p→∞

Wp(μ, ν).

Let now σ denote the narrow topology, namely, μn σ→μ iff,∫
X
ϕ dμn →

∫
X
ϕ dμ ∀ϕ ∈ Cb(X ), (4.4)

where Cb(X ) denotes the space of bounded and continuous functions on X . The next lemma is helpful,
when we are considering limits in (4.4) with ϕ being unbounded or only lower semicontinuous.

Lemma 4.3 [2, Lemma 5.1.7.]. Let (μn)n∈N be a sequence in P(X ) narrowly converging to μ ∈P(X ).
If g:X → (−∞, +∞] is lower semicontinuous and its negative part g− =− min{g, 0} is uniformly
integrable w.r.t. the set {μn}n∈N, then

lim inf
n→∞

∫
X

g(x)dμn(x) ≥
∫
X

g(x) dμ(x)>−∞.

When working with probability measures, Prokhorov’s theorem ([7, Theorems 5.1–5.2], repeated for
convenience in the appendix, Theorem D.1) is useful since it characterizes relatively compact sets with
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respect to the narrow topology. In certain situations, the assumption (D.1) of this theorem, i.e.,

∀ε > 0 ∃Kε compact in X such that μ(X \ Kε) ≤ ε ∀μ ∈K,

can only be shown for bounded and not compact sets. There, we use the observation in the following
remark to still obtain some sort of relative compactness. In the following, we denote by Xω, the space
X equipped with the weak topology σ (X , X ∗).

Remark 4.4. If X is separable and reflexive, then so is its dual. For a countable dense subset {x∗n}n∈N of
BX∗

1 , we can define the norm

‖x‖ω =
∞∑

n=1

1

n2
|〈x∗n, x〉|,

which induces the weak topology σ (X , X ∗) on bounded sets [73, Lemma 3.2]. This norm is a so-called
Kadec norm. In particular, we have that the Borel sigma algebra B(X ), generated by the norm topology,
and the one generated by the weak topology B(Xω) coincide and thus P(X ) =P(Xω), see [37, Theorem
1.1]. Now, let us assume that for a set K⊂P(X ) =P(Xω), we have that

∀ε > 0 ∃Kε ‖ · ‖-bounded in X , such that μ(X \ Kε) ≤ ε ∀μ ∈K. (4.5)

Since bounded sets are subsets of Bε for ε large enough and Bε is compact in the weak topology σ (X , X ∗),
Prokhorov’s theorem can be applied for Xω. We obtain that there exists a subsequence (μn)n∈N ⊂K and
a limit μ ∈P(X ) =P(Xω) such that∫

X
ϕ dμn →

∫
X
ϕ dμ ∀ϕ ∈ Cω

b (X ), (4.6)

where Cω
b (X ) now denotes the set of weakly continuous bounded functions.

The next lemma follows from [104, Theorem 6.9, Corollary 6.11, Remark 6.12] together Lemma 4.2,
i.e., [44, Proposition 3].

Lemma 4.5 (Compatibility). The narrow topology σ is weaker than the topology induced by Wp(·, ·)
on Pp(X ), for every p ∈ [1, ∞]. Furthermore, Wp is lower semicontinuous with respect to the narrow
topology σ , i.e., for every p ∈ [1, ∞]:

μn σ→μ

νn σ→ ν

}
=⇒ Wp(μ, ν) ≤ lim inf

n→∞
Wp(μ

n, νn).

Remark 4.6. For 1 ≤ p<∞, convergence in Wp is equivalent to narrow convergence and convergence
of the p-th moment [104, Theorem 6.9]. This equality is lost for the ∞-Wasserstein distance, as conver-
gence in the narrow topology (μn σ→μ) together with

⋃
n

supp (μn) being bounded or relatively compact

no longer guarantees convergence in W∞, as Example 3 demonstrates.

Example 3. We consider the sequence

μn = n − 1

n
δ0 + 1

n
δ1,

where δt denotes the Dirac measure at t ∈R. Then we have that∫
R

ϕ dμn = n − 1

n
ϕ(0) + 1

n
ϕ(1)

n→∞−−→ ϕ(0) =
∫
R

ϕdδ0

for every ϕ ∈ Cb(R) and thus μn σ→ δ0. However, we see that

W∞(μn, δ0) = min
γ∈�(μn ,δ0)

γ − ess sup |x − z| = |1 − 0| = 1,

for every n ∈N and thus we have no convergence in W∞.
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4.2. Absolutely continuous curves in Wasserstein spaces and the superposition principle

In this section, we employ the superposition principle to obtain alternative characterizations of
absolutely continuous curves in Wasserstein spaces.

In [62], Lisini shows that for p ∈ (1, ∞), p-absolutely continuous curves μ : [0, T] → Wp can be writ-
ten as a push forward of a Borel probability measure over the space of continuous curves. Using this
statement, the author was able to derive a well-known characterization of absolutely continuous curves
via solutions of continuity equations, when the underlying space of Wp is Banach. In [63], the first result
was extended to Wasserstein–Orlicz spaces, which also covers the W∞ case.

In [99, Section 4], the authors were able to derive a refined version of the result obtained in [62] that
also includes the case p =∞. For completeness, we state the corresponding theorems in this section and
provide the proofs that specifically adapt the arguments of [62] to our setting in Appendix E.

Connected to this, we also refer to the discussion in the book by [91, Ch. 5.5.1] and the associated
paper [10], where this topic was discussed as the limit p →∞, forX =R

d. We further discuss difficulties
arising when the norm of underlying Banach space is not strictly convex.

Let P(C(0, T; X )) denote the space of Borel probability measures on the Banach space of continuous
functions on the interval [0, T]. We define the evaluation map et:C(0, T; X ) →X by

et(u) = u(t).

Then absolutely continuous curves in Wasserstein spaces can be represented by a Borel probability
measure on C(0, T; X ) concentrated on the set of absolutely continuous curves in X , as the follow-
ing theorem from [63] shows. Here, ACp(0, T;Wp) denotes the set of p-absolutely continuous curves
μ : [0, T] → Wp.

Theorem 4.7 [63, Theorem 3.1]. Let X be separable. For p ∈ (1, ∞], if μ ∈ACp(0, T;Wp), then there
exists η ∈P(C(0, T; X )) such that

• η is concentrated on ACp(0, T; X ),
• et#η=μt ∀t ∈ [0, T],
• for a.e. t ∈ [0, T] the metric derivative |u′|(t) exists for η-a.e. u ∈ C(0, T; X ) and it holds the equality

|μ′|(t) = ‖|u′|(t)‖Lp(η).

For a Banach space (X , ‖ · ‖) and a finite measure space (�, A,μ), we denote for 1 ≤ p ≤∞ the
Lebesgue–Bochner space by Lp(μ;X ). A function f :�→X belongs to Lp(μ;X ) if it is μ-Bochner
integrable and its norm

‖f‖p
Lp(μ;X ) :=

∫
�

‖f‖p dμ for 1 ≤ p<∞,

‖f‖L∞(μ;X ) := μ− ess sup ‖f‖ p =∞,

is finite, see [34]. For a narrowly continuous curve μ:[0, T] →Pp(X ), we define μ̄ ∈P([0, T] ×X ) by

∫
[0,T]×X

ϕ(t, x)dμ̄ := 1

T

∫
[0,T]

∫
X
ϕ(t, x) dμt(x) dt

for every bounded Borel function ϕ:[0, T] ×X →R. Let v : [0, T] ×X →X be a time dependent
velocity field belonging to Lp(μ̄, X ), then we say (μ, v) satisfies the continuity equation

∂μt + div(vtμt) = 0, (CE)

if the relation
d
dt

∫
X
ϕ dμt =

∫
X
〈Dϕ, vt〉 dμt ∀ϕ ∈ C1

b(X )
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holds in the sense of distributions in (0, T). Here, C1
b(X ) denotes the space of bounded, Fréchet-

differentiable functions ϕ : X →R, such that Dϕ : X →X ∗ is continuous and bounded. Using this
notion, we define,

ECp(X ) :=
{

(μ, v) :
μ : [0, T] →Pp(X ) is narrowly continous, v ∈ Lp(μ̄;X ),

(μ, v) satisfies the continuity equation

}
.

As the next theorem shows, the curves contained in the support of η in Theorem 4.7 can be understood
as the “characteristics” of a corresponding transport equation. The statement is an extension of [62,
Theorem 7] to the case p =∞. For completeness, we give an adapted proof in Appendix E. Here we
assume that the Banach space also has the Radon–Nikodým property, see, e.g., [89, Ch. 5], which we
recall in the following. In particular, every reflexive Banach space has this property, see [89, Corollary
5.45].

Definition 4.8 (Radon–Nikodým property). We say that a Banach space X has the Radon–Nikodým
property, if for every vector measure μ of bounded variation defined over a σ -algebra � over X , that
is absolutely continuous with respect to a finite, positive measure λ, there exists a λ-Bochner integrable
function f such that μ(A) = ∫

A
f dλ for all A ∈�.

Theorem 4.9. Let X be separable and satisfy the Radon–Nikodým property. If μ ∈AC∞([0, T];W∞),
then there exists a vector field v : [0, T] ×X →X such that (μ, v) ∈ EC∞(X ) and

‖vt‖L∞(μt ;X ) ≤ |μ′|(t) for a.e. t ∈ (0, T). (4.7)

If in addition X satisfies the bounded approximation property (BAP), then the following Theorem 4.11
acts as the counterpart of Theorem 4.9 and states that solutions of the continuity equation are abso-
lutely continuous curves. In particular, for a specific μ ∈ACp([0, T];Wp), the velocity v field obtained
in Theorem 4.9 is minimal in the sense that

‖vt‖Lp(μ;X ) = |μ′|(t) ≤ ‖ṽt‖Lp(μ;X ) for a.e. t ∈ (0, T) and for all ṽ satisfying (μ, ṽ) ∈ ECp(X ).

We briefly recall the (BAP) and then state Theorem 4.11, which is an extension of [62, Theorem 8]
to p =∞. For completeness, the proof (which again is a slight modification of [62]) is provided in
Appendix E.

Definition 4.10 (BAP). A separable Banach space X satisfies the bounded approximation property
(BAP), if there exists a sequence of finite rank linear operators Tn : X →X such that

lim
n→∞

‖Tnx − x‖ = 0.

In particular, every Hilbert space and every Banach space with a Schauder basis fulfils this property,
see [92, Ch. 9].

Theorem 4.11. Assume that X is separable and satisfies the Radon–Nikodým property as well as the
bounded approximation property (BAP). If (μ, v) ∈ EC∞(X ), then μ ∈AC∞([0, T];W∞) and

|μ′|(t) ≤ ‖vt‖L∞(μt ;X ) for a.e. t ∈ (0, T).

Remark 4.12 (Uniqueness of the velocity field). As mentioned before, if X satisfies the bounded
approximation property, the velocity field obtained in Theorem 4.9 is minimal. For the case that
p ∈ (1, +∞) and the norm of the underlying Banach space X is strictly convex, then ‖ · ‖Lp(μt ;X ) is
also strictly convex. Then the uniqueness of the minimal velocity field follows. In the other cases, the
uniqueness is lost.

Remark 4.13. Whenever Theorem 4.11 is applicable, ‖vt‖L∞(μt ;X ) = |μ′|(t) for a.e. t ∈ (0, T) and thus
(E.1) is actual an equality. For the Wasserstein spaces p ∈ (1, +∞), we obtain∫

X

∥∥∥∥
∫

C(0,T; X )

u′(t)dη̄x,t

∥∥∥∥p

dμt =
∫
X

∫
C(0,T; X )

∥∥u′(t)
∥∥p

dη̄x,t dμt for a.e. t ∈ (0, T)
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or equivalently∥∥∥∥
∫

C(0,T; X )

u′(t)dη̄x,t

∥∥∥∥p

=
∫

C(0,T; X )

∥∥u′(t)
∥∥p

dη̄x,t for μ̄-a.e. (t, x) ∈ [0, T] ×X .

from corresponding calculations [62, Theorem 7]. Notice that this is the equality case of Jensen’s
inequality. For a strictly convex norm ‖ · ‖, this equality can only hold when u′(t) is constant η̄x,t-a.e.
Thus, heuristically spoken, all curves passing through a point x ∈X at time t have the same derivative.
This is in particular the reason why on an infinitesimal level optimal transport plans γh ∈ �(μt,μt+h)
behave like classical optimal transport, i.e., for a.e. t ∈ (0, T) (see [2, Proposition 8.4.6]),

lim
h→0

(
π 1,

1

h
(π 2 − π 1)

)
#

γh = (Id × vt)#μt in P(X ×X ).

This argument fails in the case W∞ or when the norm ‖ · ‖ is not strictly convex.

4.3. Curves of maximal slope of potential energies

In addition to being separable, we now assume X to be reflexive, and we need the following assumption
on the potential E.

Assumption 4.a. Let E : X → (−∞, +∞] be weakly continuous on its domain, which we assume to be
closed and convex.

The potential energy E : P∞(X ) → (−∞, +∞] is defined as

E(μ) :=
∫

E(x) dμ(x).

As in section 2, we consider a minimizing movement scheme, approximating curves of maximal slope,
where in each step the following minimization problem arises,

arg min
μ̃:W∞(μ̃,μ)≤τ

∫
E(x)dμ̃(x). (4.8)

Notably, the ∞-Wasserstein distance in (4.8) restricts the movement of mass uniformly. Intuitively, this
means that for every point x ∈X we need to solve the local problem

rτ (x) := arg min
x̃∈Bτ (x)

E(x̃), (4.9)

where rτ (x):X ⇒X is a possibly multivalued correspondence, see Appendix F. Then a possible optimal
transport plan between μ and a minimizer of (4.8), μmin, should transport the mass from some point x to
a minimizing point in rτ (x). In this regard, we employ the measurable maximum theorem ([24, Theorem
18.19], repeated for convenience in the appendix as Theorem F.3) . This theorem guarantees the measur-
ability of the “argmin” correspondence in (4.9). Definitions of (weak) measurability for correspondences
are repeated in Appendix F, where we refer to [24] for a detailed overview over the topic. In order to
apply the mentioned theorems to the problem in (4.9), we need to check the underlying correspondence
for weak measurability. Let us define

domτ (E) := {x ∈X :‖x − z‖ ≤ τ for a z ∈ dom (E)}.
Lemma 4.14. For τ ≥ 0, the correspondence ϕτ : (X ∩ domτ (E), ‖ · ‖) ⇒ (X ∩ dom (E), ‖ · ‖ω) given
by ϕτ :x �→ Bτ (x) is weakly measurable and has nonempty weakly compact values.

Proof. Every weakly open set G ⊂X ∩ dom (E) is strongly open as well. And for strongly open sets G,
the lower inverse as defined in (F.1) is given as

ϕl
τ
(G) = {s ∈X | ∃ x ∈ G with ‖s − x‖ ≤ τ }.
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Since G is strongly open, this set is again strongly open, and thus in � =B(X ), yielding weak
measurability of ϕτ . To conclude, we observe that Bτ (x) is nonempty and weakly compact.

The next corollary now follows immediately from the measurable maximum theorem.

Corollary 4.15. Let X be a reflexive, separable Banach space and let E fulfil Assumption 4.a, then for
τ ≥ 0

Eτ (x) := min
x̃∈Bτ (x)

E(x̃) (4.10)

is B(X )-measurable. The correspondence rτ :X ⇒X

rτ (x) := arg min
x̃∈Bτ (x)

E(x̃) (4.11)

has nonempty and compact values, it is measurable and admits a B(X )-measurable selector.

Proof. As mentioned in remark Remark 4.4, B(X ) and B(Xω) coincide in this particular setting. We
choose the correspondence ϕτ from Lemma 4.14 and set f (s, x) =−E(x). Since Assumption 4.a guaran-
tees that f (s, x) =−E(x) is a Carathéodory function the application of Theorem F.3 yields this corollary,
but only restricted to X ∩ domτ (E). However, we can extend Eτ (x) and rτ measurably by setting them
to +∞ and Bτ (x) on domτ (E)c respectively.

Theorem 4.16. Let X be a reflexive, separable Banach space and let E fulfil Assumption 4.a, then

μτ := (rτ )#μ ∈ arg min
μ̃:W∞(μ̃,μ)≤τ

∫
E(x)dμ̃(x)

for every measurable selection rτ of rτ from (4.11).

Proof. Corollary 4.15 ensures the existence of measurable selectors of (4.11). We take μ̃, such that
W∞(μ, μ̃) ≤ τ and γ ∈ �0(μ, μ̃), then by disintegration we get∫

E(x)dμ̃(x) =
∫

E(x)dγ (z, x) =
∫ ∫

E(x)dρz(x) dμ(z)

with a Borel family of probability measures {ρz}z∈X1 ⊂P(X ) and supp (ρz) ⊂ Bτ (z). We further estimate,

∫ ∫
E(x)dρz(x)dμ(z) ≥

∫
E(rτ (z))dμ(z) =

∫
E(z) d(rτ )#μ(z),

and since μ̃ was arbitrary, this concludes the proof.

In order to proceed with the following lemma, we also need the assumption that the potential is a
C1-perturbation of a convex function and is Lipschitz continuous.

Assumption 4.b. Let E : X → (−∞, +∞] be a C1-perturbation of a proper, convex lower semicontin-
uous function. Further, let the differentiable part Ed be globally Lipschitz.

Then the relation between the slope of E and the slope of the potential E is stated in the following
theorem.

Lemma 4.17. Let E : X → (−∞, +∞] fulfil Assumptions 4.a and 4.b. Then

|∂E |(μ) =
∫
X
|∂E|(x) dμ(x) (4.12)

and |∂E |(μ) is a strong upper gradient of E .
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Proof. Since E(x)−Eτ (x)
τ

≥ 0 we can use Fatou’s lemma to show

∫
X
|∂E|(x) dμ(x) =

∫
X

lim
τ→0

E(x) − Eτ (x)

τ
dμ(x)

≤ lim inf
τ→0

∫
X

E(x) − Eτ (x)

τ
dμ(x)

≤ lim sup
τ→0

∫
X

E(x) − E(rτ (x))

τ
dμ(x)

= lim sup
τ→0

E(μ) − E(μτ )

τ
= |∂E |(μ),

where in the last step, we employ Lemma 2.8 . This implies that when
∫
X |∂E|(x) dμ(x) =+∞ then

|∂E |(μ) =+∞. In the case
∫
X |∂E|(x) dμ(x)<+∞, we use Lemma 2.8 (for E) and Lemma 3.5 (for E)

to calculate ∫
X
|∂E|(x) dμ(x) =

∫
X

lim
τ→0

E(x) − Eτ (x)

τ
dμ(x)

= lim
τ→0

∫
X E(x) − E(rτ (x)) dμ(x)

τ

= lim
τ→0

E(μ) − E(μτ )

τ
= |∂E |(μ),

where the dominated convergence theorem was used to draw the limit into the integral. For the upper
bound, we observe

|∂E|(x) = lim sup
z→x

(Ec(x) − Ec(z) + Ed(x) − Ed(z))+

‖x − z‖
≥ lim sup

z→x

(Ec(x) − Ec(z))+

‖x − z‖ − |Ed(x) − Ed(z)|
‖x − z‖

≥ lim sup
z→x

(Ec(x) − Ec(z))+

‖x − z‖ − Lip(Ed) = |∂Ec|(x) − Lip(Ed)

and by [2, Theorem 2.4.9]

sup
z�=x

(Ec(x) − Ec(z))+

‖x − z‖ = |∂Ec|(x).

Then we can give an upper bound by

E(x) − E(rτ (x))

τ
≤ Ec(x) − Ec(rτ (x))

‖x − rτ (x)‖ + Ed(x) − Ed(rτ (x))

‖x − rτ (x)‖
≤ sup

z�=x

(Ec(x) − Ec(z))+

‖x − z‖ + Lip(Ed) = |∂Ec|(x) + Lip(Ed)

≤ |∂E|(x) + 2Lip(Ed).

To prove that |∂E | is a strong upper gradient, let μt be an absolutely continuous curve in W∞(X ).
Since |∂E | (μ) = ∫

X |∂E|(x) dμ(x) and by Item 4 the slope |∂E|(x) is lower semicontinuous, it follows
from [2, Lemma 5.1.7] that |∂E | (μ) is lower semicontinuous w.r.t. narrow convergence and in par-
ticular t �→ |∂E |(μt) is lower semicontinuous and thus Borel. Assume that

∫ t

s

∫
X |∂E|(x) dμr(x)|μ′|(r)
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dr = ∫ t

s
|∂E | (μr)|μ′|(r) dr<+∞, otherwise (1.4) holds trivially. We can estimate

|E(μt) − E(μs)| =
∣∣∣∣
∫
X

E(x) dμt(x) −
∫
X

E(x) dμs(x)

∣∣∣∣
=

∣∣∣∣
∫
X

E(x)det#η(x) −
∫
X

E(x)des#η(x)

∣∣∣∣
=

∣∣∣∣
∫

C(0,T; X )

E(u(t)) dη(u) −
∫

C(0,T; X )

E(u(s))dη(u)

∣∣∣∣
≤

∫
C(0,T; X )

|E(u(t)) − E(u(s))| dη(u)

(i)≤
∫

C(0,T; X )

∫ t

s

|∂E|(u(r)) |u′|(r) dr dη(u)

(ii)=
∫ t

s

∫
C(0,T; X )

|∂E|(u(r)) |u′|(r) dη(u) dr

(iii)≤
∫ t

s

∫
C(0,T; X )

|∂E|(u(r)) dη(u)|μ′|(r) dr

=
∫ t

s

∫
X
|∂E|(x) dμr|μ′|(r) dr<+∞, (4.13)

where (t, u) �→ |∂E|(u(t)) is η̄-measurable since it is lower semicontinuous on [0, T] × C(0, T , X ) and
measurability of |u′| follows as in the proof of [62, Theorem 7] and Theorem 4.9. For (ii), we use
the theorem of Fubini–Tonelli, while for (i), we observe that η from Theorem 4.7 is concentrated on
AC∞(0, T; X ) and |∂E| is a strong upper gradient (c.f. Definition 1.4) and for (iii) we use |μ′|(t) =
‖|u′|(t)‖Lp(η).

The main result of this section now states that ∞-curves of maximal slope on W∞(X ) can be equiva-
lently characterized, by the property that η-a.e. curve fulfils the differential inclusion w.r.t. the potential
E on the Banach space X .

Theorem 4.18. Let E : W∞(X ) → (−∞, +∞] be a potential energy with the potential E satisfying
Assumptions 4.a and 4.b, μt ∈ dom (E) for all t ∈ [0, T] and μ ∈AC∞(0, T;W∞) with η from Theorem
4.7. Let further E ◦μ be for a.e. t ∈ [0, T] equal to a non-increasing map ψ : [0, T] →R. Then the
following statements are equivalent:

(i) |μ′|(t) ≤ 1 and ψ ′(t) ≤−|∂E |(μ(t)) for a.e. t ∈ (0, T).

(i) For η-a.e. curve u ∈ C(0, T; X ) it holds, that E ◦ u is for a.e. t ∈ (0, T) equal to a non-increasing
map ψu:[0, T] →R and

u′(t) ∈ ∂‖ · ‖∗(−ξ ) ∀ξ ∈ ∂◦E(u(t)) �= ∅, for a.e. t ∈ (0, T).

Proof. Step 1: (i) =⇒ (ii).
Because of Remark 2.3 we know thatμt satisfies the energy dissipation equality (2.10). Making a similar
estimate as in (4.13), we obtain

E(μ0) − E(μT) =
∫

C(0,T; X )

E(u(0)) − E(u(T)) dη(u)

≤
∫

C(0,T; X )

∫ T

0

|∂E|(u(r))|u′|(t) dr dη(u)

≤
∫

C(0,T; X )

∫ T

0

|∂E|(u(r)) dr dη(u)

=
∫ T

0

|∂E |(μ(r)) dr = E(μ0) − E(μT). (4.14)
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This implies that |∂E|(u(r))|u′|(t) ∈ L1(0, T) for η-a.e. u. Since |∂E| is a strong upper gradient ψu:t �→
E(u(t)) has to be absolutely continuous for η-a.e. u and

E(u(s)) − E(u(t)) ≤
∫ t

s

|∂E|(u(r))|u′|(r) dr ≤
∫ t

s

|∂E|(u(r)) dr for η-a.e. u for all 0 ≤ s< t ≤ T .

Equality in (4.14) can then only hold if for all 0 ≤ s< t ≤ T we have

E(u(s)) − E(u(t)) =
∫ t

s

|∂E|(u(r))|u′|(t) dr =
∫ t

s

|∂E|(u(r)) dr for η-a.e. u

and thus ψu := E ◦ u is a non-increasing map for η-a.e. u. Lemma 3.7 and Item 3 imply that for every
ξ ∈ ∂◦E(u(t)) we obtain

〈ξ , u′(t)〉 = (E ◦ u)′(t) =−|∂E|(u(t)) =− ‖ξ‖∗ − χB1 (u′(t)),

where we use Lemma E.4 and ‖|u′|(t)‖L∞(η) = |μ′|(t) ≤ 1 for a.e. t ∈ (0, T) to infer that |u′| (t) ≤ 1 for a.e.
t ∈ (0, T). Using the equivalence of Item 3 and Item 1 yields

u′(t) ∈ ∂ ‖·‖∗ (−ξ )

for a.e. t ∈ (0, T) and η-a.e. curve u.
Step 2: (ii) =⇒ (i).
Due to Remark 2.3, E ◦ u is for η-a.e. curve u ∈ C(0, T; X ) an absolutely continuous curve, and it

satisfies the energy dissipation equality

E(u(t)) − E(u(s)) =
∫ t

s

−|∂E|(u(r)) dr for 0 ≤ s ≤ t ≤ T .

Therefore, we obtain

E(μt) − E(μs) =
∫

C(0,T; X )

E(u(t)) − E(u(s)) dη(u) =
∫

C(0,T; X )

∫ t

s

−|∂E|(u(r)) dr dη(u)

=
∫ t

s

∫
C(0,T; X )

−|∂E|(u(r)) dη(u) dr =
∫ t

s

− |∂E | (μr) dr ≤ 0,

where the application of Fubini–Tonelli is justified due to the assumption μt ∈ dom (E) for all t ∈ [0, T],
which yields that |E(μt) − E(μs)|<∞ for all s, t ∈ [0, T]. By the Lebesgue differentiation theorem, we
obtain

(E ◦μ)′(t) =− |∂E | (μt)

for almost every t ∈ (0, T). Furthermore, E ◦μ is a non-increasing map and Theorem 4.7 yields that∣∣μ′∣∣ (t) = η(u) − ess sup
∣∣u′∣∣ (t) ≤ 1

for a.e. t ∈ (0, T) and since μ ∈AC∞ this yields that |μ′| (t) ≤ 1 for a.e. t ∈ (0, T).

Remark 4.19. In particular, those curves of maximal slope satisfy the continuity equation for the
velocity field

vt(x) :=
∫

C(0,T; X )

u′(t)dη̄x,t for μ̄-a.e. (t, x) ∈ (0, T) ×X .

If ∂◦E(x) is unique, i.e., if ‖ · ‖ is strictly convex or E(x) ∈ C1(X ), then for η̄x,t-a.e. u ∈ C(0, T; X ) the
derivatives u′(t) lie in the closed and convex set ∂‖ · ‖∗(−∂◦E(x)). Thus

vt(x) ∈ ∂‖ · ‖∗(−∂◦E(x)) for μ̄-a.e. (t, x) ∈ (0, T) ×X .

As the last result in this section, we give an explicit setting where the existence of curves of maximum
slope is ensured. Here, we restrict ourselves to finite dimensions, mimicking Corollary 3.2.

Corollary 4.20 (Existence in finite dimensions). Let X = (Rd, ‖ · ‖) and E : Rd → (−∞, ∞] be a C1-
perturbation of a proper, lower semicontinuous, convex function. For everyμ0 ∈ dom (E), there exists at
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least one curve of maximal slope in the sense of Definition 2.1 with μ0 =μ0. Further, this curve satisfies
the energy dissipation equality (2.10).

Proof. We simply check the conditions of Theorem 2.11. Choosing σ to be the narrow topology,
Lemma 4.5 guarantees Assumption 1.a. To check Assumption 1.b, we know that for any sequence
(μn)n∈N, W∞(μk,μm)<∞ ∀k, m ∈N implies that ∪nsupp(μn) is bounded. Since we are in the finite
dimensional case, we can now apply Prokhorov’s Theorem to obtain relative compactness of the
sequence.

We are left to check Assumptions 2.a and 2.b for E :
Assumption 2.a
Letμn ∈ dom (E) be a sequence converging in W∞ toμ. This sequence has to be bounded in W∞ such

that∪n supp (μn) is bounded. Since E is lower-semicontinuous dom (E) is closed and thus∪n supp (μn) ∩
dom (E) is compact and we obtain due to lower-semicontinuity

min
x∈∪n supp (μn)∩dom (E)

E(x)>−∞
Thus the negative part of E(x) denoted by E−(x) is uniformly integrable with respect to {μn}n∈N and we
can apply [2, Lemma 5.1.7] to obtain

lim inf
n→∞

∫
E(x) dμn(x) ≥

∫
E(x) dμ.

Assumption 2.b:
Since μ has bounded domain the differentiable part Ed satisfies a Lischitz condition and thus by

Lemma 4.17

|∂E |(μ) =
∫

|∂E|(x) dμ

and by Proposition 3.1 |∂E|(x) is lower semicontinuous and non-negative. Thus |∂E|(x) is uniformly
integral, and we can apply [2, Lemma 5.1.7] to obtain

lim inf
n→∞

∫
|∂E|(x) dμn ≥

∫
|∂E|(x) dμ

for all μn converging narrowly to μ.

5. Relation to adversarial attacks

This section explores the connection of the previous results to our initial motivation, adversarial attacks.
As mentioned before, we now consider an energy defined as

E(x) := −�(h(x), y)

for a classifier h and x ∈X , y ∈Y . The goal in (AdvAtt) is to maximize this function on the set Bε(x0),
where x0 ∈X is the initial input. Roughly following the idea in the original paper proposing (FGSM),
we derive the scheme, via linearizing E around x0 and consider the linearized minimizing movement
scheme in Definition 3.10. Assuming that �(h( · ), y) is C1, we consider

Esl(x;z) =−�(h(z), y) − 〈∇x�(h(z), y), x − z〉,
where z denotes the point of linearization. Lemma 3.12 yields that the semi-implicit minimizing
movement scheme in Definition 3.10 can be expressed as

xk+1
si,τ ∈ xk

si,τ − τ∂ ‖·‖∗ (DE(xk
si,τ )).

We note that this scheme can be understood as an explicit Euler discretization [38] of the differential
inclusion in Theorem 3.8,

u′(t) ∈ arg max
x∈B1

〈x, −DE(u(t))〉 = ∂ ‖·‖∗ (DE(u(t))), (5.1)
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which in turn is an equivalent characterization of ∞-curves of maximal slope. In this section, we
consider the finite dimensional adversarial setting, i.e., the Banach space (X , ‖·‖ ) = (Rd, ‖·‖p ).

Corollary 5.1. Given x0 ∈R
d, the iteration

xk+1
si,τ = xk

si,τ + τ sign (∇xE(xk
si,τ )) ·

( ∣∣∇xE(xk
si,τ )

∣∣∥∥∇xE(xk
si,τ )

∥∥
q

)q−1

, x0
si,τ = x0

fulfils the semi-implicit minimizing movement scheme in Definition 3.10 in the space (Rd, ‖·‖p ) with
1/p + 1/q = 1. In this sense, (FGSM) is a one-step explicit Euler discretization of the differential
inclusion (5.1) with step size ε.

Remark 5.2. We note that for p ∈ {1, ∞}, the expression in Corollary 5.1 is to be understood in the
sense of subdifferentials, as the following proof shows. However, the elements of the subdifferential we
choose can be understood as the limit cases of p → 1 and p →∞, respectively.

Proof. We choose X =R
d with ‖·‖ = ‖·‖p. For p =∞, we have that

sign (ξ ) ∈ ∂ ‖·‖1 (ξ ) = ∂( ‖·‖∞ )∗(ξ ),

for all ξ ∈R
d and therefore, the following iteration fulfils the semi-implicit minimizing movement

scheme,

xk+1
si,τ = xk

si,τ − τ sign (∇xE(xk
si,τ )) = xk

si,τ + ε sign (∇x�(h(xk
si,τ ), y)),

and for ε= τ the statement follows. For p = 1, we choose the following element of the subdifferential
g(ξ ), with

g(ξ )i := #{j :
∣∣ξj

∣∣= ‖ξ‖∞}−1 ·
{

sign (ξi) if |ξi| = ‖ξ‖∞ ,

0 else,

and proceed as before. If we instead choose a finite p ∈ (1, ∞), we obtain for 1/p + 1/q = 1,

∂( ‖·‖p )∗(ξ ) = ∂ ‖·‖q (ξ ) = ‖ξ‖1−q
q (ξ1 |ξ1|q−2 , . . . , ξd |ξd|q−2 ) = sign (ξ ) ·

( |ξ |
‖ξ‖q

)q−1

,

where the absolute value and the multiplication is to be understood entrywise. As above, this yields the
statement also for p ∈ (1, ∞).

5.1. Convergence of IFGSM to curves of maximal slope

Our main goal is to derive a convergence result of (IFGSM) for τ → 0. As mentioned before,
Lemma 3.12 yields an iteration, which can be expressed as normalized gradient descent in the finite-
dimensional case. The main obstacle that prohibits us from directly applying the convergence result for
semi-implicit schemes (see Theorem 3.16) is the budget constraint, u′(t) ∈ Bp

ε(x0) for all t. Here and in
the following, we now assume that the norm exponent of the underlying space and of the budget con-
straint norm are the same. In (IFGSM), this is enforced via a projection onto this set in each iteration.
An easy way to circumvent this issue is to only consider the iteration up to the step, where it would leave
the constraint set. In this case, the projection never has any effect and we essentially consider signed
gradient descent. Intuitively, the Lipschitz condition ‖u′(t)‖ ≤ 1 allows us to control how far u(t) is away
from x0. This mimicked in the discrete scheme, where we know that

∥∥xi
si,τ − x0

∥∥≤
n−1∑
k=0

∥∥xk+1
si,τ − xk

si,τ

∥∥≤ nτ = T ,
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for every i = 0, . . . , n. Therefore, we can choose T = ε to ensure that xi
si,τ ∈ Bp

ε(x0) for every i = 0, . . . , n.
This yields the following result.

Corollary 5.3. We consider the space (X , ‖·‖ ) = (Rd, ‖·‖p ) for p ∈ [1, ∞] and E : Rd →R, a continu-
ously differentiable energy, with a Lipschitz continuous gradient. Then for T = ε, there exists a ∞-curve
of maximal slope u : [0, T] →R

d, with respect to E, and a subsequence of τn := T/n such that∥∥∥u
�t/τni �
IFGS,τni

− u(t)
∥∥∥ i→∞−−→ 0 for all t ∈ [0, T].

Proof. From Lemma 3.12 and the calculation in the proof of Corollary 5.1, we know that the iterates
of (IFGSM) fulfil the linearized minimizing movement scheme in Definition 3.10. Here, we used that
for T = ε, the iterates do not leave the set Bp

ε(x0) and therefore the projection has no effect. Assumption
3.a is stated as an assumption of this corollary and Remark 3.9 yields that Assumption 3.b holds true.
Furthermore, using Proposition 3.1, we know that Assumptions 1.a to 2.b are fulfilled, and therefore,
we can apply Theorem 3.16 to obtain the desired result.

Above, we only consider convergence up to a subsequence. While the convergence of the whole
sequence for (IFGSM) is left unanswered in this work, we note that at least for p ∈ {1, ∞}, this cannot
be expected, since in this case ∞-curves of maximal slope lack uniqueness, even in the simple finite
dimensional case, as the following example shows.

Example 4 (Non uniqueness for p ∈ {1, ∞}). Let (X , ‖·‖ ) = (R2, ‖·‖∞ ) and consider the energy be
given by

E : (x1, x2) ∈R
2 �→ x1 ∈R

then both u1(t) = (−t, 0) and u2(t) = (−t, −t) are ∞-curves of maximal slope on [0, T], T > 0, with
u1(0) = u2(0) since

u′
1(t) = (−1, 0) ∈−∂ ‖·‖1 (1, 0) =−∂ ‖·‖1 (∇E(u1(t)))

and

u′
2(t) = (−1, −1) ∈−∂ ‖·‖1 (1, 0) =−∂ ‖·‖1 (∇E(u2(t))).

In two dimensions for p = 1, we can simply rotate the above setup to deduce the same non-uniqueness.
Namely for E(x1, x2) = x1 + x2, we have that u1(t) = (−t, 0) fulfils

u′
1(t) = (−1, 0) ∈−∂ ‖·‖∞ (1, 1) =−∂ ‖·‖∞ (∇E(u1(t)))

and also u2(t) = 1
2
(−t, −t) fulfils

u′
2(t) = 1

2
(−1, −1) ∈−∂ ‖·‖∞ (1, 1) =−∂ ‖·‖∞ (∇E(u2(t))).

In Corollary 5.3, we only allow the iteration to run until it hits the boundary. However, in practice, it
is more common to also iterate beyond the time ε. In order to incorporate the budget constraint in this
case, we modify the energy to

E(x) := −�(h(x), y) + χBp
ε (x0)(x),

which yields the semi-implicit energy

Esl(x; z) =−�(h(z), y) − 〈∇x�(h(z), y), x − z〉 + χ Bp
ε (x0)(x).

In order to show that (IFGSM) corresponds to the minimizing movement scheme, we need to show
that first minimizing on Bp

τ (x) and then projecting to Bp
ε(x0) is equivalent to directly minimizing on

Bp
ε(x0) ∩ Bp

τ (x). Here, we restrict ourselves to the case p =∞, which corresponds to the standard case of
(IFGSM) as proposed in [46]. For p �=∞, a more refined analysis would be required, c.f. Figure 3. In
the following lemma, we use the projection defined componentwise as

Clipx0,ε(x)j := �B∞
ε (x0)(x)j = x0

j + max{min{xj − x0
j , ε}, −ε}.
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(a) (b) (c)

Underlying space and budget
constraint with p = ∞.

Norm mismatch: underlying
space with p = ∞ and budget
constraint with q = 2.

Underlying space and budget
constraint with p = 2.

Figure 3. Visualization of one (IFGSM) step, employing different norm constraints and underlying
norms. The beige line marks the boundary of Bp

ε
(x0), the pink line the boundary of Bq

τ
(x) and the intersec-

tion Bp
ε(x0) ∩ Bq

τ (x) is hatched. For the case p = q =∞ minimizing a linear function on the intersection
(blue arrow) is equivalent to first minimizing on B∞

τ
(x) (pink arrow) and then projecting back to the

intersection (green arrow). This is not true for p = 2. Therefore, we need to choose the appropriate
projection in Lemma 5.4.

The proof relies on the basic intuition in the original paper [46] that maximizing the linearized energy
on a hyper-cube is a linear programme [41, 95] with a solution being attained in a corner. We also note
that this does not directly work for other choices of budget constraints, see Figure 3

Lemma 5.4. For x ∈ B∞
ε

(x0) and τ > 0, it holds that

Clipx0,ε(x + τ sign (∇x�(h(x), y))) ∈ arg min
x̃∈B∞

τ (x)

Esl(x̃; x).

Proof. Without loss of generality, we assume that x0 = 0. Let ξ := −∇x�(h(x), y), then we know that
xd = x − τ sign (ξ ) is a minimizer of x̃ �→ 〈ξ , x̃〉 on B∞

τ
(x). Furthermore, we define δ ∈R

n as

δi := − sign (xd
i ) max{∣∣xd

i

∣∣− ε, 0},
i.e., we have that Clip0,ε(xd) = xd + δ. The important fact, where the choice of budget constraint matters,
is that x̃ − δ ∈ B∞

τ
(x) for all x̃ ∈ B∞

τ
(x) ∩ B∞

ε
(0), since we have

max{−ε, xi − τ } ≤ x̃i ≤ min{ε, xi + τ }

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δi = 0 : |x̃i − δi − xi| = |x̃i − xi| ≤ τ
δi < 0 : xi ≤ ε < xd

i ≤ xi + τ
⇒|x̃i − δi − xi| ≤

∣∣ε+ xd
i − ε− xi

∣∣≤ τ
δi > 0 : |x̃i − δi − xi| ≤ τ , analogously to the case above.

Now assume that there exists x̃ ∈ B∞
ε

(0) ∩ B∞
τ

(x) such that 〈ξ , x̃〉< 〈ξ , xd + δ〉. Then we infer that

〈ξ , x̃ − δ〉< 〈ξ , xd + δ〉 − 〈ξ , δ〉 = 〈ξ , xd〉
and therefore xd is not a minimizer on B∞

τ
(x), which is a contradiction. Therefore, we have that

xd + δ=Clip0,ε(x
d) =Clip0,ε(x + τ sign (ξ )) ∈ arg min

x̃∈B∞
τ (x)∩B∞

ε (0)

〈ξ , x̃〉 = arg min
x̃∈B∞

τ (x)

Esl(x̃; x).
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This result shows that when we choose p =∞ for the budget constraint (IFGSM) again fulfils the
semi-implicit minimizing movement scheme, beyond the time restriction in Corollary 5.3.

Theorem 5.5. We consider the space (X , ‖·‖ ) = (Rd, ‖·‖∞ ), the energy E = Ed + χB∞
ε (x0), with a con-

tinuously differentiable part Ed, which has a Lipschitz continuous gradient. Then for T > 0, there exists
a ∞-curve of maximal slope u : [0, T] →R

d, with respect to E, and a subsequence of τn := T/n such
that ∥∥∥x

�t/τni �
IFGS,τni

− u(t)
∥∥∥ i→∞−−→ 0 for all t ∈ [0, T].

Proof. Since Lemma 5.4 yields that (IFGSM) fulfils the semi-implicit minimizing movement scheme,
we can proceed similarly as in the proof of Corollary 5.3. We note that all the necessary assumptions
are fulfilled, since the indicator function χB∞

ε (x0) is lower semicontinuous.

5.2. Adversarial training and distributional adversaries

As before, we assume that the underlying spaces are finite dimensional, i.e.,X =R
d, Y =R

m with norms
‖·‖X , ‖·‖Y and P(X ×Y) denotes the space of Borel probability measures. We consider the adversarial
training task, as proposed in [46, 58],

inf
h∈H

∫
sup

x̃∈Bε (x0)

�(h(x̃), y) dμ(x, y), (5.2)

where μ ∈P(X ×Y) denotes the data distribution and �(h( · ), y) ∈ C1(X ×Y). This interpretation of
adversarial learning in the distributional setting has sparked a lot of interest in recent years, see e.g., [18,
23, 66, 81, 82, 96, 97, 107]. In order to rewrite this task as a DRO problem, we equip P(X ×Y) with a
suitable optimal transport distance

D(μ, μ̃) := inf
γ∈�(μ,μ̃)

γ − ess sup c(x, y, x̃, ỹ),

where

c(x, y, x̃, ỹ) :=
{
‖x − x̃‖X if y = ỹ,

+∞ if y �= ỹ,
(5.3)

and �(μ, μ̃) denotes the set of transport plans between μ and μ̃. Notably, the extended distance c is not
the one naturally generated by the norms of the underlying Banach spaces X and Y . Nonetheless, c is
compatible with respect to ‖ · ‖X + ‖ · ‖Y in the sense that

lim inf
n→∞

c(xn, yn, x̃n, ỹn) ≥ c(x, y, x̃, ỹ),

∀(x, y), (x̃, ỹ) ∈ (X ×Y):(xn, yn) → (y, x), (x̃n, ỹn) → (x̃, ỹ) w.r.t. ‖ · ‖X + ‖ · ‖Y ,

compare [63, Eq. (1)]. This ensures that, as we equip P(X ×Y) with D, it is a well-defined extended
distance, see [63, section 2.6]. The cost functional c was similarly employed in [13, 18]; furthermore, a
similar setup was considered in [97].

Remark 5.6. Assume that γ ∈ �(μ, μ̃) is a coupling, i.e., γ ∈P(Z ×Z), where Z =X ×Y , with
γ − ess sup c(x, y, x̃, ỹ)<∞. Then we have that for every measurable set A ⊂Y ,

γ (X × A ×Z) = γ (X × A ×X × A) = γ (Z ×X × A),

which we see by contradiction: assume there exists a measurable set A ⊂Y s.t., for B := X × A ×X ×
(Y \ A) we have γ (B)> 0. Then we know that c(x, y, x̃, ỹ) =+∞ for all (x, y, x̃, ỹ) ∈ B and since γ (B)> 0
this yields that

γ − ess sup c(x, y, x̃, ỹ) ≥ γ − ess sup
B

c(x, y, x̃, ỹ) =+∞.
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The other identity can be proven analogously. Therefore, if D(μ, μ̃)<∞ we know that there exists a
coupling γ fulfilling the above assumption and thus for every measurable set A ⊂Y we obtain

μ(X × A) =
∫
X×A×Z

dγ =
∫
Z×X×A

dγ = μ̃(X × A).

If we now consider a disintegration of μ and μ̃ along the X -axis, i.e., we obtain dμ= dμydν(y), dμ̃=
dμ̃ydν̃(y), with

ν(A) =μ((π y)−1(A)) =μ(X × A) = μ̃(X × A) = μ̃((π y)−1(A)) = ν̃(A)

for every measurable A ⊂Y , where π y(x, y) := y is the projection onto the Y-component.

The transport distance D behaves like the ∞-Wasserstein distance in the X -direction (compare sec-
tion section 4) and penalizes movement of mass into the Y-direction, such that no movement in Y can
occur when D(μ, μ̃) is finite (see Remark 5.6). Thus, all calculations done in section 4 apply with minor
adaptation to this case. We only state corresponding lemmas and theorems, while adapted proofs can be
found in Appendix G. The first property we prove in this section is that the adversarial training problem
(5.2) is equivalent to the distributional robust optimization problem, (DRO). Note that now we need to
consider a potential defined on the space X ×Y , namely E(x, y) := −�(h(x), y), where the label y is now
also a variable argument.

Corollary 5.7. It holds that∫
max
x̃∈Bε (x̃)

�(h(x), y) dμ(x, y) = max
μ̃ : D(μ̃,μ)≤ε

∫
�(h(x), y)dμ̃(x, y) (5.4)

where the maximizing argument is given by μmax = (rε)#μ, with rε : X ×Y →X being a B(X ×Y)-
measurable selector from Lemma G.1

Proof. We employ the B(X ×Y)-measurable selector rε, from Lemma G.1 and compute∫
max
x̃∈Bε (x)

�(h(x̃), y) dμ(x, y) =
∫

max
(x̃,ỹ):c(x,y,x̃,ỹ)≤ε

−E(x̃, ỹ) dμ(x, y) =
∫

−E(rε(x, y)) dμ(x, y)

=−
∫

E(x, y)d(rε)#μ(x, y)
(i)=− min

μ̃ : D(μ,μ̃)≤ε

∫
E(x, y) dμ̃(x, y)

= max
μ̃ : D(μ̃,μ)≤ε

∫
�(h(x), y)dμ̃(x, y),

where in (i) we employ (G.1).

Remark 5.8. In other works considering distributional adversarial attacks, for example [81, 82], the
well-definedness of the expressions in Corollary 5.7 is not always ensured. In [18], this was resolved
by considering open balls for the budget constraint. However, due to our assumption that �(h( · ), y) ∈
C1(X ×Y), we do not encounter similar measurability issues, as shown in [67].

For the main result in this section, we now consider the energy defined via the potential defined on
X ×Y , i.e.,

E(μ) :=
∫

E(x, y) dμ(x, y) =
∫

−�(h(x), y) dμ(x, y),

where the underlying extended metric space is chosen as D= (P∞(X ×Y), c), with P∞(X ×Y)
denoting the subset of Borel probability measures with bounded support in X - and Y-direction.

Remark 5.9. Theorem 4.7 also holds for extended distances, i.e., distances which take values in
[0, +∞], compare [63, Theorem 3.1]. The distance c(·, ·) introduced in (5.3) is such an extended
distance. For this particular choice of extended distance, the measure

η ∈P (C(0, T; ((X ×Y), ‖ · ‖X + ‖ · ‖Y ))
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is concentrated on AC∞ (0, T; ((X ×Y), c))= AC∞(0, T; (X , ‖ · ‖X ) ×Y). Notice that the continuous
curves are continuous w.r.t. ‖ · ‖X + ‖ · ‖Y , while absolute continuity is w.r.t. c(·, ·) (compare [63, section
2.3.]).

The theorem below is a variant of Theorem 4.18 for the adversarial setting. Namely, we show that ∞-
curves of maximal slope that are used to solve (DRO) can be characterized by employing a representing
measure η on C(0, T; X ×Y), where η-a.e. curve fulfils the differential inclusion w.r.t. the potential E.
Here, we enforce the condition D(μ, μ̃) ≤ ε, by only considering the evolution until time T = ε.
Theorem 5.10. For T = ε, let μ ∈AC∞(0, T; D) with η from Theorem 4.7. Let further E ◦μ be for a.e.
t ∈ [0, T] equal to a non-increasing map ψ : [0, T] →R.

Then the following statements are equivalent:

(i) |μ′|(t) ≤ 1 and ψ ′(t) ≤−|∂E |(u(t)) for a.e. t ∈ (0, T).

(ii) For η-a.e. curve u ∈ C(0, T; X ×Y) it holds, that E ◦ u is for a.e. t ∈ (0, T) equal to a non-
increasing map ψu:[0, T] →R and

u′(t) ∈ (∂‖ · ‖X ∗ (−∇xE(u(t))), 0), for a.e. t ∈ (0, T).

Proof. Step 1: (i) =⇒ (ii).
By Lemma G.2, we know that |∂E | is a strong upper gradient such that by Remark 2.3 μt satisfies the

energy dissipation equality (2.10). Similar to Theorem 4.18, we estimate

E(μ0) − E(μT) =
∫

C(0,T; X )

E(u(0)) − E(u(T)) dη(u)

≤
∫

C(0,T; X )

∫ T

0

‖∇xE(u(r))‖X ∗ |u′|(t) dr dη(u)

≤
∫

C(0,T; X )

∫ T

0

‖∇xE(u(r))‖X ∗ dr dη(u)

=
∫ T

0

|∂E |(μ(r)) dr = E(μ0) − E(μT). (5.5)

and observe that this equality can only hold if for η.a.e. u

E(u(s)) − E(u(t)) =
∫ t

s

‖∇xE(u(r))‖X ∗ |u′|(t) dr =
∫ t

s

‖∇xE(u(r))‖X ∗ dr for all 0 ≤ s< t ≤ T .

and thus ψu := E ◦ u is a non-increasing absolutely continuous map for η-a.e. u.
We use Lemma E.4 and ‖|u′|(t)‖L∞(η) = |μ′|(t) ≤ 1 for a.e. t ∈ (0, T) to infer that for η-a.e. curve u ∈

C(0, T; X ×Y) it holds, ∣∣u′∣∣ (t) ≤ 1 for a.e. t ∈ (0, T).

Denoting by (u′(t))x and (u′(t))y the X and Y corresponding parts of the derivative u′(t) and keeping
Lemma 3.7 in mind we obtain for η-a.e. curve u ∈ C(0, T; X ×Y)

〈∇xE(x, y), (u′(t))x〉 = 〈∇E(x, y), u′(t)〉
= (E ◦ u)′(t)

=−‖∇xE(u(r))‖X ∗ =− ‖∇xE(u(r))‖X ∗ − χB1 ((u′(t))x)

for a.e. t ∈ (0, T). Using the equivalence of Item 3 and Item 1 we obtain

u′(t) ∈ (∂‖ · ‖X ∗ (−∇xE(x, y)), 0) for a.e. t ∈ (0, T)

for η-a.e. curve u.
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Step 2: (ii) =⇒ (i).
For η-a.e. u ∈ C(0, T; X ×Y) we know by Remark 2.3 that the energy dissipation equality

E(u(s)) − E(u(t)) =
∫ t

s

‖∇xE(u(r))‖X ∗ dr for all 0 ≤ s< t ≤ T .

holds. In particular, it is absolutely continuous such that Remark 1.3 applies. We calculate,

E(μt) − E(μs) =
∫

C(0,T;X )

E(u(t)) − E(u(s)) dη(u) =
∫

C(0,T;X )

∫ t

s

(E ◦ u)′(r) dr dη(u)

=
∫

C(0,T;X )

∫ t

s

〈∇xE(u(r)), (u′(r))x〉 dr dη(u)
(i)=

∫
C(0,T;X )

∫ t

s

−‖∇xE(u(r))‖X ∗ dr dη(u)

=
∫

C(0,T;X )

∫ t

s

−‖∇xE(u(r))‖X ∗ dη(u) dr
(ii)=

∫ t

s

−|∂E |(μr) dr,

Where for (i) we use the equivalence of Item 3 and Item 1, while for (ii) we use Lemma G.2. This
implies E ◦μt is monotone non-increasing and (E ◦μ)′(t) ≤−|∂E |(μt) for a.e. t ∈ (0, T). Further, by
Theorem 4.7, we have

|μ′|(t) = η(u) − ess sup |u′|(t) = η(u) − ess sup ‖u′(t)‖X ≤ 1,

since all elements in ∂‖ · ‖X ∗ (−∇xE(x, y)) have norm smaller than 1.

6. Conclusion and outlook

In this work, we considered the limit case p →∞ of the well-known p-curves of maximum slope, which
yield a versatile gradient flow framework in metric spaces, [2]. In the abstract setting, we proved exis-
tence by employing the minimizing movement scheme, adapted to the case p =∞. Assuming that the
underlying space is Banach, we were able to characterize ∞-curves of maximum slope via differential
inclusions. Furthermore, we also demonstrated the convergence of a semi-implicit scheme to the con-
tinuum flow. This insight constitutes the interface to the field of adversarial attacks. Namely, we showed
that the well-known FGSM, and its iterative variant, correspond to the semi-implicit scheme and there-
fore converge to the flow, when sending the step size to zero. More generally, this result holds true for
a whole class of normalized gradient descent algorithms. Furthermore, we also considered Wasserstein
gradient flows, where we first used the theory developed in [63] to derive an alternative characteriza-
tion of absolutely continuous curves via the continuity equation. As our main result in this section, we
prove that being an ∞-curve of maximal slope is equivalent to the existence of a representing mea-
sure on the space of continuous curves, where almost every curve, fulfils a differential inclusion on the
underlying Banach space. This finally allowed us to generate distributional adversaries, in an adapted
∞-Wasserstein distance, via curves of maximum slope. Similar to section 5, we could also consider the
energy

E(μ) :=
∫
X×Y

E(x, y) dμ+ χBD
ε (μ0)(μ)

to generate distributional adversarial attacks. We strongly suspect that corresponding ∞-curves of
maximal slope in D would take the following form: Let μ ∈ AC∞(0, T; X ) be a ∞-curve of maxi-
mal slope and η its corresponding probability measure over the space C(0, T; X ×Y), then for η-a.e.
u ∈ C(0, T; X ×Y)

u′(t) ∈ (∂‖ · ‖X ∗ (−∇xEu0 (u(t))), 0), for a.e. t ∈ (0, T),

where

Eu0 (x, y) = E(x, y) + χBε ((u0)x)(x).
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In [105], the authors suggested to combine FGSM with stochastic elements. They proposed to use a
single step

σ ∼Uniform
(
B∞
ε

(x0)
)

,

x 1
2
= x0 + σ ,

x1 =Clip0,ε

(
x 1

2
+ sign (∇�(h(x 1

2
), y))

)
.

This is reminiscent of the classical Langevin algorithm, therefore, it would be interesting if this
stochasticity could be incorporated into our framework.
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Appendix

A Convex analysis
This section gives an overview over well-known definitions and statements in convex analysis. In the
following, X denotes a Banach space and X ∗ its dual.

Definition A.1 (Subdifferential). For a convex function f : X → (−∞, ∞], we denote by

∂f (x) := {ξ ∈X ∗ : f (z) − f (x) ≥ 〈ξ , z − x〉 ∀z ∈X } ⊂X ∗

the subdifferential of f at x ∈X .

If f ( · ) = ‖ · ‖, then the subdifferential is given by

∂‖ · ‖(x) = {ξ ∈X ∗|〈ξ , x〉 = ‖x‖, ‖ξ‖∗ ≤ 1} (A.1)

Definition A.2 (Fenchel conjugate). For a function f : X → [ −∞, +∞], we denote by f ∗:X ∗ →
[−∞, +∞],

f ∗(ξ ) := sup
x∈X

〈ξ , x〉 − f (x) for ξ ∈X ∗

the Fenchel conjugate of f .

A direct consequence of this definition is the so called Fenchel–Young inequality

〈ξ , x〉 ≤ f (x) + f ∗(ξ ). (A.2)

The next proposition yields the conditions under which the equality in (A.2) is obtained.

Proposition A.3 [6, Proposition 2.33]. Let f : X → ] −∞, +∞] be a proper convex function. Then for
x ∈X , the following three properties are equivalent:

(i) ξ ∈ ∂f (x).
(ii) f (x) + f ∗(ξ ) ≤ 〈ξ , x〉.
(iii) f (x) + f ∗(ξ ) = 〈ξ , x〉.

If, in addition, f is lower-semicontinuous, then all of these properties are equivalent to the following
one.

(i) x ∈ ∂f ∗(ξ ).

Remark A.4. In Item 1, we use the canonical embedding to obtain the subspace relation X ⊂X ∗∗.
Following [6, Remark 2.35], if X is reflexive, i.e. X ∗∗ =X , then it follows from Proposition A.3 that

x ∈ ∂f ∗(ξ ) ⇐⇒ ξ ∈ ∂f (x),
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which yields

(∂f )−1(ξ ) = {x ∈X : ξ ∈ ∂f (x)} = {x ∈X : x ∈ ∂f ∗(ξ )} = ∂f ∗(ξ )

In the non-reflexive case, one can not argue as above, and we do not obtain the simple relation between
∂f ∗ and ∂f , see, e.g., [84].

An important corollary of Proposition A.3 is its application to the indicator function of the closed
unit ball f = χB1 , where its convex conjugate for ξ ∈X ∗ is given by

χ ∗
B1

(ξ ) = sup
x∈X

〈ξ , x〉 − χB1 (x) = sup
x∈B1

〈ξ , x〉 = ‖ξ‖∗.

Corollary A.5. For a Banach space X , and ξ ∈X ∗ we have that

∂ ‖·‖∗ (ξ ) ∩X = arg max
x∈B1

〈ξ , x〉. (A.3)

Proof. Since χB1 is lower semicontinuous, we can use the equivalence of Item 3 and Item 1, to infer

x ∈ ∂ ‖·‖∗ (ξ ) ⇔ ‖ξ‖∗ = 〈ξ , x〉 − χB1 (x).

In the second statement, using the definition of ‖ξ‖∗ as in (A.3), therefore yields that each x above
realizes the supremum, which concludes the proof.

B Refined version of Ascoli–Arzelà

Proposition B.1 [2, Proposition 3.3.1]. Let un : [0, T] → S be a sequence of curves, that fulfils the
following conditions:

(AA-i) There is a σ -sequentially compact set K ⊂ S , such that

un(t) ∈ K for every t ∈ [0, T] and every n ∈N.

(AA-ii) There is a symmetric function ω : [0, T] × [0, T] → [0, +∞) with lim(s,t)→(r,r) ω(s, t) = 0 for all
r ∈ [0, T] \ C, where C is an at most countable set, such that

lim sup
n→∞

d(un(s), un(t)) ≤ω(s, t) for all s, t ∈ [0, T].

Then there exists a subsequence unk and a limit curve u : [0, T] → S , which is d-continuous in
[0, T] \ C, such that

unk (t)
σ

⇀ u(t) for all t ∈ [0, T].

C Taylor’s formula in Banach spaces

Theorem C.1. Suppose E, F are real Banach spaces, U ⊂ E an open and nonempty subset, and f ∈
Cn(U, F). Given x0 ∈ U choose r> 0 such that x0 + Br ⊂ U, where Br is the open ball in E with centre 0
and radius r. Then for all h ∈ Br we have, using the abbreviation hk = (h, . . . , h), k terms,

f (x0 + h) =
n∑

k=0

1

k! f (k)(x0)(h)k + Rn(x0, h),

where the remainder Rn is of form

Rn(x0, h) = 1

(n − 1)!
∫ 1

0

(1 − t)n−1[f (n)(x0 + th) − f (n)(x0)](h)n dt.

Proof. A proof for this statement can be found, e.g., in [8, Theorem 30.1.3].
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D Prokhorov’s theorem

Theorem D.1 (Prokhorov [7, Theorems 5.1–5.2]). If a set K⊂P(X ) is tight, i.e.,

∀ε > 0 ∃Kε compact in X such that μ(X \ Kε) ≤ ε ∀μ ∈K, (D.1)

then K is relatively compact in P(X ). Conversely, if X is a Polish space, every relatively compact subset
of P(X ) is tight.

E Helpful lemmas and supplementary proofs
In the following, we provide the proof of Lemma 2.8, which is a particular case of [2, Lemma 3.1.5].
For completeness, we provide a version of the proof that is specifically adapted to the case p =∞.

Proof of Lemma 2.8. Let us suppose that for all τ > 0, Eτ (x)< E(x) else |∂E |(x) = 0 and equality (2.4)
holds trivially. We calculate

lim sup
τ→0+

E(x) − Eτ (x)

τ
= lim sup

τ→0+
sup

z:0<d(x,z)≤τ

E(x) − E(z)

τ

= inf
ε>0

sup
0<τ≤ε

sup
z:0<d(x,z)≤τ

E(x) − E(z)

τ

= inf
ε>0

sup
z,τ :0<d(x,z)≤τ≤ε

E(x) − E(z)

τ

= inf
ε>0

sup
z:0<d(x,z)≤ε

sup
τ :d(x,z)≤τ≤ε

E(x) − E(z)

τ

= inf
ε>0

sup
z:0<d(x,z)≤ε

(E(x) − E(z))+

d(x, z)
− (E(x) − E(z))−

ε

(∗)= inf
ε>0

sup
z:0<d(x,z)≤ε

E(x) − E(z)

d(x, z)

= lim sup
z→x

E(x) − E(z)

d(x, z)

= |∂E |(x).

Equality ( ∗ ) can be verified by the observation that Eτ (x)< E(x) for all τ > 0 ensures the existence
of at least one z with d(x, z) ≤ ε such that E(x) − E(z) ≥ 0.

Lemma E.1. Let φ : [0, T] →R be continuous andψ : [0, T] →R be non-increasing. If φ(t) =ψ(t) for
a.e. t ∈ [0, T], then φ(t) =ψ(t) for all t ∈ (0, T).

Proof. Assume there is a t ∈ (0, T) such that φ(t) �=ψ(t). Without loss of generality φ(t)>ψ(t). Then
we can take a sequence tn with tn → t and φ(tn) =ψ(tn) and tn > t. The continuity of φ implies that for
any ε > 0, we can choose tn small enough, such that |φ(t) − φ(tn)|< ε. This contradicts the monotonicity
of ψ , since if we choose ε < φ(t) −ψ(t), we obtain a tn > t with ψ(t)<ψ(tn) = φ(tn). In the case φ(t)<
ψ(t), we can make the same argument with sequences tn < t.

In the following, we show that the arguments of [62, Theorem 7] can indeed be adapted to the case
p =∞. We closely follow the arguments in [62, Theorem 7], where it was proven for p ∈ (1, ∞). For
convenience, we copy the relevant steps and show how to adapt them to the case p =∞.

Proof of Theorem 4.9. Let L1
(0,T) denote the Lebesgue measure on (0, T), then for η from Theorem 4.7,

we define η̄ := 1
T
L1

(0,T) ⊗ η and the evaluation map e:[0, T] × C(0, T; X ) → [0, T] ×X by

e(t, u) = (t, et(u)) = (t, u(t)).
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We observe that e#η= μ̄ and denote by η̄x,t the Borel family of probability measures on C(0, T; X )
obtained by disintegration of η̄ with respect to e, such that dη̄x,t(u)dμ̄(t, x) = dη̄(t, u). Notably η̄x,t is
concentrated on {u:et(u) = x} ⊂ C(0, T; X ). Since X is assumed to satisfy the Radon–Nikodým property
the pointwise derivative u′(t) = limh→0

u(t+h)−u(t)
h

is defined a.e. for an absolutely continuous curve u. We
now show that

A := {(t, u) ∈ [0, T] × C(0, T; X ):u′(t) exists}
is a Borel set and η̄(Ac) = 0. For every h �= 0, we define the continuous function gh:[0, T] × C(0, T; X ) →
X by gh(t, u) = u(t+h)−u(t)

h
, where we extend the function u outside of [0, T] by u(s) = u(0) for s< 0 and

u(s) = u(T) for s> T . By completeness of X
Ac := {(t, u) : lim sup

(h,k)→(0,0)
‖gh(t, u) − gk(t, u)‖> 0}

and because of the continuity of the function (t, u) �→ ‖gh(t, u) − gk(t, u)‖, Ac and A are Borel sets. Since
η̄ is concentrated on [0, T] ×AC∞(0, T;X ) and u′(t) exists a.e. for an absolutely continuous curve u, by
Fubini’s theorem η̄(Ac) = 0. Thus, for η̄-a.e. (t, u) the map

ψ(t, u) = u′(t)

is well-defined. For every x∗ ∈X ∗, we defineψx∗ (t, h) := 〈x∗, u′(t)〉 on (t, u) ∈ A. As a limit of continuous
functions ψx∗ is a Borel function on A and thus η̄ measurable. Since X is separable, Pettis theorem
ensures that ψ is a η̄-measurable function. Now we can define the vector field

vt(x) :=
∫

C(0,T; X )

u′(t)dη̄x,t for μ̄-a.e. (t, x) ∈ (0, T) ×X .

For clarity, we now indicate the varibles over which the ess sup is taken in brackets after the respective
measure. Using this notation we estimate

μ̄− ess sup ‖v‖ = μ̄(x, t) − ess sup

∥∥∥∥
∫

C(0,T; X )

u′(t)dη̄x,t(u)

∥∥∥∥
≤ μ̄(x, t) − ess sup

∫
C(0,T; X )

∥∥u′(t)
∥∥ dη̄x,t(u)

≤ μ̄(x, t) − ess sup
(
η̄x,t(u) − ess sup

∥∥u′(t)
∥∥ )

≤ η̄(u, t) − ess sup
∥∥u′(t)

∥∥<+∞,

and thus v ∈ L∞(μ̄;X ), where the last inequality follows from Lemma E.3. By Jensen’s inequality we
have for every [a, b] ⊂ [0, T],∫ b

a

‖vt‖L∞(μt ;X ) dt =
∫ b

a

μt(x) − ess sup ‖vt(x)‖ dt

=
∫ b

a

μt(x) − ess sup

∥∥∥∥
∫

C(0,T; X )

u′(t)dη̄x,t

∥∥∥∥ dt

≤
∫ b

a

μt(x) − ess sup
∫

C(0,T; X )

∥∥u′(t)
∥∥ dη̄x,t dt

≤
∫ b

a

μt(x) − ess sup η̄x,t(u) − ess sup
∥∥u′(t)

∥∥ dt

=
∫ b

a

η(u) − ess sup ‖u′(t)‖ dt =
∫ b

a

|μ′|(t) dt.

(E.1)

such that ‖vt‖Lp(μt ;X ) ≤ |μ|′(t) for a.e. t ∈ (0, T). In the last inequality we used the fact, that dη= dη̄x,t dμt

holds for a.e. t ∈ (0, T) together with Lemma E.3. For more rigorous justifications regarding measurably
and integrability of all involved quantities, we refer to [62, Theorem 7]. To show that (μ, v) ∈ EC∞(X ) we
take ϕ ∈ C1

b(X ) and observe that t → ∫
X ϕ(x) dμt(x) is absolutely continuous, since for γ ∈ �0(μt,μs)
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∣∣∣∣
∫
X
ϕ dμt −

∫
X
ϕ dμs

∣∣∣∣≤
∫
X×X

|ϕ(x) − ϕ(x̃)|dγ ≤

sup
x∈X

‖Dϕ(x)‖
∫
X×X

‖x − x̃‖dγ ≤ sup
x∈X

‖Dϕ(x)‖W∞(μt,μs).

Further,∫
X
ϕ dμt −

∫
X
ϕ dμs =

∫
C(0,T; X )

ϕ(u(t)) − ϕ(u(s)) dη(u)

=
∫

C(0,T; X )

〈Dϕ(u(s)), u(t) − u(s)〉 dη(u) +
∫

C(0,T; X )

‖u(t) − u(s)‖ωu(s)(u(t)) dη(u)

=
∫

C(0,T; X )

〈Dϕ(u(s)),
∫ t

s

u′(r) dr〉 dη(u) +
∫

C(0,T; X )

‖u(t) − u(s)‖ωu(s)(u(t)) dη(u)

where

ωx(y) = ϕ(y) − ϕ(x) − 〈Dϕ(u(x)), y − x〉
‖y − x‖ .

We observe
1

t − s
〈Dϕ(u(s)),

∫ t

s

u′(r) dr〉→ 〈Dϕ(u(s)), u′(s)〉 for η-a.e. u

and
‖u(t) − u(s)‖

t − s
ωu(s)(u(t)) → 0 for η-a.e. u

and have for η-a.e. u the upper bounds

1

|t − s| |〈Dϕ(u(s)),
∫ t

s

u′(r) dr〉| ≤ sup
x∈X

‖Dϕ(x)‖∗
∥∥∫ t

s
u′(r) dr

∥∥
|s − t|

≤ sup
x∈X

‖Dϕ(x)‖∗ ess sup
r∈[0,T]

|μ′|(r)<+∞
and

‖u(t) − u(s)‖
|t − s| |ωu(s)(u(t))| ≤ ess sup

r∈[0,T]
|μ′|(r)

( |ϕ(u(t)) − ϕ(u(s))|
‖u(t) − u(s)‖ + |〈Dϕ(u(s)), u(t) − u(s)〉|

‖u(t) − u(s)‖
)

≤ ess sup
r∈[0,T]

|μ′|(r) 2Lip(ϕ)<+∞.

Dividing by t − s and passing to the limit t → s by using Lebesgue theorem, we obtain
d
ds

∫
X
ϕ dμs =

∫
C(0,T; X )

〈Dϕ(u(s)), u′(s)〉 dη(u) =
∫
〈Dϕ, vt〉 dμt for a.e. s ∈ (0, T).

This pointwise derivative corresponds to the distributional derivative and we obtain
(μ, v) ∈ EC∞(X ).

Similarly, we can adapt [62, Theorem 8] to the case p =∞, which we again show by reusing most of
the arguments from the corresponding proof in [62].

Proof of Theorem 4.11. This theorem was proven in [62, Theorem 8] for p ∈ (1, +∞) and can easily
be extended to the case p =+∞. Let (μt)t∈[0,T] be a family of measures in P∞(X ) and for each t we have
a velocity field vt ∈ L∞(μt;Rd) with ess sup‖vt‖L∞(μt) <∞, solving the continuity equation in the sense
of distributions. Since

‖v‖Lp(μ̄;X ) ≤ T1/p ess sup ‖vt‖L∞(μt) <∞
we can apply [62, Theorem 8] (i.e., the statement of Theorem 4.11) for all p ∈ (1, ∞) and get

|μ′|(p)(t) ≤ ‖vt‖Lp(μt ;X ) for a.e. t ∈ (0, T) and all p ∈ (1, ∞).
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Therefore,

Wp(μt,μs) ≤
∫ s

t

|μ′|(p)(t̃)dt̃ ≤
∫ s

t

‖vt‖Lp(μt̃ ;X )dt̃ ≤
∫ s

t

‖vt‖L∞(μt̃ ;X )dt̃

for all t, s ∈ [0, T] with t ≤ s and p ∈ (1, ∞), where |μ′|(p) denotes the metric derivative ofμ in Wp. Taking
the limit p →∞, we get

W∞(μt,μs) = lim
p→∞

Wp(μt,μs) ≤
∫ s

t

‖vt‖L∞(μt̃ ;X )dt̃

for all t, s ∈ [0, T] with t ≤ s and thus by the minimality of the metric derivative, see Remark 1.2,

|μ′|(∞)(t) ≤ ‖vt‖L∞(μt ;X ) for a.e. t ∈ (0, T).

Lemma E.2. Let μ be a Borel probability measure on X and v:X →X , ṽ : X →X be two
μ-measurable functions with∫

〈Dϕ(x), v(x)〉 dμ(x) =
∫
〈Dϕ(x), ṽ(x)〉 dμ(x) ∀ϕ ∈ C1

b(X )

then ∫
〈ξ , v(x)〉 dμ(x) =

∫
〈ξ , ṽ(x)〉 dμ(x) ∀ξ ∈X ∗. (E.2)

Proof. Let gn : R→R be the function with g(0) = 0 and

g′(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for |x|> n + 1,

1 for |x|< n,

n + 1 − x for x ∈ [n, n + 1],

n + 1 + x for x ∈ [ − (n + 1), −n].

Then for each ξ ∈X ∗ we get Gn:x �→ gn(〈ξ , x〉) ∈ C1
b(X ) with DGn(x) = g′

n(〈ξ , x〉) ξ and∫
g′

n(〈ξ , x〉)〈ξ , v(x)〉 dμ=
∫
〈DGn(x), v(x)〉 dμ=

∫
〈DGn(x), ṽ(x)〉 dμ

=
∫

g′
n(〈ξ , x〉)〈ξ , ṽ(x)〉 dμ

Since for n →∞ we have g′(〈ξ , x〉) → 1 pointwise we can apply the Lebesgue dominated convergence
theorem (with the functions |〈ξ , v(x)〉| and |〈ξ , ṽ(x)〉| as bound) to obtain (E.2).

The following lemma shows that the disintegration property can be transferred to an inequality for
essential suprema. For more details on disintegration, we refer to [2, Ch. 5.3] and [33, Ch. III-70]. The
proof strategy is taken from [85, Lemma 2] and amounts to controlling the null sets of the measures
involved.

Lemma E.3. Given X , Z Radon separable metric spaces, a measure μ ∈P(X ), a Borel map π : X →
Z and a disintegration dμ= dμzdν, with ν = π#μ and {μz}z∈Z ⊂P(X ) being a family of probability
measures, then we have that

μ(x) − ess sup f (x) ≥ ν(z) − ess sup μz(x) − ess sup f (x)

for every Borel map f : X → [0, ∞].

Proof. Using the disintegration property for every Borel set A, we obtain

μ(A) = 0 ⇔ μz(A) for ν − a.e. z ∈Z .
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Now assume thatμ(A) = 0, then we know that there exists a Borel set B ⊂Z with ν(B) = 0 andμz(A) = 0
for all z ∈Z \ B. Therefore,

sup
x∈X \A

f (x) ≥ inf
Ã :μz(Ã)=0

sup
x∈X \Ã

f (x) =μz(x) − ess sup f (x) for all z ∈Z \ B

⇒ sup
x∈X \A

f (x) ≥ sup
z∈Z\B

μz(x) − ess sup f (x)

≥ inf
B̃ : ν(B̃)=0

sup
z∈Z\B̃

μz(x) − ess sup f (x)

= ν(z) − ess sup μz(x) − ess sup f (x)

and since this holds for every μ-null set A, we can take the infimum to obtain

μ(x) − ess sup f (x) = inf
A:μ(A)=0

sup
x∈X \A

f (x) ≥ ν(z) − ess sup μz(x) − ess sup f (x).

Lemma E.4. Let η ∈P(C(0, T; X )), then we have that

η(u) − ess sup
∣∣u′∣∣ (t) ≤ 1 for a.e. t ∈ (0, T) ⇐⇒ ess sup

t∈(0,T)

∣∣u′∣∣ (t) ≤ 1 for η a.e. u ∈ C(0, T; X ).

Proof. Choosing ψ = χ[0,1], and observing that ψ(|u′|(t)) is η̄-measurable (see [63, Eq. (55)]) implies

η(u) − ess sup
∣∣u′∣∣ (t) ≤ 1 for a.e. t ∈ (0, T)

⇐⇒
∫

C(0,T ,X )

ψ(
∣∣u′∣∣ (t)) dη(u) = 0 for a.e. t ∈ (0, T)

⇐⇒
∫ T

0

∫
C(0,T ,X )

ψ(
∣∣u′∣∣ (t)) dη(u) dt = 0 ⇐⇒

∫
C(0,T ,X )

∫ T

0

ψ(
∣∣u′∣∣ (t)) dη(u) dt = 0

⇐⇒
∫

C(0,T ,X )

∫ T

0

ψ(
∣∣u′∣∣ (t)) dt dη(u) = 0 ⇐⇒

∫ T

0

ψ(
∣∣u′∣∣ (t)) dt = 0 for η a.e. u ∈ C(0, T; X )

⇐⇒ ess sup
t∈(0,T)

∣∣u′∣∣ (t) ≤ 1 for η a.e. u ∈ C(0, T; X ),

where we use Fubini–Tonelli theorem to change the order of integration.

F Multivalued correspondences
For multivalued correspondences, generalizations of continuity and measurability can be defined. We
use the definitions from [24]. In the following, we write ϕ : X ⇒Z to denote a mapping ϕ : X → 2Z .

Definition F.1 (Weak measurability). Let (S,�) be a measurable space and X be a topological space.
We say that a correspondence ϕ:S ⇒X is weakly measurable, if

ϕl(G) ∈� for all open sets G of X ,

where

ϕl(G) := {s ∈ S|ϕ(s) ∩ G �= ∅} (F.1)

is the so-called lower inverse.

Definition F.2 (Measurability). Let (S,�) be a measurable space and X a topological space. We say
that a correspondence ϕ:S ⇒X is measurable, if

ϕl(F) ∈� for all closed sets F of X .
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The next theorem is known as the measurable maximum theorem, where we refer to [24, Theorem
18.19] for the proof of this statement.

Theorem F.3 (Measurable maximum theorem). Let X be a separable metrizable space and (S,�)
a measurable space. Let ϕ:S ⇒X be a weakly measurable correspondence with nonempty compact
values, and suppose f :S ×X →R is a Carathéodory function. Define the value function m:S →R by

m(s) = max
x∈ϕ(s)

f (s, x),

and the correspondence μ:S ⇒X of maximizers by

μ(s) = {x ∈ ϕ(s):f (s, x) = m(s)}.
Then

• The value function m is measurable.
• The “argmax” correspondence μ has nonempty and compact values.
• The “argmax” correspondence μ is measurable and admits a measurable selector.

G Calculations for distributional adversaries
For completeness, we state all lemmas used in section 5.2 here. Those lemmas correspond to a lemma
proven in section section 4.3 and are only adapted to the setting of the transport distance D.

Lemma G.1. Let X ×Y =R
d ×R

m, then the correspondence

rε(x, y) = arg min
(x̃,ỹ):c(x,y,x̃,ỹ)≤ε

E(x̃, ỹ) =
(

arg min
x̃∈Bε (x)

E(x̃, y), y

)

is measurable and admits a B(X ×Y)-measurable selector. Further, for each measurable selector
rε : X ×Y →X we have the following,

(rε)#(μ) ∈ arg min
D(μ,μ̃)≤ε

∫
E(x, y) dμ(x, y). (G.1)

Proof. We consider the correspondence ϕ : X ×Y ⇒X ×Y given by

(x, y) �→ (
Bε(x), y

)
where on the input space we use the topology induced by ‖ · ‖X + ‖ · ‖Y and the output space is
interpreted as the standard Euclidean space. Then we have that for every open set G ∈X that

ϕl(G) = {(x, y) ∈X ×Y :
(
Bε(x), y

)∩ G �= ∅} ⊂B(X ×Y),

is open, which implies weak measurability, according to Definition F.1. Furthermore, we define the map
f ((x, y), (x̃, ỹ)) := −E(x̃, ỹ) which is a Carathéodory function, since E is continuous, with

max
(x̃,ỹ)∈ϕ(x,y)

f ((x, y), (x̃, ỹ)) = min
(x̃,ỹ):c(x,y,x̃,ỹ)≤ε

−E(x̃, ỹ)

Then Theorem F.3 ensures the existence of a measurable selector. To prove (G.1) we observe that if
D(μ, μ̃) ≤ ε, then for an optimal transport plan γ ∈ �0(μ, μ̃), we know that y = ỹ and ‖x − x̃‖ ≤ ε, γ -
a.e. Thus, using the disintegration dγ (x, y, x̃, ỹ) = dψx,y(x̃, ỹ) dμ(x, y), for every μ̃ with D(μ̃,μ) ≤ ε, we
calculate ∫

E(x̃, ỹ)dμ̃(x̃, ỹ) =
∫

E(x̃, ỹ)dγ (x, y, x̃, ỹ) =
∫ ∫

E(x̃, ỹ)dψx,y(x̃, ỹ) dμ(x, y)

=
∫ ∫

E(x̃, y)dψx,y(x̃, ỹ) dμ(x, y) ≥
∫ ∫

E(rε(x, y))dψx,y(x̃, ỹ) dμ(x, y) =
∫

E(rε(x, y)) dμ(x, y),

and (G.1) follows.
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Lemma G.2. Let X ×Y =R
d ×R

m, E:X ×Y →R be in C1(X ×Y) and μ ∈P∞(X ×Y) , then the
metric slope with respect to D is given by

|∂E |(μ) =
∫

‖∇xE(x, y)‖X ∗ dμ.

and |∂E | is a strong upper gardient.

Proof. We follow the arguments of Lemma 4.17. By Lemma G.1 we obtain

|∂E |(μ) = lim sup
τ→0

E(μ) − Eτ (μ)

τ
= lim sup

τ→0

∫
E(x, y) − E(rτ (x, y))

τ
dμ

=
∫

lim
τ→0

E(x, y) − E(rτ (x, y))

τ
dμ=

∫
‖∇xE(x, y)‖X ∗ dμ,

where dominated convergence together with Lemma 3.5 and Item 3 was used to draw the limit into the
integral.

To prove that |∂E | is a strong upper gradient we observe that ‖∇xE(x, y)‖X ∗ is continuous and
in particular lower semicontinuous such that we can use [2, Lemma 5.1.7] to prove that the map
t �→ |∂E |(μt) is lower semicontinuous and thus Borel for every absolutely continuous curve μt.
Assume that

∫ t

s

∫
X×Y ‖∇xE(x, y)‖X ∗ dμr(x, y)|μ′|(r) dr = ∫ t

s
|∂E | (μr)|μ′|(r) dr<+∞, otherwise (1.4)

holds trivially. By Theorem 4.7 we can estimate

|E(μt) − E(μs)| =
∣∣∣∣
∫
X×Y

E(x, y) dμt(x, y) −
∫
X×Y

E(x, y) dμs(x, y)

∣∣∣∣
=

∣∣∣∣
∫

C(0,T; X×Y)

E(u(t)) dη(u) −
∫

C(0,T; X )

E(u(s))dη(u)

∣∣∣∣
≤

∫
C(0,T; X×Y)

|E(u(t)) − E(u(s))| dη(u)

≤
∫

C(0,T; X×Y)

∫ t

s

‖∇xE(u(r))‖X ∗ |u′|(r) drdη(u)

≤
∫ t

s

∫
X×Y

‖∇xE(x, y)‖X ∗ dμr(x, y)|μ′|(r) dr<+∞.

Here we use that η is concentrated on AC∞(0, T; X ×Y) and by the definition of the the extended
distance c(x, x̃, y, ỹ) on X ×Y a curve u(t) ∈ AC∞(0, T; X ×Y) only moves in X -direction and for those
curves ‖∇xE(u(r))‖X ∗ acts like a strong upper gradient.

H Details on numerical examples
Here, we give some details on the experiment that produces Figure 1, the source code is provided at
github.com/TimRoith/AdversarialFlows.

H.1 Training the neural network
We sample K = 1000 labelled data points ((x1, y1), . . . , (xK , yK)), with xk ∈R

2, yk ∈ {0, 1}, from the two
moons data set using the sci-kit package [78], see Figure H1a.

Using PyTorch [76], we then train a neural network using the architecture displayed in Figure H2 as
proposed in [52], to obtain a mapping hθ : R2 → [0, 1], parametrized by θ . Here “Linear dl → dl+1” in
the lth layer, denotes an affine linear mapping [86] given by

z �→ Wz + b, with learnable parameters W ∈R
dl+1×dl

, b ∈R
dl+1
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(a) (b) (c)

Figure H1. Visualization of the dataset and trained classifiers used in the experiments.

the activation functions “ReLU” [42], “GeLU” [51] and “Sigmoid” are defined entry-wise for i =
1, . . . , n, as

ReLU(zi) := max{0, zi}, GeLU(zi) := zi ·�(zi), Sigmoid(zi) := 1

1 + exp (−zi)
,

where � denotes the cumulative distribution function of the standard normal distribution. Here, we
included both ReLU and GeLU (as a smooth approximation) to have an activation function, typically
used in practice and a differentiable approximation fitting into the framework of section 3.3. During
training, we process batches of inputs z= (z1, . . . , zB), with zi ∈R

dl , where “Batch Norm (B)”, as pro-
posed in [54], uses the entry-wise mean μ(z)i := 1

B

∑B
b=1 zb

i and variance σ (z)i := 1
B

∑B
b=1 (zb

i −μ(%z))2

and is defined as

zb
i �→

zb
i −μ(z)i√
σ (z)2

i + ε
· γi + βk, with learnable parameters γ , β ∈R

dl
,

where ε = 10−5 is a small constant, added for numerical stability. During inference, the mean and vari-
ance are replaced by an estimate over the whole dataset, such that the output does not depend on the
batch it is given. In total, θ denotes the collection of weights W, biases b and batch norm parameters
γ , β of all layers. For training, we consider the loss function

L(θ ) = 1

2K

K∑
k=1

|hθ (xk) − yk|2 , (H.1)

where we employ the Adam optimizer [56], with standard learning rates, to approximate a minimizer.
In each step, we employ a batched version of the function in (H.1), i.e., instead of using all data points
at once, in each so-called epoch, we randomly sample disjoint subsets of {1, . . . , K}, of size B = 100
and only sum over these points. We run this training process for a total of 100 epochs, to obtain a set of
parameters θ ∗, with a train loss of approximately L(θ ∗) ≈ 0.002 for ReLU and L(θ ∗) ≈ 0.009 for GeLU.
The trained mappings hθ are visualized in Figure H1 and b.

H.2 Computing IGFSM and the minimizing movement scheme
We now detail the iteration as displayed in Figure 1, first for ReLU. Here, we choose the initial value
x0 = (0.1, 0.55), as it is close to the decision boundary, with hθ∗ (x0) ≈ 0.97, an adversarial budget of
ε= 0.2 and the energy

E(x) := |hθ∗ (x) − 1|2 + χB∞
ε (x0).
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Figure H2. The network architecture used in the examples.

(a) (b) (c) (d)

Figure H3. The same experiment as in Figure 1, but using a net employing the GeLU activation
function.

IFGSM is an explicit iteration and can therefore be implemented directly, where the gradient is computed
with the automatic differentiation tools of PyTorch. For the minimizing movement scheme MinMove,
we need to solve the problem

xk+1
τ

∈ arg min
x∈B∞

τ (xk
τ )∩B∞

ε (x0)

E(x),

in each step. In order to avoid local minima, we do not employ a gradient based method here, but rather
a particle based method, which allows exploring the full rectangle B∞

τ
(xk
τ
). We use consensus based

optimization (CBO) as proposed in [79], using the CBXPy package [4]. Concerning the hyperparameters,
we choose N = 30 particles, a noise scaling of σ = 2, with standard isotropic noise, a time discretization
parameter dt = 0.01, α = 108 and perform 30 update steps in each inner iteration. In order to ensure the
budget constraint and the local restriction given by the step size τ , we project the ensemble of the CBO
iteration to the set

B∞
ε

(x0) ∩ B∞
τ

(xk
τ
)

using the �∞ projection, i.e., a clipping operation. We refer to [19] for a more detailed numerical study
considering projections in CBO schemes, which also suggests the validity of our method here. We repeat
the experiment for GeLU with a different initial value x0 = (0.45, 0.3), hθ∗ (x0) ≈ 0.74 and budget ε=
0.25, which is displayed in Figure H3.
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(a) (b)

Figure H4. Difference between IFGSM and the minimizing movement scheme.

H.3 Convergence of the standard and semi-implicit scheme
In this section, we consider the error between the standard and the semi-implicit minimizing movement,
which serves as a very basic validation of the numerical schemes. Our theoretical framework shows that
both iterations converge to a ∞-curve of maximum slope, which however is not available numerically.
Instead, for n ∈N and k ≤ n, we can consider∥∥xk

si,τn − xk
τn

∥∥
∞ ≤ ∥∥xk

si,τn − u(k · τn)
∥∥
∞ + ∥∥xk

τn
− u(k · τn)

∥∥
∞ ,

where xk
τn

fulfils the standard minimizing movement scheme and xk
si,τn = xk

IFGS,τ is given by (IFGSM),
i.e., fulfils the semi-implicit scheme. Although our theory does not provide concrete estimates or rates
of the error between IFGSM and the minimizing movement scheme, we perform a small numerical
experiment using the setup from above. For each choice of τ we sample S = 50 different initial values
x0,s and compute the iterates xk,s

IFGS and xk,s
τ

for k ∈ {1, . . . , &1/τ'} and compute the averaged maximal
distance

eτ := 1

S

S∑
s=1

max
k

∥∥xk,s
IFGS − xk,s

τ

∥∥
∞ . (H.2)

The errors are plotted in Figure H4a. In both cases, the errors converge to zero; however, we observe
that the order of convergence is higher for the GeLU function. We note that our theoretical results only
provide a convergence statement for the differentiable case, therefore these results are in line with the
analysis. In particular Lemma 3.12 requires a Lipschitz differentiable gradient. However, we hypothesize
that the slower convergence in the ReLU case, actually comes from the non-implicit error as visualized
in Figure H4b. There we mimic a situation enforced by the ReLU activation function. For τ > 0.1, the
minimizing movement scheme always “jumps” across the non-differentiable line x1 = 0.1, to the corner
where the minimum on B∞

τ
(x0) is attained, which leads the following iterates to follow the gradient into

the direction (1, 1). However, in this case the actual flow is given as u(t) := (t, 0), which, in this case,
is more accurately prescribed by (FGSM). In this regard, a more exhaustive study, both empirically and
theoretically is required, which is left for future work.
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