Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10081

ICEDYAS

Dallas. TX,

Augmented design automation: leveraging parametric
designs using large language models

Fabian Schéfer © and Arthur Seibel ©
Leuphana University Lineburg, Germany

X arthur.seibel@leuphana.de

ABSTRACT: Traditional design automation enables parameterized customization but struggles with adapting to
abstract or context-based user requirements. Recent advances in integrating large language models with script-
driven CAD kernels provide a novel framework for context-sensitive, natural-language-driven design processes.
Here, we present augmented design automation, enhancing parametric workflows with a semantic layer to interpret
and execute functional, constructional, and effective user requests. Using CadQuery, experiments on a sandal
model demonstrate the system’s capability to generate diverse and meaningful design variations from abstract
prompts. This approach overcomes traditional limitations, enabling flexible and user-centric product development.
Future research should focus on addressing complex assemblies and exploring generative design capabilities to
expand the potential of this approach.

KEYWORDS: computer aided design (CAD), design automation, user centred design, machine learning, large
language models

1. Introduction

The automated generation of parametric designs is a rapidly growing field in product development and
engineering (Rédler & Rigger, 2022). Describing the workflow that leads to a final product through its
creation steps allows designers to define variables whose values represent variations of a design. Design
automation has a wide range of applications, ranging from the design of electric motors (Umland et al.,
2024) to medical applications, such as creating patient-specific implants based on computer tomography
data (Burge et al., 2023).

Additionally, the emerging field of prompt engineering demonstrates considerable potential for product
development and remains an area of active research (Sahoo et al., 2024). By integrating a prompt-based
system with a script-driven CAD kernel, the ability to generate CAD models using natural language has
been successfully demonstrated (Badagabettu et al., 2024). However, this approach still faces challenges
in reasoning capabilities.

The implementation of design automation workflows into a prompt-based system creates a new form of
design automation. Rather than relying on a rigid algorithmic workflow dependent on predefined input
variables, this approach enables context-sensitive design to be described through its functions, effects,
and construction (Ponn & Lindemann, 2011). By enhancing the design generation with a semantic layer,
human language can be used to specify design changes. These change requests are not restricted to the
geometric features of the CAD model but can include contextual information, such as “make this product
suitable for outdoor use,” which can be automatically interpreted and translated into meaningful feature
adjustments. At the same time, users maintain the ability to directly modify specific geometric features.
Moreover, the system is able to understand specific product requirements, such as weight or stiffness—
capabilities that go beyond traditional design automation or CAD systems. As a result of these enhanced
capabilities, this approach is referred to as augmented design automation.

ICED25 671

https://doi.org/10.1017/pds.2025.10081
https://orcid.org/0009-0004-3794-3376
https://orcid.org/0000-0003-3989-9626
mailto:arthur.seibel@leuphana.de

2. Related work

2.1. Prompt engineering

Prompt engineering is an innovative methodology aimed at extending the functional capabilities of pre-
trained large language models (LLMs) (Sahoo et al., 2024). It allows models to perform novel tasks by
providing them with task-specific information, eliminating the need to retrain model parameters (Chen
et al., 2023). The core approach involves crafting targeted instructions that enable the model to perform
in various applications, including, but not limited to, question answering, commonsense reasoning, and
even complex domains such as healthcare (Wang et al., 2023; Hartsock & Rasool, 2024).

The study and refinement of prompt patterns remain an active and dynamic area of research, containing a
rich array of strategies and methodologies. These include role prompting, where roles or perspectives are
assigned to improve the model’s responses, few-shot prompting, where minimal examples help the
model to learn new tasks, and the inclusion of reasoning methods, such as chains or trees of thought, to
enable deeper and more sophisticated text understanding (Sahoo et al., 2024; Gu et al., 2023).

2.2. Text to CAD

The conversion of human instructions into computer-aided design (CAD) models has been effectively
demonstrated by Badagabettu et al. (2024) in their seminal paper, Query2CAD. This study underscores
the innovative application of LLMs to create functional code that connects natural language inputs with
digital design outputs. By leveraging the advanced capabilities of LLMs, a text-to-CAD model system
was successfully implemented using the Python library CadQuery, known for its powerful features and
simplicity in parametric modelling. The work signifies a significant advancement in automated design,
providing insights into how natural language can be utilized for sophisticated design tasks traditionally
reserved for skilled engineers, thereby democratizing access to design processes.

2.3. Product design

The Munich Product Concretization Model represents a suitable framework for the systematic design of
technical products (Ponn & Lindemann, 2011). This model is composed of three interconnected layers,
each addressing a distinct aspect of the design process. These layers include the functional layer, which
focuses on defining the product’s intended functions, the effective layer, which converts these functions
into specific effects, and the constructional layer, which materializes these effects into physical shapes
and components. Together, they provide a structured and logical pathway from abstract requirements to a
fully developed product design.

2.4. Design automation

Design automation is a specialized domain within CAD that utilizes product knowledge, sophisticated
algorithms, and computational tools to simplify and enhance design processes. It is particularly valuable
in scenarios where extensive product customization is required to meet specific customer needs. Beyond
supporting customization, design automation serves multiple purposes, such as reducing human errors in
complex design tasks, shortening lead times, and improving operational efficiency (Radler & Rigger,
2022).

By automating routine and repetitive design activities, design automation allows engineers to focus on
more creative and innovative aspects of product development. Moreover, design automation is essential
for exploring vast solution spaces, identifying optimal design configurations, and ensuring compliance
with both technical and regulatory requirements. It is crucial in industries that demand high precision,
adaptability, and responsiveness to evolving market demands, such as the automotive, aerospace, and
consumer electronics sectors. Its applications not only improve productivity but also drive innovation by
enabling rapid prototyping, simulation, and evaluation of different design alternatives.

3. Proposed approach

In classical design automation, customizing an existing parametric design to suit specific preferences is
typically achieved by adjusting the relevant parameters. By augmenting the design automation process
chain with a semantic layer, a new form of design automation can be achieved.

672 ICED25

To integrate a semantic layer into the design workflow, the design must be represented in a format that is
interpretable by LLMs and enriched with contextual information regarding its functions, effects, and
construction. Moreover, the CAD kernel involved in the process must be accessible by the LLM. Here,
the Python library CadQuery' is used, as it has been demonstrated to effectively create functional CAD
instructions based on human language (Badagabettu et al., 2024).

Transforming the design workflow into a script-based format creates a machine-readable representation
of the design (Figure 1, left). This representation is extended by contextual information about the overall
product framework (Figure 1, centre). Through this process, the LLLM acquires a semantic understanding
of the product, creating an interconnection between itself, the user, and the design (Figure 1, right).

Interface
Machine readable

CAD software

Interface
Human language
Context
LLM API
Prompt
Act/Role

Blueprint

CAD blueprint
File

Script representation Contextual information

Parametric design

User
Parameter

Construction step 1

Topic Topic
Parameter Semantic embedding

Construction step 1 Effective / functional connection

Construction step 2 Construction step 2 Effective / functional connection

Design automation workflow

Construction step n Construction step n Effective / functional connection

Output/ Mode
CAD kernel CAD kernel
| Design variant Design variant
Figure 1. Enhanced user interaction through applying prompt engineering to a design workflow
(left and centre), creating an interconnection between the user, the LLM, and the design (right)

3.1. Prompt design

The extension of the design workflow with a semantic layer—and thus its connection with an LLM—is
achieved through a prompt. The prompt is created according to the AUTOMAT scheme (Vogel, 2024), a
widely used structure for LLM prompting. It contains a role, which describes the task of creating CAD
models using human language as input, a target, which provides information about the CAD kernel and
its usage, and the base code of the design, which defines the creation steps of the product. Hallucination
reduction is realized through chain-of-thought and chain-of-knowledge prompting (Sahoo et al., 2024).
For human and machine readability, the prompt is structured using markdown language, see Table 1.

Table 1. Schematic structure of the system prompt

Role

- You act as a program translating human language into CAD models.
Target

- Update the provided base code according to the user input.

- Use only commands from the Python CadQuery library.

- Limit responses to Python code.

Base code <BaseCode>

<BaseCode>

3.2. Base code

The base code serves both as part of the system prompt and as blueprint for the design. It is implemented
using the Python library CadQuery. By appending additional information to design-relevant code lines
that explain the construction process and its step-by-step contribution to the functionality and effects of
the product, a semantic connection is established. This allows designers to integrate their intentions for
flexibility and usability into the initial design. The base code is organised into three main layers: features,
parts, and assembly.

! https://cadquery.readthedocs.io/

ICED25 673

https://cadquery.readthedocs.io/

3.2.1. Features

Features are written and commented on inline, ensuring that each CAD step is linked to the functional,
effective, and constructional layers of the final product. This approach enables the LLM to target specific
code lines relevant to the requested design changes. An example of a step-by-step description of feature
construction is shown in Figure 2.

Result Script Description

<«+— baseCircleLS = cq.Workplane("front").circle(outDiameter) <— # Create the outer contour of the cup.

- <«— base = baseCircleLS.extrude(-wallThickness) <«— # Use the contour to create the bottom of the storage.
n <+ outerVolume = baseCircleLS.toPending().extrude(height) <+~ # Create the outer volume of the storage.
2
o innerVolume = baseCircleLS.toPending().offset2D(- .
33 n e wallThickness).extrude(height) <+— # Create the volume to subtract with.
o
= Q) - ,
U <+ liquidStorage = outerVolume.cut(innerVolume) <= # Create the walls.
. liquidStorage.add(base)
U - <«— # Join bottom and walls to liquid storage.
-— akMarREe = <«— #Add some smoothing to the edges
liquidStorage.edges(">Z") fillet(0.25).edges("<Z") fillet(1) 9 ges.
Figure 2. Step-by-step description of feature construction on the example of a cup
3.2.2. Parts

Multiple features together add up to a part. The part is initially described in a header, which contains the
name and a descriptive connection to the functional and the effective layers of the product, see Table 2.

Table 2. Header part

Part: Name

Functions: <Functional description>
Effects:

<Effect>: <Effective description>

A distinct connection is established between a part and its effects and functions. In contrast to the feature
description, this approach enables the LLM to handle entire groups of instructions that together form a
specific part.

3.2.3. Assembly

Even though CadQuery offers constraint-based assembly capabilities, this work focuses solely on using
Boolean operations to assemble the final product. Such as the parts of the product, the assembly process
is first introduced and described in a header comment, see Table 3.

Table 3. Step-by-step description of the assembly

<Assembly step 1> # <Step description>
<Assembly step 2> # <Step description>

Following that, the assembly instructions are implemented and commented on step by step, such as with
the feature instructions.

4. Experiments

To illustrate the proposed approach, a basic sandal design was created, and experiments were conducted
using functional, effective, and constructional prompt requests. The system prompt used to generate the
designs is provided in Appendix A.

674 ICED25

A constructional request is defined by the topological and geometrical aspects of the product. Functional
requests, on the other hand, do not contain specific constructional information; instead, they are making
demands related to the functionality of the product. Effective requests contain neither constructional nor
functional information. They relate to the effective layer of the product and contain information such as
weight or friction.

Figure 3 shows the structure of the initial design used in the experiment. It consists of three parts: a sole, a
strap, and a profile, which together form the assembly of the final product. The initial design provides
three basic functions: fit to the foot, protection of the foot, and ensuring sufficient grip to the ground. Its
effects are protection, fit, weight, strength, and friction, which are closely related to the functionality of
the product.

Sole

Protection Attachment Grip Usage
Fit Fit Friction Parts

Protection Strength Assembly
Fit Fit
Weight

Figure 3. Workflow to create a basic design of a sandal, together with its constructional (blue),
functional (green), and effective (red) properties

All experiments were performed using the API of GPT-40 (OpenAl), with a temperature setting of 1.0.2

Although other LLMs could also be used, they were not examined in this paper.

The experiments were structured according to the layers of the Munich Product Concretization Model,

namely the constructional, functional, and effective interpretations of the design.

4.1. Constructional interpretation

Figure 4 shows a sample of design variations based on constructional user requests. The variations are
independent of each other, and all based on the initial design (1). Design variation (2) modifies the shape
of the profile, changing from a polygon pattern defined by side count and radius to a rectangular pattern
defined by width and height. Design variation (3) introduces an angular sole, accomplished by altering
the contour curve from a spline to a polyline. In design variation (4), the edges of the sole are smoothed.
This change results in two inline parameter adjustments of variables that were not initially included as
design parameters. In design variation (5), the strap thickness is reduced, which involves adjusting the
thickness of the strap, one of the original design variables.

4.2. Functional interpretation

Figure 5 shows a sample of design variations based on functional user requests. The variations are again
independent of each other, and all based on the initial design (1). Design variation (2) asks for “outdoor
use,” which results in several design changes aimed at improving protection and grip. Design variation
(3) specifies a fit based on user measurements, directly influencing the fit of the sole. Design variation (4)
requests a specific shoe size, with length, width, and height determined by the LLM according to its
understanding of the request. In design variation (5), a personal statement is used to express a functional
demand. By addressing the strap tightness, the height of the strap is increased, which was identified by
the LLM itself.

2 https://openai.com/index/openai-api/

ICED25 675

https://openai.com/index/openai-api/

Initial Design “Make a rectangular “Make the sole “Make the soles “Make the strap

profile.” angular.” edges smoother.” thinner.”
(1) (2) (3) (4) (5)
e i
patter;ﬁé:lement = patter‘nE:lement =
(..).polygon(..) (..).rect(..)
A
P - s
sole = 4 . q
(.).fillet(2) i strapThickness = 3 Fillet removed 1'
N 3 sole = ¢
outlineS'hape = outlineShape = (..).fillet(4) strapThickness = 1.5
() .spline(..) () -polyline(..)
Figure 4. Sample results of constructional interpretation in the experiment
Initial design “Make it for “My foot length is “Fit it to shoe size “I cannot step into the
outdoor use.” 270 and my foot 39.” strap; itis too tight.”
. . .) width 102.”
GridSpacing(XY) = 26 GridSpacing(XY) = 20
@) e 3)) 6)
Ve
____ v "', » ""...
patter‘nS‘ize = 2 Vipattern[;epth =4 patternDepth = 2
patternSize = 18
height = 65
.............. height = 55
....... A
e
- |) . - S
” X 4
S— et s e
g i : o i width = 90 ;
thickness = 12 | width = 117 thickness = 18 width = 102 i i height = 8@
length = 274 length = 270 1o = 2B

Figure 5. Sample results of functional interpretation in the experiment

4.3. Effective interpretation

Figure 6 shows a sample of design variations based on effective user requests. As before, the variations
are independent of each other, and all based on the initial design (1). In design variation (2), the request
for reduced friction leads to a decrease in profile depth, which expands the technical description of the
sole. Design variation (3) transforms the personal observation of the shoe being too heavy into a weight
reduction by decreasing the thickness of the sole. In design variation (4), two simultaneous requests are
made, targeting friction and weight, which lead to changes in both profile and sole thickness. In design
variation (5), the weight of the strap is specifically addressed, which leads to a reduction in strap width
and thickness. The relationship between width, thickness, and consequently weight was not included in
the initial technical description of the strap—it is independently identified by the LLM.

676 ICED25

Initial design “Reduce friction.” “The sandal feels too “Increase friction “Make the strap

heavy on my foot.” and weight” less heavy.”
GridSpacing(XY) = 26 GridSpacing(XY) = 22
o) @))) S
» 5
Y V. \) Y *

patternéize = 2477patterndepth =q patternDepth = 0.5 patternSize = 28 patternDepth = 2
4
" ;

> s .

B e : ; traphidth = 25
i thickness =12 % thickness = 8 thickness = 18 SR

strapThickness = 3 strapwidth = 30 strapThickness = 2.5

Figure 6. Sample results of effective interpretation in the experiment

5. Discussion

Constructional design changes were highly successful, particularly when made within the boundaries of
the design. In some cases, the system was able to extend beyond the initial code by altering fundamental
shapes, such as the contour of the sole or the pattern of the profile, without altering the functionality of the
product. Incorrect code changes may occur, but in many cases, they can be automatically corrected by
feeding the raised error message back into the system.

Functional changes greatly benefit from the LLM’s general knowledge. For example, when asked for a
different shoe size—a parameter not initially specified—the system demonstrated its ability to integrate
standard norms. In addition, the request for “outdoor use” illustrated the system’s ability for contextual
understanding, as it interpreted and integrated new requirements into the model raised by the request.
Effective changes, such as the reduction of friction, were also successfully demonstrated. For example,
by connecting the relationship between the sandal’s weight and the sole’s thickness with the weight of the
strap—a relationship not included in the initial design description—the system showed its ability to
transfer knowledge on the effective layer from one element to another.

However, due to the nature of the chosen example, addressing the effective layer was underrepresented in
the experiment—an example from engineering could better showcase the possibilities. Furthermore,
more complex assemblies are also underrepresented in this work, primarily because of the limited token
length of the LLM used.

In this work, design validation is carried out manually. Non-functional design changes are not detected
automatically and must be manually corrected by the user through additional input or by rephrasing the
initial request. Integrating machine learning-based design validation—similar to the methodology used in
Query2CAD—could enhance system performance by preventing non-functional design changes.

6. Conclusion

In this paper, augmented design automation was introduced to enhance parametric design workflows by
incorporating a semantic layer that interprets and executes functional, constructional, and effective user
requests. The integration of LLMs with script-driven CAD kernels created a novel approach to context-
sensitive design, guided by natural language. The concept was demonstrated through experiments using
CadQuery with a parametric model of a sandal, highlighting the system’s ability to generate diverse and
meaningful design variations created from abstract prompts. By addressing the limitations of traditional
design automation approaches, this concept enables greater flexibility and a more user-centric product
development process.

ICED25 677

In general, supporting synthesis processes through the use of base code examples can be seen as a means
of incorporating expert knowledge into a non-expert system. A specialized, fine-tuned LLM for product
creation appears both feasible and desirable. In this way, the development and integration of augmented
design systems could be realized. Beyond the technical possibilities, the interfacing capabilities offer an
exciting area for research. Spatial understanding, automated data acquisition, as well as user interaction
provide a new approach to product creation (Hossain et al., 2024).

This non-specific product development approach could open up new business models and opportunities
for companies by extending their product portfolios with individualized solutions, possibly contributing
to a more sustainable economy (Briem et al., 2022).

While the system is currently limited to interpreting existing designs, the creation of new and innovative
design solutions should be explored in the future.

References

Badagabettu, A., Yarlagadda, S. S., & Farimani, A. B. (2024). Query2CAD: Generating CAD models using natural
language queries. arXiv preprint arXiv:2406.00144. https://doi.org/10.48550/arXiv.2406.00144

Briem, A. K., Ziegler, D., Mathis, L. A., & Wehner, D. (2022). Sustainable product development by means of
personalization—paradox or solution? In E3S Web of Conferences (Vol. 349, p. 07001). EDP Sciences. https://
doi.org/10.1051/e3sconf/202234907001

Burge, T. A., Jeffers, J. R., & Myant, C. W. (2023). Applying machine learning methods to enable automatic
customisation of knee replacement implants from CT data. Scientific Reports, 13(1), 3317. https://doi.org/10.
1038/s41598-023-30483-5

Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2023). Unleashing the potential of prompt engineering in large language
models: a comprehensive review. arXiv preprint arXiv:2310.14735. https://doi.org/10.48550/arXiv.2310.14735

Gu, J., Han, Z., Chen, S., Beirami, A., He, B., Zhang, G.,... & Torr, P. (2023). A systematic survey of prompt
engineering on vision-language foundation models. arXiv preprint arXiv:2307.12980. https://doi.org/10.
48550/arXiv.2307.12980

Hartsock, 1., & Rasool, G. (2024). Vision-language models for medical report generation and visual question
answering: a review. Frontiers in Artificial Intelligence, 7, 1430984. https://doi.org/10.3389/frai.2024.
1430984

Hossain, S., Gohil, A., & Wang, Y. (2024). Using LLM such as ChatGPT for designing and implementing a RISC
processor: execution, challenges and limitations. arXiv preprint arXiv:2401.10364. https://doi.org/10.48550/
arXiv.2401.10364

Ponn, J., & Lindemann, U. (2011). Konzeptentwicklung und Gestaltung technischer Produkte. Systematisch von
Anforderungen zu Konzepten und Gestaltlosungen. Springer. https://doi.org/10.1007/978-3-642-20580-4

Rédler, S., & Rigger, E. (2022). A survey on the challenges hindering the application of data science, digital twins
and design automation in engineering practice. Proceedings of the Design Society, 2, 1699—1708. https://doi.
org/10.1017/pds.2022.172

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., & Chadha, A. (2024). A systematic survey of prompt
engineering in large language models: techniques and applications. arXiv preprint arXiv:2402.07927. https://
doi.org/10.48550/arXiv.2402.07927

Umland, N., Wiberg, A., Winkler, K., Jung, J., & Inkermann, D. (2024). Enhancing design automation for
components of electric machines: a systematic approach. Proceedings of the Design Society, 4, 815-824.
https://doi.org/10.1017/pds.2024.84

Vogel, M. (2024). The perfect prompt: a prompt engineering cheat sheet. The Generator. https://medium.com/
the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-dOb9c62a2bba

Wang, J., Shi, E., Yu, S., Wu, Z., Ma, C., Dai, H.,... & Zhang, S. (2023). Prompt engineering for healthcare:
methodologies and applications. arXiv preprint arXiv:2304.14670. https://doi.org/10.48550/arXiv.2304.14670

678 ICED25

https://doi.org/10.48550/arXiv.2406.00144
https://doi.org/10.1051/e3sconf/202234907001
https://doi.org/10.1051/e3sconf/202234907001
https://doi.org/10.1038/s41598-023-30483-5
https://doi.org/10.1038/s41598-023-30483-5
https://doi.org/10.48550/arXiv.2310.14735
https://doi.org/10.48550/arXiv.2307.12980
https://doi.org/10.48550/arXiv.2307.12980
https://doi.org/10.3389/frai.2024.1430984
https://doi.org/10.3389/frai.2024.1430984
https://doi.org/10.48550/arXiv.2401.10364
https://doi.org/10.48550/arXiv.2401.10364
https://doi.org/10.1007/978-3-642-20580-4
https://doi.org/10.1017/pds.2022.172
https://doi.org/10.1017/pds.2022.172
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.1017/pds.2024.84
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
https://doi.org/10.48550/arXiv.2304.14670

Appendix A

System prompt for design creation

Role
- You act as a program translating human language into CAD models.

Target
- Update the provided base code according to the user input.

- Use only commands from the Python CadQuery library.
- Limit responses to Python code.

Base code

import CadQuery as cq
from CadQuery import exporters

Objective: Sandal
Description: A simple sandal
Parts: Sole, strap, profile

General

Definition of the general shape of the shoe

length = 274 # Length of foot

width = 117 # Width of foot

widthPos = length*0.666 # Position of maximum shoe width
heelWidth = width*0.666 # Calculation of heel width
heelPos = length*0.25 # Position of maximum heel width

Helper

lengthLinePts = [(0,0),(0,length)] # Points fo define the length of the shoe

widthLinePts = [(-width/2,widthPos),(width/2,widthPos)] # Points to define the width of the shoe
heelWidthLinePts = [(-heelWidth/2,heelPos),(heelWidth/2,heelPos)] # Points to define the heel width

Part: Sole

Functions: Protection of foot, fit to the foot

Effects:
Protection: A thicker sole leads to more protection.
Fit: Defined by length and width of the shoe. Bigger values lead to a looser fit.
Weight: A thinner sole leads to a lighter shoe.

thickness = 12 # Thickness of shoe sole

outlinePts =
[lengthLinePts[1],(width/3,(Iength/3*2.8)),widthLinePts[1],heelWidthLinePts[1],(heelWidth/2,heelPos/
3),(0,0)] # Use the points to create the outline of the shoe.

outlineShape = cq.Workplane(“front”).spline(outlinePts) # Create an outline spline.

soleR = outlineShape.close().extrude(thickness) # Extrude the outline to a half sole.

soleL. = soleR.mirror(“YZ”) # Mirror the half-sole.

sole = soleR.union(soleL) # Join both halves into a complete sole.

sole = sole.edges(“<Z”).fillet(2).edges(“>Z") fillet(2) # Smooth the edges of the sole.

Part. Strap

Functions: Attaches sole to the foot, fit to the foot

Effects:
Holding strength: Defined by the strap’s width and thickness
Fir: A bigger height leads to a looser instep.

ICED25 679

Strap properties

height = 65 # Height of instep. Increase if foot is too big.

strapWidth = 30 # Width of strap

strapThickness = 3 # Material strength of strap

offset = strapThickness*1.2 # Offset of strap to edge of sole

Strap construction

strapPathPts = [(-width/2+offset,0),(-width/2+offset,thickness),(0,height),(width/2-offset,thickness), (-

width/2-offset,0)] # Create the points for the path of the strap.

strapPath = cq.Workplane(‘“XZ”).spline(strapPathPts) # Create the path of the strap.

Create the strap

strap = (cq.Workplane(“XY”).pushPoints([strapPath.val().location At(0)]).rect(strapThickness,

strapWidth)
.pushPoints([strapPath.val().locationAt(1)]).rect(strapThickness, strapWidth) # Add the contour shape.
.consolidateWires()
.sweep(strapPath, multisection=True) # Sweep the contour along the path.
.translate((0,widthPos,0)) # Move the strap to its position.
.edges(*“>Y").fillet(strapThickness*0.9/2) # Smooth the edges of the strap.
.edges(“<Y”).fillet(strapThickness*0.9/2) # Smooth the edges of the strap.

)

Part: Profile
Functions: Ground grip
Effects:
Friction: Less pattern depth leads to less grip.

xGridSpacing = 26 # Distance pattern in width direction
yGridSpacing = 26 # Distance pattern in length direction
patternSize = 24 # Size of profile grid elements
patternSideCount = 6 # Defines count of grid element polygon
patternDepth = 1 # Depth of pattern inside sole

bb = sole.val().BoundingBox() # Get the size of the sole.

Xmin,xmax,ymin,ymax = bb.xmin,bb.xmax,bb.ymin,bb.ymax # Store its limits.
xDistance,yDistance = xmax-xmin, ymax-ymin # Calculate the absolute size.
xSteps = int(xDistance // xGridSpacing) + 1 # Calculate the grid element X count.
ySteps = int(yDistance // yGridSpacing) + 1 # Calculate the grid element Y count.

pattern = [| # List to hold the elements of the grid
patternElement = cq.Workplane(“front”).polygon(patternSideCount,patternSize).extrude(patternDepth)
The base grid element
for x in range(xSteps): # Create rows.
for y in range(ySteps): # Create columns.
position = (x*xGridSpacing-xDistance/2,y*yGridSpacing) # Calculate the element’s position.
pattern.append(patternElement.translate(position)) # Add to the grid.

Assembly: Sandal
Description: The strap is added to the sole. The profile pattern gets cut out.
shoe = sole.union(strap) # Add the strap to the sole.
for ele in pattern:
try: # Try.
shoe = shoe.cut(ele) # Create the profile by cutting out the grid elements.
except: # Continue if fail.
continue

Export
result = shoe # Set sandal as result to provide process consistency.

3

680 ICED25

	Augmented design automation: leveraging parametric designs using large language models
	1.. Introduction
	2.. Related work
	2.1.. Prompt engineering
	2.2.. Text to CAD
	2.3.. Product design
	2.4.. Design automation

	3.. Proposed approach
	3.1.. Prompt design
	3.2.. Base code
	3.2.1.. Features
	3.2.2.. Parts
	3.2.3.. Assembly

	4.. Experiments
	4.1.. Constructional interpretation
	4.2.. Functional interpretation
	4.3.. Effective interpretation

	5.. Discussion
	6.. Conclusion
	Appendix A System prompt for design creation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

