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A Brief Introduction to Causal Fermion Systems

In this chapter, we define and explain the basic objects and structures of a causal
fermion system. Since causal fermion systems introduce a new language to describe
our physical world, we begin with preliminary considerations that explain how the
basic objects of the theory come about and how to think about them. In order
to provide different perspectives, the preliminary considerations motivate causal
fermion systems in two somewhat different ways. In Section 5.1, the motivating
question is whether and how spacetime structures can be encoded in quantum
mechanical wave functions. In Section 5.2, on the other hand, we begin with the
example of a two-dimensional lattice system and ask the question how one can
formulate physical equations in this discrete spacetime without making use of
specific lattice structures like the nearest neighbor relations and the lattice spacing.
By extending the setting from the motivating examples (Section 5.3), we are led
to the general definition of a causal fermion system (Section 5.4). Next, as a
further example, we explain how the Minkowski vacuum can be described by a
causal fermion system (Section 5.5). In order to formulate equations describing
the dynamics of a causal fermion system, we introduce a variational principle, the
so-called causal action principle (Section 5.6). We proceed by explaining how to
obtain a spacetime as well as structures therein (Section 5.7). We conclude by
discussing the form of the causal action principle (Section 5.8) and by explaining
the underlying physical concepts (Section 5.9).

5.1 Motivation: Encoding Spacetime Structures in Wave Functions

For the introductory considerations, following [86, Section 2.1.1], we begin with a
quantum particle described by a quantum mechanical wave function v satisfying
the Klein—Gordon equation (1.22) in Minkowski space or in a curved spacetime.
Suppose that we have access only to the information contained in the absolute
square [1(z)|? of this wave function. We ask the question: Given this information,
what can we infer on the structure of spacetime? First, let the wave function
be a solution evolved from compactly supported initial data ¥y as illustrated
in Figure 5.1. Then, finite speed of propagation guarantees that the absolute
square |¢(x)|? vanishes outside the causal future of the support of the initial
data. In this way, the support of |1(z)|? gives us some information on the causal
structure of our spacetime. But, of course, there is only a limited amount of infor-
mation that can be extracted from a single wave function. However, if instead we
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Figure 5.1 Causal propagation of a wave function. From [86], Creative Commons
Attribution 4.0 license.
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Figure 5.2 Probing with many wave functions. From [86], Creative Commons
Attribution 4.0 license.

probe with many wave functions, as illustrated in Figure 5.2, we gain more infor-
mation. If we aggregate the information contained in all wave functions evolved
from compactly supported initial data, then we can extract the complete causal
structure of our spacetime. We remark that this determines the metric up to a
conformal factor [103, 119].

We next consider the situation if an electromagnetic background field is present.
The coupling of the scalar field to the electromagnetic field is described by the
Klein-Gordon equation (1.23). Now the wave functions are deflected by the elec-
tromagnetic force. Therefore, their absolute square also encodes information on
the electromagnetic field. In order to retrieve this information, one can use the
following procedure. Suppose that we have access to two wave functions ¢ and ¢
and that we can also measure the absolute value of superpositions, that is,

(@) + Bo(e)|* = |av(@)|” + 2Re (B V() 6(a) ) + |Bo(x)

for arbitrary complex coefficients o and 3. By varying these coefficients, we can
determine the quantity

%, (5.1)

P(@)g(x) (5.2)

which tells us about the correlation of the two wave function ¢ and ¢ at the
spacetime point x. This allows us to probe the electromagnetic field, as shown
schematically in Figure 5.3. Here, we do not need to be specific on what “probing”
exactly means (e.g., one could determine deflection angles, recover the Aharanov—
Bohm phase shifts of the wave function, etc.). All that counts is that we can get
information also on the electromagnetic field. Generally speaking, the more wave
functions we have to our disposal, the more information on the electromagnetic
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Figure 5.3 Probing an electromagnetic field. From [86], Creative Commons
Attribution 4.0 license.
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field can be retrieved. It seems sensible to expect that, after suitably increasing
the number of wave functions, we can recover both the spacetime structures and
the matter fields therein from the knowledge of the absolute squares of all these
wave functions alone.

Now we go one step further and formulate the idea of encoding spacetime
structures in a family of wave functions in mathematical terms. To this end, we
consider a (for simplicity finite) number f of linearly independent wave func-
tions ¢1,...,¢; : M — C, mapping from a classical spacetime 4 to the complex
numbers. On the complex vector space H spanned by these wave functions we
introduce a scalar product (.|.)sc by demanding that the wave functions ¢, ...,y
are orthonormal, that is,

(Vrlr)3c = O - (5.3)

We thus obtain an f-dimensional Hilbert space (3, {.|.)s¢). At any spacetime
point « € M we can now introduce the local correlation operator F(x) : H — H as
the linear operator whose matrix representation in the basis 1, ...,y is given by

(F(2))y = v (@)t (x) . (5.4)

The diagonal entries of this matrix are the absolute squares of the wave functions,
whereas the off-diagonal entries tell us about the correlation of two different wave
functions at the spacetime point x. This is why we refer to F'(x) as the local corre-
lation operator. Alternatively, the local correlation operator can be characterized
in a basis-invariant form by the identity

(WIF(x)p)sc = P(x)p(x)  forall ¢, ¢ € H. (5:5)

By construction, the operator F'(z) is positive semi-definite and has rank at most
one (in order not to distract from the main construction, this will be explained
in more detail after (5.12) in Section 5.2). By varying the point z, we obtain
amap I' : M — F from the classical spacetime M to the set F of positive
semi-definite linear operators of rank at most one,

F := {y € L(K) | y positive semi-definite of rank at most one} . (5.6)
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I contained in the wave functions

This map encodes all the physical information
of H.

Next, we need to formalize the idea that we want to restrict attention to the
information encoded in the wave functions. This entails that we want to disre-
gard all the information contained in the usual structures of Minkowski space or
a curved spacetime (like the causal structure, the metric, the spinor bundle, and
all that). In order to do so mathematically, we focus on the family of all local cor-
relation operators. Thus, instead of considering F' as a mapping from our classical

spacetime to F, we restrict attention to its image M := F(JF) as a subset of F,
McCJT. (5.7)

In this way, Minkowski space and the corresponding classical spacetime structures
no longer enter our description. Instead, spacetime and all structures therein are
encoded in and must be recovered from the information contained in the family
of wave functions. This point of view of recovering all spacetime structures from
the wave functions will be taken seriously in this book, and we will unravel its
consequences step by step.

It turns out that working as in (5.7) merely with a subset of F is not quite
sufficient. In order to get into the position to formulate physical equations, we need
one more structure: a measure p on spacetime. Here, by a “measure on spacetime,”
we mean a mapping which to a subset 2 C M associates a nonnegative number,
which can be thought of as the “volume” of the spacetime region corresponding
to . In nontechnical terms, this measure can be obtained by combining the volume
measure of Minkowski space with the map F. More precisely, we take the pre-
image F~1(Q) C F and integrate over it,

o= [ e (5.)

where du = d*z is the volume measure in Minkowski space / (and similarly du =
/| det g| d*z in curved spacetime). In more mathematical terms, the measure p is
the push-forward of p under F' (for basics on measure theory and the push-forward
measure, see Section 2.3).

This construction leads us to consider a measure p on a set of linear operators
on a Hilbert space as the basic structure describing a physical system in spacetime.
These are indeed all the basic ingredients to define a causal fermion system. The
only modification to be made later is that, instead of complex wave functions, we
will work with sections of a spinor bundle. One consequence of that is that the
local correlation operators will no longer be positive semi-definite. Instead, they
will be of finite rank with a fixed upper bound on the number of positive and
negative eigenvalues.

1 Here, by “physical,” we mean the information up to local gauge phases, which drop out
in (5.4). Local gauge freedom and local gauge transformations will be discussed in Section 5.9.
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Before coming to these generalizations (Section 5.3), we next explain why encod-
ing information in the wave functions also has benefits if one wants to formulate
physical equations in a setting that goes beyond a classical continuous spacetime.

5.2 Motivating Example: Formulating Equations in
Discrete Spacetimes

It is generally believed that for distances as small as the Planck length, space-
time can no longer be described by Minkowski space or a Lorentzian manifold,
but that it should have a different, possibly discrete structure. There are differ-
ent approaches to modeling such spacetimes. The simplest approach is to replace
Minkowski space with a discrete lattice. Indeed, causal fermion systems provide
another, more general approach. In any such approach, one faces the challenge of
how to formulate physical equations if one gives up the continuous structure of
spacetime and thus can no longer work with partial differential equations like the
Klein—Gordon equation or the Dirac equation.

In order to explain the underlying problem more concretely, we now have a
closer look at the simple example of a spacetime lattice (this example was first
given in [48, Section 1]). For simplicity, we consider a two-dimensional lattice (one
space and one time dimension), but higher-dimensional lattices could be described
similarly. Thus let # C R%! be a rectangular lattice in two-dimensional Minkowski
space. We denote the spacing in time direction by At and in spatial direction by Ax
(see Figure 5.4). The usual procedure for setting up equations on a lattice is to
replace derivatives with difference quotients, giving rise to an evolution equation
that can be solved time step by time step according to deterministic rules. A
simple example is the discretization of the two-dimensional wave equation for a
function ¢ : M — C on the lattice,

e (601+ Ata) = 20(0.2) + 6(t — Ar.a)

N ﬁ (6062 + Az) = 20(t,2) + 9lt,2 — Ax)) . (5.9)

0=0¢(t,x) :=

Solving this equation for ¢(t+ At, x) gives a deterministic rule for computing ¢ (t+
At, z) from the values of ¢ at earlier times ¢ and ¢ — At (see again Figure 5.4).

° t+ At

! )
° ° 4 + ° t

{1 TN
° ° ° ° o t — At

Ax

Figure 5.4 Time evolution of a lattice system . C RY'. From [48], Creative
Commons Atribution 3.0 license.
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98 5 A Brief Introduction to Causal Fermion Systems

While this method for setting up equations in a discrete spacetime is very simple
and yields well-defined evolution equations, it also has several drawbacks:

e The method in (5.9) for discretizing the continuum equations is very ad hoc.
Why do we choose a regular lattice, why do we work with difference quotients?
There are many other ways of discretizing the wave equation.

e The method is not background-free. In order to speak of the “lattice spac-
ing,” the lattice must be thought of as being embedded in a two-dimensional
ambient spacetime.

e The concept of a spacetime lattice is not invariant under general coordinate
transformations. In other words, the assumption of a spacetime lattice is not
compatible with the equivalence principle.

In view of these shortcomings, the following basic question arises:

Can one formulate equations without referring to the nearest neighbor relation and the
lattice spacing?

The answer to this question is yes, and we will now see how this can be done
in the example of our two-dimensional lattice system. Although our example is
somewhat oversimplified, this consideration will lead us quite naturally to the
setting of causal fermion systems.

In order to formulate the equations, we consider on our lattice a family of
complex-valued wave functions ¢1, ..., ¢ : M — C (for simplicity a finite number,
i.e., f < 00). At this stage, these wave functions do not need to satisfy any wave
equation. On the complex vector space H spanned by these wave functions we
introduce a scalar product (.|.)s by demanding that the wave functions ¢, ...,y
are orthonormal, that is,

(Vrlvn)sc = O - (5.10)
We thus obtain an f-dimensional Hilbert space (3, (.|.}¢). Note that the scalar
product is given abstractly (meaning that it has no representation in terms of the
wave functions as a sum over lattice points). Next, for any lattice point (¢, z) € A
we introduce the so-called local correlation operator F(t,x) : H — H as the linear
operator whose matrix representation in the basis 11, ...,y is given by

(F(t,2))} = ;(t, 2)u(t,2) - (5.11)

The diagonal elements of this matrix are the absolute squares |1y (t, z)|? of the
corresponding wave functions. The off-diagonal elements, on the other hand, tell
us about the correlation of the 5" and k*® wave function at the lattice point (¢, x).
This is the reason for the name “local correlation operator.” This operator can also
be characterized in a basis-invariant way by the relations

<¢|F(ta$) ¢>f}6 = ¢(t»ff)¢(ta$) ) (512)
to be satisfied for all ¥, ¢ € H.
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We now analyze some properties of the local correlation operators. Taking the
complex conjugate, one sees immediately that the matrix defined by (5.11) is
Hermitian. Stated equivalently independent of bases, the local correlation operator
is a symmetric linear operator on H (see Definition 2.2.5 in the preliminaries).
Moreover, a local correlation operator has rank at most one and is positive semi-
definite. This can be seen in detail by expressing it in terms of the operator

e(t,z) : H - C, Y=Yt ), (5.13)

which to every vector associates the corresponding wave function evaluated at the
spacetime point (¢,z) (this mapping is sometimes referred to as the evaluation
map). Indeed, rewriting the right-hand side of (5.12) as

Ut 2)o(t, x) = (e(t, 2)¥) (e(t, 2)¢) = (Y] e(t, x)" e(t,z) d)ac , (5.14)

where e(t,z)* : C — H is the adjoint of the operator e(t, z) as defined by (2.46),
we can compare with the left-hand side of (5.12) to conclude that

F(t,x) =e(t,x)" e(t,x) . (5.15)

This shows that F'(¢,x) is positive semi-definite. Moreover, being a mapping to C,
the operator e(t, ) has rank at most one. As a consequence, also F(¢,z) has rank
at most one.

It is useful to denote the set of all operators with the above properties by

F:={F € L(H) | F is symmetric,

(5.16)
positive semi-definite and has rank at most one} .
Varying the lattice point, we obtain a mapping (see Figure 5.5)
F.H -7, (t,x) — F(t,x). (5.17)

For clarity, we note that the set F is not a vector space, because a linear combi-
nation of operators in F in general has a rank greater than one. But it is a conical
set in the sense that a positive multiple of any operator in F is again in F (this is
why in Figure 5.5 the set F is depicted as a cone).

We point out that the local correlation operators do not involve the lattice
spacing or the nearest neighbor relation (as a matter of fact, we did not even

M

Figure 5.5 Embedding in F. From [48], Creative Commons Atribution 3.0 license.
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100 5 A Brief Introduction to Causal Fermion Systems

use that 4 is a lattice); instead, they contain information only on the local
correlations of the wave functions at each lattice point. With this in mind, our
strategy for formulating equations which do not involve the specific structures of
the lattice is to work exclusively with the local correlation operators, that is, with
the subset F'() C F. In other words, in Figure 5.5, we want to disregard the
lattice on the left and work exclusively with the objects on the right.

How can one set up equations purely in terms of the local correlation opera-
tors? In order to explain the general procedure, we consider a finite number of
operators Fi,..., Fy € F. Each of these operators can be thought of as encoding
information on the local correlations of the wave functions at a corresponding
spacetime point. However, this “spacetime point” is no longer a lattice point
because the notions of lattice spacing and nearest lattice point have been dropped.
At this stage, spacetime is merely a point set, where each point is an operator
on the Hilbert space. In order to obtain a “spacetime” in the usual sense (like
Minkowski space, a Lorentzian manifold or a generalization thereof), one needs
additional structures and relations between the spacetime points. Such relations
can be obtained by multiplying the operators. Indeed, the operator product F; F
tells us about correlations of the wave functions at different spacetime points.
Taking the trace of this operator product gives a real number. Our method for for-
mulating physical equations is to use the operators F; and their products to set up
a variational principle. This variational formulation has the advantage that sym-
metries give rise to conservation laws by Noether’s theorem (as will be explained
in Chapter 9). Therefore, we want to minimize an action S defined in terms of the

operators Fi, ..., Fr. A simple example is to
L
minimize  S(Fy,...,FL):= Y  Te(F F})% (5.18)
i,j=1
under variations of the points Fi, ..., Fy € F. In order to obtain a mathematically

sensible variational principle, one needs to impose certain constraints. Here, we do
not enter the details because the present example is a bit too simple (see, however,
Exercise 5.1). Instead, we merely use it as a motivation for the general setting of
causal fermion systems, which we now introduce.

5.3 Toward the General Definition of a Causal Fermion System

In order to get from the previous motivating examples to the general setting of
causal fermion systems, we extend the above constructions in several steps:

(a) The previous example works similarly in higher dimensions, in particular
for a lattice # C RY3 in four-dimensional Minkowski space. This has
no effect on the resulting structure of a finite number of distinguished
operators Fi,..., Fp € F.

(b) Suppose that we consider multicomponent wave functions  : . — CV.
Then, clearly, we cannot directly multiply two such wave functions pointwise
as was done on the right-hand side of (5.11). However, assuming that we are
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5.8 Toward the General Definition of a Causal Fermion System 101

given an inner product on C", which we denote by <.|.= (in mathematical
terms, this inner product is a nondegenerate sesquilinear form; we always use
the convention that the wave function in the first argument is complex con-
jugated), we can adapt the definition of the local correlation operator (5.11)
to

(F'(t, @)y = == (¢, @) | (t, 2)>, (5.19)
(the minus sign compared to (5.11) merely is a useful convention). The
resulting local correlation operator is no longer an operator of rank at most
one, but it has rank at most N (as can be seen, e.g. by writing it sim-
ilar to (5.15) in the form F(t,x) = —e(t,z)* e(t,z) with the evaluation
map e(t,z) : H — CN, ¢ — (t,2)). If the inner product <.|.= on CV is
positive definite, then the operator F'(t,x) is negative semi-definite. However,
in the physical applications in mind, this inner product will not be posi-
tive definite. Indeed, a typical example in mind is that of four-component
Dirac spinors. The Lorentz invariant inner product 1¢ on Dirac spinors
in Minkowski space (with the usual adjoint spinor ¢ := 94%) is indefi-
nite of signature (2,2). In order to describe systems involving leptons and
quarks, one must take direct sums of Dirac spinors, giving the signature (n,n)
with n € 2N. With this in mind, we assume more generally that

<.|.= has signature (n,n) with n € N. (5.20)

Then, the resulting local correlation operators are symmetric operators of
rank at most 2n, which (counting multiplicities) have at most n positive and
at most n negative eigenvalues.

(c) Finally, it is useful to generalize the setting such as to allow for con-
tinuous spacetimes and for spacetimes which may have both continuous
and discrete components. In preparation, we note that the sums over the
operators Fi,..., Fr, in (5.18) can be written as integrals,

S(p) = A dp(z) A dp(y) Tr(zy)?, (5.21)

if the measure p on JF is chosen as the sum of Dirac measures supported at
these operators,

L
p=> 6r, . (5.22)
i=1

Note that, in this formulation, the measure plays a double role: First, it dis-
tinguishes the points F1, ..., Ff, as those points where the measure is nonzero,
as is made mathematically precise by the notion of the support of the measure
(for details, see Definition 2.3.4), that is,

suppp = {F1,...,Fr}. (5.23)
Second, a measure makes it possible to integrate over its support, an operation

which for the measure (5.22) reduces to the sum over Fi,..., Fp.
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102 5 A Brief Introduction to Causal Fermion Systems

Now one can extend the setting simply by considering (5.21) for more
general measures on F (like, for example, regular Borel measures). The main
advantage of working with measures is that we get into a mathematical frame-
work in which variational principles like (5.18) can be studied with powerful
analytic methods.

5.4 Basic Definition of a Causal Fermion System

Motivated by the previous considerations we now give the basic definition of
a causal fermion system. This definition evolved over several years. Based on
preparations in [41], the present formulation was first given in [80].

Definition 5.4.1 (Causal fermion system) Given a separable complex Hilbert
space H with scalar product {.|.)s¢ and a parameter n € N (the spin dimension ),
we let F C L(H) be the set of all symmetric operators on H of finite rank, which
(counting multiplicities) have at most n positive and at most n negative eigenval-
ues. Moreover, let p be a positive measure on F (defined on a o-algebra of subsets
of F). We refer to (H,F, p) as a causal fermion system.

The definition of a causal fermion system is illustrated in Figure 5.6.

The set F is invariant under the transformation where an operator is multiplied
by a real number, as is indicated in the figure by the double cones. The support
of the measure, denoted by

M :=suppp, (5.24)

is referred to as spacetime (intuitively speaking, the support of a measure con-
sists of all points where the measure is nonzero; for mathematical details, see
Definition 2.3.4). In contrast to the example of the lattice system, where spacetime
consisted of discrete points (5.23), in general, the measure p can also have contin-
uous components. For example, M could be a subset of ¥ having the additional
structure of being a four-dimensional manifold. The space F should be thought
2 so that M typically is a low-dimensional
subset of F. The measure p(Q) of a measurable subset Q@ C M can be regarded as
the volume of the spacetime region 2. In the example of the lattice system, this

of as a space of very large dimension,

volume is simply the number of spacetime points in §2, whereas for a continuous
spacetime, it is the four-dimensional Lebesgue measure of €2. It is a specific feature
of a causal fermion system that a spacetime point z € M is a linear operator on
the Hilbert space H. This endows spacetime with a lot of additional structure. In
particular, as will be explained in Section 5.7, the spacetime point operators give
rise to a family of spinorial wave functions and to causal and geometric structures.
The general idea is that a causal fermion system describes a spacetime together
with all structures therein. Before entering these structures in more detail, we

2 This statement is made precise in [60, 67] as follows. The operators of F of maximal rank 2n
form a Banach manifold. If the Hilbert space H is finite-dimensional, then this manifold also
has a finite dimension given by 4n dim H — 4n?; see also Proposition 3.1.3 in the preliminaries.
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Figure 5.6 A causal fermion system. From [48], Creative Commons Atribution
3.0 license.

%

illustrate the general definition by the simple and concrete example of Dirac wave
functions in Minkowski space.

5.5 Example: Dirac Wave Functions in Minkowski Space

As a further example, we now explain how to construct a causal fermion system
in Minkowski space. Recall that in Section 1.4 (and similarly in curved space-
time in Section 4.5), for a given parameter m € R we introduced the Hilbert
space (H,(.].)) of all solutions of the Dirac equation with mass m (recall that
the scalar product is defined as the spatial integral (1.37)). We now choose
a closed subspace H of this Hilbert space and denote the scalar product (.|.)
restricted to this subspace by (.|.)5¢ (changing the notation from round to pointed
brackets clarifies that we consider (.|.)5¢ as an abstract scalar product, with-
out referring to its representation as a spatial integral (1.37)). We thus obtain
the

Hilbert space (3, (o) - (5.25)

By construction, the vectors in this Hilbert space are solutions of the Dirac equa-
tion. They can be thought of as the “occupied states” of the system. We prefer
the notion of physical wave functions, where “physical” means intuitively that
these wave functions are realized in our physical system (whatever this means; we
shall not enter philosophical issues here). The choice of the subspace H C H,,
is part of the input which characterizes the physical system. For example, in
order to describe the vacuum, one chooses H as the subspace of all negative-
energy solutions of the Dirac equation (see Section 1.5). In order to model a
system involving electrons, however, the subspace H must be chosen to include
the electronic wave functions of positive frequency. At this stage, we do not need
to specify H, and in order to clarify the concepts, it seems preferable to keep
our considerations on a general abstract level. Specific choices and explicit com-
putations can be found in [45, Section 1.2] and in later chapters of this book
(Chapters 15-19).

We point out that the functions in H do not need to be continuous (instead,
as mentioned at the end of Section 1.4, they are weak solutions whose restriction
to any Cauchy surface merely is an L?-function). Therefore, we cannot evaluate
the wave functions pointwise at a spacetime point x € . However, for the fol-
lowing constructions, it is crucial to do so. The way out is to introduce so-called
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104 5 A Brief Introduction to Causal Fermion Systems

regularization operators (R.) with 0 < € < enpax as linear operators that map H
to the continuous wave functions,

R, H— OO, Sa) linear . (5.26)

In the limit e N\, 0, these operators should go over to the identity (in a suitable
sense which we do not specify here as it will not be needed). The physical picture
is that on a small length scale, which can be thought of as the Planck length scale
£ &~ 1073% meters, the structure of spacetime must be modified. The regularization
operators specify this microscopic structure of spacetime. Different choices of reg-
ularization operators are possible. A simple example of a regularization operator
is obtained by mollifying with a test function. Thus, we let h € C§°(M,R) be a
nonnegative test function with

/ h(z)d*z=1. (5.27)
M

We define the operators R, for ¢ > 0 as the convolution operators (for basics on
the convolution, see the paragraph after (2.111) in Section 2.4)

(Row)(2) = /M h(w - y) u(y) diy. (5.28)

gl €

Another method is to work in Fourier space (for preliminaries, see Sections 1.5
and 2.4) by setting

d4k ~ —ikax
u(z) = /(277)4 a(k) e , (5.29)
and to regularize by multiplication with an exponentially decaying cutoff function,
that is,
(Reu)(z) = / ﬁ (k) e~clel gmike with w=k° (5.30)
N (2m)4 ' '

This so-called ie-regularization is most convenient for explicit computations (for
more details, see [45, §2.4.1]). Clearly, these methods of regularizing Dirac solu-
tions are very special and should be thought of merely as a mathematical tool for
constructing simple and explicit examples of causal fermion systems.

Before going on, we briefly remark for the reader familiar with quantum field
theory (QFT) how the above regularization is related to the ultraviolet regulariza-
tion procedures used in relativistic QFT. Both in QFT and the setting of causal
fermion systems, regularizations are needed in order to make the theory mathe-
matically well defined. In the renormalization program in QFT, one shows that
the UV regularization can be taken out if other parameters of the theory (like
masses and coupling constants) are suitably rescaled. Then, the regularization can
be understood merely as a computational tool. In the causal fermion systems, how-
ever, the physical picture behind the regularization is quite different. Namely, in
our setting, the regularized objects are to be considered as the fundamental physi-
cal objects. The regularization models the microscopic structure of spacetime and
has therefore a physical significance.
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5.6 The Causal Action Principle 105

Next, for any z € A, we consider the bilinear form
bt HxH—-C, b (u,v) =—<Ru)(z)| (Rev)(z)>-. (5.31)

This bilinear form is well defined and bounded because . is defined pointwise and
because evaluation at x gives a linear operator of finite rank (see Exercise 5.3).
Thus for any v € 3, the anti-linear form b5(.,v) : H — C is continuous. By
the Fréchet—Riesz theorem (Theorem 2.2.4), there is a unique vector w® € H such
that b2 (u, v) = (u|w)g¢ for all u € H. The mapping v — we is linear and bounded.
We thus obtain a bounded linear operator F¢(z) on H such that

b5 (u,v) = (u| F*(z) vy for all u,v € H, (5.32)

referred to as the local correlation operator. Taking into account that the inner
product on the Dirac spinors at 2 has signature (2,2), the local correlation oper-
ator F¢(x) is a symmetric operator on H of rank at most four, which has at most
two positive and at most two negative eigenvalues.

Varying the point z € 4, for any € we obtain a mapping

F* ot — 7, (5.33)

where F C L(H) is the set of all symmetric operators on H of finite rank which
(counting multiplicities) have at most two positive and at most two negative eigen-
values. We sometimes refer to F¢ as the local correlation map. The last step is to
drop all other structures (like the metric and causal structures of Minkowski space,
the spinorial structures, etc.). As mentioned earlier, the basic concept behind
causal fermion systems is to work exclusively with the local correlation operators
corresponding to the physical wave functions. In order to formalize this concept,
we introduce the measure p® on F as the push-forward of the volume measure
on A (for details, see Section 2.3 or Exercise 2.18),

p°=Fp. (5.34)

We thus obtain a causal fermion system of spin dimension n = 2 (see Defini-
tion 5.4.1). The local correlation operators are encoded in p as the support M of
this measure. Working exclusively with the structures of a causal fermion system,
we no longer have the usual spacetime structures (particles, fields, causal struc-
ture, geometry, ...). The underlying idea is that all these spacetime structures
are encoded in the local correlation operators. At this point, it is not obvious that
this concept is sensible. But, as we shall see in the later sections in this book, it is
indeed possible to reconstruct all spacetime structures from the local correlation
operators. In this sense, the structures of a causal fermion system give a complete
description of the physical system.

5.6 The Causal Action Principle

Having given the general definition of a causal fermion system (see Defini-
tion 5.4.1), the question arises how physical equations can be formulated in this
setting. To this end, we now introduce a variational principle, the so-called causal
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106 5 A Brief Introduction to Causal Fermion Systems

action principle. In this variational principle, we minimize a functional, the so-
called causal action, under variations of the measure p. The minimality property
will then impose strong conditions on the possible form of this measure. The math-
ematical structure of the causal action is similar to the action (5.18) given in our
example of the lattice system. Its detailed form, however, is the result of many
computations and longer considerations, as will be outlined in Section 5.8.

For any x,y € F, the product zy is an operator of rank at most 2n. However,
in general, it is no longer a symmetric operator because (xy)* = yzx, and this
is different from zy unless z and y commute. As a consequence, the eigenvalues
of the operator xy are in general complex. We denote these eigenvalues count-
ing algebraic multiplicities by A7Y,..., A3 € C (more specifically, denoting the

rank of zy by k < 2n, we choose A\7Y,...,\;Y as all the nonzero eigenvalues and
set Ay, ..., A5) = 0). We introduce the Lagrangian and the causal action by
1 2n
causal Lagrangian: L(z,y) = in Z (‘/\xy| ‘Amy‘) (5.35)
causal action: S(p) = // L(z,y) dp(z)dp(y) . (5.36)
FxTF

The causal action principle is to minimize S by varying the measure p under the
following constraints:

volume constraint: p(F) = const (5.37)

trace constraint: / tr(z) dp(x) = const (5.38)
F

boundedness constraint: // (Z ’)\xy|> p(y) <C, (5.39)
FxTF

where C' is a given parameter (and tr denotes the trace of a linear operator on H
of finite rank). As already mentioned, we postpone the physical explanation of the
detailed form of the Lagrangian to Section 5.8. The constraints can be understood
mathematically as being needed in order to get a well-posed variational principle
with nontrivial minimizers. This will be explained in Chapter 12 (see, in particular,
Section 12.4; also Exercise 5.4 is related).

Before going on, for clarity, we point out that the mathematical structure of
the causal action principle is quite different from other variational principles con-
sidered in physics and mathematics. There does not seem to be a direct way of
deriving or even motivating the causal action principle from other known action
principles or Lagrangians. The only way to get the connection to the known phys-
ical equation is by studying suitable limiting cases of the causal action principle
and the corresponding Euler-Lagrange (EL) equations (it will be outlined in Chap-
ters 21 and 22 how to get a connection to classical field theory and quantum field
theory, respectively).
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5.6 The Causal Action Principle 107

In order to make the causal action principle mathematically well defined, one
needs to specify the class of measures in which to vary p. To this end, on F we
consider the topology induced by the operator norm

|A]| := sup {|| Aullsc with [[u]lsc =1}, (5.40)

for basics, see the preliminaries in Sections 2.1 and 2.2. In this topology, the
Lagrangian as well as the integrands in (5.38) and (5.39) are continuous. The
o-algebra generated by the open sets of F consists of the so-called Borel sets. A
regular Borel measure is a measure on the Borel sets with the property that it is
continuous under approximations by compact sets from inside and by open sets
from outside (for basics, see the preliminaries in Section 2.3). The right prescription
is to vary p within the class of regular Borel measures on F.
One must distinguish two settings:

(a) The finite-dimensional setting: dim H < oo and p(F) < co.
In this case, we will prove the existence of minimizing measures in Chapter 12.
This will also clarify the significance of the constraints (see in particular the
examples in Section 12.4).

(b) The infinite-dimensional setting: dim H = oo and p(F) = oo.
In this setting, it is an obvious complication that the volume constraint (5.37)
is infinite. Likewise, the other constraints as well as the causal action may
diverge. These divergences can be avoided by restricting attention to varia-
tions that change the measure only on a set of finite volume. By doing so, the
differences between the action and the constraints are well defined and finite
(this method will be introduced in Sections 6.3 and 12.8).

With this in mind, the remaining problem is to deal with infinite-
dimensional Hilbert spaces. The question whether physics is to be described on
the fundamental level by finite- or infinite-dimensional Hilbert spaces seems
of a more philosophical nature, and we shall not enter this question here. One
way of getting along with the finite-dimensional setting is to take the point of
view that, on a fundamental physical level, the total volume is finite and the
Hilbert space H is finite-dimensional, whereas the infinite-dimensional setting
merely is a mathematical idealization needed in order to describe systems in
infinite volume involving an infinite number of quantum particles. Even if this
point of view is taken, the infinite-dimensional case is of independent math-
ematical interest and should also be the appropriate effective description in
many physical situations. This case also seems to be mathematically sensible.
However, the existence theory has not yet been developed. But at least, it is
known that the EL equations corresponding to the causal action principle still
have a mathematical meaning in the infinite-dimensional setting (for details,
see [45]).

We now explain how the spacetime of a causal fermion system is endowed with
a topological and causal structure. Recall that, given a minimizing measure p,
spacetime M C F is defined as the support of p (see (5.24); this is illustrated in
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108 5 A Brief Introduction to Causal Fermion Systems

Exercise 2.18). Thus, the spacetime points are symmetric linear operators on H.
On M we consider the topology induced by F (generated by the sup-norm (5.40)
on L(H)). Moreover, the measure p|ys restricted to M can be regarded as a vol-
ume measure on spacetime. This turns spacetime into a topological measure space.
Furthermore, one has the following notion of causality:

Definition 5.6.1 (Causal structure) For any z,y € F, the product xy is an oper-
ator of rank at most 2n. We denote its nontrivial eigenvalues (counting algebraic
multiplicities) by X[Y, ..., \s2. The points x and y are called spacelike separated
if all the )\?y have the same absolute value. They are said to be timelike separated
if the )\fy are all real and do not all have the same absolute value. In all other
cases (i.e., if the )\fy are not all real and do not all have the same absolute value),
the points © and y are said to be lightlike separated.

Restricting the causal structure of F to M, we get causal relations in spacetime.

Before going on, we point out that it is not obvious whether and in which sense
this definition of causality agrees with the usual notion of causality in Minkowski
space (or, more generally, in a Lorentzian spacetime). In order to get the connec-
tion, one can consider the causal fermion system constructed in Section 5.5 with
the Hilbert space H C H,, chosen as the subspace of all negative-energy solutions
of the Dirac equation (thereby realizing the concept of the Dirac sea as explained
in Section 1.5). Then the above “spectral definition” of causality goes over to the
causal structure of Minkowski space in the limiting case € N\, 0. Since the detailed
computations for getting this correspondence are a bit lengthy, we do not present
them here but refer the interested reader instead to [45, Section 1.2].

The Lagrangian (5.35) is compatible with the above notion of causality in
the following sense. Suppose that two points z,y € F are spacelike separated.
Then, the eigenvalues A\;Y all have the same absolute value. As a consequence,
the Lagrangian (5.35) vanishes. Thus, pairs of points with spacelike separation do
not enter the action. This can be seen in analogy to the usual notion of causality
where points with spacelike separation cannot influence each other. This analogy
is the reason for the notion “causal” in “causal fermion system” and “causal action
principle.”

A causal fermion system also distinguishes a direction of time. In order to see
this, for z € F, we let 7, be the orthogonal projection in H on the subspace x(H) C
H and introduce the functional

C: MxM-—=R, C(z,y) :=itr (yamryﬂm —:rymwy). (5.41)

Obviously, this functional is anti-symmetric in its two arguments, making it
possible to introduce the notions

{ y lies in the future of x if C(x,y) >0 (5.42)

y lies in the past of x if C(z,y) < 0.

We remark that the detailed form of the functional (5.41) is not obvious; it must
be justified by working out that it gives back the time direction of Minkowski
space in a suitable limiting case (for details, see Exercise 5.8 and [45, §1.2.5]).
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5.7 Basic Inherent Structures 109

By distinguishing a direction of time, we get a structure similar to a causal set
(see, e.g., [17]). However, in contrast to a causal set, our notion of “lies in the
future of” is not necessarily transitive.

5.7 Basic Inherent Structures

It is the general concept that a causal fermion system describes spacetime as well
as all structures therein (like the causal and metric structures, particles, fields,
etc.). Thus all these structures must be constructed from the basic objects of the
theory alone, using the information already encoded in the causal fermion system.
We refer to these constructed structures as being inherent in the causal fermion
system. We now introduce and explain the most important of these structures: the
spin spaces, the physical wave functions and the kernel of the fermionic projector.
Other inherent structures will be introduced later in this book (see Chapters 9-11);
for a more complete account, we also refer to [45, Chapter 1].

The causal action principle depends crucially on the eigenvalues of the operator
product zy with z,y € F. For computing these eigenvalues, it is convenient not
to consider this operator product on the (possibly infinite-dimensional) Hilbert
space H, but instead to restrict attention to a finite-dimensional subspace of H,
chosen such that the operator product vanishes on the orthogonal complement of
this subspace. This construction leads us to the spin spaces and to the kernel of
the fermionic projector, which we now introduce. For every x € F we define the
spin space S, as the image of the operator x, that is,

Sy = 2(H); (5.43)

it is a subspace of H of dimension at most 2n (see Figure 5.7).
Moreover, we let

T @ H— S, (5.44)

be the orthogonal projection in H on the subspace S, C H. For any x,y € M we
define the kernel of the fermionic projector P(x,y) by (see Figure 5.8).

P(z,y) =7, yls, + Sy — Sz (5.45)

where 7, is again the orthogonal projection on the subspace x(H) C 3. Taking
the trace of (5.45) in the case x = y, one finds that

tr(z) = Trg, (P(x,x)) , (5.46)

SyM S, M

Hilbert space H

Figure 5.7 The spin spaces.
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110 5 A Brief Introduction to Causal Fermion Systems

Figure 5.8 The kernel of the fermionic projector.

making it possible to express the integrand of the trace constraint (5.38) in terms
of the kernel of the fermionic projector. In order to also express the eigenvalues
of the operator zy in terms of the kernel of the fermionic projector, we introduce
the closed chain A, as the product

Ayy =P(x,y) P(y,x) : Sy — Sg . (5.47)

The closed chain can be computed in more detail using the formula (5.45). In
preparation, we note that, from the definition of 7, as the orthogonal projection
to the image of © (5.44), it follows immediately that 7,z = x. Taking the adjoint
of this relation, we conclude that

Ty =T =TTy. (5.48)
Using these identities, we can compute the closed chain by
Azy = (mey)(myz)|s, = T2 yzls, - (5.49)

Applying this equation iteratively and using again (5.48), we obtain for the p'P
power of the closed chain

(Aay)? =m0 (y2)”ls, - (5.50)
Taking the trace, one sees in particular that
Trg, (Agy) =tr ((y:v)p) =tr ((xy)p), (5.51)

where the last identity simply is the invariance of the trace under cyclic per-
mutations. Since all our operators have finite rank, for any x,y € F there is a
finite-dimensional subspace I of H such that xy maps I to itself and vanishes on
the orthogonal complement of I. For example, one can choose I as the span of the
image of xy and the orthogonal complement of the kernel of xy,

I= span{(xy)(?f),ker(my)l‘} . (5.52)

Then, the nontrivial eigenvalues of the operator product xy are the nonzero roots
of the characteristic polynomial of the restriction zy|; : I — I. The coefficients
of this characteristic polynomial (like the trace, the determinant, etc.) are sym-
metric polynomials in the eigenvalues and can therefore be expressed in terms of
traces of powers of the operator zy|r : I — I (for details, see Exercise 5.9). Using
this result similarly for the characteristic polynomial of A,, and using (5.51), we
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5.7 Basic Inherent Structures 111

conclude that the eigenvalues of the closed chain coincide with the nontrivial eigen-
values \[Y, ..., A3Y of the operator zy in Definition 5.6.1 (including multiplicities).
In particular, one sees that kernel of the fermionic projector encodes the causal
structure of M. The above argument also implies that the operator products xy
and yx are isospectral. This shows that the causal structure is symmetric in x
and y. The main advantage of working with the kernel of the fermionic projector
is that the closed chain (5.47) is a linear operator on a vector space of dimension
at most 2n, making it possible to compute the A\]Y, ..., A3¥ as the eigenvalues of
a matrix (in finite dimensions).

Next, it is very convenient to choose inner products on the spin spaces in such
a way that the kernel of the fermionic projector is symmetric in the sense that

P(z,y)" = P(y,x), (5.53)
where the star denotes the adjoint with respect to yet to be specified inner products
on the spin spaces. This identity indeed holds if on the spin space S, (and similarly
on Sy) one chooses the spin inner product <.|.>, defined by

<ulv-, = —(ulzv)g (for all u,v € Sy) . (5.54)

Due to the factor = on the right, this definition really makes the kernel of the
fermionic projector symmetric, as is verified by the computation

<u| P(z,y) v, = —(u|xz P(z,y) v)9c = —{u|zy v)5
*<7ry93u | y”U>'_7{ = <P(yvl’) u | Uiy s (555)

where we again used (5.48) (and u € S;, v € Sy). The spin space (Sz, <.|.>z)
is an indefinite inner product of signature (p,q) with p,q < n (for textbooks on
indefinite inner product spaces, see [16, 94]). In this way, indefinite inner product
spaces arise naturally when analyzing the mathematical structure of the causal
action principle.

The kernel of the fermionic projector plays a central role in the analysis for
several reasons:

e The Lagrangian can be expressed in terms of P(z,y) (via the closed
chain (5.47) and its eigenvalues).

e Being a mapping from one spin space to another, P(z,y) gives relations
between different spacetime points. In this way, it carries geometric informa-
tion. This will be explained in Chapter 11 (see also [55] or the introductory
survey paper [47]).

e The kernel of the fermionic projector also encodes all the wave functions of
the system. In order to see the connection, for a vector u € H one introduces
the corresponding physical wave function ¢* as (see Figure 5.9)

W M3,  Piz) =mu€Sy. (5.56)

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.119, on 23 Nov 2025 at 01:47:31, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.009
https://www.cambridge.org/core

112 5 A Brief Introduction to Causal Fermion Systems

Sz M

Figure 5.9 The physical wave function.

Then, choosing an orthonormal basis (e;) of 3 and using the completeness
relation as well as (5.54), one obtains for any ¢ € S,

P(z,y) ¢ = 1y

s, 0= Z'frmei (esly @)ac

i (5.57)
=— Z P (z) < (y) [y

showing that P(z,y) is indeed composed of all the physical wave functions,
that is, in bra/ket notation

P(z,y) = - Z [ ()= <4 (y)] - (5.58)

We remark that knowing the kernel of the fermionic projector in spacetime makes
it possible to reconstruct the causal fermion system (the detailed construction can
be found in [80, Section 1.1.2]). We also note that the representation of the kernel
of the fermionic projector (5.58) also opens the door to the detailed study of causal
fermion systems in Minkowski space as carried out in [45]; see also Exercises 5.14-
5.17.

Taking a slightly different perspective, one can say that all structures of the
causal fermion system are encoded in the family of physical wave functions ¥*
with v € H as defined in (5.56). In order to make this statement precise, it is
most convenient to introduce the wave evaluation operator ¥(x) at the spacetime
point x € M by

V() : H— S5, u Y(z) = mpu . (5.59)
Clearly, using (5.56), the wave evaluation operator can be written simply as
U(z) =7y . (5.60)

The wave evaluation operator describes the family of all physical wave func-
tions. Indeed, applying the wave evaluation operator to a vector u and varying
the point z, we get back the corresponding physical wave function ¢*. We next
compute the adjoint of ¥(x),

U(z)* : Sy — K. (5.61)
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Taking into account the corresponding inner products, we obtain for any ¢ € S,
and u € H,

(W ()" Blu)sc = <6|¥(x) usy "= (B2 U(z) u)s . (5.62)

This shows that
U(x)* = —z|g, . (5.63)
Combining (5.60) and (5.63) and comparing with (5.45), one sees that

x=—"(z)" U(x) and P(z,y) = -9 (z) ¥(y)*. (5.64)

In this way, all the spacetime point operators and the kernel of the fermionic
projector can be constructed from the wave evaluation operator. Moreover, the
conclusion after (5.51) that the eigenvalues of the closed chain coincide with the
nontrivial eigenvalues of the operator product zy can be seen more directly from
the computation

Ay = P(z,y) P(y,z) = V(2)¥(y) ¥ (y)¥(2)"
=—V(z)(yV(x)") ~ —V(x)"V(z)y = zy, (5.65)

where by ~ we mean that the operators are isospectral (in the sense that they
have the same nonzero eigenvalues with the same algebraic multiplicities). Here, we
used that for any two matrices A € CP*? and B € C2*P, the matrix product AB
is isospectral to BA (for details, see Exercise 5.5).

5.8 How Did the Causal Action Principle Come About?

Causal fermion systems and the causal action principle came to light as a result of
many considerations and computations carried out over several years. We now give
an outline of these developments, also explaining the specific form of the causal
action principle.

The starting point for the considerations leading to causal fermion systems was
the belief that in order to overcome the conceptual problems of quantum field the-
ory, the structure of spacetime should be modified. Moreover, instead of starting
from differential equations in a spacetime continuum, one should formulate the
physical equations using the new structures of spacetime, which might be non-
smooth or discrete. A more concrete idea in this direction was that the spacetime
structures should be encoded in the family of wave functions which is usually
associated to the Dirac sea (for basics, see Section 1.5). Thus, instead of disre-
garding the sea states, one should take all these wave functions into account. The
mutual interaction of all these wave functions should give rise to the structures of
spacetime as we experience them.

The first attempts toward making this idea more precise go back to the early
1990s. The method was to consider families of Dirac solutions (the formalism of
quantum fields was avoided in order to keep the setting as simple and nontechnical
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114 5 A Brief Introduction to Causal Fermion Systems

as possible). In order to describe such a family mathematically, the corresponding
two-point kernel P(z,y) was formed

Z ()= < ()] (5.66)

where 11, ..., are suitably normalized solutions of the Dirac equation; for pre-
liminaries, see Section 1.3. The kernel P(z,y) is also referred to as the kernel of
the fermionic projector. In the Minkowski vacuum, this kernel is formed of all the
states of the Dirac sea. Then the sum goes over to an integral over the lower mass
shell

P (z,y) = / (34;€ (f+m) (k2 _ m2) O(—ko) e~ tk(@—y) (5.67)

this integral is well defined as the Fourier transform of a tempered distribution;
see the preliminaries in Section 2.4. Likewise, a system involving particles and
antiparticles is described by “occupying additional states of positive energy” and
by “creating holes in the Dirac sea,” respectively. Thus, more technically, one sets

P(z,y) = P (z,y) — Zwa )<ty |+Z|¢b )-<du(y)|,  (5.68)

where 1, and ¢, are suitably normalized Dirac solutions of positive and nega-
tive energy, respectively. In case a bosonic interaction is present, the kernel of
the fermionic projector should no longer satisfy the vacuum Dirac equation, but
the Dirac equation in the presence of a, say, external potential B. Clarifying the
dependence on the bosonic potential with an additional tilde, we write the resulting
Dirac equation as

(i@ +B —m) P(z,y) =0. (5.69)

Analyzing the distribution P(x,y) in Minkowski space reveals the following
facts:

(a) The kernel P(z,y) contains all the information on the wave functions of the
particles and antiparticles of the system. This statement can be understood
from the representation (5.68) in which all these wave functions appear. Alter-
natively, the wave functions can be reconstructed from f’(x, y) as being the
image of the corresponding integral operator on C§° (A, SA )

¢H[%P(.,y) P(y) d*z . (5.70)

(b) The kernel P(z,y) has singularities on the light cone. The detailed form of
the singularities involves integrals of the potential B and its derivatives along
the light cone. In particular, knowing the kernel P(z,y) makes it possible to
reconstruct the potential B at every spacetime point. These statements follow
immediately by looking at the so-called light-cone expansion of P(z,y) (see
Chapter 19 in this book or [45, Section 2.2 and Appendix B]).
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(¢) The singularity structure of P(z,%) encodes the causal structure of Minkowski
space. This can be seen again from the light-cone expansion of P(x,y) (see
again Chapter 19 in this book or [45, Section 2.2 and Appendix B]).

These findings show that, at least for Dirac systems in the presence of classi-
cal bosonic potentials, the kernel P(x,y) contains all the information on the
physical system. This led to the concept to regard P(z,y) as the basic physi-
cal object in spacetime. The more familiar structures and objects like Minkowski
space with its causal structure, the Dirac equation, the classical field equa-
tions for the bosonic fields (like the Maxwell or Einstein equations), however,
should no longer be considered as being fundamental. Consequently, the physical
equations should be formulated directly in terms of the kernel of the fermionic
projector.

Formalizing this idea in a clean way also made it necessary to disregard or
to prescind from the usual spacetime structures. This led to the principle of the
fermionic projector as formulated around 1990 (see the unpublished preprint [35]
and the monograph [41]). We here present a slightly different but equivalent formu-
lation which is somewhat closer to the setting of causal fermion systems. Let M
be a discrete set (i.e., a point set without additional structures), the discrete
spacetime. Moreover, for every x € M one chooses an indefinite inner product
space (S, <.|.>z), referred to as the spin space at = (usually, one chooses the
dimensions and signatures of all spin spaces to be the same, but this is not cru-
cial for the construction). Next, we consider a collection of wave functions (g )a,
each being a mapping which to every discrete spacetime point x € M associates a
vector ¥, (x) € S, of the corresponding spin space. Out of these wave functions,
one can form the kernel of the fermionic projector

P(z,y) == [tha(z)=<a(y)] : Sy = S . (5.71)

The principle of the fermionic projector asserts that the physical equations should
be formulated purely in terms of the kernel of the fermionic projector in discrete
spacetime.

The next question was how precisely these physical equations should look like.
This was a difficult question which took many years to be answered. Apart from
the structural requirements coming from the principle of the fermionic projector,
the following considerations served as guiding principles®:

(i) In analogy to classical field theory, a variational approach should be used. One
main advantage is the resulting connection between symmetries and conser-
vation laws (corresponding to the classical Noether theorem), which seems of
central importance in physical applications.

3 Of course, it is also an important requirement that our variational principle should give
agreement with quantum field theory. But this connection was not used for finding the causal
action principle. It was worked out more recently; for more details, see Chapter 22.
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116 5 A Brief Introduction to Causal Fermion Systems

(ii) Classical field theory should be obtained in a certain limiting case. More
specifically, the EL equations coming from our variational principle should
reproduce the Maxwell and Finstein equations.

(iii) Also, the Dirac equation should be recovered in a certain limiting case.

More mathematically, the strategy was to form composite expressions of the kernel
of the fermionic projector. Choosing n points z1,...,x, € M, one can form the
closed chain

Ay wn = P(x1,22) P(x2,23) - - P(Tp—_1,2n) P(zp,21) : Sz, = Sz - (5.72)

Being an endomorphism of the spin space, one can compute the eigenvalues of the
closed chain and form a Lagrangian £[A;, . ,.] as a symmetric function of these
eigenvalues. Summing over the spacetime points gives an ansatz for the

n-point action S= Z LAz, 2] (5.73)
L1y, Tn €M

This general ansatz can be made more specific and concrete by considering gauge
phases. This consideration was motivated by the fact that the kernel of the
fermionic projector P (x,y) formed of Dirac solutions involves gauge phases. More
specifically, choosing the potential in the Dirac equation (5.69) as an electromag-
netic potential, that is, B = A, then the leading contribution to the kernel are
gauge phases described by line integrals over the electromagnetic potential,

P(z,y) =e 17 A P (z,y)+ -, (5.74)
where
Y ) 1 .
/ AE :/ Ay(ay+ (1 - a)e) (y — 2y da, (5.75)
T 0
(this can again be seen from the light-cone expansion; more specifically, see [45,
§2.2.4]). Here --- stands for many other contributions to P(x,y) which involve

derivatives of the potential (like the field tensor, the Maxwell current, etc.). All
these additional contributions are small in the sense that they are less singular on
the light cone. These findings will be made precise by the Hadamard and light-cone
expansions of the kernel of the fermionic projector in Chapter 21 of this book. At
this stage, we do not need to be specific. All we need is that gauge phases come
into play, which involves integrals of the potential along the line segment joining
the points x and y.

Let us analyze the effect of the gauge phases on the closed chain (5.72). First
of all, the closed chain is gauge invariant. Indeed, if one considers a pure gauge
potential A; = 0;A, then the gauge phases in (5.74) simplify to

P(x,y) = e MWITAD) pvac(g ) (5.76)

and the phase factors of neighboring factors cancel in (5.72). This consideration
also gives a relation between local gauge invariance and the fact that the adjacent
factors in (5.72) must coincide. In the case n = 1, the kernel of the fermionic
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projector is evaluated only on the diagonal P(z,x). This turns out to be too sim-
ple for formulating physical equations, as can be understood from the fact that
no relations between spacetime points are taken into account. If n > 3, the gauge
phases in (5.72) can be rewritten using Stokes’ theorem as fluz integrals of the elec-
tromagnetic field through the two-dimensional polygon with vertices x1,...,Z,.
Analyzing the situation in some more detail, one finds that the resulting EL equa-
tions will be satisfied only if all fluxes vanish. This implies that the electromagnetic
potential must be a pure gauge potential. In other words, the case n > 3 does not
allow for an interaction via gauge potentials. This is the reason why this case was
disregarded (for some more details on this argument, see [41, Remark 6.2.5]).
After these considerations, we are left with the

two-point action S= Z L[Az,], (5.77)
z,yeM

where A, is the closed chain formed of two points,

In this case, the polygon with vertices x and y degenerates to a straight line,
implying that the flux through this polygon vanishes as desired. The starting point
for a more quantitative analysis was to choose the Lagrangian formed by taking
products and sums of traces of powers of the closed chain. A typical example is
the Lagrangian

L[Ayy] = Trs, (A2,) — c(Trs, (Asy))? (5.79)

with a real parameter c. In such examples, the Lagrangian is a symmetric polyno-
mial in the eigenvalues of the closed chain. The methods and results of this early
analysis can be found in the unpublished preprints [35, 36].

Generally speaking, the study of such polynomial Lagrangians seemed a promis-
ing strategy toward formulating physically sensible equations. However, the more
detailed analysis revealed the basic problem that chiral gauge phases come into
play: As just explained after (5.76), the closed chain and therefore also the
Lagrangian are gauge invariant for the electromagnetic potential. However, the
situation changes if chiral gauge potentials are considered. Here, chiral gauge
potentials are left- or right-handed potentials A;, and Ar which can be inserted
into the Dirac equation by generalizing (1.29) to

(i@ + xrAL + xLAr —m)Y =0, (5.80)

where xp/gr are the chiral projection operators (1.56) (for details, see, e.g., [45,
§2.2.3]). In physics, the electroweak interaction involves left-handed gauge poten-
tials. In this case, the left- and right-handed components of P(x,y) involve phase
transformations by the left- and right-handed gauge potentials, respectively. When
forming the closed chain (5.78), the left- and right-handed components of P(z,y)
are multiplied together. As a consequence, the closed chain involves relative phases
of the left- and right-handed gauge potentials, that is, phase factors of the form

oY (AL—Ar)€ (5.81)
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where Ap and Ag are the left- and right-handed gauge potentials (here for sim-
plicity again Abelian). As a consequence, also the eigenvalues of the closed chain
are multiplied by these relative phases. The traces of powers of the closed chain
as in (5.79) are still real-valued (this is because the phase factors always come
as complex conjugate pairs), but they do not have fixed signs. Working out the
EL equations, one sees that they also involve the relative gauge phases, making it
difficult to allow for chiral gauge fields. In order to bypass these difficulties, from
around 1999 on Lagrangians were considered which involved absolute values of the
eigenvalues of the closed chain. This had two major advantages:

(a) The chiral gauge phases drop out of the Lagrangian.

(b) It became natural to formulate nonnegative Lagrangians. As a consequence,
in the variational principle one minimize the action instead of merely looking
for critical points.

(¢) A connection to causality was obtained. In order to see how this comes about,
we give a simple computation in the Minkowski vacuum. Suppose that the
points z and y are either timelike or spacelike separated. Then, P(z,y) is well
defined and finite even without regularization and, due to Lorentz symmetry,
it has the form

P(z,y) =a&y + 51 (5.82)
with two complex-valued functions o and 8 (where again ¢ = y — x, and 7

are the Dirac matrices). Taking the adjoint with respect to the spin inner
product, we see that

Ply,z)=a&n’ +B1. (5.83)

As a consequence,

Agy = P(a,y) P(y,x) = a&y’ + b1 (5.84)
with two real parameters a and b given by

a=af+pa, b=la?+[pf (5.85)

(here £2 = £'¢; denotes the Minkowski inner product, which may be negative).
Applying the formula (A,, — b1)? = a? £2 1, the roots of the characteristic
polynomial of A,, are computed by

bt /a2 2. (5.86)

Therefore, the eigenvalues of the closed chain are either real, or else they
form a complex conjugate pair. Moreover, one gets a connection to causality:
By explicit computation in Minkowski space one sees that a is nonzero (the
details can be found in [55, proof of Lemma 4.3]). Therefore, if £ is timelike
(i.e., €2 > 0) then the relations (5.85) and (5.86) show that the eigenval-
ues are distinct, both real and have the same sign. If £ is spacelike, on the
other hand, the eigenvalues are complex and have the same absolute value.
In this way, one gets agreement with the spectral definition of causality in
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Definition 5.6.1. Moreover, choosing a Lagrangian which depends only on dif-
ferences of absolute values of the eigenvalues vanishes for spacelike separation,
making it possible to build causality into the action principle.

The further analysis led to the class of Lagrangians
c=X (e - ey’ (5.87)
0,J

with a parameter p € N, where the A7¥ are the eigenvalues of A,, (again counted
with algebraic multiplicities). The case p = 1 gives the causal Lagrangian (5.35)
(albeit with the difference of working instead of the local correlation operators
with the kernel of the fermionic projector; the connection will be explained below).
The decision for p = 1 was taken based on the so-called state stability analysis,
which revealed that the vacuum Dirac sea configuration (5.67) is a local minimizer
of the causal action only if p = 1 (for details, see [41, Section 5.5]). Now that
the form of the causal action was fixed, the monograph [41] was completed and
published. The causal action principle is given in this book as an example of a
variational principle in discrete spacetime (see [41, Section 3.5]). The boundedness
constraint (5.39) already appears, and the causal Lagrangian (5.35) arises when
combining the Lagrangian with the Lagrange multiplier term corresponding to
the boundedness constraint. The volume constraint (5.37) is also implemented,
however in discrete spacetime simply as the condition that the number of spacetime
points be fixed (and p-integrals are replaced by sums over the spacetime points).
The trace constraint, however, was not yet recognized as being necessary and
important.

After the publication of the monograph [41], the causal action principle was
analyzed in more detail and more systematically, starting from simple systems
and proceeding to more realistic physical models, concluding with systems showing
all the interactions of the standard model and gravity (see [45, Chapters 3-5]).
This detailed study also led to the causal action principle in the form given in
Section 5.6. The path from the monograph [41] to the present formulation in [45]
is outlined in [41, Preface to second online edition]. We now mention a few points
needed for the basic understanding.

One major conceptual change compared to the setting in indefinite inner prod-
uct spaces was to recognize that an underlying Hilbert space structure is needed in
order for the causal variational principle to be mathematically well defined. This
became clear when working on the existence theory in discrete spacetime [42].
This Hilbert space structure is built in most conveniently by working instead of
the kernel of the fermionic projector with the local correlation operators which
relate the Hilbert space scalar product to the spin inner product by

(W|F(x)p)sc = =< (2)|p(x) ¢ - (5.88)

Using that the operator product F(z)F(y) has the same nontrivial eigenvalues
as the closed chain Ag, given by (5.78) (as we already observed in Section 5.7
after (5.47)), the causal action principle can also be formulated in terms of the local

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.119, on 23 Nov 2025 at 01:47:31, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.009
https://www.cambridge.org/core

120 5 A Brief Introduction to Causal Fermion Systems

correlation operators F'(z) with & € M. Moreover, it turned out that measure-
theoretic methods can be used to generalize the setting such as to allow for the
description of not only discrete, but also continuous spacetimes. In this formula-
tion, the sums over the discrete spacetime points are replaced by integrals with
respect to a measure p on M. This setting was first introduced in [43] when work-
ing out the existence theory. In this formulation, the only a priori structure of
spacetime is that of a measure space (M, u). The local correlation operators give
rise to a mapping

F:M->3F, z~— F(x), (5.89)

where F is the subset of finite rank operators on H which are symmetric and
(counting multiplicities) have at most n positive and at most n negative eigenvalues
(where n is introduced via the signature (n,n) of the indefinite inner product
in (5.88)). This analysis also revealed the significance of the trace constraint. As
the final step, instead of working with the measure u, the causal action can be
expressed in terms of the push-forward measure p = F,u, being a measure on F
(defined by p(Q) = u(F~1(2))). Therefore, it seems natural to leave out the
measure space (M, ) and to work instead directly with the measure p on F.

These considerations led to the general definition of causal fermion systems in
Section 5.4, where the physical system is described by a Hilbert space (3, (.|.)3¢)
and the measure p on F. The causal action principle takes the form as stated in
Section 5.6.

5.9 Underlying Physical Concepts

We now briefly explain a few physical concepts behind causal fermion systems and
the causal action principle. The aim is to convey the reader the correct physical
picture in a nontechnical way. Doing so already here makes it necessary to antici-
pate some ideas on a qualitative level which will be introduced more systematically
and thoroughly later in this book.

It is a general feature of causal fermion systems that the usual distinction
between the structure of spacetime itself (being modelled by Minkowski space
or a Lorentzian manifold) and structures in spacetime (like wave functions and
matter fields) ceases to exist. Instead, all these structures are described as a whole
by a single object: the measure p on F. Spacetime and all structures therein are
different manifestations of this one object. The dynamics of spacetime and of all
objects in spacetime are described in a unified and holistic manner by the causal
action principle. Clearly, in order to get a connection to the conventional descrip-
tion of physics, one still needs to construct the familiar physical objects from a
causal fermion system. Also, one needs to rewrite the dynamics as described by
the causal action principle in terms of these familiar physical objects. This study
is a main objective of this book. As already exemplified in Section 5.7 by the spin
spaces and physical wave functions, the strategy is to identify suitable inherent
structures in a causal fermion system, which then may be given suitable names.
This must be done carefully in such a way that these names convey the correct
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5.9 Underlying Physical Concepts 121

physical picture. Ultimately, the inherent structures serve the purpose of getting
a better understanding of the causal action principle. As we shall see, this will
be achieved by reformulating the EL equations of the causal action principle in
terms of the inherent structures. When this is done, the physical names of the
inherent structures will also be justified by showing that they agree with the
familiar physical objects in specific limiting cases and generalize these objects in
a sensible way.

In view of this unified description of all physical structures by a single math-
ematical object, it is difficult to describe the essence of causal fermion systems
using the familiar notions from physics. One simple way of understanding the
causal action principle is to focus on the structure of the physical wave functions
and the kernel of the fermionic projector. Clearly, the resulting picture is a bit
oversimplified, because it only captures part of the structures encoded in a causal
fermion system. Nevertheless, it conveys a good and the correct intuition of what
the causal action principle is about. We saw in Section 5.7 that a causal fermion
system gives rise to the family of physical wave functions (¢*), e (see (5.56)). The
kernel of the fermionic projector (5.58) is built up of all the physical wave func-
tions and thus describes the whole family. It gives rise to the closed chain (5.47),
which in turn determines the causal action and the constraints. In this way, the
causal action principle becomes a variational principle for the family of physical
wave functions. Thus the interaction described by the causal action principle can
be understood as a direct mutual interaction of all the physical wave functions.
In simple terms, the causal action principle aims at bringing the family of wave
functions into an “optimal” configuration. For such optimal configurations, the
family of wave functions gives rise to the spacetime structures as we know them:
the causal and metric structure, the bosonic fields, and all that.

The last step can be understood more concretely starting from Dirac’s hole
theory and the picture of the Dirac sea (for basics, see again Section 1.5). In our
approach, the Dirac sea is taken literally. Thus all the states of the Dirac sea cor-
respond to physical wave functions. All the information contained in these wave
functions induces spacetime with the familiar structures. As a simple example,
the bosonic potentials B are determined via the Dirac equation (5.69) from the
family of wave functions as described by ]3(95, y). Clearly, in order to make this
picture precise, one needs to verify that, in a certain limiting case, the kernel of
the fermionic projector corresponding to a minimizer of the causal action princi-
ple indeed satisfies a Dirac equation of the form (5.69) and thus gives rise to a
potential B. This will be one of the objectives of the later chapters in this book.

We now discuss which physical principles enter the approach, and how they
were incorporated. Causal fermion systems evolved from an attempt to combine
several physical principles in a coherent mathematical setting. As a result, these
principles appear in a specific way:

e The principle of causality: A causal fermion system gives rise to a causal
structure (see Definition 5.6.1). The causal action principle is compatible with
this notion of causality in the sense that the pairs of points with spacelike
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122 5 A Brief Introduction to Causal Fermion Systems

separation do not enter the EL equations. In simple terms, points with spacelike
separation do not interact.

e The local gauge principle: Already in the above discussion of how the
causal action principle came about, we mentioned that the Lagrangian is gauge
invariant in the sense that gauge phases drop out of the Lagrangian (see the
explanation after (5.76) in Section 5.8). When starting from a general causal
fermion system, local gauge invariance becomes apparent when representing
the physical wave functions in bases of the spin spaces. More precisely, choosing
a pseudo-orthonormal basis (¢q(Z))a=1,....dim s, Of Sz, a physical wave function
can be represented as

dim S,
> v (@) ealx) (5.90)
a=1

with component functions o',... 4™  The freedom in choosing the

basis (e,) is described by the group of unitary transformations with respect
to the indefinite spin inner product. This gives rise to the transformations

T) = Z U™ ()5 ep(x),
ﬁX:U )5 ¥7 (@)

with U € U(p, q). As the basis (e,) can be chosen independently at each space-
time point, one obtains local gauge transformations of the wave functions, where

(5.91)

the gauge group is determined to be the isometry group of the spin inner prod-
uct. The causal action is gauge invariant in the sense that it does not depend
on the choice of spinor bases.

e The Pauli exclusion principle is incorporated in a causal fermion system, as
can be seen in various ways. One formulation of the Pauli exclusion principle
states that every fermionic one-particle state can be occupied by at most one
particle. In this formulation, the Pauli exclusion principle is respected because
every wave function can either be represented in the form ¢* (the state is
occupied) with u € H or it cannot be represented as a physical wave function
(the state is not occupied). Via these two conditions, the fermionic projector
encodes for every state the occupation numbers 1 and 0, respectively, but it is
impossible to describe higher occupation numbers.

More technically, one may obtain the connection to the fermionic Fock space
formalism by choosing an orthonormal basis u1,...,us of H and forming the
f-particle Hartree—Fock state

U=y A AP (5.92)
Clearly, the choice of the orthonormal basis is unique only up to the unitary

transformations

!
w; = ;=Y Ujju; with U € U(f). (5.93)
j=1
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Due to the anti-symmetrization, this transformation changes the corresponding
Hartree—Fock state only by an irrelevant phase factor,

PN AP =det U Ut A - AU (5.94)

Thus the configuration of the physical wave functions can be described by a
fermionic multiparticle wave function. The Pauli exclusion principle becomes
apparent in the total anti-symmetrization of this wave function.

Clearly, the above Hartree-Fock state does not account for quantum entan-
glement. Indeed, the description of entanglement requires more general Fock
space constructions (this will be described in more detail in Chapter 22).

e The equivalence principle: Starting from a causal fermion system (3, F, p),
spacetime M is given as the support of the measure p. Thus spacetime is
a topological space (with the topology on M induced by the operator norm
on L(H)). In situations when spacetime has a smooth manifold structure, one
can describe spacetime by choosing coordinates. However, there is no distin-
guished coordinate systems, giving rise to the freedom of performing general
coordinate transformations. The causal action as well as all the constraints are
invariant under such transformations. In this sense, the equivalence principle is
implemented in the setting of causal fermion systems.

However, other physical principles are missing. For example, the principle of local-
ity is not included. Indeed, the causal action principle is nonlocal, and locality
is recovered only in the continuum limit. Moreover, our concept of causality is
quite different from causation (in the sense that the past determines the future)
or microlocality (stating that the observables of spacelike separated regions must
commute).
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124 5 A Brief Introduction to Causal Fermion Systems

5.10 A Summary of the Basic Concepts and Objects

In this section we summarize all important concepts of the preceding sections. You
may use this as a reference list for frequently used concepts and objects.

Basic concept Summary and Comments
Causal fermion A separable Hilbert space H, a natural number n € N|
system (H, F, p) the set F of symmetric linear operators on H with at

most n positive and n negative eigenvalues as well as a
measure p defined on a o-algebra on J forms a causal
fermion system.

Remarks:

e The structure of a causal fermion system provides a general framework for
describing generalized spacetimes. Concrete physical systems correspond to
specific choices of H, n and the measure p.

e H should be considered as the Hilbert space spanned by all one-particle wave
functions realized in our system (the physical wave functions).

e We are mainly interested in the case n = 2 (at most two positive and two
negative eigenvalues). This case allows for the description of Dirac spinors in
four-dimensional spacetimes.

Spacetime M By definition, we describe spacetime by the support of
the measure M := supp(p).
Remarks:

e All points x € M are linear operators on H. This fact implies that our spacetime
is endowed with more structures and contains additional information.

e In order to describe systems in Minkowski space, we identify spacetime
points x € M with corresponding points in Minkowski space A via a
mapping F* : M — M (for more details, see (5.33)).

The measure p The measure p in Definition 5.4.1 is the most important
object of the theory. It describes spacetime as well as all
objects therein.

Remarks:

e A lot of structure is encoded in the measure p. In particular, it describes the
behavior of spacetime on microscopic scales (Planck scale).

e In the example of causal fermion systems describing Minkowski space, the
measure is obtained as the push-forward of the Minkowski volume measure
dp = d*z under the local correlation map F¢, that is, we set p = F°pu.
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5.10 A Summary of the Basic Concepts and Objects 125

The causal action We define a Lagrangian £(x,y) for two spacetime points
x and y using the eigenvalues (A7¥);=1, 2y of the prod-
uct xy, which is an operator of rank at most 2n. The
Lagrangian is given by L(z,y) = - 227;:1(|/\fy\ -
[A7Y])?. Finally, the causal action is defined by taking
the double integral S(p) = [[5, 4 L(z,y)dp(z)dp(y).

Remarks:

e [t may happen that the rank of the operator xy is smaller than 2n. In this case,
some of the eigenvalues \7¥,... \J¥ are zero.

e The action depends nonlinearly on the measure p. Since p describes spacetime
and all objects therein, the action also depends on spacetime and on all these

object.
The causal action The causal action principle states that measures describ-
principle ing physical systems must be minimizers of the causal
action under variations of p, respecting the con-
straints (5.37), (5.38) and (5.39).
Remarks:

e The EL equations corresponding to the causal action principle are the physical
equations of the theory.
e By varying the measure p, we also vary spacetime as well as all structures

therein.

The physical wave Every vector u € J{ can represented in spacetime by the

functions physical wave function ¢¥* defined by ¥%(x) = m,u € Sy,
where 7, denotes the orthogonal projection in H onto
the subspace z(H) C H.

The kernel of the For any spacetime point operator « € M, we define the

fermionic projector spin space S, as its image S, := x(J). This gives rise
to a mapping between spin spaces at different spacetime
points =,y € M by P(z,y) := mzyls, : Sy — Sz, The
mapping P(z,y) is the kernel of the fermionic projector.
It can be expressed in terms of all physical wave func-
tions by P(z,y) = — >, |¢% (x)==<¢% (y)|, where the
(e;) form an orthonormal basis of H.

Remarks:

e The kernel of the fermionic projector gives relations between spacetime points.
In particular, it encodes the causal structure and the geometry of spacetime.
e In order to compute the Lagrangian, it is useful to form the closed chain

A(z,y) == P(x,y)P(y, z).
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126 5 A Brief Introduction to Causal Fermion Systems

5.11 Exercises

Exercise 5.1 This exercise is devoted to the study of the variational princi-
ple (5.18) of the motivating example.

(a) Assume that the operators Fi,...,F are a minimizer of the action (5.18)
under variations of F; € F with F according to (5.16). Given i € {1,... f},
represent F; as

Fo= (] with v € 3. (5.95)
Vary the vector 1; to derive the following EL equations,
f
> Tx(FjF;) Fjah; =0. (5.96)
ij=1
(b) Deduce that all the matrices F; must vanish. Hint: It is useful to first show
that
! 2
> Te(FF)|]"=0. (5.97)
ij=1
(¢) In order to get nontrivial solutions, one can, for example, impose the
constraint

!
> T (FP) =1. (5.98)
i=1

Derive the corresponding EL equations.
(d) The constraint (5.97) also makes it possible to prove existence of minimizer
with a compactness argument. Work out this existence proof in detail.

Exercise 5.2 (A causal fermion system on ¢3) Let H = ¢5 be the Hilbert space
of square-summable complex-valued sequences, equipped with the scalar product

oo

(ulv) = Zal Vi, U= (Ui)ien, U = (Vi)ieN- (5.99)

=1

For any k € N, let 2, € L(H) be the operator defined by
(Trw)p = gy, (TRU)pg1 = ug, (zpu); =0 fori & {k,k+ 1} (5.100)

In other words,
xkuz( 0,...,O,uk+1,uk,0,...) (5.101)
——
k — 1 entries

Finally, let p the counting measure on N (i.e., u(X) = | X| equals the cardinality
of X CN.)

(a) Show that every operator xj, has rank two, is symmetric, and has one positive
and one negative eigenvalue. Make yourself familiar with the concept that
every operator is a point in F for spin dimension n = 1.

(b) Let FF : N — JF be the mapping which to every k associates the corre-
sponding operator x. Show that the push-forward measure p = F, p defined
by p(Q) := u(F~1(Q2)) defines a measure on F. Show that this measure can
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also be characterized by
p(Q) = {k e N |z € Q}. (5.102)

(¢) Show that (H,F,p) is a causal fermion system of spin dimension one.

(d) Show that the support of p consists precisely of all the operators xy. What
is spacetime M7 What is the causal structure on M? What is the resulting
causal action?

Exercise 5.3 (Boundedness of operators of finite rank) Let (3, {.].}5¢) be a
Hilbert space and (V ||.]|) a normed space of finite dimension n. Moreover, let A :
H — V be a linear mapping.

(a) Show that the kernel of A is a closed subspace of H. Show that its orthogonal
complement (ker A)* has dimension at most n.

(b) Derive a block matrix representation of A on H = (ker A) @ (ker A)*.

(c¢) Deduce that A is bounded, that is, that there is a constant ¢ > 0 with ||Au|| <
¢ |Jul|5¢ for all u € H.

Exercise 5.4 (On the trace constraint) This exercise shows that the trace
constraint ensures that the action is nonzero. Let (3, F, p) be a causal fermion
system of spin dimension n.

(a) Assume that tr(z) # 0. Show that L£(z,x) > 0. (For a quantitative statement
of this fact in the setting of discrete spacetimes, see [42, Proposition 4.3].)
(b) Assume that [ tr(z)dp # 0. Show that S(p) > 0.

Exercise 5.5 (On the spectrum of the closed chain) This exercise is devoted to
analyzing general properties of the spectrum of the closed chain.

(a) We let = and y be symmetric operators of finite rank on a Hilbert
space (H,{(.|.)3¢). Show that there is a finite-dimensional subspace I C H
on which both x and y are invariant. By choosing an orthonormal basis of
and restricting the operators to I, we may represent both = and y by Her-
mitian matrices. Therefore, the remainder of this exercise is formulated for
simplicity in terms of Hermitian matrices.

(b) Show that for any matrix Z, the characteristic polynomials of Z and of its
adjoint Z* (being the transposed complex conjugate matrix) are related by
complex conjugation, that is, det(Z* — A1) = det(Z — A 1).

(¢) Let X and Y be symmetric matrices. Show that the characteristic polynomials
of the matrices XY and Y X coincide.

(d) Combine (b) and (c) to conclude that the characteristic polynomial of XY
has real coefficients, that is, det(XY — A1) = det(XY — A 1). Infer that the
spectrum of the matrix product XY is symmetric about the real axis, that
is,

det(XY — A1) =0 = det(XY —A1)=0. (5.103)

(e) For the closed chain (5.47), the mathematical setting is somewhat differ-
ent, because A,y is a symmetric operator on the indefinite inner product
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128 5 A Brief Introduction to Causal Fermion Systems

space (Sz, <.|->4). On the other hand, we saw after (5.47) that A, is isospec-
tral to zy. Indeed, the symmetry result (5.103) can be used to prove a
corresponding statement for A,

det(Ayy — A1) =0 = det(Ay, —A1)=0. (5.104)

This result is well known in the theory of indefinite inner product spaces
(see, e.g., the textbooks [16, 94] or [42, Section 3]). In order to derive it
from (5.103), one can proceed as follows: First, represent the indefinite inner
product in the form <.|.>= = (.|S x), where (.|.) is a scalar product and S is an
invertible operator which is symmetric (with respect to this scalar product).
Next, show that the operator B := A,,S is symmetric (again with respect
to this scalar product). Finally, write the closed chain as A,, = BS™! and
apply (5.103).

Exercise 5.6 (Regular spacetime points) Let z € F have p(z) < n negative
and ¢(z) < n positive eigenvalues. The pair sign(z) := (p(x), g(x)) is referred to
as the signature of x. The operator x is said to be regular if sign(z) = (n,n). The
goal of this exercise is to show that the set F'°¢ of regular points is open in F. Let
us define the positive and negative components of x as the operators
+

vy = me 2] = Va2 (5.105)
From the functional calculus, it follows that z |z| = |z|x. Prove the following
statements.

(a) Let {e;,i=1,...,m} be an orthogonal set. Show that any vector set {h;, i =

1,...,m} which fulfills the following condition is linearly independent,
inf{|le;|| ,i=1,..., )
les — b < it Zm " fralli=1,..m. (5.106)
(b) For every z € F,
z(imzy) Cimezy and zpz_ =0. (5.107)

Moreover, &|im»_ and |im « . are negative and positive definite, respectively.
(c) Let #p € F. Then, there is an orthonormal set {e; | i = 1...dim Sy} of
eigenvectors of xg such that

(eilzpe;) <0 forall i < p(xg),

: (5.108)
(eilwoe;) >0 for all p(xo) <i < p(xo) + q(wo).
(d) The following functions are continuous,
_e i <
fiiBo(xo)da e fi(z) =4 "€ i < p(o) (5.109)
zyei p(xo) <i<p(zo)+ q(wo) -

Hint: You can use the general inequality |||A| — |B|| < ||A? — B?||
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(e) Thereisar > 0such that p(x) > p(xo) and g(z) > q(xg) for every x € B, (xq).
Hint: Use the statements above.
(f) Conclude that F*°8 is an open subset of .

Exercise 5.7 (A causal causal fermion system on €y — part 2) We return to the
example of Exercise 5.2. This time we equip it with a Krein structure.

(a) For any k € N, construct the spin space S, and its spin scalar product.

(b) Given a vector u € H, what is the corresponding wave function "7 What is
the Krein inner product < .,. >7

(¢c) What is the topology on the Krein space X7 Does the wave evaluation oper-
ator U : u — " give rise to a well-defined and continuous mapping ¥ : H —
X? If yes, is it an embedding? Is it surjective?

(d) Repeat part (c) of this exercise for the causal fermion system obtained if the
operators z are multiplied by k, that is,

xpw:=(0,...,0,kugs1,kug0,...). (5.110)

Exercise 5.8 (Time direction) The ability to distinguish between past
and future can be described in mathematical terms by the existence of an
anti-symmetric functional 7 : M x M — R. One then says that

{ y lies in the future of x if T(x,y) >0 (5.111)

y lies in the past of x if T(x,y) <0.

Can you think of simple nontrivial examples of such a functional which involve only
products and linear combinations of the spacetime operators and the orthogonal
projections on the corresponding spin spaces? Hint: One possible functional is

T(x,y) :=tr(ym —xmy), (5.112)
this is considered further in [45, Exercise 1.22].

Exercise 5.9 This exercise is devoted to clarifying the connection between the
characteristic polynomial and traces of powers of a matrix. We let A be an N x
N-matrix (not necessarily Hermitian) and denote the zeros of its characteristic
polynomials counting multiplicities by Aq,...,Axy € C, that is,

det(AT —A) = (A= A1) - (A— Ay) - (5.113)

Moreover, we denote the coefficients of the characteristic polynomial by ay, that

is,

det(A\L — A) = AN +a AV ay . (5.114)
(a) Show that the coefficients are symmetric polynomials in the eigenvalues of

the form
an=con >, [ (5.115)

Bc{1,....N} keB
with #B = n
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130 5 A Brief Introduction to Causal Fermion Systems

where the sum goes over all subsets of {1,... N} with n elements, and ¢,, are
combinatorial prefactors. Compute the c,.
(b) Show that each coefficient a,, can be written in the form

an = dp Te(A™) 4+ dy p—q Tr(A) Tr(A™1) (5.116)

4 dy1 2 Tr(A) Tr(A) Tr(A" %) + - - (5.117)

=> > djy....5 Tr (A7) - Tr (A7) (5.118)
k=1 1<1 <<

with j1 + -+ jx =n

with suitable combinatorial factors d,,dy n—1,.... Hint: This formula can
be derived in various ways. One method is to proceed inductively in n.
Alternatively, one can use a dimensional argument.

Exercise 5.10 (Embedding of Sy into Sp(y)) The goal of this exercise is to
explain how the fibers of the spinor bundle S are related to the spin spaces S,
of the corresponding causal fermion system. In order to keep the setting as simple
as possible, we let (, g) be Minkowski space and H a finite-dimensional subspace
of the Dirac solution space H,,, consisting of smooth wave functions of spatially
compact support, that is,

Hc o, SHu)nH,, finite-dimensional . (5.119)
We again let F'(x) be the local correlation operators, that is,
(Y|F(x)p) = —=<p(x)|p(x) - for all v, ¢ € H (5.120)

(since H consists of smooth functions, we may leave out the regularization oper-
ators). Defining the measure again by dp = F.(d*z), we again obtain a causal
fermion system of spin dimension n = 2. We next introduce the evaluation map e,
by
ex  H— S, ex () = Y(x) . (5.121)
Restricting the evaluation mapping to the spin space Sp(;) at the spacetime
point F(z) (defined as in (5.43) as the image of the operator F(x)), we obtain
a mapping
e$|sp(z) : SF(:U) — SwJ% . (5122)

(a) Show that e;|s,,, is an isometric embedding.
(b) Show that for all uw € 3 and = € A,

ew‘SF@) (w“(F(aj))) =u(z). (5.123)
Exercise 5.11 (Identification of S/l with SM ) In the setting of the previous

exercise, we now make two additional assumptions:

(i) The mapping F : # — F is injective and its image is closed in .
(ii) The resulting causal fermion system is regular in the sense that for all x € A,
the operator F'(x) has rank 2n.
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Using the results of the previous exercise, explain how the following objects can
be identified:

(a) = with F(x)

(b) M with M

(c) The spinor space S, with the corresponding spin space Sp ()
(d) w € H with its corresponding physical wave function ¢*

Exercise 5.12  (The space C°(M,SM)) A wave function 1 is defined a mapping
from M to H such that ¢(z) € S, for all z € M. It is most convenient to define
continuity of a wave function by the requirement that for all x € M and for
every € > 0 there is § > 0 such that

H\/MdJ(y) - \/mw(x)H% <e forally € M with ||y —z|| <d§. (5.124)

Show that, using this definition, every physical wave function is continuous. Thus,
denoting the space of continuous wave functions by C°(M,SM), we obtain an
embedding

H — CO(M,SM) . (5.125)

Hint: You may use the inequality

1 1
|Vl = izl < lly =2l lly + 2 (5.126)

Exercise 5.13 (A causal fermion system in R®) We choose 3 = C? with the
canonical scalar product. Moreover, we choose let M = S? C R? and du the
Lebesgue measure on . Consider the mapping

3
F:t —LFH), F(p)=2) po*+1, (5.127)
a=1
where o® are the three Pauli matrices (1.27).
(a) Show that for every p € 52,
tr (F(p)) =2, tr (F(p)?) = 10. (5.128)

Conclude that the eigenvalues of F(p) are equal to 1 4 2.

(b) We introduce the measure p as the push-forward measure p = F.u (ie.,
p(Q) :== pu(F~1(2))). Show that (3, T, p) is a causal fermion system of spin
dimension one.

(c) Show that the support of p coincides with the image of F'. Show that it is
homeomorphic to S2.

This example is also referred to as the Dirac sphere; this and other similar examples
can be found in [43, Examples 2.8 and 2.9] or [56, Example 2.2].

Exercise 5.14 (The regularized fermionic projector in Minkowski space) The
goal of this exercise is to compute the kernel of the fermionic projector in the
Minkowski vacuum for the simplest regularization, the ie-regularization (5.30).
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132 5 A Brief Introduction to Causal Fermion Systems

(a) Use the identifications of Exercises 5.10 and 5.11 to show that (5.58) holds in
the example of Dirac wave functions in Minkowski space (as constructed in
Section 5.5) but now with Dirac wave functions and the spin inner product
thereon.

(b) More specifically, we now choose H = H . as the subspace of all negative-
frequency solutions of the Dirac equation. Moreover, we choose the ie-
regularization (5.30). For clarity, we denote the corresponding kernel of the
fermionic projector by P%(z,y). Show that

Pe(z,y) = / Ak (F+m) 6(k> — m2) O(—k°) e F@—v) =k (5.129)
re (27)*
Hint: Work in a suitable orthonormal basis of the Hilbert space. Without
regularization, the computation can be found in [45, Lemma 1.2.8].

(c) Show that P*(z,y) can be written as $° + 3% with v5, 3% smooth functions
of E =y —ux.

(d) Compute P¢(z,x). Is this matrix invertible? How does it scale in ¢? Why does
this result show that the resulting causal fermion system is regular? Hint: The
details can also be found in [45, Section 2.5]. For an alternative way of proving
regularity, see Exercise 5.17.

(e) For & spacelike or timelike, that is, away from the lightcone, the limit € \, 0
of (5.129) is well defined. More precisely, it can be shown that v; — a¢;
and 8¢ — [ pointwise, for «, 8 smooth complex functions. Find smooth real
functions a, b such that

lim A7, = af +b. (5.130)

Exercise 5.15 (Correspondence of the causal structure in Minkowski space I)

Let z,y € Al be timelike separated vectors and assume that £ := y — x is
normalized to £2 = 1. As explained in Exercise 5.14, the limit £ \, 0 of the closed
chain A3 takes the form A :=a¢ + b. Consider the matrices

Fy:= % (1+¢) eL(CY. (5.131)

Prove the following statements.

(a) The matrices Fy have rank two and map to eigenspaces of A. What are the
corresponding eigenvalues? Conclude that the points z and y are timelike
separated in the sense of Definition 5.6.1.

(b) The matrices Fy are idempotent and symmetric with respect to the spin inner
product <.|.>.

(¢) The image of the matrices Fy is positive or negative definite (again with
respect to the spin inner product).

(d) The image of F is orthogonal to that of F_ (again with respect to the spin
inner product).

(e) The eigenvalues of A are strictly positive. Hint: Use how the functions a and b
came up in (5.130).
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The result of (a)—(d) can be summarized by saying that the Fy are the spectral
projection operators of A. We remark that the findings also mean that the x and y
are even properly timelike separated as introduced in [45, Definition 1.1.6].

Exercise 5.16 (Correspondence of the causal structure in Minkowski space II)
We now let x,y € A be spacelike separated vectors and assume that £ := y —
is normalized to £2 = —1. Consider again the matrix A := a ¢ + b of Exercise 5.15
and set

Fy = % (1+igf) e L(CY). (5.132)

(a) The matrices Fy have rank two and map to eigenspaces of A. What are the
corresponding eigenvalues? Conclude that the points x and y are spacelike
separated in the sense of Definition 5.6.1.

(b) The matrices Fy are idempotent and FF = F_.

(¢) The image of the matrices Fy is null (in other words, it is a lightlike subspace
of the spinor space).

These findings illustrate the more general statement that symmetric operators on
an indefinite inner product space may have complex eigenvalues, in which case
they form complex conjugate pairs.

Exercise 5.17 (Spin spaces for the regularized Dirac sea vacuum) We consider
the causal fermion system constructed in Section 5.5, where we choose H = J(,,
as the space of all negative-energy solutions of the Dirac equation. Moreover, we
choose the ie-regularization (5.30). For clarity, we denote the corresponding kernel
of the fermionic projector by P®(x,y). This causal fermion system is also referred
to as the regularized Dirac sea vacuum.

(a) Let Xo denote the Cauchy surface at time ¢ = 0. Show that, for any z €
and y € C*,

(i —m)P(-,z)x =0 and P*(-,2)x|y, €S(R*CY). (5.133)

Conclude that P¢(-,z)x € H,, N C>=(R*, C*).
(b) Convince yourself that

R.(P(-,x)x) = P*(-,x)x. (5.134)

(c) Let {er,...,es} denote the canonical basis of C*. Using Exercise 5.14 (b),

show that the wave functions P°(-,z)e, for p = 1,2,3,4 are linearly
independent.
(d) Let S, := F*(x)(H,,) endowed with <u,v>, := —(u|F¢(z)v) be the spin

space at x € M. Show that the following mapping is an isometry of indefinite
inner products (i.e., injective and product preserving),

®,: S, > u— Rou(z) € CL (5.135)

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.119, on 23 Nov 2025 at 01:47:31, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.009
https://www.cambridge.org/core

134 5 A Brief Introduction to Causal Fermion Systems

Conclude that the causal fermion system is regular at x € J, that is,
dim S, = 4, if and only if there exist vectors u, € H,,, for p = 1,2,3,4,
such that the R.u,(z) € C* are linearly independent.

(e) Conclude that the causal fermion system is regular at every spacetime point.
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