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Abstract

We provide upper bounds for the Assouad spectrum dimθ
A (Gr( f )) of the graph of a real-

valued Hölder or Sobolev function f defined on an interval I ⊂R. We demonstrate via
examples that all of our bounds are sharp. In the setting of Hölder graphs, we further provide
a geometric algorithm which takes as input the graph of an α-Hölder continuous function
satisfying a matching lower oscillation condition with exponent α and returns the graph of
a new α-Hölder continuous function for which the Assouad θ-spectrum realizes the stated
upper bound for all θ ∈ (0, 1). Examples of functions to which this algorithm applies include
the continuous nowhere differentiable functions of Weierstrass and Takagi.

2020 Mathematics Subject Classification: 28A78 (Primary);
26A16, 26A27, 26A46, 46E35 (Secondary)

1. Introduction

A fruitful line of study relates analytic regularity conditions of a continuous function
f : I →R to geometric regularity properties of its graph Gr( f ) := {(t, f (t)) ⊂R

2 : t ∈ I}. For
instance, it is natural to inquire how regularity hypotheses on f influence measures for the
‘fractality’ of Gr( f ), such as the values of various metrically defined notions of dimension.

Notable examples in this regard are the continuous and nowhere differentiable func-
tions of Weierstrass and Takagi. Given a ∈ (0, 1) and b ∈ (1/a, ∞) we define the Weierstrass
functions

Wa,b(t) :=
∞∑

n=0

an cos (bnt), 0 ≤ t ≤ 1,

and the Takagi functions

Ta,b(t) =
∞∑

n=0

anD(bnt), 0 ≤ t ≤ 1,
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2 E.-K.CHRONTSIOS-GARITSIS AND J. T. TYSON

where D is the 1-periodic sawtooth function with D(t) = t for all t ∈ [0, 1/2] and D(t) =
1 − t for all t ∈ [1/2, 1]. The graphs of these functions have seen sustained attention by
the fractal geometry community for many years. For instance, a longstanding program of
research focuses on the determination of metric dimensions of the graphs of the Weierstrass
functions. While the upper box dimension of Gr(Wa,b) has been known since the early 20th
century (see [11]), its Hausdorff dimension was not conclusively determined until 2018 by
Shen [14].

The notions of dimension which we focus on in this paper are the Assouad dimension
dimA, introduced by Assouad in [2] under a different name, as well as the Assouad spectrum
dimθ

A (and its regularisation dimθ
A,reg), introduced by Fraser and Yu [10]. These notions of

dimension quantify the covering properties of a given set or space at all locations and scales,
with respect to a smaller scale which may or may not be quantitatively related to the larger
scale. Precise definitions are recalled in section 2.

The exact value of the Assouad dimension for the graphs of Weierstrass and Takagi func-
tions was posed as a question by Fraser [8, question 17·11·1] and remains open. It is worth
noting that while there are (to the best of our knowledge) no known partial results for the
Weierstrass function, partial results and bounds on the Assouad dimension of the graphs of
some Takagi functions were proved by Yu [15] and Anttila, Bárány and Käenmäki [1].

In an effort to shed new light on this subject, we study how Hölder conditions on a function
f influence bounds for the Assouad spectra of Gr( f ). Our main contributions are summarized
in the following two theorems.

THEOREM 1·1. Let I ⊂R be a closed interval and let f : I →R be an α-Hölder
continuous function. Then

dimθ
A,reg Gr( f ) ≤ 2 − α − θ

1 − θ
, (1·1)

for all θ ∈ (0, α).

Note that when θ = α, the upper bound in (1·1) reaches 2 and hence provides no nontrivial
information. In fact, for values of θ ∈ (0, α) the upper bound in (1·1) is sharp in the following
sense:

THEOREM 1·2. For every α ∈ (0, 1) there exists an α-Hölder continuous function f̃ =
f̃α:[0, 1] →R with

dimθ
A Gr( f̃ ) = dimθ

A,reg Gr( f̃ ) = 2 − α − θ

1 − θ
, (1·2)

for all θ ∈ (0, α).

Recall (see e.g. [8, lemma 3·4·4]) that the Assouad spectrum dimθ
A (E) tends to the upper

box dimension dimB(E) as θ ↘ 0, for any set E ⊂R
n. Letting θ ↘ 0 in Theorems 1·1 and

1·2, we recover the (known) sharp upper estimate 2 − α for the box-counting dimension of
an arbitrary α-Hölder continuous function f : I →R. See, for instance, [6, chapter 11].

Not only is the proof of Theorem 1·2 constructive, but it provides a geometric algorithm
that modifies the Assouad spectrum of the graph of an appropriate function — such as a
Weierstrass or Takagi function — while leaving the upper box dimension intact. This feature
is worth emphasising, since the algorithm involves countably many modifications to the

https://doi.org/10.1017/S0305004125101527 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101527


On the Assouad spectrum of Hölder and Sobolev graphs 3

graph and the upper box dimension is not countably stable in general. We believe that this
method is of independent interest with potential applications to the study of other fractal
sets. The key property which the algorithm seeks to ensure for the modified graph is that it
lies for a uniformly sufficient amount of ‘time’ within a predetermined sequence of squares.
Such a property can be exploited to numerically estimate the extent to which the graph of
a given function, e.g., a Weierstrass function, deviates from satisfying (1·2), or from having
Assouad dimension equal to 2.

We also consider functions in the Sobolev class W1,p for 1 ≤ p ≤ ∞. For a closed interval
I, recall that f ∈ W1,p(I) if f ’ exists weakly as a function and f , f ′ ∈ Lp(I). Since we are only
interested in continuous functions f we drop the integrability condition on f . We have

W1,∞ ⊂ W1,q ⊂ W1,p ⊂ W1,1 ⊂ BV, p < q,

where BV(I) denotes the space of functions of bounded variation on I. The space of contin-
uous representatives of functions in W1,∞(I) coincides with the space of bounded Lipschitz
functions on I. An elementary estimate using the Fundamental Theorem of Calculus and
Hölder’s inequality shows that W1,p functions are α-Hölder continuous with α = 1 − 1/p.
An application of Theorem 1·1 then gives

dimθ
A,reg Gr( f ) ≤ 1 + 1

(1 − θ)p
. (1·3)

On the other hand, the upper box dimension dimB(Gr( f )) is equal to one for any BV function
f : I →R; see Theorem 4·1. By a standard estimate for the Assouad spectrum [8, lemma
3·4·4], we always have the bound

dimθ
A,reg Gr( f ) ≤ dimB(Gr( f ))

1 − θ
= 1 + θ

1 − θ
(1·4)

for any BV function f and any 0 < θ < 1.
Our next result provides an upper bound for dimθ

A,reg (Gr( f )) in the case when f ∈ W1,p(I),
which improves on both (1·3) and (1·4).

THEOREM 1·3· Let f ∈ W1,p(I), 1 ≤ p ≤ ∞, be a continuous, real-valued function defined
on an interval I ⊂R· Then

dimθ
A,reg Gr( f ) ≤ 1 + θ

(1 − θ)p
. (1·5)

for all 0 < θ < p/(p + 1).

As before, observe that the upper bound in (1·5) is only of interest when θ < p/(p + 1);
once θ = p/(p + 1) the upper bound reaches 2 = dim R

2 and the conclusion becomes trivial.
For θ < p/(p + 1) the conclusion in Theorem 1·3 is sharp.

THEOREM 1·4. For each 1 < p < ∞, there exists f ∈ W1,p([0, 1]) so that

dimθ
A,reg (Gr( f )) = 1 + θ

(1 − θ)p
(1·6)

for all 0 < θ < p/(p + 1).
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4 E.-K.CHRONTSIOS-GARITSIS AND J. T. TYSON

This paper is organised as follows. section 2 reviews basic notation and terminology,
including definitions for the Assouad dimension dimA (E) and Assouad spectrum dimθ

A (E)
of a set E.

Section 3 contains our results on the Assouad spectra of Hölder graphs. In particular, in
Subsection 3·2 we present an algorithm for the construction of α-Hölder continuous func-
tions f̃ :I →R for which the Assouad spectrum, dimθ

A (Gr( f̃ )), realises the upper bound in
(1·1) for all θ . Fixing α ∈ (0, 1) and θ0 ∈ (0, α), the algorithm takes as input an α-Hölder
continuous function f which satisfies a matching lower oscillation condition with the same
exponent α. The graph of f is modified by a sequence of transformations, each of which
reflects a selected subgraph across the boundary of a selected square Q. The choice of
where to implement these reflections inside of Q depends in a subtle way on the param-
eter θ0. The reflections in question are chosen to force the new graph to lie entirely inside
the right or left half of squares in the designated sequence while maintaining the Hölder
regularity. The output of this algorithm is a new function f̃ whose graph is localised within
a sequence of squares, and which consequently (by construction) attains the desired value
of dimθ0

A (Gr( f̃ )). However, an elementary observation regarding the behaviour of the cover-
ing number for Gr( f̃ ) ∩ Q with respect to different choices of the smaller scale allows us to
promote this conclusion from the single choice θ = θ0 to the full range of Assouad spectra
dimθ

A (Gr( f̃ )) for all θ ∈ (0, α). We explore the question of lower bounds for the Assouad
spectrum further in Subsection 3·3, where we identify related (but weaker) lower oscillation
and graph localization conditions which ensure the validity of other lower bounds on the
Assouad spectrum.

In section 4 we turn to the study of graphs of Sobolev functions. After some preliminary
comments about box-counting dimensions of Sobolev and BV graphs, we prove Theorems
1·3 and 1·4. The construction of a Sobolev graph which realizes the upper bound in (1·5) is
considerably easier than the previous algorithmic construction of a Hölder extremal function.
A suitably chosen piecewise linear graph, oscillating infinitely often between the graphs of
y = x and y = −x and converging to the origin, realizes the desired dimensional value.

2. Background

We first establish notation which will be in use throughout the paper. For x ∈R, denote by
�x� the ceiling function of x, i.e. the smallest integer larger than or equal to x. Similarly, we
denote by 
x� the floor function of x, i.e. the largest integer smaller than or equal to x.

Points in the plane R
2 will be denoted by z, w, . . .. We denote by Q(z, r) the closed axes-

oriented square centered at a point z ∈R
2 of side length 2r. For a nonempty set A ⊂R

2

we denote by Projx(A) and Projy(A) the projection of A onto the x-axis and the y-axis,
respectively. The complement of a set E ⊂R

2 is denoted E� := R
2 \ E.

For functions A(R,r) and B(R,r) with 0 < r ≤ R < 1, we write A(R, r) � B(R, r) if there is
a constant C > 0 that does not depend on R or r such that A(R, r) ≤ CB(R, r) for all 0 < r ≤
R < 1.

For a bounded interval I ⊂R we denote by |I| its length. Moreover, for a function f : I →
R, we denote the oscillation of f over J by osc( f , J) = sup{| f (t) − f (s)|: t, s ∈ J} for any
interval J ⊂ I. We also write Gr( f ;J) := {(t, f (t)) : t ∈ J} for any interval J ⊂ I.

Recall that the Assouad dimension of a set E ⊂R
2 is defined as

dimA (E) := inf

{
α > 0 :

∃ C > 0 s.t. N(D(z, R) ∩ E, r) ≤ C(R/r)α

for all 0 < r ≤ R and all z ∈ E

}
, (2·1)
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where N(F,r) denotes the least number of sets of diameter at most r needed to cover F.
Assouad dimension was introduced (under a different name and with a different definition)
by Assouad in [2]; the formulation here is taken from [8]. We also recall the notion of
Assouad spectrum, introduced by Fraser and Yu [10]. It is a one-parameter family of met-
rically defined dimensions which interpolates between the upper box-counting dimension
and the (quasi-)Assouad dimension. Specifically, the Assouad spectrum of a set E ⊂R

2 is a
collection of values

{dimθ
A (E) : 0 < θ < 1},

where

dimθ
A (E) := inf

{
α > 0 :

∃ C > 0 s.t. N(D(z, R) ∩ E, r) ≤ C(R/r)α

for all 0 < r = R1/θ < R < 1 and all z ∈ E

}
. (2·2)

While one could replace R by rθ in (2·2) for simplicity, which we actually implement for
arguments in later sections, we prefer to state the definition of the Assouad spectrum in this
form to indicate the relation to the Assouad dimension.

Remark 2·1. Note that the covering number N(D(z, R) ∩ E, r) can be replaced by the number
of closed (or open) sub-squares of Q(z, R) of side length r needed to cover Q(z, R) ∩ E (or
the interior of Q(z, R) ∩ E) without affecting the values of the dimensions dimA (E) and
dimθ

A (E) in (2·1) and (2·2), respectively. See, e.g., [8, pp.3 and 11] and [5, proposition 2·5].
In later sections, we will alternate between equivalent definitions depending on what is most
convenient for each argument.

The map θ �→ dimθ
A (E) is continuous (even locally Lipschitz) when 0 < θ < 1, and

dimθ
A (E) → dimB(E) as θ → 0, dimθ

A (E) → dimqA (E) as θ → 1 .

Here dimB(E) denotes the upper box-counting dimension of E, while dimqA (E) denotes the
quasi-Assouad dimension of E; the latter is a variant of Assouad dimension introduced by Lü
and Xi [12]. We always have dimqA (E) ≤ dimA (E), and equality holds in many situations
(see [8, section 3·3] for details).

A slightly modified version of the Assouad spectrum where the relationship R = rθ

between the two scales is relaxed to an inequality R ≥ rθ leads to the notion of upper

Assouad spectrum, denoted dimθ
A(E) in the literature: see [8, section 3·3·2] for more infor-

mation. The key relationship between the two values (see [8, theorem 3·3·6]) is that

dimθ
A(E) = sup

0<θ ′<θ

dimθ ′
A (E). (2·3)

The authors have proposed in [5] the term regularised Assouad spectrum in lieu of upper

Assouad spectrum, and the notation dimθ
A,reg (E) in place of dimθ

A(E); this terminology and
notation will be used throughout this paper.

3. Dimensions of Hölder graphs

In this section we prove Theorems 1·1 and 1·2, which provide sharp upper bounds for the
Assouad spectra of Hölder graphs.
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6 E.-K.CHRONTSIOS-GARITSIS AND J. T. TYSON

3.1. Proof of Theorem 1·1
Set β = 2 − α − θ/1 − θ and let z ∈ Gr( f ) with z = (t, f (t)) and R ∈ (0, 1), ρ ∈ (0, R1/θ ].
We will prove that there is a constant C, depending only on β, such that the minimum

number of sets of diameter at most ρ needed to cover D(z, R) ∩ Gr( f ) does not exceed
C(R/ρ)β , i.e.

N := N(D(z, R) ∩ Gr( f ), ρ) ≤ C(R/ρ)β .

This estimate easily implies the desired conclusion. Set r = ρ/
√

2. We will use essentially
disjoint squares of side-length r to cover D(z, R) ∩ Gr( f ) and count how many such squares
are needed.

The projection of D(z, R) ∩ Gr( f ) onto the x-axis is included in the interval I = [t − R, t +
R]. We need at most M := 2�R/r� intervals of the form Ii = [t − R + ir, t − R + (i + 1)r],
i = 0, 1, . . . , M − 1 to cover I. Split all columns Ji := Ii ×R into squares of side-length r.
In a given column Ji there can be at most osc( f , Ii)/r + 2 such squares intersecting Gr( f ).
Using all the squares in columns Ji, i = 0, 1, . . . M, to cover D(z, R) ∩ Gr( f ), and noting that
each of these squares has diameter

√
2r = ρ, we deduce that

N ≤
M−1∑
i=0

(osc( f , Ii)/r + 2).

By the α-Hölder continuity of f we know that osc( f , Ii) � rα which, along with M ≤ 4R/r,
implies that

N �
M−1∑
i=0

(rα−1 + 2) ≤ 4R

r2−α
+ 8R

r
�
(

R

r

)2−α

Rα−1. (3·1)

Note that the estimate R/r ≤ R/r2−α follows from the restrictions r < 1 and 1 − α > 0.
Recalling that the choice of ρ = √

2r ≤ R1/θ was arbitrary, we conclude that

R−1/θ � 1

r
. (3·2)

Multiplying both sides of (3·2) by R and raising to the (positive) power of 1 − α yields

R(1−α)(1−1/θ ) �
(

R

r

)1−α

.

Since R < 1, θ ∈ (0, 1), and 1 − 1/θ = (θ − 1)/θ < 0, the above implies that

Rα−1 �
(

R

r

) (1−α)θ
1−θ

Combining this with (3·1) yields

N ≤
(

R

r

) (1−α)θ
1−θ

+2−α

=
(

R

r

)β

,

since

(1 − α)θ

1 − θ
+ 2 − α = (1 − α)θ + 1 − θ + (1 − α)(1 − θ)

1 − θ
= β.
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Hence N � (R/r)β � (R/ρ)β as needed. This concludes the proof of Theorem 1·1.

3.2. Proof of Theorem 1·2
Fix α ∈ (0, 1) and fix an arbitrary function f : [0, 1] →R for which there are C > 0, c > 0

and r0 > 0 such that

| f (t) − f (s)| ≤ C|t − s|α (3·3)

for all t, s ∈ [0, 1] and

osc( f , I) ≥ c|I|α (3·4)

for all intervals I ⊂ [0, 1] with |I| ≤ r0. An example of such a function is the Takagi
function Ta,2 where a := 2−α; the α-Hölder continuity is proved in [3, proposition 2·3],
while [3, theorem 2·4] asserts the existence of c > 0 such that for all t, s ∈ (0, 1) we have
| f (t) − f (s)| ≥ c|t − s|α . The latter condition is a lower Hölder continuity estimate that
implies (3·4). Another possible candidate for f is the Weierstrass function Wb−α ,b for suf-
ficiently large b > 1; see [11, theorem 1·31 and theorem 1·32] and [6, example 11·3] for
details.

Now fix θ0 ∈ (0, α). We will modify the graph of f on a sequence of squares {Qk}k∈N with
decreasing side lengths rθ0

k ↘ 0 to obtain the graph of a new function f̃ . This modification
aims to maximize the least number of sub-squares of Qk of side length rk needed to cover the
resulting graph lying in Qk, for all k ∈N. The output is a new function f̃ which again satisfies
(3·3) and also obtains the desired equality (1·2) for the Assouad spectrum with parameter
θ0. Then, for an arbitrary θ ∈ (0, α), a simple choice of scales r̃k = rθ0/θ

k shows that the same
f̃ satisfies the desired equality for dimθ

A,reg Gr( f ) as well without further modifications.
The lower oscillation estimate (3·4) implies that f is nowhere differentiable, consequently,

its local extrema are dense in [0,1]. Let m0 and m1 be local maxima of f in the intervals
(1/2 − min{r0, 10−1}/2, 1/2) and (1/2, 1/2 + min{r0, 10−1}/2) respectively. Define

δ(m) := sup{ρ > 0 : f (x) < f (m) ∀x ∈ (m − ρ, m + ρ)},
for each maximum m ∈ (0, 1) of f . Note that min{δ(m0), δ(m1)} ≤ min{r0, 1/10} by the
choice of m0 and m1.

Without loss of generality assume that f (m1) < f (m0), so that δ(m1) ≤ min{r0, 1/10}
and Gr( f ) intersects the left side of the square Q1 := Q(z1, rθ0

1 ) at its midpoint z′
1 :=

(m1 − rθ0
1 , f (m1)), where z1 := (m1, f (m1)) and r1 := δ(m1)1/θ0 . The proof follows similarly

if f (m1) > f (m0). By the choice of r1, the graph of f stays below the horizontal line y = f (m1)
within the rectangle

R1 := [m1 − rθ0
1 , m1] × [ f (m1) − rθ0

1 , f (m1) + rθ0
1 ] ⊂ Q1.

We shall modify the graph of f in the strip (m1 − rθ0
1 , m1) ×R and this modification will

be the graph of a new function f1, with the property that Gr( f1;[m1 − rθ0
1 , m1]) lies in R1.

The square Q1 is the first square in the sequence alluded to above. If Projx(Gr( f ) ∩ R1) =
[m1 − rθ0

1 , m1], i.e., if the restricted graph Gr( f ; [m1 − rθ0
1 , m1]) already lies in R1, then we

set f1 := f and we proceed to the choice of Q2.
Suppose Projx(Gr( f ) ∩ R1) �= [m1 − rθ0

1 , m1]. The idea is to reflect Gr( f ) with respect to
the lower and upper horizontal sides of R1 in an alternating fashion until all of the graph
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Figure 1. Choice of z1 with x-coordinate lying in the X-axis interval centered at 1/2 of length
min{r0, 10−1}.
between x = m1 − rθ0

1 and x = m1 has been “folded” inside R1. More specifically, let x′
1 ∈

(m1 − rθ0
1 , m1) be the smallest value for which f (x′

1) = f (m1) − rθ0
1 and there is ε1 > 0 such

that

f (x) ≥ f (m1) − rθ0
1

for all x ∈ (m1 − rθ0
1 , x′

1), and

f (x) < f (m1) − rθ0
1

for all x ∈ (x′
1, x′

1 + ε1). In other words, the point w′
1 := (x′

1, f (x′
1)) is the first point from z′

1 =
(m1 − rθ0

1 , f (m1)) towards z1 = (m1, f (m1)) at which the graph of f intersects the lower side
of R1 and stays outside R1 afterwards within some small strip (x′

1, x′
1 + ε1) ×R. Similarly,

define w1 := (x1, f (x1)) to be the last point from z′
1 towards z1 where Gr( f ) intersects the

lower side of R1 and stays inside R1 afterwards within (x1, m1). See Figure 1.
We reflect Gr( f ;(x′

1, x1)) ∩ R�
1 with respect to the line y = f (m1) − rθ0

1 . Note that by (3·4),

if rθ0
1 is small enough, it is very likely that the reflected part of the graph will now intersect

and exit the upper side of R1, since it could be the case that c(rθ0
1 )α − rθ0

1 > 2rθ0
1 . In that case,

following the same argument but for the upper side of R1, we again reflect the part of Gr( f )
that escapes R1 from above, this time with respect to the horizontal line y = f (m1) + rθ0

1 .
Again, it may be the case that the newly reflected part now escapes R1 from the lower side
of R1, in which case we perform yet another reflection with respect to y = f (m1) − rθ0

1 . If we

denote by M1 := �Cr(α−1)θ0
1 − 2� the smallest positive integer such that C(rθ0

1 )α − M1rθ0
1 ≤

2rθ0
1 , then we are guaranteed that after at most M1 + 1 reflections, the entire graph of f from
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z′
1 to z1 must lie inside R1 (due to the Hölder continuity of f ). The preceding process gives

rise to the graph of a new continuous function which we denote f1. Note that f1 satisfies

Projx(Gr( f1) ∩ R1) = [m1 − rθ0
1 , m1],

and

f1|R�
1
= f

We now pick a second square Q2 and modify f1 within Q2 ∩ R�
1 . By the choice of

rθ0
1 = δ(m1), f1 has a global maximum at m1 within the interval [m1, m1 + 10−1rθ0

1 /2].

Consequently, if m2 is a local maximum of f1 in (m1, m1 + 10−1rθ0
1 /2), then rθ0

2 := δ(m2) <

10−1rθ0
1 . Set Q2 := Q(z2, rθ0

2 ). Since m1 < m2 and f (m1) > f (m2), Gr( f1) intersects the left
side of the rectangle

R2 := [m2 − rθ0
2 , m2] × [ f (m2) − rθ0

2 , f (m2) + rθ0
2 ]

at its mid point z′
2 = (m2 − rθ0

2 , f (m2)). In a similar fashion to the modifications which we

performed on f to construct f1, we perform at most M2 + 1 := �Cr(α−1)θ0
2 − 1� reflections

with respect to the lower and upper sides of R2 to construct the graph of a new continuous
function f2. We conclude that

Projx(Gr( f2) ∩ R2) = [m2 − rθ0
2 , m2],

f2|R1 = f1,

and

f2|(R1∪R2)� = f1 = f .

Note that R1 ∩ R2 = ∅, despite the fact that Q2 ⊂ Q1. This feature of the construction
ensures that modifications taking place within R2 do not affect any previous changes made
within R1.

Assume that we have inductively constructed Qk = Q(zk, rθ0
k ) and fk, where k ∈N, k ≥ 2,

zk = (mk, f (mk)), rθ0
k = δ(mk) < 10−k+1rθ0

k−1 and

Projx(Gr( fk) ∩ Rk) = [mk − rθ0
k , mk],

fk|Rj = fj

for all positive integers j < k, and

fk

∣∣∣∣(⋃k
j=1 Rj

)� = f .

Pick a local maximum mk+1 of fk in (mk, mk + 10−krθ0
k /2), set rθ0

k+1 := δ(mk+1) < 10−krθ0
k ,

and perform a similar suite of reflections on the rectangle

Rk+1 := [mk+1 − rθ0
k+1, mk+1] × [ f (mk+1) − rθ0

k+1, f (mk+1) + rθ0
k+1]
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Figure 2. Choice of Qk+1 inductively.

to construct the graph of a new continuous function fk+1. Note that Rk+1 lies inside the
square Qk+1 := Q(zk+1, rθ0

k+1), where zk+1 = (mk+1, f (mk+1)). See Figure 2.

We will show that the uniform limit f̃ of the sequence {fk}k∈N satisfies the desired con-
ditions with respect to the sequence of squares {Qk}k∈N, and that these conditions ensure
that dimθ0

A Gr( f̃ ) ≥ 2 − α − θ0/1 − θ0. Note that by the choice of rθ0
k , all squares in the

sequence lie inside Q1, and stay away from the end points of the graph due to the fact
that rθ0

k+1 < 10−krθ0
k < 10−krθ0

1 .

We first show that f̃ is α-Hölder and, more specifically, that

| f̃ (t) − f̃ (s)| ≤ 3C|t − s|α for all t, s ∈ [0, 1], (3·5)

where C is the constant from (3·3).
Let t, s ∈ [0, 1] with t < s. If f̃ (t) = f (t) and f̃ (s) = f (s), then (3·5) follows from (3·3) triv-

ially. Suppose f̃ (t) �= f (t) and f̃ (s) = f (s). Then t ∈ Projx(Rk) and f (t) /∈ Projy(Rk) for some
k ∈N. Moreover, this integer k is unique due to the disjointness of the rectangles Rk. If
(s, f (s)) ∈ Rk, then each of the reflections which we perform on Gr( f ) moves the point
(t, f (t)) /∈ Rk closer to (s,f (s)) when measured along the y-axis, so

| f̃ (t) − f̃ (s)| ≤ | f (t) − f (s)| ≤ 3C|t − s|α

by (3·3). Now suppose that (s, f (s)) /∈ Rk. Then

| f̃ (t) − f̃ (s)| ≤ | f̃ (t) − f̃ (mk)| + | f̃ (mk) − f̃ (s)| = | f̃ (t) − f (mk)| + | f (mk) − f (s)|.
However, the point (t, f (t)) gets closer to zk = (mk, f (mk)) along the y-axis with every reflec-
tion, implying that | f̃ (t) − f (mk)| ≤ | f (t) − f (mk)|. Consequently, the preceding inequality
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Figure 3. Showing Hölder condition in case f̃ (t) �= f (t) and f̃ (s) = f (s), with the two possibilities
for (s, f (s)) (lying in Rk or not).

in concert with (3·3) implies that

| f̃ (t) − f̃ (s)| ≤ | f (t) − f (mk)| + | f (mk) − f (s)| ≤ C(|t − mk|α + |mk − s|α) ≤ 2C|t − s|α ,

since |t − mk|, |mk − s| ≤ |t − s|. Then (3·5) trivially follows in this case as well. See
Figure 3. The proof is similar if f̃ (t) = f (t) and f̃ (s) �= f (s), with the only difference being
that the point z′

k is used instead of zk.
Now suppose that both f̃ (t) �= f (t) and f̃ (s) �= f (s). This implies that there are k, � ∈N with

k ≤ � such that (t, f̃ (t)) ∈ Rk and (s, f̃ (s)) ∈ R�. Suppose k = �. If Gr( f ; [t, s]) never crosses
the upper or lower side of Rk during any of the at most Mk + 1 = �Cr(α−1)θ0

k − 1� reflec-
tions performed to construct fk, then Gr(f̃ ;[t, s]) is isometric to Gr( f ; [t, s]). This implies that
| f̃ (t) − f̃ (s)| = | f (t) − f (s)| and (3·5) trivially follows from (3·3). For i ≤ Mk + 1, denote by
fi,k the function resulting after i reflections of Gr( f ) during the construction of fk and suppose
that some i0 ≤ Mk + 1 is the smallest integer for which Gr( fi0,k; [t, s]) intersects the upper or
lower side of Rk. While | fi0,k(t) − fi0,k(s)| = | f (t) − f (s)| due to isometry of the two pieces
of graphs, any subsequent reflection would only bring the point of Gr( fi0,k) lying outside Rk

closer to the one lying within Rk. Hence, | f̃ (t) − f̃ (s)| ≤ | f (t) − f (s)| ≤ 3C|t − s|α as desired.
See Figure 4.

Now suppose instead that k < �, and set m′
� = m� − rθ0

� . Then

| f̃ (t) − f̃ (s)| ≤ | f̃ (t) − f̃ (mk)| + | f̃ (mk) − f̃ (m′
�)| + | f̃ (m′

�) − f̃ (s)|.

Since f̃ (mk) = f (mk) and f̃ (m′
�) = f (m′

�), similarly to the case where f̃ (t) �= f (t) and f̃ (s) =
f (s), it can be shown that

| f̃ (t) − f̃ (mk)| ≤ | f (t) − f (mk)|
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12 E.-K.CHRONTSIOS-GARITSIS AND J. T. TYSON

Figure 4. Showing Hölder condition in case f̃ (t) �= f (t) and f̃ (s) �= f (s), with k = �, and
Gr( fi0,k; [t, s]) intersects the lower side of Rk for some minimal i0.

and

| f̃ (m′
�) − f̃ (s)| ≤ | f (m′

�) − f (s)|.
The above inequalities, along with (3·3), imply that

| f̃ (t) − f̃ (s)| ≤ C|t − mk|α + C|mk − m′
�|α + C|m′

� − s|α ≤ 3C|t − s|α ,

since |t − mk|, |mk − m′
�|, |m′

� − s| are all less than |t − s|.
In conclusion, f̃ is indeed an α-Hölder continuous function, and consequently Theorem

1·1 yields the upper bound dimθ
A,reg (Gr( f̃ )) ≤ 2 − α − θ/1 − θ for all θ ∈ (0, α).

Let θ ∈ (0, α) and r̃k := rθ0/θ

k so that r̃θ
k = rθ0

k for all k ∈N. This allows us to use
the same sequence of squares {Qk} we constructed for θ0. In order to show the lower
bound dimθ

A (Gr( f̃ )) ≥ 2 − α − θ/1 − θ , it suffices to prove that the number Nk of squares
of side-length r̃k of the form [t − r̃θ

k + jr̃k, t − r̃θ
k + (j + 1)r̃k] × [f̃ (t) − r̃θ

k + ir̃k, f̃ (t) − r̃θ
k +

(i + 1)r̃k], i, j ∈ {0, 1, . . . , 
rθ−1
k − 1�} needed to cover Rk ∩ Gr( f̃ ) ⊂ Qk ∩ Gr( f̃ ) is bounded

below by a constant multiple of r̃
(θ−1) 2−α−θ

1−θ

k = r̃α+θ−2
k for all k ∈N. That is because

Nk ≤ 9N(Qk ∩ Gr( f̃ ), r̃k),

since any set of diameter at most r̃k cannot intersect more than 9 such squares. The aim is to
show for all k ∈N a lower bound on the oscillation of f̃ on the intervals

Ik
j := [mk − r̃θ

k + jr̃k, mk − r̃θ
k + (j + 1)r̃k] ⊂ Projx(Rk),

j = 0, 1, . . . , 
r̃θ−1
k − 1�, which resembles (3·4). This allows us to use a similar counting

argument as in the proof of Theorem 1·1, but this time for the least number of subsquares
needed, by counting the ones needed to cover Rk ∩ Gr( f̃ ). Note the use of 
r̃θ−1

k − 1� instead
of �r̃θ−1

k − 1�, which ensures that the interiors of the subsquares of side length r̃k that we
use lie inside Rk, where Projx(Gr( f̃ ) ∩ Rk) = [mk − r̃θ

k , mk].
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Figure 5. The oscillation of fi0,k in Ij after i0 reflections of Gr( f ), intersecting Qk.

Fix k ∈N and set r := r̃k and Ij := Ik
j for all j to simplify the notation. We claim that

osc(f̃ , Ij) ≥ c̃rα (3·6)

for all j = 0, 1, . . . , 
rθ−1 − 1�, where c̃ = min{1, c/2} and c is the constant from (3·4).
Indeed, by construction of f̃ , for a given Ij the part Gr( f ; Ij) either never crosses any of
the sides of Rk during the Mk + 1 reflections, in which case Gr( f ; Ij) is isometric to Gr(f̃ ; Ij)
and (3·6) trivially follows from (3·4), or there is a minimal integer i0 ∈ [0, Mk + 1) for which
Gr( fi0,k; Ij) crosses and exits the lower or upper side of Rk. Note that

osc( fi0,k, Ij) = oscin( fi0,k, Ij) + oscout( fi0,k, Ij) ≤ 2 max{oscin( fi0,k, Ij), oscout( fi0,k, Ij)},
where

oscin( fi0,k, Ij) := sup{| fi0,k(t) − fi0,k(s)| : t, s ∈ Ij and fi0,k(t), fi0,k(s) ∈ Projy(Rk)}
is the oscillation of fi0,k over Ij inside Rk and

oscout( fi0,k, Ij) := sup{| fi0,k(t) − fi0,k(s)| : t, s ∈ Ij and fi0,k(t), fi0,k(s) ∈ Projy(Rk)�}
is the oscillation of fi0,k over Ij outside Rk. See Figure 5.

As a result, at least one more reflection is required to construct fk, during which either the
part of Gr( fi0,k) oscillating outside Rk will be reflected inside Rk and exit from the opposite
side, in which case

osc( fk, Ij) = oscin( fi0+1,k, Ij) = rθ ≥ rα , (3·7)

or it does not exit Rk, in which case

osc( fk, Ij) = max{oscin( fi0,k, Ij), oscout( fi0,k, Ij)} ≥ osc( fi0,k, Ij)/2. (3·8)

However, after i0 reflections of Gr( f ), the part Gr( fi0,k; Ij) stays isometric to Gr( f ;Ij), which
means that (3·8) implies

osc( fk, Ij) ≥ osc( f , Ij)/2 ≥ crα/2
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14 E.-K.CHRONTSIOS-GARITSIS AND J. T. TYSON

by (3·4). Hence, the above inequality and (3·7) imply the desired oscillation condition (3·6)
of f̃ .

We now finish the proof by applying a counting argument similar to that in the proof
of Theorem 1·1. Split all columns Jj := Ij ×R into squares of side-length r of the form
[t − rθ + jr, t − rθ + (j + 1)r] × [f̃ (t) − rθ + ir, f̃ (t) − rθ + (i + 1)r], i ∈Z. In a given col-
umn Jj, by construction of f̃ , since it is continuous and Gr(f̃ ; Ij) ⊂ Qk for all j, there will
be at least osc(f̃ , Ij)/r such squares needed to cover Rk ∩ Gr( f̃ ) ⊂ Qk ∩ Gr( f̃ ). Counting all
these squares in columns Jj, i = 0, 1, . . . 
rθ−1 − 1�, we get that

Nk ≥

rθ−1−1�∑

i=0

osc(f̃ , Ii)

r
.

Note that by (3·6), every term of the sum on the right-hand side above is at least c̃rα−1.
Along with 
rθ−1� ≥ rθ−1/2, the above implies that

rθ−1rα−1 � Nk.

Hence, by Nk ≤ 9N(Qk ∩ Gr( f̃ ), r) we have shown

rα+θ−2 � N(Qk ∩ Gr( f̃ ), r)

for arbitrary k ∈N, as needed to finish the proof. This concludes the proof of Theorem 1·2.

Remark 3·1. The function f̃ actually depends on the fixed arbitrary θ0 ∈ (0, α) we pick in
the beginning of the proof. However, that dependence is of no real importance, since f̃ is
constructed once and satisfies (1·2) for all θ ∈ (0, α), no matter what θ0 was initially picked.

Remark 3·2. The above proof in fact shows something stronger than just the indicated state-
ment of Theorem 1·2. Namely, it provides an algorithm that can be applied to any function f
satisfying both (3·3) and (3·4) which potentially increases the Assouad spectrum and dimen-
sion of its graph. For instance, while certain Takagi functions do not have graphs of full
Assouad dimension (for instance Ta,2 for a > 1/2, as studied in [1]), such functions can be
modified within countably many squares by following the above process in order to increase
the graph’s Assouad spectrum (and also Assouad dimension).

Remark 3·3. By countable stability of the Hausdorff dimension (see [6, p. 49]) and the
construction of f̃ , it follows that the Hausdorff dimension of Gr( f̃ ) coincides with that of
Gr( f ). As a result, the modifications in the proof of Theorem 1·2 can change some notions
of dimension (e.g., the Assouad spectrum and dimension) and not others (e.g., the Hausdorff
and upper box dimensions).

Note that, at first glance, the reason why the upper box dimension of the graph does not
change after the modifications in the proof of Theorem 1·2 might not be obvious, since the
upper box dimension is not countably stable. However, a closer look at what these modifica-
tions imply for the covering number N(D(z, 1) ∩ Gr( f̃ ), r), for arbitrary z ∈ Gr( f̃ ) and r > 0
reveals the reason. We invite the interested reader to fill in the details.

While Theorems 1·1 and 1·2 do not fully answer the open question [8, question 17·11·1]
that partially motivated this paper (namely, the precise value of the Assouad dimension of
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the graph of either the Weierstrass or Takagi functions), these theorems in turn raise a new
question.

Question 3·4. Do there exist choices of a and b with a ∈ (0, 1) and b ∈ (1/a, ∞)
such that either dimθ

A,reg Gr(Wa,b) = 2 + logb (a) − θ/1 − θ or dimθ
A,reg Gr(Ta,b) =

2 + logb (a) − θ/1 − θ for all relevant values of θ?

In the context of Question 3·4, recall that both Wa,b and Ta,b are α-Hölder continuous with
α = − logb (a).

3.3. Lower bounds for the Assouad spectrum of co-Hölder graphs

If the answer to Question 3·4 is negative, then no sequence of decreasing squares can be
found which entirely contains the relevant part of the graph. One naturally wonders whether
or not it would suffice to have only a sufficiently large part of the graph inside such squares
(in order to obtain a nontrivial lower bound on the Assouad spectrum), or, alternatively,
whether some flexibility is allowed in the lower Hölder oscillation condition. The following
concept quantifies these ideas.

Definition 3·5. Let f : I →R be defined on an interval I ⊂R. Let α ∈ (0, 1) and η, ε ≥ 0
with η + ε < 1 − α. We say that f has uniform α-co-Hölder estimates on large subintervals
(with parameters η and ε) if there exist a constant c ∈ (0, 1) and sequences (Rn), Rn < 1,
Rn ↘ 0, and (zn), zn ∈ Gr( f ), so that the following two conditions hold true for the sequence
of squares (Qn), Qn = Q(zn, Rn):

(i) for each sub-interval J ⊂ Projx(Qn),

osc( f , J) ≥ c |Projx(Qn)|η |J|α;

(ii) there exist finitely many pair-wise disjoint intervals Ik = In
k ⊂ Projx(Qn ∩ Gr( f )), k =

1, . . . , M(n), with
∑M(n)

k=1 |Ik| ≥ cR1+ε
n and

min{|Ik| : k = 1, . . . , M(n)} ≥ cR1/θ0
n , (3·9)

where

θ0 = α

1 − η − ε
. (3·10)

Informally, a map f has uniform α-co-Hölder estimates on large subintervals if the domain
of f within the x-projection of any square Qn is sufficiently large in a quantitative way, and
on that domain f expands distances by a fixed power factor, with coefficient which is allowed
to decay (in a suitable fashion) in terms of the size of Qn. The parameters η and ε govern
the relative size of the domain of f and the decay rate of the lower Hölder constant.

Remark 3·6. Note that the condition
∑M(n)

k=1 |Ik| ≥ cR1+ε
n is not truly restrictive, as long as the

weaker property |Projx(Qn ∩ Gr( f ))| ≥ cR1+ε
n holds. The reason is we can write the interior

of Projx(Qn ∩ Gr( f )) as a countable union of disjoint open intervals ∪k∈NIk with |Ik| decreas-

ing in k. Then there is finite M̃ > 0 such that
∑M̃

k=1 |Ik| ≥ |Projx(Qn ∩ Gr( f ))|/2 ≥ cR1+ε
n /2.

The critical condition in Definition 3·5 is the existence of such a finite decomposition of
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16 E.-K.CHRONTSIOS-GARITSIS AND J. T. TYSON

Projx(Qn ∩ Gr( f )) with the property that all intervals have length bounded from below by
R1/θ0

n .

We now state and prove the main theorem of this subsection.

THEOREM 3·7. If f has uniform α-co-Hölder estimates on large subintervals with
parameters η, ε, then

dimθ0
A,reg Gr( f ) = dimA Gr( f ) = 2,

where θ0 is as in (3·10). Moreover,

dimθ
A,reg (Gr( f )) ≥ 2 − α − (1 + η + ε)θ

1 − θ
(3·11)

for each 0 < θ ≤ θ0.

Proof. Fix θ ∈ (0, α(1 − η − ε)−1] and

γ <
2 − α − (1 + η + ε)θ

1 − θ
. (3·12)

The statements follow if we prove that dimθ
A,reg (Gr( f )) > γ .

To this end, let (zn), (Rn), and (Qn) be as in Definition 3·5, with Rn < 1. Fix n ∈N and
using the intervals Ik as in Definition 3·5 set

rn := min
{

R1/θ
n , min{|Ik| : k = 1, . . . , M(n)}

}
.

Since Rn < 1 and θ ≤ α(1 − η − ε)−1 = θ0, we have that R1/θ
n ≤ R1/θ0

n . In view of (3·9) we
conclude

cR1/θ
n ≤ rn ≤ R1/θ

n , (3·13)

and we use the sequence of scaling pairs rn, Rn to show the desired lower bound on the
regularised Assouad spectrum of the graph.

To bound the regularised spectrum below by γ , it is enough to show that

N(Qn ∩ Gr( f ), rn) �
(

Rn

rn

)γ

.

For any j = 1, . . . , 2 �Rn/rn�, a column of the form Cj := [xn − Rn + (j − 1)rn, xn − Rn +
jrn] ×R might, or might not intersect the graph of f above an interval Ik. Consider all
of the non-empty intervals obtained as intersections Cj ∩ Ik for k = 1, . . . , M(n) and j =
1, . . . , 2 �Rn/rn�, and let Jm, m = 1, . . . , N, be an enumeration of these intervals, ordered
according to the natural order on the x-axis. Given such an interval Jm we define jm and km

so that Jm = Cjm ∩ Jkm . Note that

N∑
m=1

|Jm| =
M(n)∑
k=1

|Ik| ≥ cR1+ε
n ;
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since |Jm| ≤ rn we conclude that

N � R1+ε
n

rn
. (3·14)

Since rn ≤ |Ik| for each k, we deduce that if |Jm| < rn/2, then either Cjm−1 or Cjm+1 intersects
Ikm and

max{|Jm−1|, |Jm+1|} ≥ rn

2
,

where we adopt the convention that J0 = JN+1 = ∅. The preceding fact implies that the num-
ber of intervals Jm with length at least rn/2, denoted Ñ, cannot be less than N/6. Fix the
maximal sub-collection of intervals Jm that have length at least rn/2 and relabel them again
with index m to ease notation. Then, using only sub-squares of Qn of side-length rn that lie
over such intervals Jm, m = 1, . . . , Ñ, to cover Qn ∩ Gr( f ), we have that

N(Qn ∩ Gr( f ), rn) ≥
Ñ∑

m=1

osc( f , Jm)

rn
�

Ñ∑
m=1

Rη
n|Jm|α

rn
.

But recall that |Jm| ≥ rn/2 and Ñ ≥ N/6 � R1+ε
n /rn by (3·14). Along with the above

inequality, these imply that

N(Qn ∩ Gr( f ), rn) � R1+η+ε
n

r2−α
n

.

To complete the proof we need to show that

R1+η+ε
n

r2−α
n

�
(

Rn

rn

)γ

. (3·15)

For sufficiently large n, (3·15) follows from (3·12), (3·13), and the bounds θ ≤ θ0, η + ε <

1 − α. This completes the proof of Theorem 3·7.

Remark 3·8.

(i) Suppose f is a function as in Definition 3·5, but with θ0 in (3·9) replaced by some
smaller value θ̃ ∈ (0, θ0). A closer analysis of the proof of Theorem 3·1 shows that
the estimate

dimθ
A,reg (Gr( f )) ≥ 2 − α − (1 + η + ε)θ

1 − θ

then holds for all θ ∈ (0, θ̃).

(ii) If f is α-Hölder and has uniform α-co-Hölder estimates on large subintervals with
parameters η = ε = 0, then the lower bound in (3·11) coincides with the upper bound
in Theorem 1·1 and we have a formula for the regularised Assouad spectrum of Gr( f ).
This case corresponds to the situation in which f has the lower oscillation estimate
(3·4) and a definite proportion of the graph of f over Projx(Qn) lies within Qn, when
measured with respect to the length measure on Projx(Qn) in the quantitative way
outlined in Definition 3·5.
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(iii) The restriction η + ε < 1 − α implies that the lower bound in (3·11) strictly exceeds
2 − α. If f is also α-Hölder, the oscillation condition of Definition 3·5 is enough
to ensure that dimBGr( f ) = 2 − α. In this case, the lower bound on the regularised
spectrum of Gr( f ) is non-trivial (i.e., exceeds the box dimension of Gr( f )) for all
θ > 0.

(iv) The Takagi functions studied in [1], namely Ta,2 for a > 1/2, do not satisfy uniform
co-Hölder estimates as in Definition 3·5 with parameters η and ε such that η + ε <

1 − α = 1 + log2 (a). Indeed, if they did, then their graphs would have Assouad
dimension equal to 2 by Theorem 3·7, which was shown not to be the case in [1].

We emphasise that Remark 3·8(iv) does not prevent other Takagi or Weierstrass func-
tions from satisfying such estimates, and especially for Ta,b with b non-integer. While it is
known that there exist choices of a, b and θ for which dimBGr(Ta,b) < dimθ

A Gr(Ta,b) (see
[15, Remark 1·2]), the following weaker version of Question 3·4 remains open.

Question 3·9. Does there exist any choice of a and b so that either Ta,b or Wa,b has graph
with (regularised) Assouad spectrum satisfying the lower bound (3·11)?

There are other examples of Hölder functions that could potentially satisfy uniform
co-Hölder estimates. Hildebrand and the first author [4] study a class of fractal Fourier
series of the form F(t) := ∑∞

n=1 f (n)e2π inkt/np : [0, 1] →C for positive p > 0, k ∈N, where
f : N→C satisfies a certain exponential sum growth condition. These are Hölder functions
whose real and imaginary part have graphs that exhibit fractal behaviour. In fact, Weierstrass
functions belong in this class (as the real part of such series) and establish the sharpness of
the box dimension bounds proved for the graphs of these fractal Fourier series (see [4]). It
is possible that suitable conditions on the coefficients f (n) may yield further examples of
graphs satisfying (1·2) or (3·11).

4. Dimensions of Sobolev graphs

In this section we estimate the Assouad spectra of graphs of Sobolev functions. In
particular, we prove Theorems 1·3 and 1·4.

First, we remark that box counting dimensions of graphs of Sobolev (and more generally,
BV) functions are well understood. In fact, the following is a known result.

THEOREM 4·1. Let f ∈ BV(I). Then dimB(Gr( f )) = 1.

We sketch a proof of Theorem 4·1.
1

Recall that f ∈ BV(I) if and only if f = g − h for
two monotone functions g and h on I. Thus the first step of the proof of Theorem 4·1 is
to show that dimB(Gr(g)) = 1 for any monotone function g:I →R. To see why this is true,
observe that a clockwise rotation of R2 by angle π/4 exhibits the graph of g as geomet-
rically congruent to the graph of a 1-Lipschitz function h defined on a new interval I’.
Since Gr(h) = H(I′) for the function H(x) := (x, h(x)), and H is a bi-Lipschitz embedding

1 While we did not locate a published version of this proof in the literature, it can be found at https://math-
overflow.net/questions/304573/hausdorff-dimension-of-the-graph-of-an-increasing-function. For an alter-
nate proof, see https://mathoverflow.net/questions/327698/hausdorff-dimension-of-the-graph-of-a-bv-func-
tion-in-1-dimensional-setting.
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of I’ into R
2, we conclude that dimB(Gr(g)) = dimB(Gr(h)) = dimB(H(I′)) = dimB(I′) = 1

as desired.

Remark 4·2. Observe that the same argument in fact shows that Gr(g) has Assouad
dimension (and all Assouad spectra) equal to 1 whenever g is monotone.

The next step in the proof is to relate the dimension of the graph of a sum of two functions
to the dimensions of the graphs of the addends.

LEMMA 4·3. dimB (Gr(g + h)) ≤ max{dimB (Gr(g)), dimB (Gr(h))} for functions g,
h : I →R.

We call a notion of dimension D stable with respect to graph sums if

D(Gr(g + h)) ≤ max{D(Gr(g)), D(Gr(h))},
where g and h are continuous functions defined on a common interval I. Thus Lemma 4·3
asserts that box-counting dimension is stable with respect to graph sums.

For a proof of Lemma 4·3, see e.g. [7, lemma 2·1]. Another approach
2

is to establish the
identity

dimB(Gr(g)) (4·1)

= inf

{
p > 0 :

∃ C > 0 such that ∀ δ > 0 there is a partition I = I1 ∪ · · · ∪ IN

into subintervals with N ≤ Cδ−p, |Ij| ≤ δ, and osc(g, Ij) ≤ δ for all j

}
,

after which the desired conclusion follows from the subadditivity of oscillation.

Remark 4·4. The preceding argument does not apply to either the Assouad spectra or the
Assouad dimension, since a corresponding formula analogous to (4·1) does not hold. We
therefore cannot conclude by such methods either that these Assouad-type dimensions are
stable with respect to graph sums, nor that the dimensions of BV graphs are equal to
one. In fact, we will argue in the opposite direction as a consequence of Theorem 1·4
and deduce that these Assouad-type dimensions are not stable with respect to graph sums.
See Corollary 4·8.

With an eye towards the proof of Theorem 1·4, we introduce an example.
3

EXAMPLE 4·5. Fix a decreasing sequence (am) with am ↘ 0, and define f : [0, a1] →R

as follows: f (0) = 0 and

f (x) =
⎧⎨
⎩

−a2� + a2�+a2�+1
a2�−a2�+1

(a2� − x), if x ∈ [am+1, am] and m = 2� is even,

a2�−1 − a2�−1+a2�

a2�−1−a2�
(a2�−1 − x), if x ∈ [am+1, am] and m = 2� − 1 is odd.

(4·2)

2 We learned of this proof at https://mathoverflow.net/questions/331714/hausdorff-dimension-of-the-graph
-of-the-sum-of-two-continuous-functions.

3 We take this opportunity to acknowledge that a similar construction was previously known to Fraser as
a counterexample to the stability of Assouad dimension under graph sums. In Remark 4·7 we recover the
latter observation by a slightly different line of reasoning.
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Observe that the graph of f is a piecewise linear curve consisting of line segments joining
the points

zm := (am, ( − 1)mam), m = 1, 2, . . . (4·3)

in succession.

We are interested in characterising when f lies in a suitable Sobolev space W1,p,
1 ≤ p ≤ ∞. Towards this end, note that

| f ′(x)| =
∞∑

m=1

am + am+1

am − am+1
χ{x:am+1<x<am},

and hence the p-energy of f is

Ep( f )p :=
∫

[0,a1]
| f ′(x)|p dx =

∞∑
m=1

(am + am+1)p

(am − am+1)p−1
.

Thus the membership of f in a specific Sobolev class W1,p depends on the relative rates of
convergence to zero of (am) and (εm), where

εm := am − am+1.

In the proof of Theorem 1·4 we will focus on a specific example, for which we will compute
the sharp range of Sobolev membership and the precise Assouad spectrum of the graph.

We leave the proof of the following assertion as an exercise for the reader.

Claim 4·6. If am+1/am → 1 as m → ∞, then Gr( f ) has a full quarter-plane of R2 as a weak
tangent (when considering blow-ups centered at the origin (0,0)). Hence, in this situation,
we have

dimA (Gr( f )) = 2; (4·4)

see [8, theorem 5·1·3] for a proof of the fact that the Assouad dimension of a set E is equal
to the supremum of the Hausdorff dimensions of all of the weak tangents of E.

Remark 4·7. Note that it already follows from (4·4) that Assouad dimension is not stable
with respect to graph sums. Indeed, there exist functions f of the form in (4·2) which lie in the
BV class; then f = g − h for monotone g and h but dimA (Gr( f )) = 2 while dimA (Gr(g)) =
dimA (Gr(h)) = 1.

Applying the argument from Remark 4·7, but now in the context of Theorem 1·4, yields
the following corollary.

COROLLARY 4·8. For any 0 < θ < 1, the Assouad spectrum dimθ
A is not stable with respect

to graph sums.

We now prove Theorems 1·3 and 1·4, which provide sharp upper bounds for the Assouad
spectra of Sobolev graphs.
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Proof of Theorem 1·3. Give f ∈ W1,p(I), 1 < p < ∞, we fix a subinterval J ⊂ I and let
x, y ∈ J. Then

f (x) − f (y) =
∫ y

x
f ′(t) dt

and so

| f (x) − f (y)| ≤
∫

[x,y]
| f ′(t)| dt ≤ |x − y|1−1/p (

∫
J
| f ′|p)1/p

whence

osc( f , J) ≤ |J|1−1/p (
∫

J
| f ′|p)1/p.

When p = 1 we continue to get the inequality osc( f , J) ≤ ∫J | f ′|, and when p = ∞ we
continue to get the inequality osc( f , J) ≤ |J|ess sup| f ′|.

Now fix 0 < θ < 1. We will estimate dimθ
A,reg (Gr( f )) from above. Fix x0 ∈ I and

0 < R ≤ 1. We denote by z0 = (x0, f (x0)) the corresponding point in Gr( f ). Let Q0 be the
square with center z0 and side length 2R, and let I0 = [x0 − R, x0 + R] be the projection of
Q0 to the x-axis.

Given 0 < r ≤ R1/θ we can cover I0 with M := �2R/r� intervals Jk, each of length r. Note
that

2R

r
≤ M ≤ 2R

r
+ 1 ≤ 3R

r
.

Then, noting that
∑M

k=1 (
∫

Jk
| f ′|p)1/p ≤ M1−1/p(

∑M
k=1

∫
Jk

| f ′|p)1/p by Hölder’s inequality,
we have

N(Q0 ∩ Gr( f ), r) ≤
M∑

k=1

(
osc( f , Jk)

r
+ 2

)

≤
M∑

k=1

(
2 +

(∫
−Jk | f ′|p

)1/p
)

≤ 2M + M1−1/pr−1/p

(
M∑

k=1

∫
Jk

| f ′|p
)1/p

≤ 2M + M1−1/pr−1/p
(∫

I
| f ′|p

)1/p

� R

r
+ R1−1/p

r
|| f ′||p,I ,

where ||h||p,J := (
∫

J |h|p)1/p. Since R ≤ 1 we in turn conclude that

N(Q0 ∩ Gr( f ), r) � R1−1/pr−1(1 + || f ′||p,I).

Next, the restriction r ≤ R1/θ implies

R−1/p ≤
(

R

r

) θ
(1−θ )p
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and hence, we have

N(Q0 ∩ Gr( f ), r) �
(

R

r

)1+ θ
(1−θ )p

where the implicit constant depends on || f ′||p,I . Since this conclusion holds true for all
0 < r ≤ R1/θ < R ≤ 1 and all z0 ∈ Gr( f ), we conclude that (1·5) holds as desired.

Proof of Theorem 1·4. Fix p > 1. For pedagogical reasons, we first construct a function f
so that f ∈ W1,q(I) for all 1 ≤ q < p and dimθ

A (Gr( f )) = 1 + θ/((1 − θ)p). At the end of the
proof, we will indicate how to modify the construction to cover the borderline case q = p.

We return to the situation of Example 4·5 and specialise to a one-parameter family of
examples. For s > 2, let

am = m1−s. (4·5)

Then

εm = am − am+1 = (s − 1)(m + δm)−s for some 0 < δm < 1

by the Mean Value Theorem.
We choose s := p + 1 and consider the points {zm} defined as in (4·3) and the function

f = fs : [0, a1] →R defined in (4·2). The q-energy is

Eq( fs) =
∞∑

m=1

(m1−s + (m + 1)1−s)q

(m−s − (m + 1)−s)q−1
�

∞∑
m=1

m(1−s)q

m−s(q−1)
,

where the notation � means that the sums on either side are simultaneously finite or infinite.
Hence Eq( fs) < ∞ if and only if q − s < −1, so

fs ∈ W1,q([0, a1]) for all q < s − 1 = p,

and

yfs �∈ W1,s−1([0, a1]).

Applying Theorem 1·3 and letting q → s − 1 yields

dimθ
A (Gr( fs)) ≤ dimθ

A,reg (Gr( fs)) ≤ 1 + θ

(1 − θ)(s − 1)
.

Now fix θ < (s − 1)/s and

γ < 1 + θ

(1 − θ)(s − 1)
, (4·6)

We will show that dimθ
A (Gr( fs)) ≥ γ .

It suffices to find c > 0 and ε > 0 and sequences (rn) and (Rn) with 0 < rn = R1/θ
n < Rn ≤ 1

so that

N(Q(0, Rn) ∩ Gr( fs), rn) ≥ cnε

(
Rn

rn

)γ

. (4·7)
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In order to obtain (4·7) we will exhibit a large collection D of points in Q(0, Rn) ∩ Gr( fs)
with pairwise distances all > rn. See [8, section 1·2] or [13, lemma 3·4] for more information
about the relationship between packing and covering numbers.

We choose the sequence (Rn) to be Rn = an = n1−s for all n ≥ n0 for a sufficiently large
integer n0 (to be determined later). Observe that

yzm ∈ Q(0, Rn) ⇐⇒ am ≤ Rn ⇐⇒ m ≥ n.

Fix a large even integer N(n) > n (to be determined later). The desired set D consists of
a finite collection of equally spaced collinear points along the line segments [zm, zm+1],
[zm+2, zm+3], [zn+N(n)−2, zn+N(n)−1]. Along each line segment [zm, zm+1], the elements of
D are equally spaced points at distance approximately rn.

More precisely, let

D = {wm,k : m = n, n + 2, n + 4, . . . , n + N(n) − 2, k = 1, 2, . . . , M(n)}, (4·8)

where, for each m, the points {wm,k:k = 1, . . . , M(m)} constitute a maximal rn-separated set
in the line segment [zm, zm+1]. For each k = 1, . . . , M(m) − 1, we have

|wm,k − wm,k+1| = |zm − zm+1|
M(m)

and

|zm − zm+1|
M(m) − 1

> rn ≥ |zm − zm+1|
M(m)

. (4·9)

Consequently,

M(m) =
⌈ |zm − zm+1|

rn

⌉
≥
⌈√

2(am − am+1)

rn

⌉
=
⌈√

2(s − 1)n(s−1)/θ (m + δm)−s
⌉

. (4·10)

We impose the condition that M(m) ≥ 2 for each m = n, n + 2, n + 4, . . . , n + N(n) − 2; this
leads to an upper bound on the choice of N(n). In fact, the condition needs only hold for
m = n + N(n) − 2 and we observe that

yM(n + N(n) − 2) ≥ 2

holds true provided

y
√

2(s − 1)n(s−1)/θ (n + N(n) − 2 + δn+N(n)−2)−s ≥ 2

which holds if and only if

N(n) ≤
(

s − 1√
2

)1/s

n(s−1)/(sθ ) − (n − 2) − δn+N(n)−2. (4·11)

We also impose the condition that |wm,k − wm′,k′ | > rn whenever m �= m′ and k ∈
{1, . . . , M(m)}, k′ ∈ {1, . . . , M(m′)}. Assume without loss of generality that m < m′. Then
m ≤ n + N(n) − 4 and m′ ≤ n + N(n) − 2 and hence

|wm,k − wm′,k′ | ≥ am+1 − am′ ≥ an+N(n)−3 − an+N(n)−2

= εn+N(n)−3

= (s − 1)(n + N(n) − 3 + δn+N(n)−3)−s.

https://doi.org/10.1017/S0305004125101527 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101527


24 E.-K.CHRONTSIOS-GARITSIS AND J. T. TYSON

Thus the desired condition holds provided

(s − 1)(n + N(n) − 3 + δn+N(n)−3)−s > rn = n(1−s)/θ

which in turn holds if and only if

N(n) < (s − 1)1/s n(s−1)/(sθ ) − (n − 3) − δn+N(n)−3. (4·12)

The following claim holds in view of the assumption θ < (s − 1)/s.

Claim 4·9. There exist a constant c0(s) > 0 and a large integer n0 = n0(s) so that, for all
n ≥ n0, both (4·11) and (4·12) are satisfied when N(n) is chosen to be the largest even integer
less than or equal to c0(s)n(s−1)/(sθ ).

For the remainder of the proof, we consider only integers n ≥ n0, where n0 is chosen as in
the preceding claim.

By the construction and the above properties, the set D defined in (4·8) with this choice
of N(n) and integers M(m) as in (4·10) has the property that |w − w′| > rn whenever w and
w′ are distinct points in D. To finish the proof, we estimate the cardinality #D of D from
below. Note that

#D = M(n) + M(n + 2) + · · · + M(n + N(n) − 2)

and, by (4·9),

#D ≥ |zn − zn+1| + |zn+2 − zn+3| + · · · + |zn+N(n)−2 − zn+N(n)−1|
rn

.

By the choice of the points zm = (am, ( − 1)mam),

|zm − zm+1| =
√

(am − am+1)2 + (am + am+1)2 = √
2
√

a2
m + a2

m+1 ≥ am + am+1.

Thus

#D ≥ an + an+1 + · · · + an+N(n)−1

rn

= n(s−1)/θ
n+N(n)−1∑

m=n

m1−s

≥ c1(s)n(s−1)/θ (n2−s − (n + N(n) − 1)2−s)

≥ c2(s)n(s−1)/θ+2−s,

where c1(s) depends on the integral test constant, and c2(s) depends on c0(s), c1(s), and the

domination constant of n2−s over (n + n
s−1
sθ − 1)2−s. Note also that

nε(Rn/rn)γ = nε+(s−1)( 1
θ

−1)γ .

In order to verify that (4·7) holds, it suffices to show that

(s − 1)

(
1

θ
− 1

)
γ <

s − 1

θ
+ 2 − s; (4·13)
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then a suitable ε = ε(s, γ , θ) can be chosen so that

ε + (s − 1)

(
1

θ
− 1

)
γ <

s − 1

θ
+ 2 − s.

The inequality in (4·13) is the same as our assumed bound (4·6).
To extend to the borderline case, we introduce a logarithmic factor. We replace the choice

of (am) in (4·5) with the following:

am := m1−s log−2 (m), s > 2, m ≥ 2. (4·14)

In this case, we find (again by the Mean Value Theorem) that

εm = am − am+1 = (s − 1)x−s log−2 (x)
(
1 + 2

log (x)

)∣∣∣
x=m+δm

for some 0 < δm < 1. Setting s = p + 1 as before, we let f = fs : [0, a1] →R be the function
defined in (4·2). The p-energy of f is

Ep( fs) �
∞∑

m=2

m−1 log−2 (m) < ∞.

Thus fs ∈ W1,p([0, a1]). It remains to show that the Assouad spectrum formula

dimθ
A (Gr( fs)) = 1 + θ

(1 − θ)(s − 1)

continues to hold. As before, only the lower bound needs to be verified, so we fix γ as in
(4·6) and show that dimθ

A (Gr( fs)) > γ . The argument is similar to that described in detail

in the first part of the proof. With the choice Rn = an, n ≥ 2, and rn = R1/θ
n as before,

we consider M(m) = �√2εm/rn�. The condition M(m) ≥ 2 for all m = n, n + 2, . . . , n +
N(n) − 2, reduces to

M(n + N(n) − 2) ≥ 2. (4·15)

Define

ηn :=
(

(1 + 2
log (x) )1/s − 1

)∣∣∣
x=m+δm

∣∣∣∣
m=n+N(n)−2

and note that the condition n ≥ 2 implies ηn < 1. The desired condition (4·15) is implied by

xs log2 (x)
∣∣∣
x=m+δm

∣∣∣∣
m=n+N(n)−2

≤ s − 1√
2

n(s−1)/θ log2/θ (n)(1 + ηn)s. (4·16)

Fixing the Orlicz function 
(t) = t log2/s (t) and setting c(s) = ((s − 1)/
√

2)1/s we rewrite
(4·16) as


(x)|x=m+δm

∣∣
m=n+N(n)−2 ≤ c(s)n(s−1)/(sθ ) log2/(sθ ) (n)(1 + ηn), (4·17)

or equivalently,

(m + δm)|m=n+N(n)−2 ≤ 
−1
(

c(s)n(s−1)/(sθ ) log2/(sθ ) (n)(1 + ηn)
)

. (4·18)
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Inequality (4·18) translates to the following constraint on the choice of N(n):

N(n) ≤ 
−1
(

c(s)n(s−1)/(sθ ) log2/(sθ ) (n)(1 + ηn)
)

− (n − 2) − δn+N(n)−2. (4·19)

Recall that both ηn, n ≥ 2, and δm, m ≥ 2, lie in the interval (0, 1). Furthermore, the
assumption θ < p/(p + 1) = (s − 1)/s implies that (s − 1)/(sθ) > 1. For large values of the
argument t, we have


−1(t) � t log−2/s (t)(1 + o(1))

and hence (4·19) translates to

N(n) ≤ c′(s)n(s−1)/(sθ ) log
2
s ( 1

θ
−1) (n)(1 + ηn)(1 + o(1)), (4·20)

where c′(s) = c(s)(sθ/(s − 1))2/s.
In a similar fashion, we analyze the previous second condition

εn+N(n)−3 > rn. (4·21)

We now define

ηn :=
(

(1 + 2
log (x) )1/s − 1

)∣∣∣
x=m+δm

∣∣∣∣
m=n+N(n)−3

and we again note that ηn < 1 since n ≥ 2. After a similar chain of reasoning, we deduce that
(4·21) is implied by the following constraint on N(n):

N(n) ≤ 
−1
(

c(s)n(s−1)/(sθ ) log2/(sθ ) (n)(1 + ηn)
)

− (n − 3) − δn+N(n)−3. (4·22)

Here c(s) = (s − 1)1/s. Using the previous asymptotics for the inverse of the Orlicz
function 
, we reduce (4·22) to

N(n) ≤ c′(s)n(s−1)/(sθ ) log
2
s ( 1

θ
−1) (n)(1 + ηn)(1 + o(1)). (4·23)

where c′(s) = c(s)(sθ/(s − 1))2/s. Our previous Claim 4·9 is now replaced by

Claim 4·10. There exist a constant c0(s) > 0 and a large integer n0 = n0(s) so that, for all
n ≥ n0, both (4·20) and (4·23) are satisfied when N(n) is chosen to be the largest even integer
less than or equal to c0(s)n(s−1)/(sθ ).

The final part of the proof is exactly the same as in the previous case and is left to the
reader. The desired lower bound for the cardinality #D of the set defined in (4·8) holds due
to the choice of γ in (4·6). Note that additional logarithmic factors show up in the relevant
inequalities, however, these are irrelevant to the desired conclusion as the leading order
polynomial behaviour of both sides with respect to n dominates.

This concludes the proof of Theorem 1·4.
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