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Abstract

Background. Identifying key areas of brain dysfunction in mental illness is critical for devel-
oping precision diagnosis and treatment. This study aimed to develop region-specific brain
aging trajectory prediction models using multimodal magnetic resonance imaging (MRI) to
identify similarities and differences in abnormal aging between bipolar disorder (BD) andmajor
depressive disorder (MDD) and pinpoint key brain regions of structural and functional change
specific to each disorder.
Methods. Neuroimaging data from 340 healthy controls, 110 BD participants, and 68 MDD
participants were included from the Taiwan Aging and Mental Illness cohort. We constructed
228 models using T1-weighted MRI, resting-state functional MRI, and diffusion tensor imaging
data. Gaussian process regression was used to trainmodels for estimating brain aging trajectories
using structural and functional maps across various brain regions.
Results. Our models demonstrated robust performance, revealing accelerated aging in 66 gray
matter regions in BD and 67 inMDD, with 13 regions common to both disorders. The BD group
showed accelerated aging in 17 regions on functional maps, whereas no such regions were found
in MDD. Fractional anisotropy analysis identified 43 aging white matter tracts in BD and 39 in
MDD, with 16 tracts common to both disorders. Importantly, there were also unique brain
regions with accelerated aging specific to each disorder.
Conclusions. These findings highlight the potential of brain aging trajectories as biomarkers for
BD and MDD, offering insights into distinct and overlapping neuroanatomical changes.
Incorporating region-specific changes in brain structure and function over time could enhance
the understanding and treatment of mental illness.

Introduction

Identifying key areas of brain dysfunction in mental illness is critical for developing precision
diagnosis and treatment in psychiatry (Zhang, Braun, Tost, & Bassett, 2020). Despite numer-
ous efforts, the neuropathological mechanisms behindmental illness remain elusive. From the
clinical perspective, observing and quantifying brain abnormalities may help develop new,
noninvasive treatment strategies, such as personalized repetitive transcranial magnetic stimu-
lation (Gogulski et al., 2023) or noninvasive deep brain stimulation (Vassiliadis et al., 2024;
Violante et al., 2023). The challenge lies in reliably identifying crucial brain regions as the
target for treatment. Traditional cross-sectional approaches comparing healthy participants
with patients are limited (Cornblath, Lydon-Staley, & Bassett, 2019), as they do not consider
changes in brain structure and function over time in healthy aging or how these trends may be
altered inmental illness through progressive illness (Shen, Tsai, Lin, & Yang, 2023). Therefore,
statistical or machine learning approaches that classify mental illness versus healthy states
may be less helpful due to their inability to account for dynamic changes in mental illness
(Cornblath et al., 2019).

Introducing time variables, such as biological age or the duration of illness, allows for
observing dynamic changes in brain structure and function throughout the illness. We propose
that identifying key brain abnormalities in mental illness might be facilitated by a region-specific
brain age prediction approach (Zhu, Tsai, Lin, Lee, & Yang, 2023; Zhu, Wu, Tsai, Lin, & Yang,
2023). Brain age prediction uses machine learning to model the trajectory of changes in brain
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structure and function across the lifespan in a healthy cohort and
employs this model to predict deviations of brain age (or brain age
gap, [BAG]) in neuropsychiatric disorders. However, traditional
brain age prediction considers only whole-brain features and pro-
vides less insight into regional changes in structure and function
(Franke&Gaser, 2019; Franke, Luders,May,Wilke, &Gaser, 2012).
Previously, we have developed a region-specific approach to esti-
mate the trajectory of brain structure and function in individual
brain regions, thereby identifying key brain abnormalities in
schizophrenia throughout the course of the illness (Zhu, Tsai,
et al., 2023; Zhu, Wu, et al., 2023).

Bipolar disorder (BD) and major depressive disorder (MDD)
are affective disorders also known to exhibit structural and func-
tional brain changes over time. Studies indicated that patients
with BD experienced significant reductions in gray matter dens-
ity in regions such as the hippocampus and cerebellum, linked to
cognitive deterioration and mood episodes (Moorhead et al.,
2007). However, meta-analyses on BD and brain aging have
yielded inconsistent results (Ballester et al., 2021). MDD is asso-
ciated with structural abnormalities in brain regions such as the
hippocampus and frontal cortex, which can serve as predictive
biomarkers for treatment response (Kang & Cho, 2020). Yet,
evidence on accelerated brain aging in MDD is also inconsistent
(Ballester et al., 2022; Bashyam et al., 2020; Christman et al.,
2020). Previous studies found significant brain age differences in
MDD using structural covariance networks and functional mag-
netic resonance imaging (fMRI), linking older brain age to
increased impulsivity and depression severity (Dunlop, Victoria,
Downar, Gunning, & Liston, 2021; Kuo et al., 2020). Despite these
findings, no current study has applied a region-specific brain age
prediction approach to examine regional changes in brain struc-
ture and function in affective disorders throughout the course of
the illness. Such an approach may provide deeper insights into
their neuropathology and the similarities or distinctions between
BD and MDD.

We hypothesized that affective disorders cause structural and
functional brain abnormalities, altering brain aging trajectories. To
understand their impact, region-specific brain age prediction
models were constructed using multiple neuroimaging modalities.
Therefore, this study aimed to (1) develop multimodal region-
specific brain age prediction models for different brain regions
using T1-weighted MRI, resting-state fMRI, and diffusion tensor
imaging (DTI), (2) identify similarities and differences in abnormal
aging between BD and MDD across different brain regions, and
(3) identify key brain regions of structural and functional change
specifically for BD or MDD.

Methods

Participants

Participants in this study were sourced from the Taiwan Aging and
Mental Illness (TAMI) cohort (Shen et al., 2023; Yang et al., 2015;
Yang, Tsai, Lin, Peng, & Huang, 2018; Zhu, Tsai, et al., 2023; Zhu,
Wu, et al., 2023). We included 230 healthy controls (HCs) aged
20 to 84 for the training dataset and validated the results with an
independent test dataset of 110 HCs (see Supplementary Methods
and Supplementary Figure S1 for further details). This study also
included 110 individuals with BD (i.e., bipolar I disorder) as well as
68 individuals with MDD (i.e., unipolar depression) from the
TAMI cohort. The diagnosis of mental illness was based on the
Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition, Text Revision. To ensure diagnostic reliability, all diag-
noses were further confirmed using the Mini-International Neuro-
psychiatric Interview, a structured diagnostic interview (Sheehan
et al., 1998). Detailed exclusion criteria and clinical assessments are
provided in the Supplementary Material. Two control groups of
equal size were randomly selected from the independent test dataset
for subsequent comparison based on the sample size and sex ratio of
the BD andMDD groups. Demographic and clinical characteristics
of participants are shown in Table 1. The study was conducted in
accordance with the Declaration of Helsinki, and the protocol was
approved by the institutional review board of Taipei Veterans
General Hospital, Taiwan (2023-12-003A). Obtaining informed
consent was exempted by the Institutional Review Board because
the data were deidentified in the TAMI cohort.

Image acquisition and preprocessing

The MRI data of the participants were acquired using a 3T MRI
scanner (SiemensMagnetom Tim Trio, Erlangen, Germany) with
a 12-channel head coil at National Yang Ming Chiao Tung
University. The scanning protocols were consistent with those
used in our previous studies (Shen et al., 2023; Zhu, Tsai, et al.,
2023; Zhu, Wu, et al., 2023). The Supplementary Material pro-
vides additional information on the scanning protocols used
for T1-weighted MRI, resting-state fMRI, and DTI. Briefly, Stat-
istical Parametric Mapping 12 and the Data Processing & Ana-
lysis for Brain Imaging toolbox (Yan, Wang, Zuo, & Zang, 2016)
were used to preprocess the raw T1-weighted MRI and raw
resting-state fMRI data for each participant, operating within
MATLAB R2022a (MathWorks, Natick, MA, USA). The DTI
data were preprocessed using the FMRIB Software Library ver-
sion 6.0 (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,
2012). More information can be found in Figure 1a and the
Supplementary Material.

Structural and functional brain maps for region-specific brain
age trajectory models

This study used a systematic approach to identify key features
represented by voxels that exhibit the strongest correlations with
chronological age across different brain regions (Figure 1b). We
chose to use graymatter intensity, the standard deviation of resting-
state fMRI signals, and fractional anisotropy at the voxel level as
features to represent the structural and functional maps of the
brain. In particular, the standard deviation of resting-state fMRI
signals represented the variability of the hemodynamic response to
neuronal activity, which can be an intuitive indicator of brain
activation. There is evidence that alterations in the variability of
brain signals have been observed in healthy aging (Xie et al., 2020)
and patients with mental illness (Li et al., 2019; Sheng et al., 2021;
Xie et al., 2018).

Next, we applied the Automated Anatomical Labeling (Tzourio-
Mazoyer et al., 2002) and JHU-ICBM-Labels-1mmatlas (Hua et al.,
2008; Wakana et al., 2007) to parcellate gray matter and white
matter into 90 regions and 48 tracts, respectively. Then, we con-
structed corresponding brain aging trajectory models using voxels
within a given brain region as features. In total, we constructed
228 brain aging trajectory models, including 90 for gray matter,
90 for standard deviation, and 48 for fractional anisotropy maps.
The detailed steps of feature selection are described in our previous
studies (Zhu et al., 2022; Zhu, Wu, et al., 2023) and are provided in
the Supplementary Material.
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Brain aging trajectory models

Weused a Gaussian process regression (GPR) algorithm to train 228
models for estimating brain aging trajectories. GPR is known for its
effectiveness in handling complex datasets and has been successful in
previous studies (Hope, Seghier, Leff, & Price, 2013; Macke, Ger-
winn,White, Kaschube, & Bethge, 2011;Wassermann, Bloy, Kanter-
akis, Verma, & Deriche, 2010; Ziegler, Ridgway, Dahnke, Gaser, &
Initiative, 2014). The models were constructed using voxel features
within 90 gray matter, 90 standard deviation, and 48 fractional
anisotropy maps from the training dataset. To ensure the models’
generalizability, a fivefold cross-validation method was imple-
mented. The models were also tested on an independent test dataset
to evaluate their reproducibility and stability and to predict the brain
aging trajectory of all participants. A brain age correction procedure
was used to correct potential bias in predicting brain aging trajectory,
such as underestimation in older participants and overestimation in
younger participants (de Lange & Cole, 2020). We applied the brain
age correction procedure as outlined in a previous study (Beck et al.,
2022; de Lange & Cole, 2020). First, we established a linear model to
describe the relationship between brain age and chronological age
using the following equation:

Brain age = α× chronological age + β,

where α represents the slope and β represents the intercept. Given
that initial brain age estimates can exhibit systematic bias, we
applied a correction to improve its accuracy:

Corrected brainage¼ brain ageþ chronological age½
� α× chronological ageþβð Þ�:

Furthermore, the BAG for a given brain region was calculated as the
difference between the corrected region-specific brain age and the
chronological age (Figure 1c).

Statistical analysis

The performances of region-specific brain aging trajectory models
were evaluated by calculating the mean absolute error (MAE) and
Pearson’s correlation coefficient between the corrected region-
specific brain age and the chronological age.

Analysis of covariance (ANCOVA) was employed to test the
BAG differences between the BD and control groups, as well as
between theMDD and control groups, using chronological age, sex,
mini-mental state examination (MMSE) scores, and years of edu-
cation as covariates to control for potential confounding variables
(Figure 1d). In this study, the brain age correction procedure
incorporated chronological age into the formula, further reducing
variance and MAE while strengthening the correlation between
corrected brain age and chronological age. Based on previous
research (de Lange & Cole, 2020; Le et al., 2018), we conducted
ANCOVA analyses with chronological age as a covariate to exam-
ine differences in BAG, aiming to minimize potential age depend-
ence in our findings. The false discovery rate (FDR) method was
applied to address multiple comparisons (Benjamini & Yekutieli,
2001), with an adjusted P value threshold set at 0.05. Additionally,
partial η2 values were calculated to measure the effect size, provid-
ing insight into the magnitude of the observed differences in the
gray matter volume, standard deviation of resting-state fMRI, and
fractional anisotropy of white matter tracts between patients with
affective disorders and control subjects. All analyses were per-
formed using MATLAB 2023b.

Partial correlation analysis was performed on brain regions
exhibiting accelerated aging to examine the association between
the BAG and clinical factors (i.e. the Young Mania Rating Scale for
the BD group and theHamilton Depression Rating Scale, Hamilton
Anxiety Rating Scale, MMSE, and durations of illness for both the
BD and MDD groups) while controlling for chronological age
and sex.

Table 1. Demographic and clinical characteristics of the BD and MDD groups, along with sex- and age-matched healthy controls

Characteristics
BD group
(n = 110)

HC group
(n = 110)

Statistic
(t or χ2) P value

MDD group
(n = 68)

HC group
(n = 68)

Statistic
(t or χ2) P value

Age, year 49.35 ± 12.77 49.13 ± 12.68 0.13 0.90a 49.04 ± 10.36 48.97 ± 10.06 0.04 0.97a

Sex

Male, n (%) 38 (34.5%) 38 (34.5%) 0.00 1.00b 22 (32.4%) 22 (32.4%) 0.00 1.00b

Female, n (%) 72 (65.5%) 72 (65.5%) 46 (67.6%) 46 (67.6%)

Years of education 12.65 ± 3.66 15.51 ± 4.20 �5.40 <0.001a 12.51 ± 3.71 15.38 ± 4.37 �4.11 <0.001a

MMSE 26.94 ± 3.35 28.75 ± 1.25 �5.30 <0.001a 26.96 ± 3.05 28.65 ± 1.28 �4.21 <0.001a

Duration of illness, year 20.91 ± 12.80c 7.26 ± 8.35g

YMRS 3.29 ± 4.36d – – – – – – –

HAM-D–21 5.49 ± 5.20e – – – 10.75 ± 7.06h – – –

HAM-A 4.96 ± 4.99f – – – 8.64 ± 6.18i – – –

Note: BD, bipolar disorder; HAM-A, Hamilton Anxiety Rating Scale; HAM-D-21, Hamilton Depression Rating Scale; HC, healthy control; MDD, major depressive disorder; MMSE, Mini-Mental State
Examination; TAMI, Taiwan Aging and Mental Illness; YMRS, Young Mania Rating Scale.
aIndependent t test, significance level = 0.05.
b χ2 test, significance level = 0.05.
cDuration of illness data were available for only 92 participants with BD in the TAMI cohort.
dOnly 102 participants with BD had YMRS scores in the TAMI cohort.
eOnly 108 participants with BD had HAM-D-21 scores in the TAMI cohort.
fOnly 97 participants with BD had HAM-A scores in the TAMI cohort.
gDuration of illness data were available for only 38 participants with MDD in the TAMI cohort.
hOnly 67 participants with MDD had HAM-D-21 scores in the TAMI cohort.
iOnly 64 participants with MDD had HAM-A scores in the TAMI cohort.
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Figure 1. Flow of data preprocessing and construction of the brain aging trajectory models. (a) Subplot a illustrates the neuroimaging preprocessing pipeline used for T1-weighted
MRI, resting-state fMRI, and DTI. Images were preprocessed using DPABI, SPM12, and FSL. AAL and JHU-ICBM-Labels-1 mm atlases were applied for image segmentation, resulting
in 90 gray matter, 90 standard deviation, and 48 fractional anisotropy maps for further analysis. (b) Pearson’s correlation coefficient was calculated between voxels and
chronological age for 70% of the participants randomly selected from the training dataset. To ensure robustness, we repeated this process 1,000 times. We identified key voxels by
selecting the top 50% of voxels with the highest correlation coefficient and made intersections across these iterations. We performed this identification process 100 times to
generate 100 sets of key voxels. Each voxel selected from these 100 setswas then used as a key feature formodel training. (c) TheGaussian process regression algorithmwith fivefold
cross-validation was utilized to train 228 brain age prediction models. Model performance was evaluated by calculating MAEs and Pearson’s correlation coefficient between
corrected brain age and chronological age. The trainedmodelswere subsequently applied to the test dataset (n = 110) as well as datasets from individuals with BD (n = 110) andMDD
(n = 68) to predict brain age and calculate BAG. (d) Finally, we conducted an ANCOVA to test the BAG differences between individuals with BD and MDD compared to age- and sex-
matched healthy controls across different brain regions. Note: AAL, automated anatomical labeling; BD, bipolar disorder; BAG, brain age gap; DTI, diffusion tensor imaging; DPABI,
Data Processing & Analysis for Brain Imaging; FA, fractional anisotropy; FSL, FMRIB Software Library; GM, gray matter; HC, healthy control; MAE, mean absolute error; MDD, major
depressive disorder; rs-fMRI, resting-state functional MRI; SD, standard deviation; SPM, Statistical Parametric Mapping; T1w MRI, T1-weighted MRI.
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Results

Performance of brain aging trajectory models

The performance of models for gray matter, standard deviation, and
fractional anisotropymapsdemonstrated consistentMAEs and robust
correlations before and after bias correction across different gray
matter regions and white matter tracts. Detailed results for the per-
formance of each model can be found in the Supplementary Material
(Supplementary Results and Supplementary Tables S1 to S3).

BAG differences in gray matter maps between BD/MDD and HC
groups

For the 90models of the graymatter maps, 66 brain regions showed
significant accelerated aging (i.e., reduction in gray matter volume)
in the BD group (Figure 2a). The top 20 regions that exhibited the
most abnormal acceleration in aging included the bilateral superior
frontal gyrus (dorsolateral), right inferior frontal gyrus (opercular
part), right rolandic operculum, left supplementary motor area, left
olfactory cortex, left superior frontal gyrus (medial), bilateral super-
ior frontal gyrus (medial orbital), right gyrus rectus, left insula, left
hippocampus, left amygdala, right superior parietal gyrus, bilateral
caudate nucleus, bilateral thalamus, left Heschl’s gyrus, and the left
temporal pole (superior temporal gyrus). Detailed results are listed
in Supplementary Table S4.

Significant accelerated aging in gray matter maps was observed
in 67 brain regions for the MDD group (Figure 2b). The top
20 regions that showed the most pronounced acceleration in aging
within the MDD group included the left superior frontal gyrus
(dorsolateral), bilateral superior frontal gyrus (orbital part), right
rolandic operculum, left supplementary motor area, left olfactory
cortex, left superior frontal gyrus (medial), bilateral superior frontal
gyrus (medial orbital), bilateral gyrus rectus, bilateral insula, left
anterior cingulate and paracingulate gyri, right caudate nucleus,
right thalamus, bilateral Heschl’s gyrus, left superior temporal
gyrus, and the left temporal pole (superior temporal gyrus).
Detailed results are listed in Supplementary Table S4.

BAG differences in the standard deviation maps between
BD/MDD and HC groups

Analysis of BAG based on the standard deviationmaps showed that
17 brain regions in the BD group exhibited accelerated aging
(i.e. reduced standard deviation of resting-state fMRI) out of the
90 regions examined (Figure 3). These brain regions included the
left inferior frontal gyrus (orbital part), the right insula, the right
posterior cingulate gyrus, the left hippocampus, the left parahippo-
campal gyrus, the bilateral cuneus, the right superior occipital
gyrus, the right superior parietal gyrus, the left precuneus, the right
caudate nucleus, the bilateral Heschl’s gyrus, the right superior
temporal gyrus, the bilateral temporal pole (middle temporal
gyrus), and the left inferior temporal gyrus. Detailed results are
listed in Supplementary Table S5. Conversely, the analysis did not
show any statistically significant accelerated brain aging in the
MDD group after applying the FDR correction (Supplementary
Table S5).

BAG differences in fractional anisotropy maps between BD/MDD
and HC groups

Of the 48 white matter tracts analyzed, 43 exhibited accelerated
aging (i.e. reduced fractional anisotropy) in individuals with BD

(Figure 4a). The top 20 white matter tracts showing the highest
degree of accelerated aging included the middle cerebellar ped-
uncle, corpus callosum, fornix (column and body), bilateral corti-
cospinal tracts, right inferior cerebellar peduncle, right anterior
corona radiata, left superior corona radiata, bilateral posterior
corona radiata, bilateral posterior thalamic radiation, left sagittal
stratum, left external capsule, bilateral fornix (cres)/stria terminalis,
and bilateral tapetum. Detailed results are listed in Supplementary
Table S6.

In the MDD group, 39 of 48 white matter tracts exhibited
accelerated aging (Figure 4b). The top 20 most significantly aged
tracts included the middle cerebellar peduncle, corpus callosum,
fornix (column and body), bilateral corticospinal tracts, right infer-
ior cerebellar peduncle, bilateral retrolenticular part of the internal
capsule, left superior corona radiata, bilateral posterior corona
radiata, bilateral posterior thalamic radiation, right sagittal stratum,
right external capsule, right fornix (cres)/stria terminalis, and bilat-
eral tapetum. Detailed results are listed in Supplementary Table S6.

Common and distinct brain regions with significant BAG
differences between BD/MDD and HC groups

For the gray matter maps, 13 of the 20 brain regions showing the
most significant deterioration were common to both the BD and
MDD groups. The affected brain regions included the left superior
frontal gyrus (dorsolateral), right rolandic operculum, left supple-
mentary motor area, left olfactory cortex, left superior frontal gyrus
(medial), bilateral superior frontal gyrus (medial orbital), right gyrus
rectus, left insula, right caudate nucleus, right thalamus, left Heschl’s
gyrus, and the left temporal pole (superior temporal gyrus).

The BD group demonstrated significant aging in unique brain
regions, including the right inferior frontal gyrus (opercular part), left
hippocampus, left amygdala, and right superior parietal gyrus. In
contrast, unique structural abnormalities in MDD were localized to
specific brain regions, namely the left anterior cingulate and para-
cingulate gyri and the bilateral superior frontal gyrus (orbital part).

For functional brain maps, there were no significantly acceler-
ated aging regions in the MDD group, so no common or unique
brain regions were reported for the BD and MDD groups.

For fractional anisotropymaps, 16 tracts were common between
the BD and MDD groups. The shared white matter tracts included
themiddle cerebellar peduncle, the genu of the corpus callosum, the
body of the corpus callosum, the splenium of the corpus callosum,
the fornix (column and body), bilateral corticospinal tracts, the
right inferior cerebellar peduncle, the left superior corona radiata,
bilateral posterior corona radiata, bilateral posterior thalamic radi-
ation, the right fornix (cres)/stria terminalis, and bilateral tapetum.

Additionally, illness-specific accelerated aging in the BD group
was found within the right anterior corona radiata, while the MDD
group showed a unique characteristic of the bilateral retrolenticular
part of the internal capsule.

Correlations of BAG with clinical assessments and durations of
illness

Our results showed that, after applying FDR correction, no statis-
tically significant correlations were found between the BAG and
any clinical assessment scores or duration of illness in either group,
except for a significant negative correlation between BAG derived
from the fractional anisotropy map in the left anterior limb of the
internal capsule and MMSE scores in the BD group (r = �0.345,
adjusted P = 0.011).
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Discussion

This study revealed four main findings: first, the region-specific
brain aging trajectory models demonstrated consistent MAEs and
robust correlations between corrected brain age and chronological
age across various gray matter regions and white matter tracts.
Second, FDR-adjusted comparisons highlighted those 66 gray

matter regions in the BD group and 67 regions in the MDD group
exhibited accelerated aging, with some overlap and unique regions
for each disorder. Third, analysis of standard deviation maps
revealed accelerated aging in 17 brain regions for the BD group
but no significant regions for the MDD group. Finally, analysis of
fractional anisotropy indicated that 43 white matter tracts in BD

Figure 2. BAG differences between individuals with BD and MDD compared to age- and sex-matched healthy controls in 90 models for gray matter map. (a) The left panel displays
the brain regions that showed significantly accelerated aging in individuals with BD, along with their effect sizes, following FDR correction. The color bar represents the effect size
(partial η2). The right panel presents the 20 brain regions with the most significant accelerated aging. The size of each red sphere represents the effect size, with larger spheres
indicating greater effect sizes. (b) Similarly, after applying FDR correction, the left panel displays the brain regions that exhibited significantly accelerated aging in individuals with
MDD and their effect sizes. The 20 brain regions with the most significant accelerated aging are presented on the right panel.
Note: ACG.L, left anterior cingulate and paracingulate gyri; AMYG.L, left amygdala; BD, bipolar disorder; BAG, brain age gap; CAU.L, left caudate nucleus; CAU.R, right caudate
nucleus; FDR, false discovery rate; HES.L, left Heschl’s gyrus; HES.R, right Heschl’s gyrus; HIP.L, left hippocampus; IFGoperc.R, right inferior frontal gyrus (opercular part); INS.L, left
insula; INS.R, right insula; MDD, major depressive disorder; OLF.L, left olfactory cortex; ORBsup.L, left superior frontal gyrus (orbital part); ORBsup.R, right superior frontal gyrus
(orbital part); ORBsupmed.L, left superior frontal gyrus (medial orbital); ORBsupmed.R, right superior frontal gyrus (medial orbital); REC.L, left gyrus rectus; REC.R, right gyrus
rectus; ROL.R, right rolandic operculum; SFGdor.L, left superior frontal gyrus (dorsolateral); SFGdor.R, right Superior frontal gyrus (dorsolateral); SFGmed.L, left Superior frontal
gyrus (medial); SMA.L, left supplementary motor area; SPG.R, right superior parietal gyrus; STG.L, left superior temporal gyrus; THA.L, left thalamus; THA.R, right thalamus; TPOsup.
L, left temporal pole (superior temporal gyrus).
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and 39 in MDD showed accelerated aging, with 16 tracts common
to both disorders, emphasizing shared and distinct neuroanatom-
ical changes in BD and MDD. These findings suggest that brain
aging trajectories could serve as valuable biomarkers for differen-
tiating and understanding the neuropathological underpinnings of
BD and MDD as progressive illnesses.

The gray matter models indicated an increased BAG in most
brain regions in the BDgroup, suggesting widespread brain structure
degeneration in these individuals. One study found that untreated
BD participants had a brain age exceeding their chronological age by
4.28 ± 6.33 years, while those treated with lithium showed an average
difference of 0.48± 7.60 years (VanGestel et al., 2019).Another study
reported significantly larger BAG in BD participants compared to
HCs (van der Markt et al., 2024). Additionally, it was found that the
BAG of individuals with BD was approximately 2 years older than
that of HCs (Kaufmann et al., 2019). However, other studies found
no significant BAG differences in individuals with BD (Hajek et al.,
2019; Shahab et al., 2019), and there were observations of significant
BAG increases in schizophrenia but not in BD (Nenadić, Dietzek,
Langbein, Sauer, & Gaser, 2017).

For MDD, a large-scale Enhancing NeuroImaging Genetics
through Meta-Analysis (ENIGMA) study showed that patients
with MDD had an increased brain age of +1.08 years compared
with controls (Han, Dinga, et al., 2021). These findings were further
replicated by the ENIGMA MDD working group, showing a sig-
nificantly higher estimated brain age than their chronological age,
exceeding it by 1 year (Han et al., 2022). These findings were
consistent with previous results showing a BAG of +2.78 years
(Han, Schnack, et al., 2021) and +2.11 years (Dunlop et al., 2021).

While the findings in the current study are generally consistent
with prior studies of BD and MDD, the inconsistent findings in
previous brain age research, particularly in BD, may stem from the

approach of using entire brain data for modeling, potentially miss-
ing region-specific degeneration. The current study’s region-
focused brain age prediction approach identified brain regions with
accelerated aging in BD and could serve as a biomarker, aiding in
the development of future therapeutic strategies.

Our results showed that 13 of the 20 brain regions with the most
significant deterioration were common to both the BD and MDD
groups, suggesting shared neuropathological mechanisms. Both BD
and MDD groups had smaller brain regions in the dorsomedial
prefrontal cortex, ventromedial prefrontal cortex, anterior cingu-
late cortex, and insula (Wise et al., 2017). Compared to HCs,
schizophrenia, BD, andMDDgroups shared significant graymatter
volume reductions in the temporal pole, orbital frontal cortex,
insula, parahippocampal gyri, cingulate gyri, dorsolateral pre-
frontal cortex, angular gyri, and cuneus (Chang et al., 2018). A
meta-analysis revealed that BAG varied across psychiatric dis-
orders, with schizophrenia having the largest BAG, followed by
BD and then MDD (Ballester et al., 2022). This suggests that
different psychiatric disorders are characterized by different
degrees of brain degeneration. Our study extended this understand-
ing by quantitatively evaluating the differences in degeneration
between different brain regions in affective disorders.

Notably, individuals with BD exhibited significant aging exclu-
sively in several key brain regions, including the right inferior
frontal gyrus (operculum), left hippocampus, left amygdala, and
right superior parietal gyrus. These regions have consistently shown
abnormalities in previous brain imaging studies of individuals with
BD (Chen et al., 2022; Hajek, Kopecek, Höschl, & Alda, 2012;
Usher, Leucht, Falkai, & Scherk, 2010; Zhang et al., 2021). Subcor-
tical regions, including the striatum, amygdala, and hippocampus,
may show differential effects in BD and MDD (Konarski et al.,
2008). Moreover, our study identified structural abnormalities in

Figure 3. BAG differences between individuals with BD and age- and sex-matched healthy controls in 90 models for the standard deviation map. The left panel displays the brain
regions that showed significantly accelerated aging in individuals with BD, along with their effect sizes, following FDR correction. The color bar represents the effect size (partial η2).
The right panel presents the 17 brain regions with significant accelerated aging. The size of each red sphere represents the effect size, with larger spheres indicating greater effect
sizes.
Note: BD, bipolar disorder; BAG, brain age gap; CAU.R, right caudate nucleus; CUN.L, left cuneus; CUN.R, right cuneus; FDR, false discovery rate; HES.L, left Heschl’s gyrus; HES.R,
right Heschl’s gyrus; HIP.L, left hippocampus; INS.R, right insula; ITG.L, left inferior temporal gyrus; ORBinf.L, left inferior frontal gyrus (orbital part); PCG.R, right posterior cingulate
gyrus; PCUN.L, left precuneus; PHG.L, left parahippocampal gyrus; SOG.R, right superior occipital gyrus; SPG.R, right superior parietal gyrus; STG.R, right superior temporal gyrus;
TPOmid.L, left temporal pole (middle temporal gyrus); TPOmid.R, right temporal pole (middle temporal gyrus).
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unique brain regions of the MDD group, especially in the left
anterior cingulate and paracingulate gyri and bilateral superior
frontal gyrus (orbital). These regions have been previously identi-
fied as exhibiting significant abnormalities in brain imaging studies
of individuals withMDD (Lai, Payne, Byrum, Steffens, & Krishnan,
2000; Liu et al., 2024a,b). Gray matter volume was reduced in the
left superior frontal gyrus and left anterior cingulate cortex in
patients with MDD compared with those with BD (Chen et al.,
2018). These findings suggest that distinct brain regions are affected
differently in BD and MDD, highlighting the potential for region-
specific biomarkers to identify key brain dysfunction in both dis-
orders.

In the models for the standard deviation map, our findings
revealed that the BD group showed accelerated brain aging in 17
brain regions, whereas no comparable results were observed in the
MDDgroup. Our previous study used functional connectivitymaps
to develop brain age prediction models for individuals with schizo-
phrenia (Zhu, Wu, et al., 2023). However, prior research indicated
that blood oxygen level-dependent (BOLD) signal variability had a
strong correlation with age and differed significantly from average

BOLD signals (Garrett, Kovacevic, McIntosh, & Grady, 2010).
Thus, we used standard deviation maps to train brain age predic-
tion models and identified brain regions with accelerated aging in
BD. Future studies could integrate diverse BOLD signal character-
istics to develop more comprehensive brain age prediction models,
enhancing our understanding of how mental illness impacts the
degeneration of brain function.

Our findings revealed that both BD andMDD groups exhibited
deviations in brain aging trajectories across most white matter
tracts in the 48 models for the fractional anisotropy map. Among
the top 20 tracts showing the most significant accelerated aging,
16 were shared between BD and MDD. Research has consistently
shownwhitematter abnormalities in both disorders, particularly in
the corpus callosum and corona radiata (Cui et al., 2020;Wise et al.,
2016). These overlapping tracts suggest common microstructural
alterations, indicating similar underlying pathological processes.
Further investigation is needed to clarify the specific biological
changes driving these alterations and to explore therapeutic poten-
tials. Additionally, our research found disease-specific accelerated
aging in the right anterior corona radiata in BD, consistent with

Figure 4. BAG differences between individuals with BD and MDD compared to age- and sex-matched healthy controls in 48 models for the fractional anisotropy map. (a) The white
matter tracts that exhibited significantly accelerated aging in individuals with BD, along with their effect sizes, following FDR correction. The color bar represents the effect size
(partial η2). (b) Similarly, the white matter tracts showed significantly accelerated aging in individuals with MDD, along with their effect sizes, after applying FDR correction.
Note: BD, bipolar disorder; BAG, brain age gap; FDR, false discovery rate; MDD, major depressive disorder.
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previous studies (Karababa et al., 2015; Pavuluri et al., 2009;
Sarıçiçek et al., 2016). For MDD, we observed significantly larger
BAG in the bilateral retrolenticular part of the internal capsule,
unique to MDD and consistent with earlier research (van Velzen
et al., 2020; Xiao, He, McWhinnie, & Yao, 2015). These findings
suggest distinct pathological processes in BD and MDD, with
specific white matter alterations highlighting subtle differences in
their neuropathologies.

We found no statistically significant correlations between the
BAG and any clinical assessment scores or duration of illness in
either group, with one exception: a significant negative correlation
was observed between BAG derived from the fractional anisotropy
map in the left anterior limb of the internal capsule and MMSE
scores in the BD group. The anterior limb of the internal capsule has
been widely implicated in BD, and previous studies have demon-
strated that alterations in its structural integrity are common
among individuals with BD. These changes have been associated
with impairments in mood regulation and cognitive functions,
including motivation, cognitive processing, and decision-making
(Lu et al., 2012; Safadi et al., 2018). Similar to these findings, our
finding revealed that greater BAG in the left anterior limb of the
internal capsule was associated with lower MMSE scores in the BD
group, suggesting that accelerated aging in this region may con-
tribute to reduced cognitive performance. However, no significant
correlations were found between MMSE scores and BAG in other
brain regions exhibiting accelerated aging. One possible explan-
ation is that the MMSE may lack the sensitivity to detect subtle
cognitive impairments, particularly due to ceiling effects (Zadikoff
et al., 2008). Future studies employing a broader andmore sensitive
range of cognitive assessments may provide a more comprehensive
understanding of cognitive functioning in individuals with BD and
MDD. For severity of symptoms, neither the BD nor the MDD
groups reached statistical significance after adjusting for FDR
correction. Two possible explanations for these findings were con-
sidered. First, the severity of symptoms among the participants with
affective disorders included in this study was stable, which may
have influenced the observed results. Second, the brain age model
constructed from the selected features in this study may not
accurately reflect the observed clinical manifestations. Regarding
duration of illness, data were available for a subset of participants –
specifically, 92 individuals with BD and 38 individuals with MDD.
After excluding cases withmissing data, partial correlation analyses
were performed. However, no significant correlations were
observed after applying FDR correction. Several factors may help
explain the absence of significant findings. First, the relatively small
sample size of theMDD group with available duration data (n = 38)
likely limited statistical power, reducing the ability to detect
meaningful associations. Second, the considerable heterogeneity
in illness trajectories may have diluted potential effects. Most
individuals with BD were in a chronic stage, with an average illness
duration of approximately 20 years. Notably, 80% had experienced
illness for more than a decade, and over half (52%) had durations
exceeding 20 years. In contrast, 79% of participants with MDD had
illness durations under 10 years, reflecting a predominance of
earlier-stage cases in this group. Third, differences in treatment
histories and the cross-sectional design of the study may have
further obscured potential associations between BAG and illness
duration.

Some limitations need to be addressed in this study. First, the
training dataset included HCs from various age groups, but the
cross-sectional design has inherent limitations. Future research
should include larger sample sizes and longitudinal data to

improve model performance and more accurately reflect the
dynamic nature of disease trajectories. This approach may help
to further clarify the relationship between the BAG and disease
progression. Additionally, studies with larger and more balanced
sex-specific samples are warranted to support the development
of sex-stratified brain age prediction models and to explore
potential sex-related differences in brain aging trajectories. Sec-
ond, the sample sizes for the MDD and BD groups were limited,
indicating the need for larger samples or multiple cohorts in
future research to validate the findings. Third, the data used in
this study were derived from the TAMI cohort, which did not
include documentation of participants’mood states at the time of
MRI acquisition. As a result, we could not determine their precise
clinical status during scanning. Given that the current mood state
may influence both resting-state functional activity and brain age
predictions, this represents a potential source of unaccounted
variability. Future prospective studies should include current
mood assessments during MRI scanning – either as variables of
interest or as covariates – to more accurately evaluate their impact
on BAG estimates. Finally, the absence of detailedmedication data
for BD and MDD participants precluded an in-depth analysis of
medication effects. Future research should include medication
data or recruit drug-naive participants to better examine the
impact of affective disorders on the brain.

This study demonstrated that region-specific brain aging tra-
jectory models performed robustly, identifying accelerated aging in
various gray matter regions in both BD andMDD. Notably, several
highly deteriorated regions were common to both disorders, indi-
cating shared neuropathological mechanisms. The BD group
showed accelerated aging in multiple brain regions on standard
deviation maps, while no such regions were found in MDD. Add-
itionally, fractional anisotropy analysis revealed aging white matter
tracts in both BD and MDD, with several tracts common to both
disorders. Importantly, there were also unique brain regions with
accelerated aging specific to each disorder, highlighting distinct
neuropathological processes in BD and MDD. These findings
highlight the potential of brain aging trajectories as biomarkers,
offering insights into distinct and overlapping neuroanatomical
changes in BD and MDD. Identifying key areas of brain dysfunc-
tion is critical for developing precision diagnosis and noninvasive
treatments, such as personalized transcranial magnetic stimulation
or deep brain stimulation. Our approach of incorporating region-
specific changes in brain structure and function over time could
enhance understanding and treatment of mental illness. Future
research should include longitudinal data, larger sample sizes,
and detailed medication information to improve model perform-
ance and clinical correlates of the region-specific brain aging tra-
jectory approach.
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