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Abstract

This work presents a novel dynamic inflow modeling approach for single- and multirotor systems. The proposed
model is derived from first principles using a parametrisation that guarantees accurate results at steady-state. In
an effort to simplify and unite previous works in the field, it is shown how two important works from the dynamic
inflow modeling literature can be recreated using the present framework. The utility of the model is further illustrated
through analysis and comparisons to well-established theories and empirical results in both steady-state and dynamic
scenarios. Overall, the aim is to simplify and unite dynamic inflow models.

Nomenclature

a vector of azimuthal basis functions

A multirotor azimuthal measurement matrix
b primal basis function

B vectorised system matrix

C vectorised multirotor measurement matrix
d dual basis function

D multirotor radial measurement matrix

axial unit vector

vector of radial basis functions

Fourier transform

vectorised system matrix

system matrix

imaginary number

rotor index

rotor index

system matrix

three-dimensional pressure forcing vector
pressure

axial pressure forcing

arbitrary function

spatial radial coordinate

rotor radius

Riesz operator

set of modes with compact support on the disk
set of modes used in the GDW model
set of modes used in the Morillo model
time

system matrix

)
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axial induced velocity

vectorised pressure parametrisation state matrix
pressure parametrisation state matrix
freestream velocity vector

vectorised system matrix

three-dimensional net flow vector field

flow parametrisation state matrix

vectorised flow parametrisation state matrix
three-dimensional induced velocity vector field

< MM T <4< =g =

Greek symbols

basis adjustment factor

Gamma function

normalised relative distance between two rotors
spatial azimuthal coordinate
spectral azimuthal coordinate
spectral radial coordinate
azimuthal order

radial order

interference factor

fluid density

velocity potential

skew angle

freestream azimuthal angle
relative angle between two rotors
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1.0 Introduction

The present work is a rework of relevant parts from the thesis of the main author [17].

Modeling rotorcraft can be a challenging task. A testament to this is the comprehensive work of
Johnson [11] on helicopter theory. The modeling can be somewhat simplified by decomposing the sys-
tem into a cybernetic framework where it is natural to formulate the underlying behaviour in terms of
a feedback system. Doing so allows each part of the system to be modeled and analysed independently.
Following the single-rotor approach shown in [12] yields a decomposition as shown in Fig. 1, which
can be extended to multirotor systems.

Mechanics and airloads are essential parts of any major work on rotorcraft mechanics and are not
considered here. The authors have also published on the topic of airloads [14]. The inflow submodule is
often challenging to deal with and not described to a satisfactory level for modern multirotor systems.
This paper aims to present a method for modeling the weighted averaged induced flow on one or multiple
coplanar rotors in a manner that is feasible for real-time control and simulation. This is done by applying
a parametrisation to the linearised Euler equation in the frequency domain. With the parametric model
one can compute the inflow field generated by a pressure distribution at any desired location. The model
reduces to a family of dynamic inflow models described in the literature, and various delinearisations can
be applied to obtain a nonlinear model. A slight variation of this theory has previously been successfully
validated by the authors [15].

Figure 2 illustrates some rotor systems for which the model can be applicable.

2.0 Literature Review

The literature on inflow modeling for a single rotor system is relatively well established. General com-
putational fluid dynamics (CFD) approaches can yield good results if applied correctly, but suffer from
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Figure 1. Block diagram illustrating the proposed decomposition of rotor-systems into a feedback
Structure.

Aerial vehicles Wind energy

Figure 2. Illustration of rotor systems.

significant computational burdens. Alternatives to CFD include various techniques such as momentum,
vortex and potential theories, in addition to combinations of these with empirical models. A discussion
on this topic is nicely covered in Ref. (24).

Due to the computational complexities of CFD, such models are not directly viable for real-time
dynamic inflow modeling, as is the aim for this work. In such applications, one often decides to go with
low state-count models. In this category, the potential methods seem to have gained significant attention
and development, as detailed in the many available reviews on the topic [4, 17, 24, 31].

However, until recently, these potential models have only been able to describe the induced flow field
on the same rotor disk that the forcing was applied, yielding single-rotor models.

One of the complicating factors when formulating a dynamic inflow model for a multirotor system
are the aerodynamic interactions between the propellers. In such systems, not only the induced flow field
on a given rotor has to be computed, but also the induced flow field from one rotor as perceived by a
spatially different rotor. In a coplanar arrangement this can be achieved, as will be shown in this work,
by including an appropriate parametrisation basis, while non-planar transitions involve more complex
adjustments to the model as the potential flow assumption is violated.

The endeavor of adapting the potential flow methods to multirotor systems has been undertaken
previously by authors such as Ref. (27) with a generalisation in Ref. (9). Recent contributions also
involve empirical corrections to models based on potential flow methods as shown in Ref. (30). Other
methods not involving potential methods include the fusion of momentum and vortex theory to describe
the flow on the rotor and the neighbouring rotors [7] and steady-state mean-to-mean inflow model for
quadrotors based on circulation as shown in Ref, (13). The authors of Ref. (1) use an advanced potential
flow model with viscous corrections to evaluate the spatially nonlinear induced flow at steady-state also
on a quadrotor, showcasing the necessity of modeling the induced flow with more fidelity than just an
average flow. The necessity of inflow dynamics has been investigated by the authors in a former work
[16], arguing for the importance of the dynamics in multirotor applications.

From the above discussion, there are three main research gaps that require attention. First, many
inflow models only consider the steady-state flow, leaving the dynamics un-modeled. Secondly, to sim-
plify deduction and make the models real-time capable, they often only describe the mean inflow,
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disregarding the nonlinear spatial flow perturbations. Thirdly, the available models oftentimes seem to be
limited to specific applications and lack the possibility of scaling fidelity and computational complexity.

The great diversity of models might indicate the lack of a universal generalised modeling framework
for dynamic inflow modeling with real-time capabilities. The aim of this work is to unite many of the
previous works by formulating a dynamic inflow model with adjustable fidelity in a generalised manner,
filling the research gaps mentioned above.

3.0 Modeling

The overall modeling procedure starts by formulating the governing equations, which can be used to find
the exact solution to the inflow problem. Then, a parametrisation of the governing equation is suggested
to make the evaluation more efficient. While the parametrisation is introduced for a single rotor, it will
be shown how it can be extended to the multirotor case. There are other ways of parametrising the
flow as shown in Ref. (17), but we here only consider the parametrisation which is deemed the most
advantageous.

3.1 Governing equation
The modeling starts with the well-known Euler equations [5] for flow with uniform density

Vp

W - Vyw=—2 $))
P

ot
V-w=0. 2

Here, w and p are the nonlinear flow and pressure in spacial coordinates, respectively.
Assuming first order linear flow, we have that

w=v+y, 3)
where v is the constant term and y is the first order term. Inserting this we obtain
o(v+y) Vp
a—((V+y)-V)(V+y)=—— “
t P
V.(v+y=0. &)
By simplifying and removing the second order term in y, we obtain a linearised first order model
dy Vp
= V)y=—— ©
at 0
V.y=0. @)

3.1.1 Potential flow

Taking the divergence of the continuity-equation, Equation (7), yields the Laplace equation. This means
that the flow can be described by a potential, under the assumption of irrotational and divergence free
flow above the disk. A potential ® has to exist such that

y=Vo. ®)
Inserting the potential flow into the linearised Euler equation in Equation (6) we get
ovVo Vp
—+ @-V)Vd 4+ —=0. C)]
at P
The gradient operator can now be extracted

V(ag+(v~V)d>+l—7>=0 (10)
at P
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and removed to obtain the linearised Bernoulli equation for unsteady potential flow

9D
L rvve+l=o 11
at 0

3.2 Fourier transform

It will be advantageous to formulate the model in the spectral domain, and to work with polar coordinates
due to the circular nature of the modeled actuator disks. To this end, let the two-dimensional Fourier
transform of a spatial function in polar coordinates g (r, ) be given as

1 o0 21 )
(Fq r,0) (A D) = 2— / / eﬂmwsw*ﬁ)q (r,0) rdodr. (12)
T Jo 0

The spectral counterparts to the spatial radial and azimuthal coordinates » and 6 are A and ¥,
respectively.
Taking the Fourier transform of Equation (11) on the rotor plane gives

dd . 1
—+AR-v)P=A—Rp, (13)
ot 2p
as shown in Ref. (22), where R is the modified Riesz operator given by
icos ()
R = isin(¥) |, (14)
1

The Riesz operator acts as a fractional gradient operator, relating the harmonic fields in the three
dimensions, see Ref. (22) for details on the topic.
We define a function for the flow over the plane by evaluating the potential ® on the rotor plane where

e, =0,
L .
U= —¢—0=AD. (15)
de,
Dividing Equation (13) by A, inserting for w and simplifying, we get the final form of the differential
equation,
1 o 1
— 4+ (R-Vi=—Rp. 16
TR v)u 25 %P (16)

Furthermore, to obtain the flow in the spectral domain #@, we use the Fourier transformed version of
Equation (8), which gives Ref. (22).

$=ARD =R (17)

This general formulation gives the induced flow u in all three axis generated by the forcing p in all three
axis. In the following, we will only consider the forcing and inflow that is perpendicular to the rotor
plane, so

. P
+ R -vVu=— (18)
2p

> | =

i=1. 19)
Figure 3 illustrates the physical interpretation of the system equations in a somewhat simplified fash-
ion. The system computes the induced velocities F~! (12) generated by a disk of radius R subject to the

generated force fields F~' (f ) at freestream flow velocities v across the disk.

From a mathematical standpoint, the proposed modeling strategy works as shown in Fig. 4. The
model is formulated in the spectral domain, and can be retrieved using a discrete fast Fourier transform
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Figure 3. Illustration of variables simplified to one dimension of p.
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Figure 4. Model domains, figure from Ref. (17).
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Figure 5. Spatial forcing on two neighbouring disks.

(DFFT) and the inverse DFFT (IDFFT), or by parametrising its inputs and outputs with coefficients that
are invariant to the Fourier transform. The latter approach allows for fast and simple manipulation of

the spectral model with inputs and outputs in the spatial domain.

3.3 Exact solution

Because the model is given in the spectral domain, the exact solution to Equations (18) and (19) can
be computed numerically to any desired accuracy by the help of the DFFT and its inverse. Thus, any
spatial forcing can be transformed into the spectral domain using the DFFT, where the dynamic Equation
(18) is solved, before the IDFFT is applied to Equation (19) to recover the spatial induced flow. This
technique is practical for validating the efficacy of various parametrisations and can also be used as an
alternative to traditional CFD solvers. An example of this procedure is shown for the forcing in Fig. 5

and the resulting steady-state induced flow in Fig. 6.
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Axis 2 [—] Axis 1 [~]

Figure 6. Steady-state flow from forcing in Fig. 5.

3.4 Parametrisation
Having established the governing equations, one can now focus on parametrising the flow to make
it computationally efficient. When seeking a parametrisation for these quantities, it is natural to
choose a complete, polynomial, orthogonal basis consisting of functions that are also solutions to the
Laplace equation. This allows any force or flow distribution to be parametrised to the desired accuracy.
Additionally, a subset of the basis should have compact support on the disk.

A suitable basis set in the spectral domain exists [17] as

b (A, 9, ) = (— )" exp (iv 1) Jurrs (A )\/2v+2(a+ (20)

(AR)1+0(

These functions are biorthogonal with respect to the dual basis

d* (A, 9, a) =i" exp (—iv ) Jatrii (IAR),/Zv+2(a+1 Q1
v (AR) o

By choosing the o parameter, the modes can be adjusted to fit the desired boundary conditions, see Ref.
(17) for details on the topic. Unless stated otherwise, the remainder of this work will consider o = 0.

The basis has the property of being radially and azimuthally decoupled in the spectral domain, which
is advantageous for the model formulation and later computation. This allows the basis to be split into
vector format with the radial vector f (A) given by the terms

7 (p) = Lot (AR) Jarv1 (AR) 2@t D 22)

(AR)IJra

and azimuthal vector a (¢) with terms
a, () =(=1)""exp (ivp) . (23)

A similar trick can be done for the dual basis as well, obtaining f'(A) and a ().

Figure 7 illustrates the modes described by the primary basis functions in Equation (20). The imag-
inary part is shown for <0 and the real part for u > 0. However, it can be difficult to intuitively
understand the spectral modes, to this end, one can compute the spatial counterparts as shown in Fig. 8.
Also here, the imaginary part is shown for u < 0 and the real part for u > 0.

Computing the spatial counterparts to the spectral basis functions in Equations (20) and (21) can be
done by the help of the inverse Fourier transform. This is a challenging task, one way of doing it is to use
the Jacobi-Anger expansion on the kernel of the Fourier transform and then apply the Hankel transform
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Figure 8. Illustration of spatial modes.

on the remaining integrals. This allows one to compute
1
b (r,0,a) = exp (iud) T <§ Q2+v+ |,u|)> V2v+2(@+1) 24)

Pl F, (1 (il = v —2a), = @ v+ 1), 1 + [l PR
2 ,2 9 9

] ,0<r<R
RT (E 24+v-— |u|+2a)> (14 |ul)

1 1
R =G ,F, (5 C+v—lub, 3 C+v+uh.2+v +01,R2/72>

,r>R.

r (% (|M|—v)>I‘(2+v+a)

A similar computation can be performed for the dual modes.

3.4.1 Pressure
The previously described modes are defined on the whole domain, but the pressure forcing generated by
the airloads is confined to the disk. Thus, the pressure should only be parametrised in modes that have
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values on the disk and are zero elsewhere. These modes are said to have compact support on the disk,
and following Ref. (17), with o = 0, modes that are in the set

Sp={(,v) €Z x Z| (v + ) even, and v > ||} (25)

have compact support on the disk. This can be seen by analysing Equation (24). Describing the pressure
as a linear combination of the basis gives

P=> U.b (@v.k)=FUa (26)

(n,v)eSp

where each term U, , in the matrix U describes the weight of the given mode. While the pressure forcing
is defined in the spectral domain, the coefficients in U are invariant to the Fourier transform, so these
can be used directly in the spatial domain, and vice versa.

3.4.2 Flow
As shown in Ref. (17), there are two ways of parametrising the flow, one of which guarantees exact
results at steady state, namely the parametrisation strategy referred to as the indirect parametrisation.
As this guarantee is advantageous, we will follow this parametrisation strategy.

At steady state, the dynamic system equations in Equation (18) reads

P
ﬁ:(R-v)*‘z" (27)
where P, is a quasistatic forcing parametrised as shown in Equation (26),
A —1 1 AT A
u=(R-v) —fUza. (28)
2p

By using this parametrisation, any steady-state flow originating from the steady-state forcing described
by U, is accounted for to the fidelity of the basis.

3.4.3 Dynamic equation
The parametrisation of the dynamic equation is done by applying Galerkins method. Inserting the pres-
sure and flow parametrisations into the dynamic Equation (18), one obtains the parametrised model

LU a=Li'va (29)
— .a=—Tf Ua.

2p @ 20
Having Equation (29) on parametrised form, it can be solved optimally by applying the dual basis
and integrating over the whole domain. This is also known as Galerkins method and ensures that any
parametrisation error is orthogonal to the basis. The process yields

Prowy Li0,a4
A Y 20 *

1 , AT 120 AT 1 o 1 2 AT
/ / —(’R V) —ff quaa + —ff Ujaa AdddA = —/ / R—ff Uaa AdddA.
2p 2 J, 20
(30)

The selected basis has the advantageous property that it decouples the integrals in terms of the radial
and azimuthal components, so that these can be computed independently as

* 112
M=/ ——ff AdA @31
o A2p
1 . _1AaT
=— (R -v) aa dv 32)
2 Jo
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1 an

G= / —1f AdA. (33)
o 2p
1 2 1 AT

= —aa do. (34)

27 Jo 2p

This results in the system
1 .

—MU, T +GU, =GU. (35)

v
The only catch here is that the computation of Equation (32) is not straight-forward, as the velocity v
has to be recast into spherical coordinates such that
siny cosyr
v=|v| | sinyxsinyr (36)
cosy

and the term (R - v) ™' expanded in a Maclaurin series

Nr .,
MR-V =142 (~iycos (n (? —W))tan(%) . G7)

n=1

This allows the computation of the involved terms
_sinc (% (vd -V, — l)) + sinc (% (vd —v,+ 1))
T R(L4 200+ v, + ) (3420 + v, 4 1y)

V20, 2@+ Dy2u+2@+1) (38

|ﬂ~p*ﬂ~d|
Tﬂ[hﬂd = (- i)|up*ud|(_ i)““"(i)‘“"‘tan(g) exp (—i (,pr — /,Ld) lﬁ) 39)

sinc (E (vd — v,,))

G, , = 2 2v, +2 (o + 1)v/2v, + 2 (o + 1). 40

ot R2@+2a+%+wa¢ 2@+ Dy2u+2@+1) (40)

The states of the indirect parametrisation, the quasistatic forcing coefficients in U, do not repre-
sent the flow, and a measurement equation is therefore needed to recover the flow. This is found by

parametrising the measured flow as

i=fxXa, @1
equating it to the flow parametrisation Equation (28) and computing the Galerkin solution yields
1
=—U,T" 42
201" @

Solving for U, and inserting into the dynamic Equation (35) one obtains an alternative dynamic
equation, where the states directly describe the flow

. 1
MX + |v| GXT = 2—GU. (43)
yo
A vectorised version of Equation (43) can be computed by vectorising the equation to obtain
1
(I®M))’(+|v|(TT®G)X=VX+|V|FX=2—(I®G)u=Bu, (44)
0

which is computationally less efficient than the matrix form.
The new states X are also invariant to the Fourier transform, and the flow in spatial coordinates can
be obtained from

u=>y_bX,,. (45)
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Figure 9. Block diagram of multirotor model.

3.5 Visualisation

If one were to plot the states directly as they are given in Equation (45), one would obtain poor results
that do not adequately describe the desired flow field. This issue arises due to numerical conditions
within the model and can easily be fixed with a simple trick. Instead of plotting the states directly, one
should solve the system equation

Vx + |v| Fx =Bu (46)

for the flow, such that

X= ﬁF“ (Bu—Vx). “47)

Now, the flow is described as the steady-state solution Bu which is perturbed by the dynamic term Vx.
Doing so solves the issues and the resulting plots are as one would expect.

3.6 Multirotor extension

The preceding model has been formulated as a single rotor model, where the flow is evaluated on the
same area as the pressure forcing is applied. The aerodynamic interactions can be included by evaluating
the flow on a disk that does not coincide with the disk to which the pressure forcing is applied. As
discussed in Ref. (17), there are two main ways of performing the multirotor extension, input and output
coupling. In the input coupling type, the pressure forcing is moved, resulting in system matrices that
depend on the rotor layout. The other alternative, output coupling, evaluates the induced flow from one
rotor on a different rotor, where the induced flow is considered a disturbance to the freestream velocity.
The latter case is simplest, as all the system matrices, except for the measurement matrix, are decoupled
and only connected through the freestream velocity term.

As shown in Ref. (8), both the input and output coupling methods produce similar results. For reasons
of simplicity, the output coupling model will be pursued here. Figure 9 illustrates the case for two rotors,
where the net flow parameter for rotor i, |v;| is the freestream flow perturbed by the induced velocity
of the neighbouring rotor j. The measurement matrix C; is used to map the flow from one rotor to the
neighbouring.

Consider the flow parametrisation in Ref. (41) shifted §; 'R radially and lIJ’ azimuthally. In the fre-
quency domain, this shift of the evaluation area is easily achleved by using the 2D Fourier shift operator
in polar coordinates, such that

u="FXa exp (—i6/Rk cos (9 — W) . (48)
The flow from rotor i evaluated on a different rotor disk, rotor j is thus given as
i'Xa =1 X exp (—isiRk cos (9 — W) . (49)
Similarly to the dynamic system, the Galerkin method is applied

/ f ffXaéTAdz‘}dA_— / / ' X 4 exp (—i8!RAcos (9 — W) a' AdddA. (50)

Downloaded from https://www.cambridge.org/core. 11 Sep 2025 at 07:31:29, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

12 F. Matras and M. D. Pedersen

The left side is trivial, but the shift operator on the right side needs to be expanded using the Jacobi-
Anger expansion before the radial and azimuthal components can be computed independently to yield

GX;=D/X;+ Y DXA, GD
=1
with matrices
D, = / ff'J, (SRA) AdA (52)
0
1 [ .
A=— / aa'cos (I (v — W) dv (33)
T Jo

containing the terms

R(2a+V”+U")il((S{R)(_za_Up_vd_z)F (% (Vp +v,+ l) + 1+ Ot)

D, , = 54
bt o0 (L (—v, — vy +1—20)) T (1, + 2+ @)) T (0 +2 + @) oY
1 1 1
qu<§ (v, +vi+3) +a, > (v, +vi+4)+a, 3 (v, +va—1+2) +a,
1 4R?
(v +I+2)taw, +a+2,v4a+2,v,+ v+ 20 + 33—
2 (&R
and
—i T 5 if - Ma =1
bipg = {(ixp ( i (,u,, Md) 1/’) ;ligp Ha (55)

The properties of the A-matrix terminate the infinite series of the Jacobi-Anger expansion at the larges
azimuthal degree of the chosen basis.

Computing the vectorised form of Ref. (51), taking advantage of the finite expansion and only
selecting the modes that have compact support on the disk simplifies the system to

I®G)x;=A®Dy)c+ Y (A]@D)x, (56)

=1
X, = CJIX] . (57)

Equivalently, we have that the flow from rotor j, the emitting rotor, evaluated on rotor i, the receiving
rotor, becomes

M; = Z b‘: (C.;Xj)v,u' (58)

Gathering all induced velocities evaluated by one receiving rotor

N
=y u (59)
j=1

and adding these to the freestream flow, one obtains a value for the mass-flow parameter, v;, which is
used to represent the perturbed freestream flow in rotor i. The dynamic equation for rotor i then becomes

V)’(,‘ + |V,‘| FX,‘ = Bll,-. (60)

Similar equations need to be solved for all other rotors in the system. A simple example of a single and
multirotor system is shown in Appendix A.
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4.0 Model validation and verification

The proposed model is based on the linearised version of Euler’s equations for fluid dynamics and the
parametrisation has been employed in a manner guaranteeing that any error is orthogonal to the selected
basis. While this argues for the models’ validity, it still needs thorough validation and verification to
prove its efficacy and find any potential shortcomings.

4.1 Model reduction

The first verification will be a replication study in which it will be shown how the present modeling
framework can be used to reproduce key previous works. In this way, the proposed model must be at
least as valid as the previous works, and any previous validations of those works will automatically

apply.

4.1.1 Generalised dynamic wake
The generalised dynamic wake (GDW) [25] is a successor to the well known Pitt-Peters model [26]. It
can be reproduced in the present modeling framework by choosing o = 0.5, parametrising the flow as

a=fXa, (61)
and weighing the parametrisation of the forcing in Equation (26) by 1/A, giving the system
1ar. . AT 1 .t
Xf Xa + (R V) f xa= 2[0_Af Ua. (62)

The weight 1/A is the reciprocal of the fractional Laplacian [22], and can be interpreted as an integrator
in the spatial domain.
A key feature of the GDW model is the appropriate selection of the basis set

Se={(u,v) €Z x Z| (u+v)even,and 0 < |u| < v}. (63)

Applying the dual basis contained in S, computing the integrals of Galerkins method and vectorising
the system yields

X+ T TOM) 'x=x+ A 'x=u (64)

The simple model form is possible because the matrices simplify significantly for the basis in S;.
Computing the matrices one can verify that the results are analytically identical to those presented in
Refs. (17, 25).

4.1.2 Morillo
The work of Morillo [19] presents a dynamic inflow model, that also uses the Galerkin method. It is
stated in Ref. (19) that the model is more general than the GDW [25].

Morillo’s model is presented as

Comparing this to the vectorised form of the proposed model in Equation (44) and performing the
computations, one finds that

V=V, (66)
B =B, (67)
F~ BMA,;' M, (68)
if the modes are selected from the subset
Su={(n,v) €Z x Z|0 < || < v} (69)

Downloaded from https://www.cambridge.org/core. 11 Sep 2025 at 07:31:29, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

14 F. Matras and M. D. Pedersen

in accordance with Ref. (19). The F-matrix approximates the matrices of Morillo, and since both the
V and B are analytically exact, the difference lies in the computation of the skew matrix. On closer
inspection, the differences are mainly the scaling of some elements and a slightly different dependence
on the skew angle. Summing up, at axial flows the present model reduces analytically to the model
presented in Ref. (19), and with skewed flows the models are expected to behave almost identically due
to a few minor variations in their dependence on the skew angle.

4.2 Steady-state skew

One of the main drivers of the multirotor interactions is the skew angle, whose sideways component
moves the vertical induced flow in the rotor plane. This is illustrated by cross-section views in Fig. 10.
The cross-sections show the flow along the freestream flow direction and perpendicular to it.

Investigating the cross-sections parallel to the flow direction, one can notice the upwash in front of
the front rotor, and the significant accumulation of downwash on the rear rotor. At x = 75°, the front
rotor self-induced velocity is similar to the downwash imposed on the rear rotor, in size, but mirrored
along the vertical axis. These are the interactions that are desirable and necessary to model to accurately
describe multirotor systems. In addition to the fore-aft interactions, the upwash on the right and left side
of the rotor also increases with increasing skew angle, which affects neighbouring rotors as well.

Both cross-sections clearly show the efficacy of the parametrisation, and one can even spot the Gibbs
phenomenon in the results from the IDFFT technique, which as expected is absent in the parametrised
model.

Comparing the results to the steady-state skewed inflow computed based on vortex theory [3] shows
excellent agreement in Fig. 10.

4.2.1 Numerical results

The steady-state model’s dependence on the skew angle has previously been investigated by various
authors and some theoretical and empirical results are available, for instance the well-known work of
Johnson [11], which will be used here due to its central position in rotorcraft aerodynamics. One can
describe the interactions as an interference parametrised in an interference factor 5_/" (x) from rotor j to
rotor i such that the flow on rotor i is given by

w=u+& (0 ] (70)

with uj and u; being the self-induced flows generated by each disk. Computing the interference factors
&/ (x) for the side-by-side and fore-aft cases [11] using the proposed model reveals the results shown in
Figs 11 and 12. The red circles highlight the areas of interest that are mentioned in Ref. (11).

The side-by-side scenario successfully recreates no interactions at zero skew angle, and smoothly
decreasing the interference factors to around —0.27 at y =90°, which is within the empirical range
between -0.2 and -0.3 [11]. This upwash is also seen in Fig. 10.

Similarly, the fore-aft interactions shown in Fig. 12 also indicate no interactions at zero skew angle,
but increasing interference from the upwind rotor as the skew angle increases, reaching almost 2 as
x — £90° as expected from wing theory [11]. The slight negative interference also visible from the
downwind rotor on the upwind rotor has not been commented on in Ref. (11), but it is believed to be
of similar nature as that in the side-by-side case and can also be clearly seen as the upwash in front
of the front rotor in Figs 6 and 10. Furthermore, consulting the work of Ref. (20), where the Biot-
Savart law is used to compute the interference-factors at steady-state, one can generally observe the
same characteristics.

4.3 Dynamics

The dynamics of the system will be illustrated by showing the frequency response for the disk self-
influence, and the effect from one disk to the neighbouring disk, similarly to what was done for the
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Figure 10. (a) Legend. (b) Cross-section along flow-line and (c) cross-section perpendicular to flow—
line at steady-state for varying skew angles. Results from Branlard and Gaunaa are computed using the
equations in Ref. (3). Reworked and expanded figure from Ref. (17).

steady-state component. The model equation reveals that the dynamics of the system are independent of
the skew angle, meaning that an analysis of axial flow sufficiently represents the model’s dynamics.
Computing the frequency response and decomposing it in terms of the real and imaginary part results
in cross-sectional flows as shown in Fig. 13. Also here, one can clearly see the Gibbs phenomenon in
the IDFFT solution, and the overall excellent efficacy of the parametrised model. One can see clear
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Figure 12. Illustration computed fore-aft interference factors, results mentioned in Ref. (11) highlighted
in red. Reworked figure from Ref. (17).

trends for the real part, which has a decreasing average on the rotor disk with increasing frequency, and
an increasing average for the neighbouring disk. The imaginary part exhibits a different characteristic,
increasing in magnitude until reaching a peak at around 1 Hz after which the average over the disk
starts decreasing again. At higher frequencies one can clearly see how the imaginary part affecting the
neighbouring disk is concentrated in the region closest to the emitting disk.

Comparing Fig. 13 to the results presented in Ref. (23), one can clearly see the same characteristics
and numerical values, validating the proposed model.

4.3.1 Frequency response
The dynamics can also be investigated by considering the Bode diagram for the system. For reasons of

comparison, the mean-to-mean mode is considered in Fig. 14. Here, a model with maximal radial and
azimuthal order 10 was used, and one can clearly see that the self influence has a low-pass behaviour with
a similar break-off frequency, decay and phase-shift as the other models. As the model is a parametrised
version of the model of Pedersen [21] one can also clearly see that these models behave alike.
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field. Reworked figure from Ref. (17).

Considering the Bode diagram for influence on the neighbour rotor shown Fig. 14 one can inter-
pret that, in a signal-processing mindset, the neighbouring disks observes a band-passed version of the
applied forcing with some delay as can be seen from the phase diagram.

4.4 Limitations

The above sections have argued for the model’s validity using analytical, qualitative and empirical argu-
ments, highlighting its efficacy. However, the model still suffers from some limitations. Primarily, these
limitations stem from simplifications made during the model development. As the model is based on
Euler’s equations, this limits its usefulness to incompressible and inviscid flows, and the linearised
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nature of the model reduces its validity to small perturbations. Some limitations, such as the linearisa-
tion, can be omitted by employing delinearisations of the finite-state model as discussed in for example
Ref. (29), but these should be treated with care.

The model deduction also makes the assumption of potential flow, assuming irrotational flow in the
lower half-space and limiting the multirotor configurations to coplanar arrangements. Similar to the
linearisation, this issue can be omitted [6], but it makes the model more complex. Even though the
model is based on the assumption of potential flow, the results in Fig. 10 show that it behaves identically
to vortex theory, and as shown in one of the author’s previous works [22, 23], the modeling approach is
able to reproduce results from vortex theory, even with the potential flow assumption.

Another limitation of the model is the inability to describe overlapping rotor disks, this is due to the
selection of basis modes, and a workaround still has to be developed.

5.0 Applications

The proposed model can be used in a variety of applications involving single- and multirotor systems.
The scalable formulation allows it to easily be tuned to the desired fidelity, keeping the computational
cost at a minimum, while the generality allows the same model to be employed directly to all types of
non-overlapping coplanar rotor systems, such as wind turbines and drones, without any modifications.

An example application of a basic variation of the proposed model was used in Ref. (15) to accu-
rately predict the power losses in forward flight for a quadcopter. This parametric model was then used
to investigate and optimise a variety of drone considerations at hover and forward flight, where the pro-
peller interactions shown in Fig. 10 are of key importance. The model was successfully validated by an
experiment.

Another example application is the investigation of multirotor wind turbines [18]. The work investi-
gates how the interactions between the rotors affect the overall stability and performance of the multirotor
wind turbine system, and presents control strategies based on this knowledge.

As shown in the validation section, the proposed model directly reduces to previous well-known
models. This means that any application of the previous models in principle can switch to the proposed
model by changing out the matrices and in doing so include higher order modes that were not available
in the previous models. Consequently, any former application of potential inflow models, including
predecessors or derivatives of models such as the single-rotor GDW model, serve as clear applications of
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the proposed work. In addition to improving the former single-rotor models, the proposed technique also
natively integrates coplanar multirotor systems.

6.0 Conclusion

In this work, we have proposed an inflow model based on a linearised version of Euler’s equations
for fluid dynamics. The model is given in a simple state-space form, allowing for great computational
efficiency and through an advantageous flow parametrisation one is guaranteed to obtain correct results
at steady state. As an intuitive guide, the basis-functions have been illustrated, including their behaviour
on and off of the disk. A multirotor model extension has been proposed in which the aerodynamic
interactions are considered perturbations in the freestream velocity. Both the single- and multirotor
models have been evaluated and validated against other works. Furthermore, the single rotor model has
been shown to reduce to previous milestones in the field of dynamic inflow modeling. Several example
applications have been referred to, in order to highlight the models utility.

Due to its simple matrix form, scalable nature and the inclusion of the dynamics, the proposed model
fills the knowledge gap identified in the literature review. Its main novelty comes from a different and
arguably more complete deduction and basis set.

Similarly to other dynamic inflow models based on simplifying assumptions, the proposed model has
its limitations, but it strikes a good balance between accuracy and computational efficiency for many
practical applications.

While the presented validation is a great indicator for the efficacy of the proposed model, it would
still be worthwhile to validate the model further, possibly with experiments, to know its limits and weak-
nesses. After this, the model can be used with confidence for practical applications such as simulation
and control problems, forming a useful tool for researchers.
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Appendix A
A.1 Example

This section will present a simple example for a single and two-rotor example with N =1 and M = 0.
The matrix elements are given with an accuracy of three significant digits and y = 0.

A.2 Single Rotor
In the single-rotor case, the vectorised system equation becomes

0849 03547 1 06] 1 06 A
0354 0340 [*"™"o6 1 [*Tloe 1 |™

The mass flow parameter |v| here is just the norm of the freestream velocity.

A.3 Multirotor
In the multirotor case, the dynamic equations for both systems i and j look identical

0849 03547 1 06] 1 06 A2)
0354 0340 [T Mlloe 1 [¥Tloe 1 |Y™

0.849 03547 1 06 1 06

[0.354 o.34o}"f+,v-f’ [0.6 I }"-"— [0.6 I ]“f (A3)
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except for the mass flow parameter for each rotor that now also includes the perceived induced flow from
the neighbouring rotor. These interactions are given by

j 0 —0.0378
S — .
Xi= |:—0.0378 0 ] % (A4
P 0 —0.0378
x= [—0.0378 0 ]X"’ (A9
which are then used to compute the flow fields
w=>) bix,, (A6)
w=3"0x, . (A7)

Once the flow fields have been computed, they can be added to the freestream flow field to adjust the
mass flow parameters for each turbine

0
vl =|v+ |0 (A8)
",

1

o o

| = v+ (A9)
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