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ABSTRACT: Anatomical variations in the upper airway significantly impact the effectiveness of video
laryngoscope blades. Existing literature on upper airway dynamics and blade design lacks a comprehensive
framework to address these variations. The proposed model uses the extent of mouth opening with three
demographic features and three anatomical features in the closed-mouth state to predict the anatomical features in
the open-mouth state, which can support the design of a laryngoscope blade. Pearson’s correlation was studied to
understand the correlation between the features, and the ordinary least square method was used to develop a model.
For all three outputs, a separate model was developed, which gave R-squares of 0.98,0.74 and 0.94. The findings
highlight the potential of data-driven approaches to optimize laryngoscope blade designs.
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1. Introduction

The upper airway plays a pivotal role in maintaining respiratory function and is vital during medical
procedures such as intubation and airway management. Video laryngoscopes are essential tools in
modern intubation, and their design relies heavily on the anatomical dimensions of the upper airway.
However, airway dimensions shift significantly during mouth opening, complicating the development of
laryngoscope blades optimized for diverse populations. A deeper understanding of these dynamic
anatomical variations is crucial for creating efficient ergonomic and population-specific devices.
Traditional imaging methods such as CT or MRI provide insight into the static structure of the upper
airway but are limited by their inability to track functional transitions such as the shift from a closed to an
open mouth. Moreover, repeated imaging exposes patients to unnecessary radiation, incurs costs, and
lacks practicality in clinical settings.

A study on the Mexican population revealed that existing video laryngoscope blades were unsuitable due
to anatomical differences specific to this population. The findings emphasized the necessity for
redesigned blades to accommodate these variations (Matehuala-Moran et al., 2022). Similarly, an
evaluation of endotracheal tube placement in the Indian population showed that the standard
recommendations 23 cm for males and 21 cm for females often resulted in over-insertion. This could lead
to the tube entering the cricoid ring, increasing the risk of complications during intubation (Varshney
et al., 2011). Moreover, difficult airways are frequently associated with unique anatomical features, such
as a protruding sternal region or an anteriorly positioned larynx, which further complicate intubation
(Mcintyre, 1989). These studies underscore the importance of tailoring laryngoscope blades to the
anatomical characteristics of different populations. Building on this, another study explored the design of
patient-specific pediatric laryngoscopes using open-mouth CT scans. A 3D model of the upper airway
was generated, and the blade profile was designed using a space colonization algorithm. However, this
approach focused solely on blade profiling and was contingent upon the availability of open-mouth CT
scans for each patient (Sims et al., 2019). The literature was explored to investigate changes in the upper

ICED25 151


https://doi.org/10.1017/pds.2025.10029
mailto:harshit.mourya@design.iitd.ac.in

airway due to mouth opening. One study examined the effect of mouth opening on upper airway
collapsibility in sleeping subjects by measuring cephalometric data in awake conditions for both closed-
and open-mouth states. However, the study recorded only a limited number of parameters, and the extent

of mouth opening was not quantified (Meurice et al., 1996).
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Figure 1. Upper airway. 1: retropalatal plane, 2: retroglossal plane, 3: a horizontal plane from
vallecula to pharyngeal wall, UAL: Upper Airway Length

A study evaluated the impact of open- and closed-mouth conditions on upper airway anatomy in 28
patients using lateral cephalometry and nasopharyngoscopy. Significant anatomical changes were
observed due to mouth opening. The study found that open-mouth breathing reduced the retropalatal and
retroglossal areas and lengthened the pharynx in the upper airway. While mouth opening was adjusted
based on patient comfort for the study, no measurements were taken to quantify the degree of mouth
opening. Figure 1 shows the upper airway anatomy of the human, where 1 represents the retropalatal
plane (RP), 2 represents the retroglossal plane (RG), 3 represents the plane from vallecula to the

pharyngeal wall, and UAL represents the upper airway length.

Table 1. Table showing open and closed mouth data and p-value for significance in the difference

Closed Mouth Open Mouth
S.NO Parameters (in mm) (in mm) p-val
1 Diameter at RP 9.39 +2.68 6.85 £2.96 p<0.05
2 Diameter at RG 11.16 £ 2.57 7.28 +2.89 p <0.05
3 Distance from Vallecula to 17.31 £ 3.58 17.57 £3.24 p>0.05
the pharyngeal wall
4 UAL 69.66 + 7.01 77.95 + 10.52 p<0.05
5 c/s at RP 70.71 £ 20.34 62.13 + 20.56 p<0.05
6 c/s at RG 137.33 + 58.28 78.07 = 35.60 p<0.05

Table 1 (Lee et al., 2007) highlights the significant anatomical changes in the upper airway between
closed- and open-mouth states and the p-value for the significance of the difference. Key parameters such
as retropalatal and retroglossal diameters show a notable reduction, indicating airway narrowing upon
mouth opening; additionally, the UAL increases, suggesting airway elongation. These variations
emphasize the impact of mouth opening on airway structure, which is crucial for intubation planning and

laryngoscope blade design.
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A separate study investigated the risk of upper airway constriction during maximum mouth opening,
such as when using a mouth prop during dental procedures. In 13 healthy adult volunteers, the sagittal
diameter of the upper airway was measured on lateral cephalograms under two conditions: closed mouth
and maximally open mouth at three points (1, 2 & 3), as shown in Figure 1. The figure illustrates three
key airway measurement points in the sagittal plane: A (diameter at RP), B (diameter at RG), and C
(distance from vallecula to the pharyngeal wall). These were the only three airway dimensions available
in the literature for both closed mouth and open mouth states along with the extent of mouth opening.
Therefore, these three dimensions were selected as features to develop a model to assess the feasibility of
the proposed algorithm. Significant reductions in airway dimensions were observed, with decreases of
54.1% in A, 47.3% in B, and 47.4% in C. These findings highlighted the substantial impact of maximum
mouth opening on upper airway dimensions (Yamazaki, 2010).

There is a notable lack of literature addressing anatomical changes in the upper airway due to mouth
opening. Additionally, existing research on video laryngoscope blade design lacks a structured
framework to accommodate these changes. This paper introduces a machine learning (ML) algorithm
designed to predict upper airway dimension changes from the closed-mouth state to the open-mouth
state. By leveraging features such as age, height, weight, inter-dental distance (mouth opening), and
certain closed-mouth airway characteristics, the proposed model bridges the gap of data between closed
and open-mouth states. These predictions can provide accurate, population-specific insights, particularly
for underrepresented groups such as the Indian population, where anatomical variations significantly
influence the usability of medical devices.

The primary objective of this preliminary study is to develop and validate a machine learning algorithm
to demonstrate the feasibility of predicting open-mouth airway dimensions based on closed-mouth
airway data and demographic features. Given the limited dataset, this research serves as an initial
exploration into the potential correlations, laying groundwork for future studies using larger, diverse
datasets to create robust, generalizable models. The outcomes of this study hold potential for designing
customized laryngoscope blades, thereby improving intubation outcomes and device effectiveness in
diverse populations.

2. Methodology

The approach is based on CRISP-DM (CRoss Industry Standard Process for Data Mining) because it is
an existing methodology for data mining . The CRISP-DM method was chosen because it explicitly
emphasizes the data science workflow, which aligns closely with our research objectives, in contrast to
methods like Kanban and Scrum, which primarily focus on team collaboration and project management
(Wirth & Hipp, 2000).

It comprises six steps, presented in the following sections: 1. Business understanding; II. Data
understanding; Il Data preparation; IV. Modelling; V. Evaluation; VI. Deployment. This Framework
was modified to predict the anatomical movement in the upper airway due to the opening of the mouth.

2.1. Business understanding

In this phase, the conceptualization of the objectives and needs takes place. The proposed approach
aims to use demographic data and the anatomical data of the upper airway in closed and open-mouth
states to develop an algorithm which can predict the anatomical changes caused by mouth opening.
The algorithm should take demographic data, anatomical features in the case of a closed mouth and the
extent of mouth opening as input and should be able to predict changes in anatomical features. For the
success criteria, the model should provide the output for all the anatomical features given as the input.
For resource availability, the data would be acquired from the literature for the model training and the
data from the CT scans of the upper airway can be used in the subsequent studies to increase the
accuracy of the model.

2.2. Data understanding

Data understanding involves identifying, collecting, analyzing and verifying data sets to achieve the
project objectives. As the study focuses on upper airway changes, anatomical features that change with
the mouth opening should be considered. For this study, we have considered the linear distances between
different parts of the upper airway to be the desired anatomical features. Literature was explored to
investigate the anatomical features that change due to the mouth opening. From this literature, the
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following parameters were defined as features that were getting affected due to the mouth being opened
and the demographic data for the model (Jha et al., 2016; Lee et al., 2007; Schebesta et al., 2012).

* Anatomical data
o Diameter at the retropalatal plane (A)
o Diameter at the retroglossal plane (B)
o Cross-sectional area at retropalatal plane
o Cross-sectional area at retroglossal plane
o Vallecula to pharyngeal wall distance (C)
o Upper airway length (UAL)
o Extent of Mouth opening
* Demographic data
o Age
o Sex
o Height
o Weight

These are the identified features which can be used to develop a machine-learning algorithm to predict
changes caused by mouth opening.

2.3. Data preparation

The required data can be calculated if the open and closed-mouth CT scan images are available. In our
case, we have used data extracted from the literature because of the non-availability of open-mouth CT.
The selection of the features was based on the availability of the data for both open and closed-mouth
conditions. From the literature, we found data for three parameters in a study conducted on 13 patients.
This study had data on changes in the diameter of the airway at the closed and maximal mouth openings.
The following parameters were available in the literature for both open and closed-mouth states which
will be used to train the algorithm (Yamazaki, 2010).

* Anatomical Data:
o Diameter at the retropalatal plane (A)
o Diameter at the retroglossal plane (B)
o Vallecula to pharyngeal wall distance (C)
o Extent of mouth opening
* Demographic Data:
o Age
o Weight
o Height

Before modelling, it is vital to understand the data statistically. The box plot is used to study the spread of
the data and to study the correlation between the features. A Pearson’s correlation analysis is done to find
the correlation between the different parameters.

2.4. Model development

2.4.1. Algorithm selection

The Modelling phase focuses on building and evaluating various machine-learning models to predict
open-mouth airway dimensions using closed-mouth airway data and patient-specific features. Ordinary
Least Squares (OLS) was selected as the initial modelling algorithm due to its simplicity, interpretability,
and suitability for small datasets, making it a common baseline in exploratory analyses for understanding
linear correlation (Wooldridge et al., 2016). The evaluation was conducted using a hold-out validation
technique, where 20% of the data was reserved as a test set using the ‘sklearn traintestsplit’ method once,
ensuring it remained unseen during training.

2.4.2. Model input and output

The demography data, closed-mouth airway features and the extent of mouth opening will serve as the
input to the model, and the open-mouth airway dimensions will be the output.
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Table 2. Input and output of the ML model

S. No. Model Input Model Output

1 Age -

2 Weight -

3 Height -

4 A_Closed: Sagittal diameter of the airway at the =~ A_Open: Sagittal diameter of the airway at the
uvular tip (closed mouth) uvular tip (open mouth)

5 B_Closed Sagittal diameter of the airway at B_Open: Sagittal diameter of the airway at
Midpoint between the 2nd and 3rd cervical Midpoint between the 2nd and 3rd cervical
vertebra as a tongue base (closed mouth) vertebra as a tongue base (open mouth)

6 C_Closed Sagittal diameter of the airway at C_Open: Sagittal diameter of the airway at
Epiglottic vallecula (closed mouth) Epiglottic vallecula (open mouth)

7 Extent of mouth opening (open mouth) -

2.5. Model evaluation

The model will be evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE) and
R-Square to assess its predictive accuracy.

2.6. Model deployment

2.6.1. Design of medical devices

The predicted anatomical data can guide the design of video laryngoscope blades optimized for the
unique upper airway characteristics of different populations. The model can also aid in designing custom-
fit medical devices or tools that require a precise understanding of the airway anatomy, improving both
functionality and patient comfort.

2.6.2. Clinical practice

The model would be used to predict changes after a certain amount of mouth opening, which would be
very helpful for planning any investigation in the upper airway, e.g., intubation, sleep apnea studies,
dentistry, etc.

3. Results and discussion

All the 13 patients considered in the study were males, with the mean age of participants being 33 years,
with a standard deviation of 9.8 years, and the average weight was 72 kg, with a height mean of 170.8 cm.
Additionally, the mouth opening, with an average of 57.8 mm (SD = 8.5 mm), exhibits moderate
variation, as shown in Table 3.

Table 3. Demographical Data

S No. Parameter Mean SD Min Max
1 Age (yr) 33 9.8 26 60
2 Weight (kg) 72 8.6 59 85
3 Height (cm) 170.8 6.5 157 178
4 Mouth opening(mm) 57.8 8.5 51.5 71.8

The box plot provides a detailed visual representation of the variability and distribution of closed and open
airway measurements (A, B, and C) as shown in Figure 3. For closed-airway measurements, the median
values for A, B, and C are approximately 16 mm, 14.6 mm, and 24.7 mm, respectively, with interquartile
ranges (IQR) of around 2 mm for A, 4 mm for B, and 6 mm for C. In the open-airway state, the median
values for A, B, and C shift to 7.7 mm, 7 mm, and 16.3 mm, respectively, with reduced IQRs of
approximately 4 mm, 3 mm, and 5 mm. This significant reduction in dimensions A and B upon mouth
opening suggests substantial anatomical changes that directly affect airway visibility and thus impact the
effectiveness of laryngoscopy procedures. Dimension C exhibits relatively more stability across the two
states, indicating that it may be less sensitive to mouth opening. However, the observed variability
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underscores the need to account for such anatomical shifts when designing and using medical devices like
laryngoscopes. These findings emphasize the importance of understanding airway dynamics to ensure
successful intubation and enhance patient safety and comfort during airway management procedures.
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Figure 2. Distribution of values for each feature

Pearson’s correlation analysis was done between input and output features, which showed a significant
correlation between some features, as shown in Figure 4. The correlation coefficient had low values for
the demographic data with other parameters. Features with low correlation coefficients can be excluded
from developing the machine learning algorithm, but as the number of data points is low, these data
points are also used.
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Figure 3. Heat map showing Pearson’s correlation coefficient between input and output features

OLS algorithm was used to develop the model on 80% of the data as training data and 20% as the test
data. Three models were developed using OLS, as it does not support multiple outputs. For Each model,
all seven inputs were considered, and the three outputs were considered one by one, hence creating three
models, i.e. model:1 with A_open as output, model:2 with B_Open as output, and model:3 with C_Open
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as output. For the performance evaluation, R-squared, MSE (Mean Squared Error), and MAE (Mean
Absolute Error) were calculated for all three models.

Table 4. R-squared, MSE and MAE for all three models

S.NO Model R-squared MSE MAE
1 Model:1 0.98 3.83 1.71
2 Model:2 0.74 9.55 3.01
3 Model:3 0.94 7.54 2.63

Ones the open-mouth parameters are defined, the blade design can be approached in two ways: first,
by directly applying a space colonization algorithm to open-mouth airway scans and approximating
the resulting shape into an L-shaped blade profile (Sims et al., 2019); second, by grouping airway
anatomies into clusters and designing blades optimized for each cluster. Our proposed approach adds
a critical intermediate step using a machine learning model that predicts open-mouth airway
dimensions from closed-mouth measurements and teeth distance. This predictive step enables
practitioners to bypass the difficulty of obtaining open-mouth CT scans directly, significantly
enhancing accessibility and feasibility. Additionally, this model can be embedded into clinical
software systems, allowing anesthesiologists, dentists, and surgeons to input available closed mouth
airway measurements along with the mouth-opening distance, thus providing accurate and
personalized predictions of open-mouth airway dimensions. This capability would enhance clinical
planning and device customization.

4. Conclusion

The model presented here serves two important purposes: providing clinicians with predictive tools to
anticipate airway anatomy before intervention and assisting device designers in optimizing
laryngoscope blade design. For clinicians, this predictive capability enhances preparation, reducing
the likelihood of complications during procedures such as intubation. By estimating airway
dimensions in the open-mouth state based on closed-mouth data, the model helps clinicians anticipate
potential difficulties and select appropriate airway management strategies in advance.
Simultaneously, the model aids device designers by predicting open-mouth airway conditions,
enabling the development of population-specific or even patient-specific laryngoscope blades tailored
to anatomical variations. While its immediate application in time-sensitive emergencies may be
limited, the model’s broader utility lies in its role in planning, training, and optimizing airway
management strategies in both elective and critical-care settings.

The algorithm demonstrates strong predictive performance, with R-squared values of 0.98, 0.94, and
0.74 for the three airway features under consideration. These results indicate the model’s effectiveness
in estimating open-mouth airway anatomy based on available features. However, incorporating
additional anatomical parameters could further enhance its predictive accuracy and clinical relevance.
The ability to anticipate airway dimensions has significant potential applications, including
optimizing laryngoscope blade design, improving intubation planning, and assessing conditions such
as obstructive sleep apnea.

Despite its promise, the study is limited by the small dataset used for model training. Expanding the
dataset with a more diverse sample population would likely enhance the model’s robustness and
generalizability. Furthermore, the inclusion of intermediate mouth states, such as partially open
conditions, could provide a more detailed and dynamic representation of airway variations, improving its
applicability in real-world scenarios.

Beyond airway management, this methodology holds potential for broader applications in medical
research and clinical practice. Similar predictive modeling techniques could be applied to study
anatomical movements in other regions of the body, such as the shoulder or knee, offering insights into
musculoskeletal dynamics and aiding in the development of customized medical devices and
rehabilitation strategies. Future work should explore these avenues to expand the model’s impact across
various domains of healthcare and biomedical engineering
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