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Nonmonotonic Logic 1

Introduction
Nonmonotonic logic (abbreviated as NML) and its domain, defeasible rea-
soning, are multifaceted areas. In crafting an Element that serves as both an
introduction and an overview, we must adopt a specific perspective to ensure
coherence and systematic coverage. It is, however, in the nature of illumi-
nating a scenario with a spotlight that certain aspects emerge prominently,
while others recede into shadow. The focus of this Element is on unveiling the
core ideas and concepts underlying NML. Rather than exhaustively presenting
concrete logics from existing literature, we emphasize three fundamental meth-
ods: (i) formal argumentation, (ii) consistent accumulation, and (iii) semantic
approaches.
An argumentative approach for understanding human reasoning has been

proposed both in a philosophical context by Toulmin’s forceful attack on formal
logic in 1958, and more recently in cognitive science by Mercier and Sperber
(2011). Pioneers such as Pollock (1991) and Dung (1995) have provided the
foundation for a rich family of systems of formal argumentation.
Consistent accumulation methods are based on the idea that an agent facing

possibly conflicting and not fully reliable information is well advised to rea-
son on the basis of only a consistent part of that information. The agent could
start with certain information and then stepwise add merely plausible informa-
tion. In this way they stepwise accumulate a consistent foundation to reason
with. Accumulation methods cover, for instance, Reiter’s influential default
logic (Reiter, 1980) or methods based on maximal consistent sets, such as
early logics by Rescher and Manor (1970) and (constrained) input–output logic
(Makinson & Van Der Torre, 2001).
While the previous two methods are largely based on syntactic or proof-

theoretic considerations, interpretation plays the essential role in semantic
approaches. The core idea is to order interpretations with respect to normal-
ity considerations and then to select sufficiently normal ones. These are used
to determine the consequences of a reasoning process or to give meaning
to nonmonotonic conditionals. The idea surfaces in the history of NML in
many places, among others in Batens (1986), Gelfond and Lifschitz (1988),
Kraus et al. (1990), McCarthy (1980), and Shoham (1987).
A central aspect of this Element is its unifying perspective (inspired by

works such as Bochman (2005) and Makinson (2005)). Defeasible reasoning
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2 Philosophy and Logic

gives rise to a variety of formal models based on different assumptions
and approaches. Comparing these approaches can be difficult. The Element
presents several translations between NMLs, illustrating that in many cases the
same inferences can be validated in terms of diverse formal methods. These
translations offer numerous benefits. They enrich our understanding by offer-
ing different perspectives: the same underlying inference mechanism may be
considered as a form of (formal) argumentation, a way of reasoning with inter-
pretations that are ordered with respect to their plausibility, or as a way of
accumulating and reasoning with consistent subsets of a possibly inconsistent
knowledge base. They demonstrate the robustness of the underlying inference
mechanism, since several intuitive methods give rise to the same result. While
the different methodological strands of NML have often been developed with
little cross-fertilization, it is remarkable that the resulting systems can often be
related with relative ease. Finally, the translations may convince the reader that,
despite the fact that the field of NML seems a bit of a rag rug at first sight, there
is quite some coherence when taking a deeper dive. In particular, by showcas-
ing formal argumentation’s exceptional ability to represent other NMLs, this
Element adds further evidence to the fruitfulness of Dung’s program of uti-
lizing formal argumentation as a unifying perspective on defeasible reasoning
(Dung, 1995).
The Element is organized in four parts. Part I provides a general introduc-

tion to the topic of defeasible reasoning and NML. The three core methods are
each introduced in a nutshell. It provides a condensed and self-contained over-
view of the fundamentals of NML for readers with limited time. Part II to IV
deepen on each of the respective methods by providing metatheoretic insights
and presenting concrete systems from the literature.
While some short metaproofs that contribute to an improved understand-

ing are left in the body of the Element, two technical appendices are pro-
vided for others. In particular, results marked with ‘⋆’ are proven in the
appendices.
Many important aspects and systems of NML didn’t get the spotlight and fell

victim to the trade-off between systematicity and scope from which an intro-
ductory Element of this length will necessarily suffer. Nevertheless, with this
Element a reader will grow the wings necessary to maneuver in the lands of
nonflying birds, that is, they will be well equipped to understand, say, first-
order versions of logics that are discussed here on the propositional level, or
systems such as autoepistemic logic.
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Nonmonotonic Logic 3

PART I LOGICS FOR DEFEASIBlE REASONING

1 Defeasible Reasoning
1.1 What is Defeasible Reasoning?

We certainly want more than we
can get by deduction from our
evidence. … So real inference,
the inference we need for the
conduct of life, must be
nonmonotonic.

Henry Kyburg, 2001.

This Element introduces logical models of defeasible reasoning, so-calledNon-
Monotonic Logics (in short, NMLs).When we reason, wemake inferences, that
is, we draw conclusions from some given information or basic assumptions.
Whenever we reserve the possibility to retract some inferences upon acquir-
ing more information, we reason defeasibly.1 Two paradigmatic examples of
defeasible inferences are:

Assumption Defeasible conclusion Reason for retraction
The streets are wet. It rained. The streets have been cleaned.
Tweety is a bird. Tweety can fly. Tweety is a penguin.

As the examples highlight, we often reason defeasibly if our available infor-
mation is incomplete: we lack knowledge of what happened before we observed
the wet streets, or we lack knowledge of what kind of bird Tweety is. Defea-
sible inferences often add new information to our assumptions: while being
explanatory of the streets being wet, the fact that it rained is not contained in
the fact that the streets are wet, and while being able to fly is a typical prop-
erty of birds, being a bird does not necessitate being able to fly. In this sense
defeasible inferences are ampliative.
Logics that may lose conclusions once more information is acquired are

called nonmonotonic. The vast majority of logics the reader will typically

1 The term “defeasibility” entered philosophy with Hart’s discussion of legal contract as a defea-
sible concept (Hart, 1948). Applied to duties, the idea occurs even earlier in Ross (1930),
albeit under a different name, when elaborating on the prima facie character of duties. The
defeasibility of arguments has been central to argumentation theory, starting from the writ-
ings of its pioneers such as Aristotle in his Topics (Aristotle, 1984) to modern classics such as
Toulmin (1958) and Perelman and Olbrechts-Tyteca (1969) (for more on the history of the con-
cept see Loui (1995)). In recent years, the notion of defeat has also gained significant attention
in epistemology; see e.g., Moretti and Piazza (2017), Sudduth (2017), and Brown and Simion
(2021).
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4 Philosophy and Logic

encounter in logic textbooks are monotonic, with classical logic (in short, CL)
being the celebrity. Whenever the given assumptions are true, an inference
sanctioned by CL will securely pass the torch from the assumptions to the con-
clusion, warranting with absolute certainty the truth of the conclusion. Truth is
preserved in inferences sanctioned by CL. Nomatter howmuch information we
add, how many inferences we chain between our premises and our final con-
clusion, or how often the torch is passed, truth endures: the flames reach their
final destination. Thus, inferences are never retracted in CL, and conclusions
accumulate the more assumptions we add. This property, called monotonicity,
is highly desirable for certain domains of reasoning such as mathematics, a
domain where CL reigns.
However, a key motivation behind the development of NML is that out in

the wild of commonsense, expert, or scientific reasoning, good inferences need
not be truth preservational: we often change our minds and retract inferences
when watching a crime show and wondering who the most likely murderer
is; medical doctors may change their diagnosis with the arrival of more evi-
dence, and so do scientists, sometimes resulting in scientific revolutions. In less
idealized circumstances than those of purely formal sciences (such as mathe-
matics), we usually need to reasonwith incomplete, sometimes even conflicting
information. As a consequence, our inferences allow for exceptions and/or crit-
icism. They are adaptable: learning or inferring more information may cause
retraction, previous inferences may get defeated. Outside the ivory tower of
mathematics, in the stormy domain of commonsense reasoning, the torch’s fire
may get extinguished.
It is therefore not surprising that examples of defeasible reasoning are

abundant. In what follows, we will list some paradigmatic examples.

Example 1. We first imagine a scenario at a student party.2

1. Peter: “I haven’t seen Ruth!”
2. Mary: “Me neither. If there’s an exam the next day, Ruth studies late in

the library.”
3. Peter: “Yes, that’s it. The logic exam tomorrow!”
4. Anne: “But today is Sunday. Isn’t the library closed?”
5. Peter: “True, and indeed, there she is!”

[pointing to Ruth entering the room]

In her reply to Peter’s observation concerningRuth’s absence (1),Mary states
a regularity in form of a conditional (2): If there’s an exam the next day, Ruth

2 The example is inspired by Byrne (1989).
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Nonmonotonic Logic 5

studies late in the library. She offers an explanation as to why Ruth is not
around. The explanation is hypothetical, since she doesn’t offer any insights
as to whether there is an exam. Peter supplements the information that, indeed,
(3) there is an exam. Were our students to treat information (2) and (3) in the
manner of CL as a material implication, they would be able to apply modus
ponens to infer that Ruth is currently studying late in the library.3 And, indeed,
after utterance (3) it is quite reasonable for Mary and Peter to conclude that

(⋆) Ruth is not at the party since she’s studying late at the library.

Anne’s statement (4) casts doubt on the argument (⋆), since the library might
be closed today. This does not undermine the regularity stated by Mary, but
it points to a possible exception. Anne’s statement may lead to the retraction
of (⋆), which is further confirmed when Peter finally sees Ruth (5): this is
defeasible reasoning in action!

Defaults. Statements such as “Birds fly.” allow for exceptions. It is therefore
not surprising that one of the most frequent characters in papers on NML is
Tweety. While the reader may sensibly infer that Tweety can fly when they are
told that Tweety is a bird, they might be skeptical when being informed that
Tweety lives at the South Pole, and most definitely will retract the inference
as soon as they hear that Tweety is a penguin.4 As we have also seen in our
example, we often express regularities in the form of conditionals – so-called
default rules, or simply defaults – that hold typically, mostly, plausibly, and so
on, but not necessarily.

Closed-World Assumption. Often, defeasible reasoning is rooted in the
fact that communication practices are based on an economic use of informa-
tion. When making lists such as menus at restaurants or timetables at railway
stations, we typically only state positive information. We interpret (and com-
pile) such lists under the assumption that what is not listed is not the case. For
instance, if a meal or connection is not listed, we consider it not to be available.
This practice is called the closed-world assumption (Reiter, 1981).

Rules with Explicit Exceptions. Before presenting more examples of
defeasible reasoning, let us halt for a moment to address a possible objection.

3 Modus ponens is the classically valid inference that sanctions the conclusion B in view of the
information that A, and that A implies B.

4 We find a funny twist on defeasible reasoning with generics and a bird named Tweety in the
cartoon world of Birdy and the Beast (Warner Bros., 1944). In the heat of hunting the canary
Tweety, the cat Sylvester begins to fly and just after being reminded by Tweety that cats don’t
fly, he loses this ability – mid air – and crashes. Much to the amusement of Tweety, this shows
that defeasible argumentation can save lives.
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6 Philosophy and Logic

Is CL really inadequate as a model of this kind of reasoning? Can’t we simply
express all possible exceptions as additional premises? For instance,

(†) If there’s an exam the next day and the library is open late and Ruth is
not ill and on her way didn’t get into a traffic jam and …, then Ruth studies
late in the library.

There are several problems with this proposal. The first concerns the open-
ended nature of the list of exceptions which characterizes most rules that
express what typically/usually/plausibly/and so on holds. Even in the (rare)
cases in which it is – in principle – possible to compile a complete list of
exceptions, the resulting conditional will not adequately represent a reasoning
scenario in which our agent may not be aware of all possible exceptions. They
may merely be aware of the possibility of exceptions and be able, if asked for
it, to list some (such as penguins as nonflying birds). Others may escape them
(such as kiwis), but they would readily retract their inference that Tweety flies
after learning that Tweety is a kiwi. In other words, the complexities involved
in generating explicit lists of exceptions are typically far beyond the capacities
of real-life and artificial agents. What is more, in order to apply modus ponens
to conditionals such as (†), our reasoner would have to first check for whether
each possible exception holds. This may be impossible for some, for others
unfeasible, and altogether it would render out of reach the pace of reasoning
that is needed to cope with their real-life situation.
In contrast to reasoning from fixed sets of axioms in mathematics, com-

monsense reasoning needs to cope with incomplete (and possibly conflicting)
information. In order to get off the ground, it (a) jumps to conclusions based
on regularities that allow for exceptions and (b) adapts to potential problems in
the form of exceptional circumstances on the fly, by means of the retraction of
previous inferences.

Abductive Inferences. Another type of defeasible reasoning concerns cases
in which we infer explanations of a given state of affairs (also called abductive
inferences). For instance, upon seeing the wet street in front of her apartment,
Susie may infer that it rained, since this explains the wetness of the streets.
However, when Mike informs her that the streets have been cleaned a few min-
utes ago, she will retract her inference. We see this kind of inference often in
diagnosis and investigative reasoning (think of Sherlock Holmes or a scientist
wondering how to interpret the outcome of an experiment). As both the exciting
histories of the sciences and the twisted narratives of Sir Arthur Conan Doyle
reveal, abductive inference is defeasible.

Inductive Generalizations. In both scientific and everyday reasoning, we
frequently rely on inductive generalizations. Having seen only white swans, a
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Nonmonotonic Logic 7

child may infer that all swans are white, only to retract the inference during a
walk in the park when a black swan crosses their path.
These are some central, but far from the only types of defeasible inferences.

A more exhaustive and systematic overview can be found, for instance, in
Walton et al. (2008), where they are informally analyzed in terms of argument
schemes.5

1.2 Challenges to Models of Defeasible Reasoning
Formalmodels of defeasible reasoning face various challenges. Let us highlight
some.

1.2.1 Human Reasoning and the Richness of Natural Language

As we have seen, defeasible reasoning is prevalent in contexts in which agents
are equipped with incomplete and uncertain information. By providing models
of defeasible reasoning, NMLs are of interest to both philosophers investigating
the rationality underlying human reasoning and computer scientists inter-
ested in the understanding and construction of artificially intelligent agents.
Human reasoning has a peculiar status in both investigations in that selected
instances of it serve as role models of rational and successful artificial rea-
soning. After all, humans are equipped with a highly sophisticated cognitive
system that has evolutionarily adapted to an environment of which it only has
incomplete and uncertain information. Therefore, it seems quite reasonable to
assume that we can learn a good deal about defeasible reasoning, including the
question of what is good defeasible inference, by observing human inference
practices.
There are, however, several complications that come with the paradigmatic

status of human defeasible reasoning. First, human reasoning is error-prone,
which means we have to rely on selected instances of good reasoning. But what
are exemplars of good reasoning? In view of this problem, very often nonmono-
tonic logicians simply rely on their own intuitions. There are good reasons why
one should not let expert intuition be the last word on the issue. We may be
worried, for instance, about the danger of myside bias (also known as confir-
mation bias; see Mercier and Sperber (2011)): intuitions may be biased toward
satisfying properties of the formal system that is proposed by the respective
scholar.

5 Since the main aim of this Element is to introduce the central methods driving NMLs, we
will not discuss specific applications such as abductive inferences or inductive generalizations
in any further detail. For an introduction to inductive logic we refer to the Element by Eagle
(2024).
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8 Philosophy and Logic

Then, there is the possibility of “déformation professionnelle,” given that
the expert’s intuitions have been fostered in the context of a set of paradig-
matic examples about penguins with the name Tweety, ex-US presidents (see
Examples 2 and 3), and the like.6

Another complication is the multifaceted character of defeasible reasoning
in human reasoning. First, there is the variety of ways we can express in natu-
ral language regularities that allow for exceptions. We have “Birds fly,” “Birds
typically fly,” “Birds stereotypically fly,” “Most birds fly,” and so on, none of
which are synonymous: for example, while tigers stereotypically live in the
wild, most tigers live in captivity. What is more important, the different formu-
lations may give rise to different permissible inferences. Consider the generic
“Lions havemanes.”While having amane implies being amale lion, “Lions are
males” is not acceptable (Pelletier & Elio, 1997). The inference pattern blocked
is known as right weakening: if A by default implies B, and C follows classi-
cally fromB, thenC follows by default fromA as well. It is valid in most NMLs,
and it seems adequate for the “typical,” “stereotypical,” and “most” reading of
default rules, but not for some generics.7 For NMLs this poses the challenge
to keep in mind the intended interpretation of defaults and differences in the
underlying logical properties that various interpretations give rise to.
Despite these problems, it seems clear that “reasoning in the wild” should

play a role in the validation and formation of NMLs.8 This pushes NML in
proximity to psychology. In practice, nonmonotonic logicians try to strike a
good balance by obtaining metatheoretically well-behaved formal systems that
are to some degree intuitively and descriptively adequate relative to (selected)
human reasoning practices.

1.2.2 Conflicts and Consequences

Defeasible arguments frequently conflict. This poses a challenge for norma-
tive theories of defeasible reasoning, which must specify the conditions under
which inferences remain permissible in such scenarios.
For this discussion, some terminology and notation will be useful. An argu-

ment (in our technical sense) is obtained by either stating basic assumptions

6 For a list of benchmark examples, see Lifschitz (1989).
7 Developing semantics for generics is notoriously difficult. There are many approaches, from
normality-based (e.g., Asher and Pelletier (2012)), to prototype-based (e.g., Heyer (1990)), to
Bayesian accounts (e.g., Tessler and Goodman (2019)). See Leslie and Lerner (2022) for an
overview.

8 Elio and Pelletier forcefully argue for a closer orientation on human reasoning practices
(Elio & Pelletier, 1994; Pelletier & Elio, 1997). Empirical studies on the acceptance of central
principles of NML can be found, e.g., in Benferhat et al. (2005), Pfeifer and Kleiter (2005),
Saldanha (2018), and Schurz (2005).
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Nonmonotonic Logic 9

Figure 1 The Nixon Diamond from Example 2. Double arrows symbolize
defeasible rules, single arrows strict rules, and wavy arrows conflicts. Black
nodes represent unproblematic conclusions, while light nodes represent

problematic conclusions. Rectangular nodes represent the starting point of the
reasoning process. We use the same symbolism in the following figures.

or by applying inference rules to the conclusions of other arguments. An argu-
ment is defeasible if it contains a defeasible rule (such as a default), symbolized
by⇒. Such an argument may include also truth-preservational strict inference
rules (such as the ones from CL), symbolized by→. A conflict between two
arguments arises if they lead to contradictory conclusions A and ¬A (where ¬
denotes negation).
Let us now take a look at two paradigmatic examples.

Example 2 (Nixon; Reiter and Criscuolo (1981)). One of the most well-known
examples in NML is the Nixon Diamond (see Fig. 1):9

1. Nixon is a Dove. Nixon→ Dove
2. Nixon is a Quaker. Nixon→ Quaker
3. By default, Doves are Pacifists. Dove⇒ Pacifist
4. By default, Quakers are not Pacifists. Quaker⇒ ¬Pacifist

Given the conflict between the arguments Nixon → Dove ⇒ Pacifist and
Nixon → Quaker ⇒ ¬Pacifist, should we conclude that Nixon is (not) a
pacifist? It seems an agnostic stance is recommended in this example.

Example 3 (Tweety; Doyle and McDermott (1980)). Another well-known
example is Tweety the penguin (see Fig. 2) based on the following information:

1. Tweety is a penguin. Tweety→ penguin
2. Penguins are birds. penguin→ bird
3. By default, birds fly. bird⇒ fly
4. By default, penguins don’t fly. penguin⇒ ¬fly

9 In order to simplify the technical depth in this Element, we will use the language of propo-
sitional/sentential logic, rather than that of predicate logic. This will sometimes lead to less
elegant translations of natural language sentences than would be possible in predicate logic
(e.g., Nixon→ Dove instead of Dove(Nixon)).
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10 Philosophy and Logic

Figure 2 Tweety and specificity, Example 3.

Figure 3 A drowning scenario.

We use the example to demonstrate a way to resolve conflicts among defeasible
arguments, here between (a) Tweety → penguin → bird ⇒ fly and (b)
Tweety → penguin ⇒ ¬fly. According to the specificity principle more
specific defaults such as penguin ⇒ ¬fly are prioritized over less specific
ones, such as bird ⇒ fly. The reason is that more specific defaults may
express exceptions to the more general ones. So, in this example the preferred
outcome ¬fly will be obtained since the less specific defeasible argument (a)
should be retracted in favor of (b).

Our examples indicate that, first, conflicts between defeasible arguments can
occur, and second, the context may determine whether and, if so, how a conflict
can be resolved. We now take a look at two further challenges that come with
conflicts in defeasible reasoning.
Figure 3 encodes the following information: A ⇒ B, A ⇒ C, A, and ¬B.

Should we infer C? Nonmonotonic logics that block this inference have been
said to suffer from the drowning problem (Benferhat et al., 1993). Examples
like the following seem to suggest that we should accept C.

Example 4. We consider the scenario:

1. Micky is a dog. Micky→ A
2. Dogs normally (have the ability to) to tag along with a jogger. A⇒ B
3. Dogs normally (have the ability to) bark. A⇒ C
4. Micky lost a leg and can’t tag along with a jogger. Micky→ ¬B

In this example it seems reasonable to infer, C,Micky has the ability to bark,
despite the presence of ¬B. In other contexts one may be more cautious when
jumping to a conclusion.

Example 5. Take the following scenario.

1. It is night. A
2. During the night, the light in the living room is usually off. A⇒ B
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Nonmonotonic Logic 11

3. During the night, the heating in the living room is usually off. A⇒ C
4. The light in the living room is on. ¬B

In this scenario it seems less intuitive to infer, C, The heating in the living
room is off. The fact that we have in (4) an exception to default (2) may have
an explanation in the light of which also default (3) is excepted. For example,
the inhabitant forgot to check the living room before going to sleep, she is not
at home and left the light and heating on before leaving, she is still in the living
room, and so on.

These examples show that concrete reasoning scenarios often contain a vari-
ety of relevant factors that influence what real-life reasoners take to be intuitive
conclusions. Specific NMLs typically only model a few of these factors and
omit others. For instance, although Elio and Pelletier (1994) and Koons (2017)
argue that it is useful to track causal and explanatory relations in the context of
drowning problems, systematic research in this direction is lacking.
Another class of difficult scenarios has to do with so-called floating

conclusions.10 These are conclusions that follow from two opposing argu-
ments. For example, formally the scenario may be as depicted in Fig. 4.

Example 6. Suppose two generally reliable weather reports:

1. Station 1: The hurricane will hit Louisiana and spare Alabama. A1 ⇒ B1

2. Station 2: The hurricane will hit Alabama and spare Louisiana. A2 ⇒ B2

3. If the hurricane hits Louisiana, it hits the South coast. B1 → C
4. If the hurricane hits Alabama, it hits the South coast. B2 → C

The floating conclusion, (5), The stormwill probably hit the South coast, may
seem acceptable to a cautious reasoner. The rationale being that both reports
agree on the upcoming storm and even roughly where it will hit. The disagree-
ment may be due to different weighing of diverse factors in their respective

Figure 4 A scenario with the floating conclusion C.

10 An overview on discussions surrounding floating conclusions can be found in Horty (2002).
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12 Philosophy and Logic

underlying scientific weather models. But the combined evidence of both sta-
tions seems to rather confirm conclusion (5) than dis-confirm it. This is not
always the case with partially conflicting expert statements, as the next example
shows.

Example 7. Assume two expert reviewers, Reviewer 1 and Reviewer 2,
evaluating Anne for a professorship. She sent in two manuscripts, A and B.

1. Reviewer 1: Manuscript A is highly original, while manuscript B repeats
arguments already known in the literature. A1 ⇒ B1

2. According to Reviewer 1, one manuscript is highly original. B1 → C
3. Reviewer 2: Manuscript B is highly original, while manuscript A repeats

arguments already known in the literature. A2 ⇒ B2

(We assume the inconsistency of B1 with B2.)
4. According to Reviewer 2, one manuscript is highly original. B2 → C

Should we conclude that one manuscript is highly original, since it follows
from both reviewers’ evaluations? It seems a more cautious stance is advisable.
The disagreement may well be an indication of the sub-optimality of each of
the two reviews. Indeed, a possible explanation of their conflicting assessments
could be that (a) Reviewer 1 is aware of an earlier article B′ (by another author
than Anne) that already makes the arguments presented in B and which is not
known to Reviewer 2, and vice versa, that (b) Reviewer 2 is aware of an earlier
article A′ in which similar arguments to those in A are presented. In view of
this possibility, it would seem overly optimistic to infer that Anne has a highly
original article in her repertoire.

2 Central Concepts
Nonmonotonic logics are designed to answer the question what are (defeasible)
consequences of some available set of information. This gives rise to the notion
of a nonmonotonic consequence relation. In this section we explain this central
concept and some of its properties from an abstract perspective (Section 2.2).
Nonmonotonic consequences are obtained by means of defeasible inferences,
which are themselves obtained by applying inference rules. We discuss two
ways of formalizing such rules in Section 2.3. Before doing so, we discuss
some basic notation in Section 2.1.

2.1 Notation and Basic Formal Concepts
Let us get more formal. We assume that sentences are expressed in a (for-
mal) language L. We denote the standard connectives in the usual way: ¬
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Nonmonotonic Logic 13

(negation), ∧ (conjunction), ∨ (disjunction), ⊃ (implication), and ≡ (equiva-
lence). We use lowercase letters p,q, s, t, . . . as propositional atoms, collected
in the set Atoms, and uppercase letters A,B,C,D, . . . as metavariables for sen-
tences such as p, p∧q or ( p∨q) ⊃ r. We denote the set of sentences underlying
L by sentL. In the context of classical propositional logic and typically in the
context of a Tarski logic (see later), this will simply be the closure of the atoms
under the standard connectives.11 We denote sets of sentences by the uppercase
calligraphic letters A, S, and T . Where S is a finite nonempty set of sen-
tences, we write

∧
S and

∨
S for the conjunction resp. the disjunction over the

elements of S.12

A consequence relation, denoted by `, is a relation ` between sets of sen-
tences and sentences:S ` A denotes thatA is a `-consequence of the assumption
set S. So, the right side of ` encodes the given information resp. the assump-
tions on which the reasoning process is based, while the left side encodes the
consequences which are sanctioned by ` given S.
We will often work in the context of Tarski logics L, whose consequence

relations `L are reflexive (S ∪ {A} `L A), transitive (S `L A and S ∪ {A} `L B
implies S `L B) and monotonic (Definition 2.1). We will also assume com-
pactness (if S `L A then there is a finite S ′ ⊆ S for which S ′ `L A). The most
well-known Tarski logic is, of course, classical logic CL.

2.2 An Abstract View on Nonmonotonic Consequence
The following definition introduces one of our key concepts: nonmonotonic
consequence relations.

Definition 2.1. A consequence relation ` is monotonic iff (“if and only if”) for
all sets of sentences S and T and every sentence A it holds that S ∪ T ` A if
S ` A. It is nonmonotonic iff it is not monotonic.

We use ∼ as a placeholder for nonmonotonic consequence relations. Our
definition expresses that for nonmonotonic consequence relations ∼ there are
sets of sentences S ∪ {A} and T for which S ∼ A while S ∪ T ∼/ A (i.e., A is
not a∼-consequence of S ∪ T ).
In the following we will introduce some properties that are often discussed

as desiderata for nonmonotonic consequence relations.13 A positive account

11 Formal languages underlying specific NMLs are often richer. For instance, they may contain
predicate symbols, quantifiers, modal operators or (nonmonotonic) conditionals. Nevertheless,
for the introduction in this Element, a purely propositional language will suffice.

12 We suppose that ∧ and ∨ are commutative, associative, and idempotent.
13 Seminal studies of these properties can be found in Gabbay (1985) and Kraus et al. (1990).
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14 Philosophy and Logic

of what kind of logical behavior to expect from these relations is particularly
important given the fact that ‘nonmonotonicity’ only expresses a negative prop-
erty. This immediately raises the question whether there are restricted forms of
monotonicity that one would expect to hold even in the context of defeasible
reasoning? One proposal is

Cautious Monotonicity (CM). S ∪ {B} ∼ A, if S ∼ A and S ∼ B.14

Whereas nonmonotonicity expresses that adding new information to one’s
assumptions may lead to the retraction resp. the defeat of previously inferred
conclusions, CM states that some type of information is safe to add:
namely, adding a previously inferred conclusion does not lead to the loss of
conclusions.
We sketch the underlying rationale. Suppose S ∼ A and S ∼ B. In view of

S ∼ A, the defeasible consequence A of S is sanctioned. So, S does not contain
defeating information for concluding A. Now, the only reason for S ∪ {B} ∼/
A would be that the addition of B to S generates defeating information for
concluding A. However, B already followed from S, since S ∼ B. Thus, this
defeating information should have already been contained in S, before adding
B. But then S ∼/ A, a contradiction.
One may also demand that adding ∼-consequences to an assumption set

should not lead to more consequences.

Cautious Transitivity (CT). S ∼ A, if S ∪ {B} ∼ A and S ∼ B.

Combining CM and CT comes down to requiring that ∼ is robust under
adding its own conclusions to the set of assumptions.

Cumulativity (C). If S ∼ B, then S ∼ A iff S ∪ {B} ∼ A.

Instead of considering the dynamics of consequence under additions of new
assumptions, one may wonder what happens when assumptions are manipu-
lated. For instance, it seems desirable that a consequence relation is robust
under substituting assumptions for equivalent ones.

Left Logical Equivalence (LLE). Where S and T are classically equivalent
sets,15 S ∼ A iff T ∼ A.

Note that in the context of nonmonotonic consequence it would be too strong
to require

14 We silently interpret this and the following properties under universal quantification over sets
of sentences S, sentences A, B, etc.

15 S and T are classically equivalent, iff, for all A ∈ T , S `CL A iff T `CL A.
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Nonmonotonic Logic 15

Left Logical Strengthening (LLS). Where A `CL B, S ∪ {B}∼C implies
S ∪ {A}∼C.

In order to see why LLS is undesirable, consider an example featuring Tweety.
If it is only known that Tweety is a bird, it nonmonotonically follows that it
can fly, {b} ∼ f. The situation changes when it is also known that Tweety is a
penguin, {b ∧ p} ∼/ f.
For the right-hand side of ∼ one may also expect a property similar to

LLE: if A is a consequence, so is each equivalent formula B. The following
principle is stronger. It is motivated by the truth-preservational nature of CL-
inferences (but recall from Section 1.2 that in the context of generics it may be
problematic):

Right Weakening (RW). Where A `CL B, S ∼ A implies S ∼ B.

Finally, if we take our assumptions to express certain information (rather
than defeasible assumptions, see Section 4), then one may expect

Reflexivity (Ref). S ∪ {A} ∼ A.

Consequence relations that satisfy RW, LLE, Ref, CT, and CM are called
cumulative consequence relations (Kraus et al., 1990).16 The authors consider
them “the rockbottom properties without which a system should not be consid-
ered a logical system.” (p. 176), a point mirroring Gabbay (1985). Some other
intuitive principles hold for a cumulative∼.

Proposition 2.1. Every cumulative consequence relation∼ also satisfies:

1. Equivalence. If S ∪ {A} ∼ B and S ∪ {B} ∼ A then: S ∪ {A} ∼ C iff
S ∪ {B} ∼ C.

2. AND. If S ∼ A and S ∼ B then S ∼ A ∧ B.

Proof. Item 1 follows by CT and CM. To see this suppose (a) S ∪ {A} ∼ B,
(b) S ∪ {B} ∼ A, and (c) S ∪ {A} ∼ C. We show S ∪ {B} ∼ C (the inverse
direction is analogous). By CM, (a) and (c), S ∪ {A,B} ∼ C. Thus, by CT and
(b), S ∪ {B} ∼ C.
Ad 2. Suppose (a) S ∼ A and (b) S ∼ B. By Ref, S ∪ {A ∧ B} ∼ A ∧ B and

by LLE, (c), S ∪ {A,B} ∼ A∧ B. By CM, (a) and (b), S ∪ {A} ∼ B. By CT and
(c), S ∪ {A} ∼ A ∧ B. By (a) and CT, S ∼ A ∧ B. □

16 The original discussion in Kraus et al. (1990) concerns the case in which the left-hand side of
∼ is a single sentence.
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16 Philosophy and Logic

Another property of some NMLs is constructive dilemma: given a fixed con-
text represented by S , if C is both a consequence of A and of B, it should also
be a consequence of A ∨ B.

Constructive Dilemma (OR) If S ∪ {A} ∼ C and S ∪ {B} ∼ C then S ∪ {A∨
B} ∼ C.

Cumulative consequence relations that also satisfy OR are called prefer-
ential (Kraus et al., 1990). We show some derived principles for preferential
consequence relations.

Proposition 2.2. Every preferential consequence relation∼ also satisfies:

1. Reasoning by Cases (RbC). If S ∪ {A} ∼ B and S ∪ {¬A} ∼ B then S ∼ B.
2. Resolution. If S ∪ {A} ∼ B then S ∼ A ⊃ B.

Proof. (RbC). SupposeS∪{A} ∼ B andS∪{¬A} ∼ B. ByOR,S∪{A∨¬A} ∼ B
and by LLE, S ∼ B. (Resolution). Suppose now that S ∪ {A} ∼ B. By RW, (a),
S ∪ {A} ∼ A ⊃ B. By Ref, S ∪ {¬A} ∼ ¬A and by RW, (b), S ∪ {¬A} ∼ A ⊃ B.
By RbC, (a) and (b), S ∼ A ⊃ B. □

Amore controversial property than CM is rational monotonicity (RM).17 The
basic intuition is similar to CM: given an assumption set S, we are interested
in securing a safe set of sentences under the addition of which∼ is monotonic.
While for CM this was the set of the ∼-consequences of S, RM considers the
set of all sentences that are consistent with the consequences of S (consistent
in the sense that their negation is not a∼-consequence of S).

Rational Monotonicity (RM) S ∪ {B} ∼ A, if S ∼ A and S ∼/ ¬B.

One way to think about RM is as follows. Let us (i) say that B is defeating
information for S if there is an A for which S ∼ A, while S ∪ {B} ∼/ A, and
(ii) B is rebutted by S in case S ∼ ¬B.18 Then, when putting CM and RM in
contrapositive form,

• CM expresses that no defeating information for S is derivable from any S:
formally, if S ∼ A and S ∪ {B} ∼/ A then S ∼/ B;
• RM expresses the stronger demand that every defeating information for S is
rebutted by S: formally, if S ∼ A and S ∪ {B} ∼/ A then S ∼ ¬B.

17 See, for instance, Kelly and Lin (2021) and R. Stalnaker (1994) for critical views on RM.
18 The notions of defeat and rebuttal will be discussed in more detail in the context of formal

argumentation (Part II).
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Nonmonotonic Logic 17

So, RM requires that reasoners take into account potentially defeating infor-
mation by having rebutting counterarguments at hand. This is quite demanding,
since, as we have discussed in Section 1, (a) the reasoner may not be aware of
all possibly rebutting information to her previous inferences and (b) it may be
counterintuitive to conclude that each and every possible defeater is false.
Poole (1991) points out another problem. Consider the statement that Tweety

is a bird. Now, all bird species are exceptional to some defaults about birds:
penguins don’t fly, hummingbirds have an unusual size, sandpipers nest on the
ground, and so on. But, then RM requires us to infer that Tweety is not a pen-
guin, not a hummingbird, not a sandpiper, and so on, and therefore does not
belong to any bird species.
In this section we have seen various properties of nonmonotonic conse-

quence relations, many of which are considered desiderata by nonmonotonic
logicians. Their study is therefore of central interest in NML and we will come
back to them in the context of many of the methods presented in this Element.

2.3 Plausible and Defeasible Reasoning
A fundamental question underlying the design of NMLs is whether to model
defeasible reasoning

1. by means of classical inferences based on defeasible assumptions, or
2. by means of (genuinely) defeasible inference rules.

The former is sometimes called PLAUSIBLEREASONING, the latter DEFEASIBLE

REASONING.19 Table 1 provides an overview on which of the two reasoning
styles is modeled by various NMLs discussed in this Element. We illustrate
with an abstract example. Suppose we want to model that

• p defeasibly implies q, and that
• q defeasibly implies ¬r.

In the first approach we encode these two defeasible regularities in terms of
classical implications. It can be realized in two ways.

PLAUSIBLE REASONING via abnormality assumptions. One way is by formal-
izing the defeasible rules by

p ∧ ¬ab1 ⊃ q and q ∧ ¬ab2 ⊃ ¬r,

19 See Prakken (2012), Rescher (1976), and Vreeswijk (1993).We capitalize these technical terms
to distinguish them from their more general informal usage, i.e., “defeasible reasoning” refers
to the general phenomenon as described in Section 1, while DEFEASIBLE REASONING is the
technical term described in this section.
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18 Philosophy and Logic

Table 1 Reasoning styles modelled by various logics discussed in this
Element. (⋆) A NML with genuine defaults, such as Reiter’s default logic can
“simulate” PLAUSIBLE REASONING by encoding defeasible assumptions A by

defaults with empty bodies⇒ A.

NML DEFEASIBLE
REASONING

PLAUSIBLE
REASONING

ASPIC+ ✓ ✓ Section 8
Logic-based argumentation ✓ Section 9
Rescher & Manor ✓ Section 11.3.1
Default Assumptions ✓ Section 11.3.1
Adaptive Logic ✓ Section 11.3.1
Input–Output Logic ✓ ✓⋆ Section 11.3.2
Reiter Default Logic ✓ ✓⋆ Section 12
Logic Programming ✓ Section 16

where ab1 and ab2 are atomic sentences that encode exceptional circumstances,
that is, abnormalities, for the respective rules. These abnormalities are assumed
to be false, by default. Suppose that p is true. Then, by also assuming the falsity
of ab1 and ab2 we can apply modus ponens to both material implications and
conclude ¬r.
Let us see how retraction works in this approach by supposing r. In this

case we can classically derive ab1 ∨ ab2, but neither ab1 nor ab2. Note that
contraposition of defeasible rules is available in this approach. For instance,
q ∧ ¬ab2 ⊃ ¬r is CL-equivalent to q ∧ r ⊃ ab2.20 So, we know (at least) one
of the assumptions must be false, but we don’t know which. Absent any other
reason to prefer one over the other, we can’t rely on ¬ab1 to derive q. In view
of this, q should not be considered a nonmonotonic consequence of the given
information.

PLAUSIBLE REASONING via naming of defaults. Another way to proceed is by
naming defaults (see, e.g., Poole (1988)). Here, we make use of defeasible
assumptions r1 and r2, which name defeasible inference rules and which are
assumed to be true, by default. In our example, we add

r1 ⊃ ( p ⊃ q) and r2 ⊃ (q ⊃ ¬r)

to the (nondefeasible) assumptions. Note that r1 ⊃ ( p ⊃ q) (resp. r2 ⊃ (q ⊃ ¬r))
is classically equivalent to r1 ∧ p ⊃ q (resp. r2 ∧ q ⊃ ¬r). So, when substituting

20 A conditional→ is contrapositable in case ¬B→ ¬A follows from A→ B, or more general,
if C ∧ ¬B→ ¬A follows from C ∧ A→ B.
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Nonmonotonic Logic 19

r1 for ¬ab1 and r2 for ¬ab2 the approach based on naming defaults and the
approach based on abnormality assumptions boil down to the same.

DEFEASIBLE REASONING. In this approach, regularities are expressed as genu-
inely defeasible rules (written with⇒), that is, without additional and explicit
defeasible assumptions that are part of the antecedent of the rule. We encode
our preceding example by

p⇒ q and q⇒ ¬r.

Note that⇒ is not classical implication, in particular A∧ B⇒ C does, in gen-
eral, not follow from A⇒ C in this approach. In the first scenario, where only
p is given, we apply a defeasible modus ponens rule to obtain q and then again
to obtain ¬r. Many NMLs implement a greedy style of reasoning, according
to which defeasible modus ponens is applied as much as possible. Now, if r
is also part of the assumptions, we derive q from p and p ⇒ q, but then stop,
since inferring ¬r from q⇒ ¬r and q would result in inconsistency.

Example 8. For a more general context, we consider an example with defaults
p1 ⇒ p2, . . . ,pn−1 ⇒ pn and the (certain) information p1 and ¬pn depicted in
Figure 5. In the greedy style of reasoning underlying DEFEASIBLE REASONING

we will be able to apply defeasible modus ponens to derive p2, p3, …, pn−1.
Only the last application resulting in pn is blocked by the defeating information
¬pn. The situation is different for PLAUSIBLE REASONING. Since contraposition
is available, for each argument p1 ⇒ p2 ⇒ . . .⇒ pi (where each pj ⇒ pj+1 is
modeled by pj ∧ ¬abj ⊃ pj+1) there is a defeating argument ¬pn ⇒ ¬pn−1 ⇒
. . .⇒ ¬pi. Altogether, we obtain

{pi ∧ abi ⊃ pi+1 | 1 ≤ i < n} ∪ {p1,¬pn−1} ` ab1 ∨ . . . ∨ abn−1.

Figure 5 Top: DEFEASIBLE REASONING giving rise to a greedy reasoning style.
Bottom: PLAUSIBLE REASONING giving rise to contrapositions of defeasible

rules.
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20 Philosophy and Logic

This means that at least one abi cannot be assumed to be false, but we don’t
know which one. Thus, no pi (for i ∈ {2, . . . ,n}) is derivable according to
PLAUSIBLE REASONING.

3 From Knowledge Bases to Consequences and NMLs
Nonmonotonic logics represent the information relevant for the reasoning proc-
ess (knowledge representation) and determine what follows defeasibly from the
given information (nonmonotonic consequence, see Fig. 6).
The task of knowledge representation concerns, for instance, the structuring

of the starting point of defeasible reasoning processes in terms of knowledge
bases (Section 4) in which different types of information are distinguished,
such as different types of assumptions and inference rules. Another task is
to organize the given information in a way that is conducive of determining
its defeasible consequences. As we have seen, this is challenging since the
given information may give rise to conflicts and inconsistencies. NMLs pro-
vide methods for generating coherent chunks of information. We will highlight
several ways of doing so, most roughly distinguished into syntactic and seman-
tic approaches. The following three concepts play essential roles in the ways
knowledge is represented in these approaches:21

Extensions In syntactic approaches, coherent units of information are typi-
cally called extensions. What exactly extensions are differs in various NMLs.
They may, for example, be sets of defeasible information from the knowledge
base, sets of arguments (given a underlying notion of argument), or sets of sen-
tences. In Sections 5.1 and 5.2 wewill introduce twomajor families of syntactic

Knowledge representation
Extensions, models, arguments, etc.

Consequence relation

Output
consequences

Input
Knowledge base

Figure 6 The workings of NMLs.

21 One should not put too much philosophical emphasis on the term knowledge in the context of
knowledge representation (e.g., knowledge bases may contain defeasible assumptions which
do not have the status of true and justified beliefs). From a Brandomian perspective one may
think of knowledge bases as representing base commitments of a reasoner, where the defeasible
inference rules open an argumentative space of prima facie entitlements (Brandom, 2009).
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Nonmonotonic Logic 21

approaches: argumentation and consistent accumulation. In Parts II and III they
will be studied in more detail.
Arguments In syntactic approaches, arguments (or proofs) play a central role
when building extensions. Arguments are obtained by applications of the given
inference rules to the assumptions provided in the knowledge base.
Models In semantic approaches the focus is on classes of models provided by
a given base logic. In Section 5.3 we will introduce semantic approaches and
study some of them in more detail in Part IV.

The attentive reader will have noticed that we did not yet define what exactly
NMLs are. In the narrow sense, one may consider them as nonmonotonic con-
sequence relations (see Section 2.2), so a theory of what sentences follow
defeasibly in the context of some knowledge base. In the wider sense they are
methods for both knowledge representation and for providing nonmonotonic
consequence relation(s).
In this Element we minimally assume that every NML nmL comes with a

formal language L including a notion of what counts as a formula or sentence
(written sentL), an associated class of knowledge bases KnmL (see Section 4
for details), at least one consequence relation and one of the following two:

• in syntactic approaches: a notion of (in)consistent sets of sentences, of argu-
ment or proof, and a method to generate extensions (see Sections 5.1 and 5.2
and Parts II and III);
• in semantic approaches: a notion of model and a method to select models
(see Section 5.3 and Part IV).

4 Defeasible Knowledge Bases
Reasoning never starts in a void but it is initiated in a given context. For
instance, some information will be factually given and some assumptions may
hold by default. Moreover, when we reason we make use of inference rules.
Some of these may be truth-preservational (such as the rules provided by CL),
others defeasible, allowing for exceptional circumstances. Defeasible knowl-
edge bases structure reasoning contexts into different types of constituents,
such as different types of assumptions and inference rules. Most broadly
conceived they are tuples of the form:

K = 〈

strict and
defeasible

Assumptions︷    ︸︸    ︷
As, Ad ,

strict,
defeasible,

and metaRules︷              ︸︸              ︷
Rs, Rd, Rm,

preferences
among defeasible

elements︷︸︸︷
� 〉 (4.0.1)
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22 Philosophy and Logic

Table 2 The class of associated knowledge bases for specific NMLs. In gray
the nonfixed parts. For example, for specific input–output logics the set of
metarulesRm is fixed, while the strict assumptions and defeasible rules vary
in their applications.RL is the class of strict rules induced by a logic L, where

CL is classical logic.

NML As Ad Rs Rd Rm

ASPIC+ ✓ ✓ ✓ ✓ Section 8
Logic-based argumentation ✓ ✓ ✓(RL) Section 9
Rescher & Manor ✓ ✓(RCL) Section 11.3.1
Default Assumptions ✓ ✓ ✓(RCL) Section 11.3.1
Input–Output Logics ✓ ✓(RL) ✓ ✓ Section 11.3.2
Reiter Default Logic ✓ ✓(RCL) ✓ Section 12
Logic Programming ✓ Section 16

We let Def(K) =df Ad ∪ Rd be the defeasible part of K consisting of its
defeasible assumptions and rules.
A concrete nmL has an associated fixed class of knowledge bases KnmL. Its

underlying consequence relation(s)∼ are relations between KnmL and sentL.22
In concrete NMLs, usually not all components of (4.0.1) are utilized or

explicitly listed. For example, some NMLs do not consider defeasible rules,
some come without defeasible assumptions, some without priorities, many
without metarules. Take, for instance, NMLs that model PLAUSIBLEREASONING.
Here, we omit Rd since such NMLs do not work with defeasible rules. More-
over, specific components of the knowledge base are fixed for many NMLs, or
they are constrained. For instance, only specific preferences relations � may
be allowed for, such as transitive ones. Or, often the strict rules are induced by
classical logic. (In such cases, the strict rules are often omitted from KnmL.)
In some NMLs the strict rules vary over different applications (e.g., in logic
programming where strict rules usually represent domain-specific knowledge
such as “penguins are birds”). In Table 2 we provide an overview for NMLs
presented in this Element.
We now explain in more detail the components of K.

Strict assumptionsAs is a set of sentences expressing information that is taken
as indisputable or certain.

22 In Section 2.2 we considered properties for consequence relations of the type∼ ⊆ ℘(sentL) ×
sentL. A generalized study for ∼ ⊆ KnmL × sentL is presented in Section 10.3.
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Nonmonotonic Logic 23

Defeasible assumptions Ad is a set of sentences that are assumed to hold
normally/typically/and so on but which may be retracted in case of conflicts.
Strict rulesRs is a set of truth-preservational inference rules or relations, writ-
ten A1, . . . ,An → B.23 There are two types of such rules. On the one hand, we
have material inferences, such as “If it is a penguin, it is a bird” which may
be encoded by p → b. On the other hand, we have inferences that are valid
with respect to an underlying logic L, such as classical logic. If such infer-
ences are considered, we let A1, . . . ,An → B ∈ Rs if {A1, . . . ,An} `L B. If Rs

consist exclusively of such rules, we say that it is induced by the logic L and
write RL for the set containing them. All logics L considered in this Element
will be Tarski logics. If Rs is induced by a logic (with an implication ⊃) one
may model the former class of material inferences simply by means of ⊃. For
example, in our example onemay add p ⊃ b to the strict assumptionsAs. Some-
times we find strict assumptions A being modeled as strict rules with empty
bodies→ A.
Given a set of strict rules Rs and a set of sentences S ∪ {A}, we write
A ∈ CnRs (S) to indicate that there is a deduction of A based on Rs and S.
This means that there is a sequence 〈A1, . . . ,An〉 where A = An and for each
Ai+1 (with 0 ≤ i < n), either Ai+1 ∈ S or there are j1, . . . , jm ≤ i for which
Aj1, . . . ,Ajm → Ai+1 ∈ Rs.
Defeasible rulesRd is a set of defeasible inference rules written A1, . . . ,An ⇒
B, often just called defaults. As discussed in Section 2.3, defeasible rules are
sometimes “indirectly” modeled as strict rules with defeasible assumptions. In
NMLs that adopt this method of PLAUSIBLE REASONING, Rd may be empty. In
such cases we are typically dealing with a logic-induced set of strict rules RL
and defaults are sentences of the type A1 ∧ . . . ∧ An ∧ ¬ab ⊃ B in As where
¬ab ∈ Ad. Defeasible assumptions A ∈ Ad may be also considered as defaults
⇒ A with empty bodies.

For reasons of simplicity and following the tradition of many central NMLs,
we do not consider ⇒ as a defeasible conditional operator in the object lan-
guage L, that is, an operator that can be nested within Boolean connectives.
Rather, we model A ⇒ B as representing a defeasible rule that prima facie
justifies detachingB, givenA. However, it should be noted that this does impose
a limitation on our expressive capabilities. For instance, we cannot “directly”

23 In many NMLs the deductive base system is not modeled as part of a knowledge base, but
simply presupposed and provided by classical logic. Other systems, such as logic programming
(see Section 16.4) or some systems of structured argumentation theory (see Section 8) explicitly
model the strict rule base as part of the knowledge base. In any case, most well-known NMLs
come with a deductive base system and a defeasible rule base. For reasons of generality, we
model both as part of the knowledge base.
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24 Philosophy and Logic

express canceling in the context of specificity, such as penguin⇒ ¬(bird⇒
fly). Many systems have been developed to overcome this limitation, such as
Delgrande (1987) or conditional logics of normality (Boutilier, 1994a).24

Example 9. In Section 2.3 we presented twoways tomodel a scenario in which
p defeasibly implies q and q defeasibly imply¬r. Suppose now additionally that
r and ¬r both strictly imply s and that p defeasibly implies r.
In DEFEASIBLE REASONING we may work with the knowledge base K =

〈As,Ad,Rs,Rd〉 consisting of As = {p}, Ad = ∅, Rd = {p ⇒ q,p ⇒
r,q ⇒ ¬r}, and Rs = {r → s,¬r → s}. Alternatively, one may use the
strict assumptions r ⊃ s and ¬r ⊃ s andRCL as strict rules.
In PLAUSIBLE REASONING we may utilize K′ = 〈A′s,A′d,RCL〉, where A′s =
{p, p ∧ ¬ab1 ⊃ q, p ∧ ¬ab2 ⊃ r, q ∧ ¬ab3 ⊃ ¬r, r ⊃ s, ¬r ⊃ s} and
A′d = {¬ab1,¬ab2,¬ab3}.

Metarules Rm is a set of metarules, written R1, . . . ,Rn 7→ R (where R1, . . . ,

Rn are strict and defeasible rules and R is a defeasible rule) that allow one to
infer new defeasible rules from those in Rd and Rs. For example, metarules
implementing reasoning-by-cases and right weakening are:

OR (A⇒ B), (C⇒ B) 7→ ((A ∨ C) ⇒ B)
RW (B→ C), (A⇒ B) 7→ (A⇒ C)

Given a set R ⊆ Rd, we write CnRm (R) for the set of defeasible rules that
areRm-deducible fromR ∪Rs by the metarules inRm (where deductions are
defined as in the context of the strict rulesRs).25

Preferences � is an order on the defeasible elements Def(K) of K. It encodes
that some sources of defeasible information may be more reliable or have more
authority than others. This information can be utilized for the purpose of resolv-
ing conflicts between defeasible arguments of different strengths. Typically �
is reflexive and transitive, but it may allow for incomparabilities and for equally
strong but different defeasible elements. We write ≺ for the strict version of �,
that is, X ≺ X′ iff X � X′ and X′ ⪯̸ X.

24 Pioneering research on deontic logic and subjunctive conditionals gave rise to many sys-
tems that incorporate nonmonotonic conditionals in the object language, for example,
Van Fraassen (1972) and Hansson (1969) in deontic logic, logics by Lewis for deon-
tic reasoning (Lewis, 1974) and counterfactuals (Lewis, 1973), R. F. Stalnaker (1968) on
counterfactuals, etc.

25 In this Element we will mostly consider knowledge bases for which there are no metarules,
i.e.,Rm = ∅ (with the exception of temperate accumulation in Section 11, in particular input–
output logics in Section 11.3.2).
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Nonmonotonic Logic 25

Example 10. Consider K = 〈As,Rd〉 with As = {p} and Rd = {p⇒ q, p⇒
¬q}. There is a conflict between the arguments p ⇒ q and p ⇒ ¬q. Absent
priorities, there is no way to resolve the conflict on the basis ofK. If we enhance
K to K′ = 〈As,Rd,�〉 where ( p ⇒ q) ≺ ( p ⇒ ¬q) it seems reasonable to
resolve the conflict in favor of p⇒ ¬q.

The situation can get more involved, as the following example shows.

Example 11 (Example 9 cont.). We may extend our knowledge base to
K� = 〈As,Ad,Rd,Rs,�〉 by adding the preference order: ( p ⇒ q) ≺ ( p ⇒
r) ≺ (q ⇒ ¬r) (assuming transitivity).26 In this case we have two conflict-
ing arguments, p ⇒ q ⇒ ¬r and p ⇒ r. Comparing their strengths is no
longer straightforward, since the former involves both a stronger and a weaker
default than the latter. In Part III (Examples 28 and 29) we will see that different
methods give rise to different conclusions for K� (see also Liao et al. (2016)).

5 Methodologies for Nonmonotonic Logics
We now introduce three central methodologies to obtain nonmonotonic con-
sequence relations and to represent defeasible knowledge, namely: formal
argumentation (Section 5.1), consistent accumulation (Section 5.2), and seman-
tic methods (Section 5.3). In this part we explain basic ideas underlying each
method based on simplified settings (e.g., without metarules and preferences).
More details are presented in the dedicated Parts II to IV.

5.1 The Argumentation Method
The possibility of inconsistency complicates the question as to what follows
from a knowledge base K. As described earlier, the idea is to generate coher-
ent sets of information from K and to reason on the basis of these. For this,
arguments and attacks between them play a key role. Arguments are obtained
from K by chaining strict and defeasible inference rules. We can define the set
of arguments ArgK induced by K, their conclusions, subarguments, and defea-
sible elements (written Con(a), Sub(a), resp. Def(a) for some a ∈ ArgK) in a
bottom-up way.27

Definition 5.1 (Arguments). WhereK = 〈As,Ad,Rs,Rd〉 is a knowledge base
we let a ∈ ArgK iff

26 Under the following interpretation, this example is known as the order puzzle in deontic logic
(Horty, 2012): it is winter (p), open the window (q), turn on the heating (r).

27 In Sections 9 and 11.3.2 we also discuss a different take on arguments, not as proof trees but
as premise-conclusion pairs.
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26 Philosophy and Logic

• a = 〈A〉, where A ∈ As ∪Ad.
We let Con(a) = A, Sub(a) = {a},Rd(a) = ∅, Ad(a) = {A} ∩Ad.
• a = a1, . . . ,an { A where { ∈ {→,⇒}, a1, . . . ,an ∈ ArgK and r =

Con(a1), . . . ,Con(an){ A is a rule inRs ∪Rd.
We let Con(a) = A, Sub(a) = {a} ∪ ⋃n

i=1 Sub(ai), Ad(a) =
⋃n

i=1Ad(ai),
Rd(a) =

⋃n
i=1Rd(ai) ∪ ({r} ∩Rd).

Where a ∈ ArgK we let Def(a) = Ad(a) ∪Rd(a). Where D ⊆ Def(K), we let
ArgK(D) be the set of all a ∈ ArgK for which Def(a) ⊆ D.

Example 12 (Example 9 cont.). Given our knowledge baseK in Example 9 we
obtain the arguments depicted in Fig. 7 (left). We have, for instance, Ad(a5) =
∅,Rd(a5) = Def(a5) = {p⇒ q,q⇒ ¬r}, and Sub(a5) = {a1,a2,a3,a5}.

There are many ways to define argumentative attacks and subtlety is required
to avoid problems with consistency in the context of selecting arguments. We
will go into more details in Part II. For now we simply suppose there to be a
relation att ⊆ ArgK × ArgK that determines when two arguments attack each
other. We end up with a directed graph 〈ArgK,att〉, a so-called argumentation
framework (Dung, 1995).

Example 13 (Example 12 cont.). One way to define attacks in our example
is to let a ∈ ArgK attack b ∈ ArgK if for some c ∈ Sub(b) of the form c =
a1, . . . ,an ⇒ C, Con(a) = ¬C or ¬Con(a) = C. For instance, a3 and a4 attack
each other. In Fig. 7 (right) we find the underlying argumentation framework.

Argumentation frameworks allow us to select coherent sets of arguments
X , which we will call A-extensions (for argumentative extensions). The latter
represent argumentative stances of rational reasoners equipped with the knowl-
edge baseK. For this we utilize a number of constraints which represent rational
desiderata on these stances. Two such desiderata on sets of arguments X are,
for instance (we refer to Part II for a more comprehensive overview):

Figure 7 The arguments and the argumentation framework for Example 13
(omitting the nonattacked and nonattacking a1 and a2). We explain the

shading in Example 14.
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Nonmonotonic Logic 27

Conflict-freeness: avoid argumentative conflicts, that is, for all a,b ∈ X ,
(a,b) < att; and
Stability: additionally, be able to attack arguments that you don’t commit to,
that is, for all c ∈ ArgK \ X there is an a ∈ X for which (a,c) ∈ att.

Such sets of constraints give rise to so-called argumentation semanticswhich
determine A-extensions of a given argumentation framework (Dung, 1995).
For instance, according to the stable semantics the set of A-extensions is the
set of all sets of arguments that satisfy stability. Once we have settled for an
argumentation semantics s (such as the stable semantics) we denote the set of
A-extensions of K relative to s by AExts(K).

Example 14 (Example 13 cont.). We have two stable A-extensions, that is, sets
of arguments that satisfy the stability requirement (see the shaded sets in the
argumentation framework of Fig. 7):

X1 = {a1,a2,a3,a5} and X2 = {a1,a2,a4,a6}.

Suppose we select an A-extension X . We then commit to all of the conclu-
sions of the arguments in X , that is, to Con[X ], where Con[X ] = {Con(a) |
a ∈ X }. This induces another notion of extension, which we dub P-extensions
(propositional extensions) which are sets of conclusions associated with A-
extensions. We write PExts(K) for the set of P-extensions of K (relative to a
given argumentation semantics s).

Example 15 (Example 14 cont.). The following P-extensions are associated
with our A-extensions:

E1 = {p,q,¬r, s} and E2 = {p,q, r, s}.

Once an argumentation semantics is fixed and the A- and corresponding
P-extensions are generated, we can define three different consequence rela-
tions for two underlying reasoning styles (see Fig. 8): skeptical and credulous
reasoning.

Definition 5.2. Where K is a knowledge base, A a sentence, and s is an
argumentation semantics, we define the consequence relations in Table 3.

To avoid clutter in notation, we will omit the super- and subscripts whenever
the context disambiguates or the strategy is not essential to a given claim. Note
that the definition of the three consequence relations imposes a hierarchy in
terms of strength, namely:

K ∼∩AExt A implies K ∼∩PExt A implies K ∼∪Ext A.
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28 Philosophy and Logic

Table 3 Three types of nonmonotonic consequence relations.

Skeptical 1 K ∼s
∩PExt A iff A ∈ ⋂PExts(K)

A is a member of every extension in PExts(K).

Skeptical 2 K ∼s
∩AExt A iff there is an a ∈ ⋂AExts(K) s. t. Con(a) = A

There is an argument a with Con(a) = A that is contained in
every A-extension of K.

Credulous K ∼s
∪Ext A iff A ∈ ⋃PExts(K)

A is a member of some extension in PExts(K).

Figure 8 The skeptical and the credulous reasoning style.

Example 16 (Example 15 cont.). Based on our extensions, we have the fol-
lowing consequences:

p q ¬r r s

∼∩PExt ✓ ✓ ✓
∼∩AExt ✓ ✓
∼∪Ext ✓ ✓ ✓ ✓ ✓

The example illustrates that a floating conclusion such as s follows by ∼∩PExt
but not by the more cautious∼∩AExt.
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Nonmonotonic Logic 29

5.2 Methods based on Consistent Accumulation
Given a knowledge base K, the basic idea behind the accumulation methods
is to iteratively build coherent sets of defeasible elements from Def(K).28 We
will call such sets D-extensions (extensions consisting of defeasible elements).
Below we identify two central methods of building D-extensions: the greedy
and the temperate method. Once D-extensions have been generated by one
of these methods, we can associate each D-extension D with an A-extension
ArgK(D) consisting of all the arguments based on elements in D. Moreover,
each A-extension X has the corresponding P-extension Con[X ] as discussed
in Section 5.1. Once A- and P-extensions are obtained, we define consequence
relations just like in Definition 5.2 (see the overview in Fig. 9). We now discuss
the two types of accumulation methods.

5.2.1 The Greedy Method

Given a knowledge base K = 〈As,Ad,Rs,Rd〉, methods based on consistent
accumulation build iteratively sets of defeasible elements from Def(K). One
may think of a rational agent that extends her commitment store Def⋆ consist-
ing of elements in Def(K) in a stepwise manner. She starts off with the empty
set and in each step she adds an element of Def(K) \Def⋆ to Def⋆ or she stops
the procedure. She stops when adding any new element d would lead to incon-
sistency, that is, in case she would be able to construct conflicting arguments
on the basis of Def⋆ ∪ {d}.
According to the greedy method, she will only consider adding elements in

Def(K)\Def⋆ to her commitment store that (a) give rise to new arguments (that
is the greedy part) and (b) do not give rise to conflicting arguments. We will
make this formally precise with the algorithm GREEDYACC in what follows, but

Figure 9 Types of nonmonotonic consequence based on syntactic
approaches.

28 Recall that (a) Def(K) consists of the defeasible assumptions Ad and rules Rd in K, and that
(b) some NMLs come with associated knowledge bases that only contain one of the two types
of defeasible elements. We use d as a metavariable for members of Def(K).
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30 Philosophy and Logic

we first need to introduce some concepts. Where Def⋆ ⊆ Def(K), we say that
a default r = A1, . . . ,An ⇒ B

• is triggered by Def⋆, if A1, . . . ,An ∈ Con[ArgK(Def⋆)],29
• is consistent with Def⋆, if ¬B < Con[ArgK(Def⋆ ∪ {r})].

If r is triggered by Def⋆, adding r to Def⋆ gives rise to new arguments in
ArgK(Def⋆ ∪ {r}). The reason for this is that for each Ai (with i = 1, . . . ,n)
there is an argument ai ∈ ArgK(Def⋆)with conclusionAi, and a1, . . . ,an ⇒ B ∈
ArgK(Det⋆ ∪ {r}) \ArgK(Det⋆). We treat defeasible assumptions B ∈ Ad like
defaults with empty left-hand sides: they are always triggered, and consistent
with Def⋆ only if ¬B < Con[ArgK(Def⋆ ∪ {B})].
The algorithm GREEDYACC implements the greedy accumulation method.

We note that the element d ∈Def(K) \ Def⋆ in lines 3 and 4 is chosen
nondeterministically.

Algorithm 1 Greedy accumulation
1: procedure GREEDYACC(K) ▷ K = 〈As,Ad,Rs,Rd〉
2: Def⋆← ∅ ▷ init scenario
3: while ∃d ∈ Def(K) \ Def⋆ triggered by and consistent with Def⋆ do
4: Def⋆← Def⋆ ∪ {d} ▷ update scenario
5: end while ▷ no more triggered and consistent defaults
6: return Def⋆ ▷ return D-extension
7: end procedure

GREEDYACC takes as input a knowledge base K and outputs a D-extension
D. Its associated A-extension is given by X = ArgK(D) and its associated
P-extension by Con[X ]. The latter can be used to determine our three conse-
quence relations from Definition 5.2. We write DExtgr(K) [resp. AExtgr(K),
PExtgr(K)] for the set of D-[resp. A-, P-]extensions of K (gr for greedy
accumulation). We are now in a position to define three consequence relations
analogous to Definition 5.2 (see Table 3), for example, by:

K ∼gr
∩PExt A iff A ∈

⋂
PExtgr(K).

Example 17 (Example 12 cont.). We apply GREEDYACC to the given knowl-
edge base K. There are three different runs (due to the nondeterministic nature
of the algorithm):

29 Recall that Con[ArgK(Def⋆)] = {Con(a) | a ∈ ArgK(Def⋆)}.
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Nonmonotonic Logic 31

Run 1 Run 2 Run 3

Round 1 p⇒ r p⇒ q p⇒ q
Round 2 p⇒ q p⇒ r q⇒ ¬r

P-extension {p, r,q, s} {p, r,q, s} {p,¬r,q, s}
A-extension {a1,a2,a4,a6} {a1,a2,a4,a6} {a1,a2,a3,a5}

Next we list consequences according to the three different consequence rela-
tions:

p q ¬r r s

∼∩PExt ✓ ✓ ✓
∼∩AExt ✓ ✓
∼∪Ext ✓ ✓ ✓ ✓ ✓

Note that for ∼∩PExt we have to consider the intersection of all P-extensions
{p,q, s} and so we get the floating conclusion s (just like in Example 16).
For ∼∩AExt we consider the intersection of the A-extensions {a1,a2}: while
p,q ∈ Con[{a1,a2}] the floating conclusion s is not in Con[{a1,a2}]. Finally,
for∼∪Ext we consider the union of all P-extensions {p,q, r,¬r, s}.

5.2.2 Temperate Accumulation

Our second accumulationmethod is nongreedy (or, temperate) in that the defea-
sible elements from Def(K) that may be added to the commitment store Def⋆
in each step of the algorithm can be such that they don’t give rise to new
arguments. In more technical terms, our agent may also add defeasible rules
which are not triggered by Def⋆. This is described in Algorithm 2, TEMACC.
We use the same notation as before: DExttem(K) is the set of D-extensions
generated by TEMACC(K) and AExttem(K) =df {ArgK(D) | D ∈ DExttem(K)}
resp. PExttem(K) =df {Con[A] | A ∈ AExttem(K)} is the corresponding set of
A- resp. P-extensions. The three types of consequence relations∼tem

∩PExt,∼
tem
∩AExt,

and∼tem
∪Ext are defined analogously to the greedy versions (see Table 3).

Remark 1. Let us make two immediate observations to better understand how
the greedy approach relates to the temperate approach. First, since defeasible
assumptions are always triggered, the greedy and the temperate accumlation
methods coincide for knowledge bases without defeasible rules (where Rd =

∅). Second, every run via GREEDYACC corresponds to the initial segment of
some runs via TEMACC.
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32 Philosophy and Logic

Algorithm 2 Temperate accumulation
1: procedure TEMACC(K)
2: Def⋆← ∅ ▷ init scenario
3: while ∃d ∈ Def(K) \ Def⋆ consistent with Def⋆ do
4: Def⋆← Def⋆ ∪ {d} ▷ update scenario
5: end while ▷ no more consistent defaults
6: return Def⋆ ▷ return D-extension
7: end procedure

Example 18 (Example 17 cont.). We apply TEMACC to our knowledge base.
There are six possible runs, omitting runs 1–3 which are analogous to Exam-
ple 17:

… Run 4 Run 5 Run 6

Round 1 … q⇒ ¬r q⇒ ¬r p⇒ r
Round 2 … p⇒ q p⇒ r q⇒ ¬r

P-extension … {p,¬r,q, s} {p, r, s} {p, r, s}
A-extension … {a1,a2,a3,a5} {a1,a4,a6} {a1,a4,a6}

In comparison with GREEDYACC we get three additional runs, namely 4–6.
While run 4 is just a permutation of run 3, runs 5 and 6 give rise to new
D-extensions. They show the nongreedy character of TEMACC. Consider, for
instance, run 6: although in round 2 the default p ⇒ q is both triggered and
consistent with {p⇒ r}, the algorithm chooses the nontriggered q⇒ ¬r.
We list consequences according to the different notions of consequence,

marking differences to GREEDYACC with [!]:

p q ¬r r s

∼∩PExt ✓ [!] ✓
∼∩AExt ✓ [!]
∼∪Ext ✓ ✓ ✓ ✓ ✓

We see that q does not follow anymore by∼∩PExt and∼∩AExt.

While in our example every D-extension based on greedy accumulation is
also one based on temperate accumulation, the example demonstrates this typi-
cally doesn’t hold vice versa. As a consequence, temperate accumulation gives
rise to a more cautious style of reasoning than the greedy approach, at least in
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Section Section

Figure 10 The syntactic approach and NMLs discussed in this Element.

terms of the skeptical consequence relations and when there are no preferences
involved (see Example 29 for a counterexample with preferences).
Figure 10 gives an overview on NMLs discussed in this Element and where

they fall in terms of our classification.

5.2.3 Temperate Accumulation and Maxicon Sets

Alternative to the iterative procedure TEMACC, the D-extensions of temperate
accumulation can also be characterized in terms ofmaxicon sets (formaximally
consistent sets).

Definition 5.3. Given a knowledge base K, a set D ⊆ Def(K) is a maxicon set
ofK (in signs,D ∈ maxcon(K)) iff (i)D is consistent inK (i.e., Con[ArgK(D)]
is consistent) and (ii) for all D′ ⊆ Def(K), if D ⊊ D′ then D′ is inconsistent.

Proposition 5.1. Let K be a knowledge base and D ⊆ Def(K). D is a D-
extension generated by TEMACC iff D ∈ maxcon(K).

Proof. SupposeD = {d1, . . . ,dn} ∈ maxcon(K). We consider a run of TEMACC

in which in the ith round of the loop di is added to D⋆. We note that since D
is consistent in K, so is every of its subsets. Thus, the while loop is not exited
before the nth round.When the condition of the loop is checked the n+1th time,
D⋆ = D. By the maximal consistency of D in K, there is no d ∈ Def(K) \ D⋆

left for which D⋆ ∪ {d} is consistent in K. So, TEMACC terminates and returns
D. The other direction is similar. □

Example 19 (Example 18 cont.). Our knowledge baseK has the maxicon sets
D1 = {p ⇒ q,q ⇒ ¬r}, D2 = {p ⇒ q,p ⇒ r}, and D3 = {q ⇒ ¬r,p ⇒ r}.
These exactly correspond to the D-extensions of temperate accumulation.
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34 Philosophy and Logic

As a consequence of Proposition 5.1 we obtain an alternative charac-
terizations of the nonmonotonic consequence relations ∼tem

∩PExt, ∼
tem
∩AExt, and

∼tem
∪Ext.

Corollary 5.1. Let K be a knowledge base and S ∪ {A} a set of sentences.

1. S ∼tem
∩PExt A iff for every D ∈ maxcon(K), A ∈ Con[ArgK(D)].

2. S ∼tem
∩AExt A iff there is an A ∈ Con[⋂{ArgK(D) | D ∈ maxcon(K)}].

3. S ∼tem
∪Ext A iff for some D ∈ maxcon(K), A ∈ Con[ArgK(D)].

The consequence relation∼tem
∩AExt can be equivalently characterized bymeans

of minimal conflict sets:

Definition 5.4. D ⊆ Def(K) is aminimal conflict set forK iffD is inconsistent
in K but every D′ ⊊ D is consistent in K. The set of innocent bystanders in
K, IB(K), consists of all members of Def(K) that are not members of minimal
conflict sets for K.

Example 20 (Example 9 cont.). For our knowledge baseKwe have IB(K) = ∅
since every defeasible element is part of a minimal conflict. Were we to add,
for instance, p⇒ u toRd, resulting in K′, we would have IB(K′) = {p⇒ u}.

Proposition 5.2. LetK be a knowledge base. Then, (i) IB(K) = ⋂maxcon(K)
and (ii) K ∼tem

∩AExt A iff A ∈ Con[ArgK(IB(K))].

Proof. We show (i). (ii) follows then immediately by Corollary 5.1. Suppose
d < IB(K). Thus, there is a minimal conflict setD inK with d ∈ D. So,D \ {d}
is consistent and there is aD′ ∈ maxcon(K) withD \ {d} ⊆ D′ and d < D′. So
d <

⋂maxcon(K). The other direction is similar and left to the reader. □

5.3 Semantic Methods
Let us suppose a knowledge base of the form K = 〈As,Ad,RL〉 for a Tarski
logic L (such as CL, see Section 4). A natural interpretation of K ∼ A is that A
holds in the most normal situations that are consistent with the strict assump-
tionsAs in K, where the standard of normality is contributed by the defeasible
elements Ad of K.
In many NMLs this idea is realized in terms of semantic selections.30

Supposing that L provides a model semantics to interpret formulas inAs ∪Ad,

30 The idea has been proposed by various scholars (Kraus et al., 1990; Shoham, 1987). In cir-
cumscription (McCarthy, 1980) (for propositional versions see also Gelfond et al. (1989) and
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Nonmonotonic Logic 35

we consider the models of As, written M(As). We write M |= A if A is inter-
preted as true in M. On these models an order � is imposed where M � M′ in
case M is at least as normal as M′. What it means to be more normal is deter-
mined by the defeasible information in K (a concrete example is given in the
next paragraph). The entailment relation is then defined by:

K ∼� A iff for all M ∈ min�(M(As)),M |= A,

that is, the most normal models of As validate A.
To make this idea more concrete we return to the system of PLAUSIBLE

REASONING in Section 2.3. There we modeled defeasible inferences
A1, . . . ,An ⇒ B in terms of implications A1∧ . . .∧An∧¬ab ⊃ B supplemented
with normality assumptions ¬ab ∈ Ad. The strict rules RCL were contributed
by classical logic. So, the knowledge base has the form 〈As,Ad,RCL〉, or in
short 〈As,Ad〉. We additionally assume that As is classically satisfiable (so it
has a model). According to the rationale stated earlier, 〈As,Ad〉 ∼ Ameans that
A holds in all situations in which the assumptions ofAs are true and which are
most normal relative to the defeasible assumptions in Ad.
Where M is a classical model of As, let for this NK(M) =df {A ∈ Ad |

M |= A} be the normal part of M. We can then order the models by � ⊆
M(As) ×M(As) as follows:

M � M′(M is at least as normal asM′) iff NK(M′) ⊆ NK(M).

In other words, the more defeasible assumptions a model verifies, the more
normal it is. The most normal models will then be those in min�(M(As)). See
for an illustration Fig. 11.

Example 21 (Example 9 cont.). We take another look at K′ from Example 9.
We have, among others, the classical models ofAs listed in Fig. 12 (left) whose
ordering � is illustrated on the right. The minimal models are M1,M2 and M3.
We therefore have, for instance, K ∼� p and K ∼� r ∨ q.

Semantic selections have also been used as a model of the closed-world
assumption in McCarthy’s circumscription (McCarthy, 1980).31 In our pres-
entation this is realized by letting Ad be a set of negated atoms.

Satoh (1989)) and adaptive logics (Batens, 2007) we proceed in an inverted manner: instead
of interpreting the information such that as many defeasible assumptions in Ad are true as
possible, one works with a set of negative assumptions which are interpreted false as much as
possible.

31 See Moinard and Rolland (1998) for an overview on circumscription.
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36 Philosophy and Logic

Figure 11 Nonmonotonic entailment by semantic selections.

Figure 12 The order � on the models of Example 21. Highlighted are the
�-minimal models. The atoms p and s are true in every model of As.

Figure 13 Models of As in Example 22 with highlighted �-minimal
models.

Example 22. Suppose Anne checks the online menu of the university can-
teen and finds the information that fries are served and that either pizza or
burger is available. Consider the knowledge base Kcan = 〈As,Ad,RCL〉 where
As = {fries,pizza ∨ burger}, Ad consists of {¬A | A ∈ Atoms}, and
Atoms= {fries,pizza,burger,soup}. In Fig. 13 we find the �-ordering
of the models of As. With ∼� Anne concludes, for instance, ¬soup and
¬pizza ∨ ¬burger. This is in accordance with the closed-world assumption:
what is not listed in the menu is assumed not to be offered.
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6 A Roadmap
In this introduction we have explained the main ideas and concepts behind sev-
eral core methods of NML. In what follows we will deepen our understanding
of

• the argumentation method in which a reasoner analyzes the interplay
between arguments and their counterarguments to determine coherent sets
of arguments (Part II);
• the methods based on consistent accumulation, temperate and greedy, in
which a reasoner gradually commits to more and more defeasible informa-
tion from the given knowledge base (Part III); and
• the semantic method in which a reasoner determines the most normal
interpretations of the given knowledge base (Part IV).

We will study metatheoretic properties that come with these methods and
discuss central logics from the literature that implement them.
Given that the field of NML comes with such a variety of systems and

methods, it will also be our task to provide links between the methods. As
we will see, several classes of logics belonging to different methods give rise
to the same class of nonmonotonic consequence relations (see Fig. 14 for an
overview).

Figure 14 Links between the various methods studied in this Element.
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PART II FORMAL ARGUMENTATION
Argumentation theory as a study of defeasible reasoning has been proposed
already by Toulmin (1958). His book provides a critique of formal logic as a
model of the defeasible nature of commonsense reasoning. While in the early
1980s many NMLs were proposed, we have to wait for the most influential
pioneering works in formal argumentation such as Pollock (1991, 1995) and
Dung (1995) until the 1990s. What distinguishes these approaches from earlier
NMLs is the prominent status of arguments and defeat. The ambition is to pro-
vide both an intuitive and unifying account of defeasible reasoning. Recently,
Mercier and Sperber (2017) have made a strong case for the argumentative
nature of human reasoning. Together with the rich tradition in informal argu-
mentation theory (e.g., Eemeren & Grootendorst, 2004; Walton et al., 2008)
this strongly motivates formal argumentation as an account of defeasible
reasoning which is close to human reasoning practices.
In this part we deepen our understanding of formal argumentation theory. In

Section 7 we explain how Dung’s abstract perspective provides a way to select
arguments from an argumentation framework. In Sections 8 and 9, we present
two ways of equipping arguments with logical structure.

7 Abstract Argumentation
In formal argumentation the question as to what follows from a given defeasible
knowledge baseK is answered by means of an argumentative analysis. It is the
essential idea behind abstract argumentation (introduced by Dung (1995)) that
as soon as the arguments induced by K are generated and collected in the set
ArgK, and as soon as the attacks between them are determined and collected in
the relation att ⊆ ArgK × ArgK, we can abstract from the concrete content of
those arguments, focus on the directed graph given by 〈ArgK,att〉 and select
arguments simply by means of analyzing this graph.32 The latter is called the
argumentation framework for K. The argumentation semantics defined in the
following definition offer criteria to select arguments that form a defendable
and consistent stance. We call the selected sets of arguments A-extensions of
K. A-extensions form the basis of three types of nonmonotonic consequence
relations: ∼∩AExt,∼∩PExt, and ∼∪Ext (see Table 3). Due to its strict division of
labor between argument and attack generation, on the one hand, and argument
selection with its induced notion of nonmonotonic consequence, on the other
hand, formal argumentation offers a transparent and clean methodology.

32 The reader is referred back to Section 5.1 where we introduced basic definitions such as the
notion of an argument and the set ArgK.
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Nonmonotonic Logic 39

Table 4 Argumentation semantics.

X is iff

conflict-free for all a,b ∈ X , (a,b) < att
admissible X ⊆ defended(X )
complete X = defended(X )
grounded X is the unique ⊆-minimal complete set
preferred X is ⊆-maximal admissible
stable X is conflict-free and for all a ∈ Arg \ X there is a b ∈ X

such that (b,a) ∈ Arg

Figure 15 Relations between argumentation semantics. Every extension of
the type left of an arrow is also an extension of the type to its right.

Figure 16 Left: An argumentation framework composed of five arguments.
Highlighted in the center and on the right are its two preferred extensions. The
extension in the center is the only stable extension. The grounded extension in

this example is ∅.

Definition 7.1 (Argumentation Semantics, Dung (1995)). Let 〈Arg,att〉 be an
argumentation framework and X ⊆ Arg a set of arguments. We say that X
defends a ∈ Arg if for all b ∈ Arg, if (b,a) ∈ att then there is a c ∈ X such that
(c,b) ∈ att. We write defended(X ) for the set of arguments that are defended
by X . In Table 4 we list several types of A-extensions.

In Fig. 15we see the logical connections between the different argumentation
semantics, all of which have been shown in Dung (1995). Dung also showed
that, except for stable extensions, extensions of all other types always exist
(they may be empty, though) and the grounded extension consists exactly of
those arguments that are contained in every complete extension. Stable exten-
sions often do not exist in frameworks that give rise to odd cycles: consider, for
instance, AF = 〈{a}, {(a,a)}〉 in which neither ∅ nor {a} is stable. In Fig. 16
we find an argumentation framework with five arguments. Depicted are some
of its extensions.
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40 Philosophy and Logic

8 ASPIC+

We now move from abstract to structured argumentation.33 This means that
our arguments will now get a logical form and attacks will be defined in terms
of logical relations between arguments. ASPIC+ is one of the most prominent
and most expressive frameworks in formal argumentation (Modgil & Prakken,
2013). Arguments are generated on the basis of the inference rules and assump-
tions in a given knowledge base K of the form 〈As,Ad,Rs,Rd,�〉 (see
Definition 5.1). We let ArgK denote the set of all arguments induced by K.
In the context of ASPIC+ we frequently find three types of attacks. In order to
define them, we need to enhance knowledge bases with two elements. (a) A
contrariness relation associates formulas with a set of contraries, for exam-
ple, A = {¬A} or A = {B | B→ ¬A ∈ Rs}. (b) A naming function name allows
us to refer to defeasible rules r ∈ Rd in the object language by name(r). So our
knowledge bases will have the extended formK = 〈As,Ad,Rs,Rd,�, ,name〉.

Definition 8.1. Where a,b ∈ ArgK, we define three types of attacks:

Rebut: a rebuts b in b′ ∈ Sub(b) iff b′ is of the form b1, . . . ,bn ⇒ B and
Con(a) ∈ B.
Undercut: a undercuts b in b′ ∈ Sub(b) iff b′ is of the form b1, . . . ,bn ⇒ B
where the top rule is r ∈ Rd and Con(a) = name(r).
Undermining: a undermines b in a defeasible assumption B ∈ Ad in case
Con(a) ∈ B and 〈B〉 ∈ Sub(b).

An informal example of a rebut is one where Peter calls upon weather report
1 to argue that it will rain, while Anne counters by calling upon weather report
2 that predicts the opposite. An undercut may occur in a case of specificity:
while Peter argues that Tweety can fly based on the fact that Tweety is a bird
and birds usually fly, Anne counters that the default “Birds fly” is not applica-
ble to Tweety since Tweety is a penguin and, as such, Tweety is exceptional to
“Birds fly.” Undermining happens if Anne argues against one of Peter’s basic
(defeasible) assumptions: Peter may argue that they should go and buy gro-
ceries, since the shop is open, when Anne reminds him of the fact that it is a
public holiday and therefore shops are closed.
Whenever the defeasible elements of a knowledge base differ in strength,

not every attack may be successful. In the context of ASPIC+ we refer to
successful attacks as defeats. There are various ways defeats can be defined,
but they are all based on a lifting of � to the level of arguments (recall that

33 For an overview on the state of the art in structured argumentation see Arieli et al. (2021a).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108981699
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.154, on 31 Oct 2025 at 13:11:56, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108981699
https://www.cambridge.org/core


Nonmonotonic Logic 41

� ⊆ Def(K)×Def(K) orders the defeasible elements of our knowledge baseK).
We present here the most common approach, called weakest link. To simplify
things, we also suppose that � is a total preorder (so it is reflexive, transitive
and total). Where D1,D2 ⊆ Def(K), we let D1 � D2 if there is a d1 ∈ D1

such that for all d2 ∈ D2, d1 � d2. Then, for two arguments a,b ∈ ArgK, we
let a � b iff Def(a) � Def(b).34 We now say that a defeats b iff a attacks b
(Definition 8.1) and (i) b � a or (ii) the attack is an undercut.35

In the special case in which no preference order � is specified in the knowl-
edge base, a defeats b iff a attacks b. If the naming function is left unspecified
in K, undercuts are omitted.

Definition 8.2. Let K = 〈Ad,As,Rd,Rs,�, ,name〉 be a knowledge base.
AFK = 〈ArgK,{〉 is an ASPIC+-based argumentation framework, where for
a,b ∈ ArgK, a{ b iff a defeats b.

A-extensions obtained via the different argumentation semantics s
(grounded, preferred, stable, etc.) in Definition 7.1 can serve as a basis for the
three types of consequences, defined exactly as in Definition 5.2 and Table 3 in
Section 5.1.

Example 23. We consider the knowledge base K = 〈As, Ad, Rs, Rd, �,
, name〉, where As = {p}, Ad = {q},Rs = {¬q→ u, v→ u},

Rd =
{
r1 : p⇒7 ¬t, p⇒3 s, s⇒5 ¬q, q⇒3 t, t⇒2 v, r2 : p⇒9 t

}
,

name(r1) = {s}, and name(r2) = {t}. In order to define � we “rank” the mem-
bers of Def(K) as indicated in the superscripts of the defaults and let the rank of
the defeasible assumption q be 3. Where d1,d2 ∈ Def(K), we then let d1 � d2
iff rank(d1) ≤ rank(d2).
The arguments induced by K and the corresponding argumentation frame-

work are depicted in Fig. 17. We note that a1 is defeated by b1 despite the
fact that b1 is weaker than a1 (by comparing their weakest links) since the
attack is an undercut, for which the strength of the attacker plays no role.
The defeat between b2 and c0 is symmetric. We have an undermine attack
from b2 to c0, while the other way around it is a rebuttal. In Table 5 we
list the different argumentation extensions and the corresponding consequence
relations.

34 See Beirlaen et al. (2018) for an overview of different accounts of argument strength.
35 Our definition follows Modgil and Prakken (p. 364, 2013), according to whom preferences do

not matter for defeats based on undercuts. See also Baroni et al. (2001) for more discussion.
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Table 5 The various extensions and consequences for Example 23.

Complete Grounded Preferred Stable

X0 = {a0,b1} X0

X1 = {a0,b1,b2,b3} X1

X2 = {a0,b1,c0,c1,c2,c3} X2 X2

∼∩PExt {p, s} {p, s} {p, s,u} {p,q,u, s, t,v}
∼∩AExt {p, s} {p, s} {p, s} {p,q,u, s, t,v}
∼∪Ext S = {p,q,¬q, t, s,¬s,u,v} {p, s} S {p,q,u, s, t,v}

Figure 17 The argumentation framework for Example 23. Solid arrows
represent rebuttals, dashed arrows undermining, and dotted arrows undercuts.

Example 24. Consider the knowledge base K = 〈As,RCL,Rd〉 (without pref-
erences), whereRd = {p⇒ q, p⇒ s, p⇒ ¬(q∧ s)} andAs = {p}. We have,
for instance, the following arguments:

a1 = 〈p〉 ⇒ q a4 = a1,a2 → q ∧ s
a2 = 〈p〉 ⇒ s a5 = a1,a3 → ¬s
a3 = 〈p〉 ⇒ ¬(q ∧ s) a6 = a2,a3 → ¬q

The reader may be puzzled by on odd restriction in Definition 8.1, namely,
when attacking an argument in which inference rules have been applied, only
attacks in the heads of defeasible rules are allowed. Why did we not simply
define: a attacks b iff `CL Con(a) ≡ ¬Con(b)? Figure 18 features the resulting
argumentation framework. We observe that there is now a preferred (and sta-
ble) extension with the conclusions p, s and ¬( p ∧ s). This may be considered
as unwanted if we want our A-extensions to represent rational and therefore
consistent stances of debaters.
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Figure 18 Example 24 with the inconsistent preferred and stable extension
{a1,a2,a3}.

Problems such as the one highlighted in our previous example show the need
for a set of design desiderata, or rationality postulates, that argumentation-
based NMLs should fulfill. The following have become standard in the
literature (Caminada & Amgoud, 2007). Given a standard of consistency, a
knowledge baseK = 〈As,Ad,Rs,Rd,�, ,name〉, an argumentation semantics,
an A-extension X based on it, and the argumentation framework 〈ArgK,{〉,
we define

Direct consistency. For all a,b ∈ X , {Con(a),Con(b)} is consistent.
Indirect consistency. Con[X ] is consistent.
Strict closure. Where a1, . . . ,an ∈ X and Con(a1), . . . ,Con(an) → A ∈ Rs,
also a1, . . . ,an → A ∈ X .

In Example 24 we have seen that allowing in our simple framework for
“unrestricted” rebut results in a violation of indirect consistency and strict
closure,36 unlike the unrestricted rebut of Definition 8.1.
Another rationality property has to do with syntactic relevance. We give an

example to motivate it.

Example 25. Consider the knowledge baseK1 = 〈As,RCL,R1
d, 〉, whereAs =

{t},R1
d = {t⇒ s}, and A = {B | `CL A ≡ ¬B}. Clearly, the grounded extension

will contain the argument a : 〈t〉 ⇒ s and therefore both t and s follow with
∼∩AExt and∼∩PExt.

We now extend our knowledge base to K2 = 〈A2
s ,RCL,R2

d, 〉, where A
2
s =

{t,p} and R2
d = {p⇒ q, p⇒ ¬q, t⇒ s}. Figure 19 shows a relevant excerpt

of the argumentation framework for K2. Argument c is obtained by the rule
q,¬q→ ¬s that holds due to the classical explosion principle.
Note that we only added information to K1 that is syntactically irrelevant

to both t and s. Nevertheless, the grounded extension of K2 only consists of
arguments that do not involve defeasible rules (such as b0 or b′0 = b0 → p∨q).
Therefore, a is not part of it. As a consequence,∼∩PExt and∼∩AExt will deliver
only classical consequences of {p, t}, but not anymore s.

36 Standard ASPIC+ therefore disallows rebuttals in heads of strict rules. For alterna-
tive approaches to ASPIC+ that lift this restriction see Caminada et al. (2014), and
Heyninck and Straßer (2019).
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Figure 19 Excerpt of the argumentation framework of Example 25.

The rationality property noninterference (Caminada et al., 2012) expresses,
informally, that adding syntactically irrelevant information to a knowledge
base should not lead to the loss of consequences. Our example shows that this
property does not hold for grounded extensions.

9 Logic-Based Argumentation
Another line of research within structured argumentation is logic-based (or
deductive) argumentation. In what follows we will show that it has close con-
nections to temperate accumulation and that, just as in the case of ASPIC+,
ill-conceived combinations of attack forms and argumentation semantics can
lead to undesired metatheoretic behavior.
Logic-based argumentation has been proposed, for instance, in

Arieli and Straßer (2015) and Besnard and Hunter (2001). Our presentation
follows the approach in Arieli et al. (2023), but simplifies it in some respects.37

Knowledge bases have the formK = 〈Ad,As,RL〉, where the set of strict rules
RL is induced by an underlying Tarski logic L.
In Definition 5.1, arguments are proof trees. In the context of knowledge

bases without defeasible rules and for which the strict rules are induced by a
base logic L, arguments are often modeled more abstractly simply as premise-
conclusion pairs.

Definition 9.1. Where K = 〈As,Ad,RL〉, we let ArgK = {(S,A) | S ⊆ As ∪
Ad is finite and S `L A}. Where a = (S,A) is an argument inArgK,Con(a) = A
and Def(a) = Ad(a). Where A ⊆ Ad, ArgK(A) = {a ∈ ArgK | Def(a) ⊆ A}.

Attacks between arguments can be defined in various ways. Some examples
are given in Table 6.38

37 There are some differences between these accounts; e.g., in Besnard and Hunter (2001) the
premise set of an argument is supposed to be minimal and consistent, strict assumptions
are not considered, and the approach is based on classical logic, whereas Arieli and Straßer
(2015) allow for any Tarski base logic. Like Arieli et al. (2023) we here include defeasible
assumptions, but we simplify the presentation in that we don’t rely on an underlying sequent
calculus.

38 The terminology for attack forms in logical argumentation is incoherent with the one used in
ASPIC+. In order to not confuse the reader familiar with logical argumentation, we don’t unify
the terminology in this section.
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Table 6 Attack types in logic-based argumentation.

Type Attacker Attacked Conditions

Defeat 〈A1,¬
∧

A2〉 〈A2 ∪A′2,C〉 A2 , ∅, A2 ⊆ Ad

DirDefeat 〈A1,¬A〉 〈A2 ∪ {A},C〉 A ∈ Ad

ConDefeat 〈A1,¬
∧(A2 \As)〉 〈A2,C〉 A1 ⊆ As, A2 ∩Ad , ∅

Definition 9.2. Let α be a nonempty set of attack types based on the knowledge
baseK= 〈As,Ad,RL〉 from Table 6, arguments be defined as in Definition 9.1,
and att ⊆ ArgK × ArgK be defined by (a,b) ∈ att iff a attacks b in view
of an attack type in α. We let AFα(K)= 〈arg(K),att〉 be the argumentation
framework induced by K and α. For a given argumentation semantics s ∈
{grounded,preferred, stable} (see Table 4) and an attack type α, we denote
the corresponding set of A-extensions by AExts,α(K) and the underlying
nonmonotonic consequences analogous to Table 3. For instance,

• K ∼s,α
∩PExt A iff in every s-extension X ∈ AExts,α(K) there is an argument

〈S,A〉.

Let in the following AttDir = {{DirDefeat}, {DirDefeat,ConDefeat}},
and AttSet = {{Defeat}, {Defeat,ConDefeat}}.

Example 26. We letK= 〈As,Ad,RCL〉, whereAs = {s} andAd = {p∧u,¬p∧
u,q,¬s}. In Fig. 20 we see (a fragment of) the argumentation framework
AFα(K). We note that for α ∈AttSet the grounded extension concludes q, but
not for α= {DirDefeat}. The latter is counterintuitive since q is syntactically
unrelated to the conflicts in p∧u and ¬p∧u and the conflict in s and ¬s. On the
right (center and bottom) we see the two stable resp. preferred extensions for
this example. In both cases we can conclude q and the floating conclusion u.
We also note a correspondence between the argumentative extensions

and selections based on maxicon sets of K (see Section 5.2.3). We have
maxcon(K)= {{p∧u,q}, {¬p∧u,q}} and⋂maxcon(K)= {q}. So, in our exam-
ple, the grounded semantics induces the same consequence relations∼grounded,α

∩AExt
and∼grounded,α

∩PExt as∼tem
∩AExt for α ∈AttSet, while the stable and preferred seman-

tics (s ∈ {stable,preferred}) induce the same consequence relations ∼s,α
∩Ext as

∼tem
∩PExt for any α ∈AttDir (recall Section 5.2.3 and Corollary 5.1). This is not

coincidental, as we see with Theorem 9.1.

In fact, there is a close relation between logic-based argumentation and
reasoning based on temperate accumulation.39

39 For an overview on relations between methods based on maxicon sets and structured argumen-
tation see Arieli et al. (2019).
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Figure 20 Example 26. Left: We let A = {p ∧ u,¬p ∧ u}. The black nodes
represent the grounded extension. Dashed arrows correspond to those Defeats

and ConDefeats that are not DirDefeats, while solid arrows are (also)
DirDefeats. Right top: The grounded extension for α = {DirDefeat}. Right

center and bottom: the two stable resp. preferred extensions.

Theorem 9.1 (Arieli et al., 2021b). Let K = 〈As,Ad,RL〉 be a knowledge
base. We have:

1. AExts,α(K) = {ArgK(T ) | T ∈ maxcon(K)} and ∼tem
∩PExt = ∼

s,α
∩PExt, for

α ∈ AttDir and s ∈ {stable,preferred}.
2. AExts,α(K) = ArgK(

⋂maxcon(K)) and ∼tem
∩AExt = ∼

s,α
∩AExt = ∼

s,α
∩PExt, for

α ∈ AttSet and s = grounded.

While Theorem 9.1 identifies well-behaved combinations of attack types and
argumentation semantics, the following two examples show that one has to be
careful in order to avoid counter-intuitive behavior. (Recall similar problems
in the context of ASPIC+ in Section 8.)
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Figure 21 Example 27. Left: α ∈ AttSet. Right: α ∈ AttDir.

Example 27. We consider the knowledge base

K = 〈As : ∅, Ad : {p,q,¬( p ∧ q)}, RCL〉.

In Fig. 21 we see that with α ∈ AttSet we obtain a problematic stable and
preferred extension X featuring the inconsistent set of conclusions {p,q,¬( p∧
q)} violating the indirect consistency property (see Section 8). On the right we
find the argumentation framework with α ∈ AttDir where X is not anymore
preferred (and therefore also not stable).

Selected Further Readings
An excellent overview on the state of the art in formal argumentation
is provided by the handbook series Handbook of Formal Argumentation
(Baroni et al. 2018) and Handbook of Formal Argumentation (Gabbay et al.
2021). Volume 5 of Argument & Computation contains several tutorials on
central approaches, such as Modgil and Prakken (2014), and Toni (2014).
Already in the seminal Dung (1995) several embeddings of NMLs in

abstract argumentation were provided, including default logic. A recent over-
view on structured argumentation can be found in Arieli et al., (2021a). Links
to default logic with a special emphasis on preferences are established in,
for example, Liao et al. (2018); Straßer and Pardo (2021), and Young et al.
(2016), connections to maxicon sets are numerous (Arieli et al., 2019; Cayrol,
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1995; Heyninck & Straßer, 2021b; Vesic, 2013), and links to adaptive log-
ics are to be found in Borg (2020), Heyninck and Straßer (2016), and
Straßer and Seselja (2010), and to logic programming in Caminada and Schulz
(2017); Heyninck and Arieli (2019), and Schulz and Toni (2016). Non-
monotonic reasoning properties of several systems of structured argu-
mentation are studied in Borg and Straßer (2018); Čyras and Toni (2015);
Heyninck and Straßer (2021a), and Li et al. (2018). Probabilistic approaches
can be found, for instance, in Haenni (2009); Hunter and Thimm (2017),
and Straßer and Michajlova (2023). The Handbook of Formal Argumentation
offers an excellent overview and detailed surveys of central topics in the area
(see Handbook of Formal Argumentation, 2021).

PART III CONSISTENTLY ACCUMULATING DEFEASIBLE
INFORMATION

10 Consistent Accumulation: General Setting
In this section we study in a systematic way the two variants of the con-
sistent accumulation method: greedy and temperate accumulation. First, in
Section 10.1 we present the algorithmsGREEDYACC and TEMACC in the settings
of knowledge bases in the general form of Section 4 (including preferences).
Then, in Section 10.2 we present alternative characterizations in terms of fixed
points. In Section 10.3 we study metatheoretic properties of extensions and
nonmonotonic consequences. While this section provides a general perspec-
tive, we dive into particularities and concrete systems in Sections 11 and 12.

10.1 Greedy and Temperate Accumulation
We now consider knowledge bases with all components

K = 〈As,Ad,Rs,Rd,Rm,�〉

as introduced in Section 4, with the only restriction that the set of defeasible
elements inK, Def(K)(= Ad∪Rd), is finite. As compared to Part I, we slightly
generalize our two accumulation methods, greedy and temperate accumulation,
by taking into account preferences among elements in Def(K). For this, we
suppose there to be a reflexive and transitive order � on Def(K).
In the following we suppose for any given nmL a formal language L, a

class of associated knowledge bases KnmL, a notion of what it means that a
set of sentences S ⊆ sentL is (in)consistent, for each K ∈KnmL a set ArgK
of arguments based on K, and for each a ∈ArgK a notion Con(a) of conclu-
sion and Def(a) of the defeasible part of a (e.g., Definitions 5.1, 9.1 and 11.3).
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Moreover, where D ⊆ Def(K), ArgK(D) =df {a ∈ ArgK | Def(a) ⊆ D}.
Many of the results presented in this part of the Element (e.g., the metatheo-
retic insights in Sections 10.3 and 11.1) will not rely on a specific underlying
notion of argument, but apply to many concrete logics from the literature (such
as the ones presented in Sections 11.3.1 and 11.3.2).
We first discuss greedy accumulation. As explained in Section 5.2, the main

idea behind the algorithm is to build a D-extension by accumulating (1) trig-
gered and (2) consistent defeasible information d ∈ Def(K). Since we now
consider prioritized defeasible information, we add the requirement (3) that d
is �-maximal with properties (1) and (2). Let us make this precise.

Definition 10.1. For a defeasible rule r = A1, . . . ,An ⇒ B ∈ Rd, we let
Body(r) =df {A1, . . . ,An} and Con(r) =df B. Similarly, for any A ∈ Ad, we let
Body(A) =df ∅ and Con(A) =df A. Then, where D ⊆ Def(K) and d ∈ Def(K),
we say that

• d is triggered by D iff Body(d) ⊆ Con[ArgK(D)].40
• d is consistent with D iff Con[ArgK(D ∪ {d})] is consistent.
• d ∈ max�(D) iff d ∈ D and for all d′ ∈ D, d ⊀ d′.

We write ConsK(D) for all the elements in Def(K) that are consistent with
D, TrigK(D) for all elements in Def(K) triggered by D, and Trig>K(D) for all
the elements in ConsK(D) that are triggered by D.

Note that our definition implies that defeasible assumptions are auto-
matically triggered. Algorithm GREEDYACC generates D-extensions for the
greedy accumulation method. The A- resp. the P-extension associated with
a D-extension D is defined by ArgK(D) resp. by Con[ArgK(D)]. We write
AExtgr(K) resp. PExtgr(K) for the set of A-resp. P-extensions for K. In
this way we obtain the consequence relations ∼gr

∩AExt,∼
gr
∩PExt and ∼

gr
∪Ext (see

Table 3), where the superscript indicates that the underlying extensions have
been obtained via greedy accumulation.

Example 28 (The order puzzle, Example 11 cont.). We recall the knowledge
base K� containing the preference order: ( p ⇒ q) ≺ ( p ⇒ r) ≺ (q ⇒ ¬r)
(supposing reflexivity and transitivity). Our algorithm GREEDYACC has exactly
one run in which in the first round of the loop p⇒ r is added to Def⋆, since it
is the �-preferred one among the two triggered and consistent defaults p ⇒ r

40 We again use the notation with edgy brackets to denote the lifting of a function to sets of
elements of its domain. E.g., whereA is a set of arguments, Con[A] = {Con(a) | a ∈ A}.
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and p ⇒ q. In the second round only p ⇒ q is triggered and consistent. So
we end up with Def⋆= {p ⇒ r,p ⇒ q} and GREEDYACC terminates since the
remaining default q ⇒ ¬ r is inconsistent with the set of the already selected
ones. This implies that K� ∼ q for all∼ ∈ {∼gr

∩PExt,∼
gr
∩AExt,∼

gr
∪Ext}.

Algorithm 3 Greedy accumulation (general version)
1: procedure GREEDYACC(K) ▷ where K = 〈As,Ad,Rs,Rd,Rm,�〉
2: Def⋆← ∅ ▷ init D-extension
3: while Trig>K(Def⋆) \ Def⋆ , ∅ do
4: (nondeterministically) choose d ∈ max�(Trig>K(Def⋆) \ Def⋆)
5: Def⋆← Def⋆ ∪ {d} ▷ update D-extension
6: end while ▷ no more triggered and consistent defaults
7: return Def⋆ ▷ return D-extension
8: end procedure

We nowmove to temperate accumulationwhich is characterized by the algo-
rithm TEMACC. Recall that the main difference from greedy accumulation is
that, when building D-extensions, temperate accumulation also considers non-
triggered defaults that are consistent with the already accumulated defeasible
elements. The set of D-, A-, and P-extension of K (denoted by DExttem(K),
AExttem(K), and PExttem(K)) and the consequence relations ∼tem

∩AExt,∼
tem
∩PExt,

and∼tem
∪Ext are defined in analogy to the greedy case.

Algorithm 4 Temperate accumulation (general version)
1: procedure TEMACC(K) ▷ where K = 〈As,Ad,Rs,Rd,Rm,�〉
2: Def⋆← ∅ ▷ init D-extension
3: while ConsK(Def⋆) \ Def⋆ , ∅ do
4: (nondeterministically) choose d ∈ max�(ConsK(Def⋆) \ Def⋆)
5: Def⋆← Def⋆ ∪ {d} ▷ update D-extension
6: end while ▷ no more consistent defaults
7: return Def⋆ ▷ return D-extension
8: end procedure

Example 29 (Example 28 cont.). We now apply TEMACC toK�. There is again
only one possible run: in the first round we choose (the nontriggered) q⇒ ¬r
as it is preferred over the other two defaults. In the second round we choose
p⇒ r as it is preferred over p⇒ q. This is when TEMACC terminates since the
only remaining default p ⇒ q is not consistent with {p ⇒ r,q ⇒ ¬r}. This
implies that K� ∼/ q for all∼ ∈ {∼tem

∩PExt,∼
tem
∩AExt,∼

tem
∪Ext}.
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This shows that unlike in the nonprioritized setting, for knowledge bases
with preferences there may be D-extensions for temperate accumulation that
do not correspond to D-extensions for greedy accumulation.

10.2 Accumulation and Fixed Points
In this section we consider alternative characterizations of our two accumu-
lation methods. Instead of using iterative algorithms such as TEMACC and
GREEDYACC, we now describe these reasoning styles, that is, the D-extension
they characterize, as fixed points of specific operations Π : ℘(Def(K)) →
℘(Def(K)). The underlying idea is that the possible final products of the reason-
ing process of a rational agent can be characterized as equilibrium states based
on the given knowledge base K. In what follows, we only consider knowledge
bases without preferences.

Lemma 10.1. Let K be a knowledge base. Then, D ∈ maxcon(K) iff D =
ConsK(D).

Proof. Let D ∈ maxcon(K). By Definition 5.3 (i) and Definition 10.1, D ⊆
ConsK(D). If d ∈ ConsK(D), then d ∈ D by Definition 5.3 (ii), and so
ConsK(D) ⊆ D. The other direction is similar. □

Theorem 10.1. Let K be a knowledge base and D ⊆ Def(K).

1. D is a D-extension generated by TEMACC iff D = ConsK(D).
2. D is a D-extension generated by GREEDYACC iff D = Trig>K(D).

Proof. Item 1 follows with Proposition 5.1 and Lemma 10.1.
Consider Item 2. (⇒) Let D =

⋃n
i=0Di be produced by GREEDYACC such

that Def⋆ = Di in round i and {di+1} = Di+1 \Di for 0 ≤ i < n.
“⊆”. Let d ∈ D. So d = di+1 for some 0 ≤ i < n. We have to show that

d ∈ Trig>K(D). Since d ∈ Trig>K(Di), d ∈ TrigK(D). Assume for a contradiction
that d < ConsK(D). So, there is a ⊆-minimal D′ ⊆ D such that D′ ∪ {d} is
inconsistent in K. Let dj be the element in D′ with maximal index. If j > i+1,
dj < ConsK(Dj−1) ⊆ Trig>K(Dj−1). If j < i+1, di+1 < ConsK(Di) ⊆ Trig>K(Di).
Each case is a contradiction. So, d ∈ ConsK(D) and so d ∈ Trig>K(D).
“⊇”. Let d ∈ Def(K) \ D. By the guard of the while-loop (line 3), d <

Trig>K(D).
(⇐) Let nowD = Trig>K(D). It can easily be seen thatD can be enumerated

by 〈di〉ni=1 in such a way that D0 = ∅, d1 ∈ Trig>K(D0), D1 = {d1}, and di+1 ∈
Trig>K(Di)\Di andDi+1 = Di∪{di+1}. Moreover, there is a run of GREEDYACC
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52 Philosophy and Logic

in which each di is added to the scenario at round i for each i = 1, . . . ,n. Note
that the algorithm terminates after round n since Trig>K(D) \D = ∅. □

An advantage of the characterization of D-extensions in terms of fixed points
as in Theorem 10.1 or with maxicon-sets as in Proposition 5.1 is that the
restriction to finite sets of defeasible information Def(K) in our knowledge
bases can be lifted. The restriction was necessary to warrant the termination
of GREEDYACC and TEMACC.

10.3 More on Nonmonotonic Reasoning Properties
In this section we take another, more detailed look at abstract properties of
nonmonotonic consequence relations (see Section 2.2). To simplify things, we
will study them in a nonprioritized setting.

10.3.1 Knowledge Bases and Abstract Properties of Consequence
Relations

Now that we have a better understanding of knowledge bases, let us have
another look at the properties introduced in Section 2.2. Recall that conse-
quence relations are used to study the question of what follows from a given
defeasible knowledge base. An nmL gives an answer to this question on the
basis of the coherent units of information provided by its underlying model of
knowledge representation.41 It gives rise to nonmonotonic consequence rela-
tions ∼ that hold between knowledge bases (in its associated class KnmL) and
sentences in its object languageL. In proof-theoretic approaches consequences
will be determined by the given extensions of the knowledge base, while in
semantic approach they will be based on (typically a selection of) its models.
In the remainder of the Element it will be our task to explain different cen-

tral methods of knowledge representation and consequence underlying NMLs.
Before doing so, we have to comment on what the introduction of knowledge
bases means for the abstract study of nonmonotonic consequence presented in
Section 2.2. There, the left-hand side of∼merely consisted of sets of sentences,
but defeasible knowledge bases typically comewithmore structure. Thatmeans
that the reasoning principles discussed in Section 2.2 need to be disambiguated.
For example, one may distinguish between a strict and a defeasible form of
cautious (or rational) monotonicity (see Fig. 22). Where

41 Since the organization of conflicting knowledge bases into coherent units essentially underlies
the reasoning process one should consider knowledge representation, reasoning, and the study
of consequences as deeply interwoven. For analytic purposes we nevertheless present these
aspects separately in this Element.
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Nonmonotonic Logic 53

Figure 22 Versions of cautious monotonicity with defeasible knowledge
bases

• 〈As,Ad,Rs,Rd,Rm〉 ⊕s A =df 〈As ∪ {A},Ad,Rs,Rd,Rm〉,
• 〈As,Ad,Rs,Rd,Rm〉 ⊕d A =df 〈As,Ad ∪ {A},Rs,Rd,Rm〉,
and where i ∈ {s,d}, we define:

CMi(∼) K ∼ A and K ∼ B implies K ⊕i B ∼ A.
CTi(∼) K ∼ A and K ⊕i B ∼ A implies K ∼ B.
Ci(∼) CMi(∼) and CTi(∼) hold.
Mi(∼) K ∼ A implies K ⊕i B ∼ A.
ORi(∼) K ⊕i A ∼ C and K ⊕i B ∼ C implies K ⊕i (A ∨ B) ∼ C.
LLEi(∼) A ∈CnRs ({B}), B ∈CnRs ({A}) and K ⊕i A ∼ C implies K ⊕i B ∼ C.
Ref(∼) K ⊕s A ∼ A.
RW(∼) K ∼ A and B ∈ CnRs ({A}) implies K ∼ B.

Since it seems not desirable to expect for defeasible assumptions to be deriv-
able in just any given context, we didn’t include reflexivity under the addition
of defeasible assumptions (K ⊕d A ∼ A). Similarly, we only stated the RW
and LLE in the less demanding version relative to strict rules (as opposed to
defeasible rules).

Definition 10.2. Let i ∈ {d, s}. A nonmonotonic consequence relation ∼ is i-
cumulative if it satisfies RW(∼), LLEi(∼), Ref(∼), and Ci(∼). It is i-preferential
if it additionally satisfies ORi(∼).

10.3.2 Nonmonotonic Reasoning Properties and Extensions

So far, we have discussed cumulativity and related properties in the context
of nonmonotonic consequence relations. We now consider these and simi-
lar properties from the perspective of extensions. The shift in perspective is
well-motivated since, after all, nonmonotonic consequence is determined by
the given extensions (see Table 3). In view of this, nonmonotonic reasoning
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properties should have counterparts from a perspectivemore focused on knowl-
edge representation. E.g., where cautious monotonicity and transitivity concern
the robustness of the consequence set under the addition of consequences to the
knowledge base, we should expect a similar robustness of the set of extensions.
In this section we show that many metatheoretic properties hold for both

accumulationmethods if the underlying notion of argument satisfies some basic
requirements.
Given a knowledge base K = 〈As,Ad,Rs,Rd,Rm〉, a sentence A, and a set

D ⊆ Def(K), we let D ⊕d A =df D ∪ {A}, D ⊕s A =df D, D 	Ks A =df D,
and

D 	Kd A =df

D \ {A} if A < Ad

D else.

Definition 10.3. Let nmL be an NML based on consistent accumulation with
an associated class of knowledge bases KnmL and let i ∈ {s,d}. We define
the following properties for nmL. For all K ∈ KnmL and all sentences A, if
K ∼∩PExt A, then

• CMi(PExt) holds, if E ∈ PExt(K ⊕i A) implies E ∈ PExt(K).
• CMi(DExt) holds, if D ∈ DExt(K ⊕i A) implies D 	Ki A ∈ DExt(K).
• CTi(PExt) holds, if E ∈ PExt(K) implies E ∈ PExt(K ⊕i A).
• CTi(DExt) holds, if D ∈ DExt(K) implies D ⊕i A ∈ DExt(K ⊕i A).

Moreover,

• Ci(PExt) holds, if CTi(PExt) and CMi(PExt) hold.
• Ci(DExt) holds, if CTi(DExt) and CMi(DExt) hold.

These notions are related as in Fig. 23 (see Theorem 10.2) for D-extensions
induced by greedy or temperate accumulation and for any underlying notion of
argument, as long as it fulfills the following requirements.

(arg-trans) Let ⊕ ∈ {⊕d,⊕s} and D ⊆ Def(K). If there is an a ∈ ArgK(D)
with Con(a) = A, then for all b ∈ ArgK⊕A(D ⊕ A), there is a c ∈ ArgK(D) with
Con(b) = Con(c).
The criterion states that adding a conclusion A ∈ Con[ArgK(D)] to K andD

does not generate new conclusions: Con[ArgK⊕A(D ⊕ A)] ⊆ Con[ArgK(D)].

(arg-mono) Let ⊕ ∈ {⊕d,⊕s} and D ⊆ Def(K). We have ArgK(D) ⊆
ArgK⊕A(D).
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Nonmonotonic Logic 55

Figure 23 Relations between extensional and consequence-based notions of
cumulativity, cautious transitivity and monotonicity (where i ∈ {s,d}).

The criterion expresses that adding assumptions to a knowledge base does
not result in the loss of arguments.

(arg) (arg-trans) and (arg-mono).

Since by the definition of ArgK(·), we have ArgK(D) ⊆ ArgK(D ∪ D′) for
any D,D′ ⊆ Def(K), by (arg-mono), ArgK(D) ⊆ ArgK⊕A(D ⊕ A). There-
fore, if (arg) holds and A ∈ Con[ArgK(D)], then Con[ArgK⊕A(D ⊕ A)] =
Con[ArgK(D)].

Lemma 10.2. Definitions 5.1 and 9.1 satisfy (arg).

Proof. In the case of Definition 9.1 this follows by the monotonicity and the
transitivity of `L. (arg-mono) follows directly by Definition 5.1. For (arg-trans),
let b ∈ ArgK⊕A(D ⊕ A), where A = Con(a) for some a ∈ ArgK(D). Let c be
the result of replacing every 〈A〉 ∈ Sub(b) in b by a. Clearly c ∈ ArgK(D) and
Con(c) = Con(b). □

CTi(DExt) and CMi(DExt) (highlighted in Fig. 23) have a central place.
Instead of showing the corresponding properties CTi(∼) and CTi(∼) for the
nonmonotonic consequence relations directly, one can show the corresponding
extensional principles.42

Theorem⋆ 10.2. Given (arg), the logical dependencies of Fig. 23 hold for both
accumulation methods.

Moreover, both accumulation methods satisfy CTi(DExt) if (arg) holds.

Proposition⋆ 10.1. Let i ∈ {s,d}. Given (arg), CT i(DExt) holds for both accu-
mulation methods.

42 Note that results marked with an asterisk are proven in the technical appendices.
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56 Philosophy and Logic

Also LLE and RW hold given some intuitive requirements on the underlying
notion of argument.

(arg-re) Let ⊕i ∈ {⊕d,⊕s}. If A ∈CnRs (B) and B ∈CnRs (A), then for every
a ∈ArgK⊕iA there is a b ∈ArgK⊕iB with Con(a) = Con(b)

and
Def(a) = Def(b) if A < Ad(a) or i = s

(Def(a) \ {A}) ∪ {B} = Def(b) else.

The criterion expresses that if assumptions in the knowledge base are
replaced with equivalent ones, we can still conclude the same sentences.

(arg-strict) For all A ∈ As, (i) 〈A〉 ∈ ArgK(∅) and (ii) for all A1, . . . ,An →
B ∈ Rs and all D ⊆ Def(K), if A1, . . . ,An ∈ Con[ArgK(D)] then B ∈
Con[ArgK(D)].
The criterion expresses that every strict assumption gives rise to an argument

and arguments can be extended by strict rules.

Lemma 10.3. Definitions 5.1 and 9.1 satisfy (arg-re), and (arg-strict).

Proof. Consider Definition 5.1. (arg-strict) follows trivially. For (arg-re), let
A ∈ CnRs (B) and B ∈ CnRs (A). So, there is a c ∈ ArgK⊕B(∅) of the form
〈B〉 → . . . → A. Let b be the result of replacing each 〈A〉 ∈ Sub(a) in a by c.
Then a and b satisfy the requirements of (arg-re). The proof for Definition 9.1
is similar, making use of the transitivity of `L. □

Proposition⋆ 10.2. Let i ∈ {s,d}, τ ∈ {tem,gr} and ∼ ∈ {∼τ∩AExt,∼
τ
∩PExt}. If

(arg-re), LLEi(∼) holds.

Proposition⋆ 10.3. Let τ ∈ {tem,gr} and∼ ∈ {∼τ∩AExt,∼
τ
∩PExt,∼

τ
∪Ext}. If (arg-

strict), Ref (∼) and RW(∼) hold.

11 Temperate Accumulation: Properties and Some
Concrete Systems

In this section we study temperate accumulation in more detail. We show that
it gives rise to preferential consequence relations (Section 11.1), if some basic
conditions aremet.Moreover, by “naming” default rules the structure of knowl-
edge bases can be simplified (Section 11.2.1). Temperate accumulation can be
characterized in terms of formal argumentation (Section 11.2.2).
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Nonmonotonic Logic 57

Finally, we present two families of systems based on temperate accumu-
lation: reasoning with maxicon-sets (Section 11.3.1) and input–output logics
(Section 11.3.2) and apply the results from Section 11.1 to them.

11.1 Cumulativity and Preferentiality
The temperate accumulation method often yields cumulative or even prefer-
ential consequence relations. Table 7 gives an overview for the following two
classes of knowledge bases:

• the “universal” classKΩ containing all knowledge bases of the form 〈As,Ad,

Rs,Rd,Rm〉;
• the class KAd containing all knowledge bases of the form 〈As,Ad,RL〉 for
a Tarski logic L. In this context we suppose that arguments are defined by
Definition 9.1 and fulfill the following two properties:
(arg-ex) it is explosive in the sense that a set of sentences is inconsistent iff
its consequence set is trivial; and
(arg-or) A ∪ {A ∨ B} `L C1 ∨ C2 iff A ∪ {A} `L C1 and A ∪ {B} `L C2.43

As the reader may expect, the results in this section depend also on the
underlying notion of argument construction (see Fig. 24 for an overview). In
the following we show that any NML based on temperate accumulation and
on the argument construction in Definition 5.1 or another definition satisfying
(arg-re), (arg-strict), and (arg), satisfies Ci(DExt) (for i ∈ {s,d}) and is therefore
cumulative, that is, Ci(∼) holds for∼ ∈ {∼tem

∩AExt,∼
tem
∩PExt}.

Proposition⋆ 11.1. Let i ∈ {s,d}. Given (arg), Ci(DExt) holds for KΩ.
With Theorem 10.2 and Propositions 10.1 to 10.3 we get:

Corollary 11.1. Let i ∈ {s,d} and∼∩ ∈ {∼tem
∩AExt,∼

tem
∩PExt}. Given (arg), (arg-re),

and (arg-strict),∼∩ is i-cumulative for KΩ.

Table 7 Two classes of knowledge bases and the properties of the associated
consequence relations with the notion of argument from Definition 5.1.

i-cumulativity i-preferentiality

∼tem
∩PExt ∼tem

∩AExt ∼tem
∩PExt ∼tem

∩AExt

KΩ ✓ (Cor. 11.1) ✓ (Cor. 11.1)
KAd ✓ (Cor. 11.1) ✓ (Cor. 11.1) ✓ (Thm. 11.1)

43 In particular we have:A ∪ {A ∨ B} `L C iffA ∪ {A} `L C andA ∪ {B} `L C.
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58 Philosophy and Logic

Figure 24 Nonmonotonic reasoning properties for temperate accumulation,
where i ∈ {s,d},∼ ∈ {∼tem

∩AExt,∼
tem
∩PExt,∼

tem
∪Ext}, and∼∩ ∈ {∼

tem
∩AExt,∼

tem
∩PExt}.

In the presence of defeasible rules OR(∼) does not hold in general.

Example 30. Let ∼ ∈ {∼∩PExt,∼∩AExt} and K = 〈As,RCL,Rd〉 with As = ∅
and Rd = {p ⇒ s,q ⇒ s}. Clearly, K ⊕s ( p ∨ q) ∼/ s while K ⊕s p ∼ s and
K ⊕s q ∼ s.

There are good news, however, for knowledge bases in KAd, ∼tem
∩PExt is i-

preferential for i ∈ {s,d}.

Theorem 11.1. Let i ∈ {s,d}.∼tem
∩PExt is i-preferential for KAd.

Proof. In view of Corollary 11.1 and Lemmas 10.2 and 10.3 we only have
to show OR(∼), where ∼=∼tem

∩PExt. Suppose K ⊕i A ∼ C and K ⊕i B ∼ C.
We show the case i= s. Suppose D ∈ DExt(K ⊕s (A ∨ B)) and hence, by
Theorem 10.1, D = ConsK⊕s(A∨B)(D). If D is inconsistent in K ⊕s A, then
C ∈ Con[ArgK⊕sA(D)]=CnL(As ∪ D ∪ {A}) by (arg-ex). Else, assume for
a contradiction that there is a D′ for which D ⊊ D′ ⊆ Ad that is consist-
ent in K ⊕s A. So, CnL(Ad ∪ D′∪ {A}) is nontrivial and by (arg-or) so is
CnL(Ad ∪ D′ ∪ {A ∨ B}). So D′ ⊆ ConsK⊕s(A∨B)(D) which is a contradiction.
So, D = ConsK⊕sA(D) and hence, by Theorem 10.1, D ∈ DExt(K ⊕s A). Thus,
C ∈ Con[ArgK⊕sA(D)] = CnL(As ∪D∪ {A}) sinceK ⊕s A ∼ C. So, in any case
C ∈ CnL(As ∪D ∪ {A}).
For an analogous reason C ∈ CnL(As∪D∪{B}). By (arg-or), C ∈ CnL(As∪

D ∪ {A ∨ B}) = Con[ArgK⊕s(A∨B)(D)]. Hence, K ⊕s (A ∨ B) ∼ C. □

The preceding result does not consider ∼tem
∩AExt. We will show in Sec-

tion 11.3.1 that OR(∼tem
∩AExt) does not hold even for L = CL.

As a last result in this section we show that∼tem
∪Ext is monotonic.

Proposition 11.2. Md(∼tem
∪Ext) (and so also CMd(∼tem

∪Ext) and RMd(∼tem
∪Ext)) hold

for KΩ.
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Nonmonotonic Logic 59

Proof. Let ∼ = ∼tem
∪Ext and suppose K ∼ A. Thus, there is a D ∈ DExt(K)

for which there is an a ∈ ArgK(D) with Con(a) = A. We have to show that
K⊕dB ∼ AwhereB is an arbitrary sentence.We have,ArgK(D) = ArgK⊕dB(D).
So, D is consistent in K ⊕d B. Thus, there is a maxicon-set D′ ⊆ Def(K ⊕d B)
for which D ⊆ D′. We have a ∈ ArgK⊕dB(D′). Thus, K ⊕d B ∼ A. □

11.2 Alternative Characterizations
In this section we present two alternative characterizations of temperate accu-
mulation. First, in Section 11.2.1 we show that in temperate accumulation
defeasible rules are dispensable in that a given knowledge base featuring defea-
sible rules can be translated into one without, in such a way that extensions
and consequences are preserved. In Section 11.2.2 we show that temperate
accumulation can be translated into formal argumentation.

11.2.1 Naming Defaults in Temperate Accumulation

We now show that, in the context of NMLs based on temperate accumulation,
every knowledge base of the formK= 〈As,Ad,Rs,Rd〉 can be translated into a
knowledge base of the formK⋆= 〈As,A⋆

d ,R
⋆
s 〉, which gives rise to the sameD-

and P-extensions (Theorem 11.2). The idea is to refer (or “name”) the defaults
in Rd in the object language, add a strict modus ponens–like rule, and a rule
that expresses that a default is defeated in case its antecedents hold but its con-
clusion is false. This implies that genuinely defeasible rules can be “simulated”
by strict rules in systems of temperate accumulation.
Suppose in the following that nmL is a NML based on a language L with a

class of associated knowledge bases KnmL of the form of K. We assume that
the notion of inconsistency underlying nmL satisfies for any set of sentences
S ∪ {A} the sufficient condition: A,¬A ∈ S implies that S is inconsistent.
Our translated knowledge bases K⋆ make use of an enriched language: every
sentence in L is a sentence in L⋆, for every r = A1, . . . ,An ⇒ B ∈ Rd,
(A1, . . . ,An ⇒ B) and ¬(A1, . . . ,An ⇒ B) are sentences in L⋆, nothing else
is a sentence in L⋆. Note that⇒ is an object-level symbol in L⋆ but not in L.
We write sentL [resp. sentL⋆] for the set of all sentences in L [resp. in L⋆].

Definition 11.1. Let the translation of a knowledge baseK = 〈As,Ad,Rs,Rd〉
to K⋆ = 〈As,A⋆

d ,R
⋆
s ,∅,∅〉 be given by:

A⋆
d = Ad ∪Rd,

R⋆
s = Rs ∪Rmp

s ∪Rcp
s , where

Rmp
s = {A1, . . . ,An, r→ B | r = (A1, . . . ,An ⇒ B) ∈ Rd}
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Rcp
s = {A1, . . . ,An,¬B→ ¬r | r = (A1, . . . ,An ⇒ B) ∈ Rd}.

Note that Def(K) = Ad ∪Rd = Def(K⋆).

Example 31. Recall the knowledge base fromExample 9,K= 〈As,Ad,Rd,Rs〉
with As = {p}, Ad = ∅, Rd = {r1 : p ⇒ q, r2 : p ⇒ r, r3 : q ⇒ ¬r} and
Rs = {r→ s,¬r→ s}. We translate it to K⋆ = 〈As,A⋆

d ,R
⋆
s 〉 with

• A⋆
d = {r1, r2, r3} and

• R⋆
s = Rs ∪ {p, r1 → q, p, r2 → r, q, r3 → ¬r} ∪ {p,¬q → ¬r1, p,¬r →
¬r2, q,¬¬r→ ¬r3}.

Theorem⋆ 11.2. Let nmL be based on temperate accumulation, let K ∈ KnmL
be of the form 〈As,Ad,Rs,Rd〉, and let K⋆ be the translation defined in
Definition 11.1. Then, DExt(K) = DExt(K⋆) and PExt(K) = PExt(K⋆).

11.2.2 Temperate Accumulation as a Form of Argumentation

In the following we give an elegant argumentative characterization of NMLs
based on temperate accumulation and on knowledge bases of the type K =
〈As,Ad,Rs〉.44 We work under the assumption that (a) ArgK and ArgK(·) are
defined as in Definition 5.1 and (b) the inconsistency of a set of defeasible
assumptions A ⊆ Ad can be argumentatively expressed by

(⋆) A is inconsistent in K iff for every A ∈ A there is an a ∈ ArgK(A \ {A})
that concludes that the assumption A is false, that is, Con(a) = ¬A.

(⋆) holds ifRs = RCL or, more generally, ifRs = RL for some logic Lwhich
has the property that S is inconsistent in L iff for all A ∈ S, S \ {A} `L ¬A.

Definition 11.2. We define the argumentation framework AFK = 〈ArgK,{〉
where a { b for a,b ∈ ArgK iff Con(a) = ¬B for some B ∈ Ad(b). Where
X ∈ {A,P}, we let, moreover, ∼stb

∩XExt be the consequence relation induced by
the X-extensions and the stable argumentation semantics (see Definition 5.2)
and stable(K) be the set of stable A-extensions of K.

Example 32. We consider K = 〈∅, {p ∧ q,¬p ∧ q, s},RCL〉. An excerpt from
the argumentation framework AFK is illustrated in Fig. 25. We note that
K ∼tem

∩PExt q and K ∼
stb
∩PExt q.

44 In view of Section 11.2.1 (Theorem 11.2) this characterization, by translation, also covers
knowledge bases of the form 〈As,Ad,Rs,Rd 〉.
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Nonmonotonic Logic 61

Figure 25 The argumentation framework for the knowledge base of
Example 32 based on the arguments to the right. The rectangular node
represents a class of arguments based on the inconsistent assumption set

{p ∧ q,¬p ∧ q}. An outgoing [resp. ingoing] arrow symbolizes an attack from
[resp. to] some argument in the class.

We have, on the one hand, two D-extensions according to temperate
accumulation, X1 = {p ∧ q, s} and X2 = {¬p ∧ q, s}, with the corresponding
A-extensions ArgK(X1) and ArgK(X2) and the P-extensions CnCL(X1) and
CnCL(X2). On the other hand, we have two stable A-extensions ofAFK (high-
lighted in Fig. 25), namely ArgK(X1) and ArgK(X2), with the corresponding
P-extensions CnCL(X1) and CnCL(X2).

The following theorem shows that the observed correspondences are not
coincidental.

Theorem 11.2. Let nmL be an NML based on temperate accumulation for
which (⋆) holds and K = 〈As,Ad,Rs〉 ∈ KnmL be a knowledge base.

1. If D ∈ DExttem(K) then ArgK(D) ∈ stable(K).
2. If X ∈ stable(K), there is a D ∈ DExttem(K) such that X = ArgK(D).

Proof. For Item 1 supposeD ∈ DExttem(K). By Proposition 5.1,D ∈ maxcon
(K). Consider a,b ∈ ArgK such that a { b and a ∈ ArgK(D). By (⋆) and the
consistency of D in K, b < ArgK(D). Thus, ArgK(D) is conflict-free.
Let now a ∈ ArgK \ ArgK(D). So, there is an A ∈ Ad(a) \ D. Since D ∈

maxcon(K), D ∪ {A} is inconsistent in K and by (⋆) there is a b ∈ ArgK(D)
with Con(b) = ¬A. Thus, ArgK(D) ∈ stable(D).
For Item 2 let X ∈ stable(AFK) and (†) D =

⋃
a∈X Ad(a). Clearly, X ⊆

ArgK(D). Assume for a contradiction that there is an a ∈ ArgK(D) \ X . By
stability, there is a b ∈ X such that b { a and so Con(b) = ¬A for some
A ∈ Ad(a). Since A ∈ D and (†), there is a c ∈ X for which A ∈ Ad(c) and so
b{ c in contradiction to the conflict-freeness of X . Thus, X = ArgK(D).
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62 Philosophy and Logic

By Proposition 5.1, we have to show that D ∈ maxcon(K). In view of (⋆)
and the conflict-freeness of X , D is consistent in K. Suppose A ∈ Ad is such
that D ∪ {A} is consistent. If A < D, then a = 〈A〉 ∈ ArgK \D and by stability,
there is a b ∈ X such that b{ a and therefore Con(b) = ¬A. But then, by (⋆),
D ∪ {A} is inconsistent in K. So, A ∈ D and therefore D ∈ maxcon(K). □

11.3 Two Families of NMLs from the Literature
In this section we will introduce two well-known families of NMLs, both based
on the idea of forming maxicon sets of defeasible information from the given
knowledge base.

11.3.1 Reasoning with Maxicon Sets of Sentences

A time-honored family of NMLs has been proposed by Rescher and Manor
(1970). These NMLs model reasoning scenarios in which an agent is con-
fronted with reliable but not infallible information (e.g., resulting from testi-
monies, weather reports, and so on) that may give rise to contradictions. Such
information is encoded by sets of defeasible assumptions. Clearly, due to the
possibility of logical explosion, classical logic cannot be applied to such sets, at
least not naively. The basic idea behind Rescher’s and Manor’s approach is to
form (⊆-maximal) consistent sets of defeasible assumptions and reason on their
basis. In our terminology these maxicon sets of defeasible assumptions form
D-extensions and their classical closures are P-extensions induced by temper-
ate accumulation. We obtain the three types of consequences that have been
introduced in Definition 5.2.
While Rescher and Manor considered knowledge bases of the form 〈∅,Ad,

RCL〉,Makinson’s system ofDefault Assumptions (Makinson (2005)) also con-
sidered strict assumptions and so generalized the considered class of knowledge
bases to those of the form 〈As,Ad,RCL〉.45 Of course, one may consider other
Tarski-logics L instead of classical logic. Let the class Kmcon consist of all
knowledge bases of the form 〈As,Ad,RL〉. We let:46

45 A related family of logics is Adaptive Logics (Batens, 2007). They have been shown to give rise
to the same consequence relations as Makinson’s default assumptions (Van De Putte, 2013).
Instead of working with “positive” assumptions, the knowledge bases of adaptive logics con-
sider negative assumptions, so-called “abnormalities” (see Section 2.3). Adaptive logics have
found many applications, from abductive reasoning (Beirlaen & Aliseda, 2014), to inductive
generalizations (Batens, 2011), from normative reasoning (Van De Putte et al., 2019) to default
logic (Straßer, 2009a). For a book-length introduction see Straßer (2014).

46 The consequence relation ∼mcon
∩ext is also called the strong or universal entailment, ∼mcon

∩arg the
free consequence, and ∼mcon

∪ the existential consequence. See Benferhat et al. (1997) for a
detailed study of these consequence relations.
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Table 8 Overview on properties of the consequence relations based on
maxicon sets. All positive results follow from the general results for NMLs

based on temperate accumulation in Section 11.1 (see also
Corollary 11.2 below).

Md Ms CMd CMs CTd CTs RMd RMs ORd ORs

∼mcon
∩PExt ✓ ✓ ✓ ✓ ✓ ✓
∼mcon
∩AExt ✓ ✓ ✓ ✓
∼mcon
∪Ext ✓ ✓ ✓ ✓

1. K ∼mcon
∩Pext A iff A ∈ CnL(S ∪As) for every S ∈ maxcon(K).

2. K ∼mcon
∩AExt A iff there is a S ⊆ ⋂maxcon(K) for which A ∈ CnL(S ∪As).

3. K ∼mcon
∪Ext A iff there is a S ∈ maxcon(K) such that A ∈ CnL(S ∪As).

In what follows we let arguments be defined as in Definition 9.1.

Example 33. Consider the knowledge base K = 〈As,Ad,RCL〉 where As =

{¬u} and Ad = {p ∧ q,¬p ∧ t, s,u}. We have maxcon(K) = {X1,X2} where
X1 = {p ∧ q, s}, and X2 = {¬p ∧ t, s}. Note that the defeasible assumption u
conflicts with the strict assumption ¬u.
We first observe that q ∨ t is a floating conclusion in view of the conflicting

arguments ({p ∧ q},q ∨ t) ∈ Arg(X1) and ({¬p ∧ t},q ∨ t) ∈ Arg(X2). Indeed,
K ∼mcon

∩PExt q ∨ t while K ∼/
mcon
∩AExt q ∨ t.

In view of Proposition 5.1 the three consequence relations ∼mcon
∩PExt,∼

mcon
∩AExt,

and ∼cmon
∪Ext are identical to ∼tem

∩PExt,∼
tem
∩AExt, and ∼

tem
∪Ext on the class Kmcon.

Therefore, the results from Section 11.1 are applicable (Table 8).

Proposition 11.3. Let K ∈ Kmcon. Then, (i) K ∼tem
∩PExt A iff K ∼mcon

∩PExt A, (ii)
K ∼tem

∩AExt A iff K ∼mcon
∩AExt A, and (iii) K ∼

tem
∪Ext A iff K ∼mcon

∪Ext A.

Proof. We show case (ii). The others are analogous and left to the reader.
K ∼tem

∩AExt A, iff, there is an a ∈ ⋂{ArgK(D) | D ∈ DExt(K)} with
Con(a) = A, iff, A ∈ CnL(

⋂{D | D ∈ DExt(K)}∪As), iff [by Proposition 5.1],
A ∈ CnL(

⋂{D | D ∈ maxcon(K)} ∪As), iff, K ∼mcon
∩AExt A. □

In view of Corollary 11.1, Theorem 11.1, and Lemmas 10.2 and 10.3 we
therefore get:

Corollary 11.2. Let i ∈ {s,d}. ∼mcon
∩Aext is i-cumulative. If (arg-ex) and (arg-or)

hold,∼mcon
∩Pext is i-preferential.
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64 Philosophy and Logic

Table 9 Counterexamples to ORi(∼). Where j ∈ {1,2,3} let
Kj = 〈∅,Aj,RCL〉, A1 = {¬p ∧ r,¬q ∧ r}, A2 = {¬p,¬q,¬p ⊃ r,¬q ⊃ r},

A3 = Au
3 ∪A

¬u
3 , Au

3 = {u ∧ ( p ⊃ r)}, A¬u3 = {¬u ∧ (q ⊃ r)},
and AA

2 = A2 ∪ {A}.

K⋆ = K ⊕i p K ⊕i q K ⊕i ( p ∨ q)

i = s,
K = K1

maxcon(K⋆) {¬q ∧ r} {¬p ∧ r} {¬q ∧ r}, {¬p ∧ r}⋂DExt(K⋆) {¬q ∧ r} {¬p ∧ r} ∅

K⋆ ∼mcon
∩AExt r? ✓ ✓ ×

i = d,
K = K2

maxcon(K⋆) Ap
2 \ {¬p}
A2

Aq
2 \ {¬q}
A2

Ap∨q
2 \ {¬p}

Ap∨q
2 \ {¬q}

A2⋂DExt(K⋆) A2 \ {¬p} A2 \ {¬q} A2 \ {¬p,¬q}

K⋆ ∼mcon
∩AExt r? ✓ ✓ ×

i ∈ {s,d}
K = K3

maxcon(K⋆) Au
3 ⊕i p

A¬u3 ⊕i p
Au

3 ⊕i q
A¬u3 ⊕i q

Au
3 ⊕i ( p ∨ q)

A¬u3 ⊕i ( p ∨ q)

K⋆ ∼mcon
∪Ext r? ✓ ✓ ×

Example 34. Where i ∈ {s,d}, in Table 9 we list counter-examples to (OR)
and therefore to the i-preferentiality of ∼mcon

∩AExt and ∼
cmon
∪Ext . In Table 10 we find

counterexamples to RMi(∼) for∼ ∈ {∼mcon
∩PExt,∼

mcon
∩AExt}.

We end this section with two simple counterexamples concerning the cau-
tious monotonicity and transitivity of∼cmon

∪Ext and a positive result concerning its
rational monotonicity.

Example 35. Let∼ = ∼mcon
∪Ext . We first letK1 = 〈∅, {p,¬p},RCL〉. Then,K1 ∼ p

and K1 ∼ ¬p, but K1 ⊕s p ∼/ ¬p. Note for this that {¬p} ∈ maxcon(K1) \
maxcon(K1 ⊕s p). This shows that CMs(∼cmon

∪Ext ) and Ms(∼cmon
∪Ext ) don’t hold.

Let now K2 = 〈∅, {p ∧ q,¬p, (¬p ∧ q) ⊃ s},RCL〉 and i ∈ {s,d}. We note
that K2 ∼ q (since {p∧ q, (¬p∧ q) ⊃ s} ∈ maxcon(K2)) and K2 ⊕i q ∼ s (since
{¬p, (¬p ∧ q) ⊃ s} ⊕i q ∈ maxcon(K2 ⊕i q)). However, K2 ∼/ s. This shows
that CTi(∼mcon

∪Ext ) does not hold.

Proposition 11.4. Let K = 〈As,Ad,RCL〉 ∈ Kmcon, i ∈ {s,d}, and∼ = ∼mcon
∪Ext .

Then, RMi(∼) holds.
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Nonmonotonic Logic 65

Table 10 Counterexamples to RMi(∼) where K = 〈∅,Ad,RCL〉 with
Ad = {p,¬p,q ∧ r}. We have: K ∼ r and K ∼/ ¬¬( p ∧ r), while

K ⊕ ¬( p ∧ r) ∼/ r.

K⋆ = K K ⊕s ¬( p ∧ r) K ⊕d ¬( p ∧ r)

maxcon(K⋆) {p,q ∧ r},
{¬p,q ∧ r}

{p},
{¬p,q ∧ r}

{p,¬( p ∧ r)},
{p,q ∧ r},

{¬p,q ∧ r,¬( p ∧ r)}⋂DExt(K⋆) {q ∧ r} ∅ ∅

K⋆ ∼mcon
∩AExt r? ✓ × ×

K⋆ ∼/mcon
∩AExt ¬¬( p ∧ r)? ✓

K⋆ ∼mcon
∩PExt r? ✓ × ×

K⋆ ∼/mcon
∩PExt ¬¬( p ∧ r)? ✓

Sketch of the Proof. Suppose K ∼ A and K ∼/ ¬B and let ⊕ ∈ {⊕s,⊕d}. In
view of K ∼/ ¬B every D ∈ maxcon(K) is consistent with B. It is therefore
easy to see thatD ∈ maxcon(K) iffD ⊕B ∈ maxcon(D ⊕B) and therefore also
K ⊕ B ∼ A. □

11.3.2 Reasoning with Consistent Sets of Defaults and Metarules:
Input–Output Logic

Input–output logics (in short, IO-logics) have been first presented in
Makinson and Van Der Torre (2000) and in a nonmonotonic setting in
2001. We work with the class of knowledge bases Kio of the type
K= 〈As,RL,Rd,Rm〉, where the strict rules are provided by a Tarski base
logic L (such as classical or intuitionistic logic).47 Instead of Definition 5.1,
arguments in IO-logic are constructed according to the following “two-phase”
definition in which (a) the derivation of information from strict assumptions by
the strict rules and (b) the derivation of defeasible rules from strict and defea-
sible rules by means of metarules are separated. The detachment of argument
conclusions is applied to the results of (a) and (b).

Definition 11.3 (Arguments, Consistency, and Consequences in IO-logic). Let
K = 〈As,RL,Rd,Rm〉 ∈ Kio. Where D ⊆ Def(K), (A,B) ∈ Argio

K(D) iff (a)

47 Input–output logics have two characterizations, a semantic and a syntactic, proof-theoretic one.
We here focus on the latter, since it coheres better with our overall presentation.
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66 Philosophy and Logic

Figure 26 The basic input–output logics and their associated knowledge
bases where IO1 = {RW,LS,AND} andRid

d = {A⇒ A | A ∈ sentL}.

A ∈ CnL(As) and (b) A ⇒ B ∈ CnRm (D ∪ Rs). We let Con((A,B)) = B and
Argio

K = Argio
K(∅).

D is consistent in K iff there is no sentence B for which B,¬B ∈
Con[Argio

K(D)].
We define D-, A-, and P-extensions as usual (see Section 10). Where X ∈
{∩PExt,∩AExt,∪Ext}, we will write∼io

X for the induced consequence relation
(see Definition 5.2) on the class of knowledge bases Kio.

In IO-logic metarules play a central role. Paradigmatic rules are:

Right Weakening (RW) (A→ B), (C⇒ A) 7→ (C⇒ B)
Left Strengthening (LS) (A→ C), (C⇒ B) 7→ (A⇒ B)
Right Conjunction (AND) (A⇒ B), (A⇒ C) 7→ (A⇒ B ∧ C)
Cumulative Transitivity (CT) (A⇒ B), (A ∧ B⇒ C) 7→ (A⇒ C)
Left Disjunction (OR) (A⇒ C), (B⇒ C) 7→ (A ∨ B⇒ C)
Identity (ID) 7→ A⇒ A

Depending on the underlying class of knowledge bases, we have 12 base
systems, summarized in Fig. 26.

Example 36. LetK = 〈As,RCL,Rd,Rm〉 whereRd = {p⇒ q, p⇒ ¬s, q⇒
s}, As = {p}, and Rm = IO3 = {RM,LS,AND,CT}. We have three maxicon
sets for K: X1 = {p ⇒ q,p ⇒ ¬s}, X2 = {p ⇒ q,q ⇒ s}, and X3 =

{p⇒ ¬s,q⇒ s}. By Proposition 5.1, we know that these correspond to the D-
extension generated by TEMACC. We haveK ∼/ io

∩Pext q sinceX3 doesn’t contain
an argument for q.
Note that Rd is not consistent since it contains the argument ( p,¬s) for ¬s

and ( p, s) for s based on theRm-derivation

p⇒ q
p ∧ q→ q q⇒ s

LS
p ∧ q⇒ s

CT
p⇒ s .
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Nonmonotonic Logic 67

IO-logics have found applications in deontic logic where the rules in Rd

are interpreted as conditional norms: A ⇒ B ∈Rd is read as “A commits
us/you/etc. to bring about B” (Parent & van der Torre, 2013). The right side of
the consequence relation ∼ encodes the obligations derivable from a knowl-
edge base, where the latter represents the information available about the
actual situation As and the given conditional norms Rd. In deontic logic,
conflicts between norms can occur in various ways, for example, in terms of
contrary-to-duty situations.

Example 37. Let h stand for “helping the neighbor,” and n for “notifying the
neighbor” (Chisholm, 1963). ConsiderAs = {¬h},Rd = {> ⇒ h, h⇒ n,¬h⇒
¬n} and Rm = IO3. We have three maxicon sets, namely X1 = {> ⇒ h, h ⇒
n},X2 =|, {> ⇒ h,¬h⇒ ¬n}, andX3 = {¬h⇒ ¬n,h⇒ n}. Onemay object to
> ⇒ h being part of the D-extensions since our strict assumptions express that
our agent already determined the outcome ¬h ∈ As and so> ⇒ hwould not be
action-guiding. Moreover, in X2 this leads to a pragmatic oddity according to
which an agent should help and also not notify the neighbor. To deal with this
problem, knowledge bases have been extended with a set of constraints (such
as here {¬h}) on the output in Makinson and Van Der Torre (2001). In order to
simplify the presentation, we have omitted constraints in this section.

We will now consider some of the properties studied in Section 10.3. We say
that L has a proper conjunction ∧ iff (a) {A1, . . . ,An} `L B iff {∧n

i=1 Ai} `L B
and (b) {A1, . . . ,An} `L B1, …, {A1, . . . ,An} `L Bm implies {A1, . . . ,An} `L∧m

i=1 Bi. In the following we assume that L has a proper conjunction.

Lemma 11.1. An IO-logic whose metarules include LS and CT satisfies (arg-
re) and (arg).

Proof. For (arg-trans) consider a D ⊆ Rd for which there is an (B,A) ∈
ArgK(D) and suppose (C,D) ∈ ArgK⊕sA(D). Thus, there are proofs P1 resp. P2

based on the rules in Rm of B ⇒ A resp. of C ⇒ D from D ∪RL. Moreover,
B ∈ CnL(As) and C ∈ CnL(As ∪ {A}). So, there are A1, . . . ,An ∈ As for which
A,A1, . . . ,An `L C. By the monotonicity of L and since ∧ is a proper conjunc-
tion, B∧∧n

i=1 Ai → B and B∧∧n
i=1 Ai ∧A→ C. Consider the following proof

based on the metarulesRm:

B ∧∧n
i=1 Ai → B

... P1(B⇒ A)
LS(B ∧∧n

i=1 Ai ⇒ A)
B ∧∧n

i=1 Ai ∧ A→ C

... P2(C⇒ D)
LS(B ∧∧n

i=1 Ai ∧ A⇒ D)
CT(B ∧∧n

i=1 Ai ⇒ D)
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Note that B ∧∧n
i=1 Ai ∈ CnL(As) and so B ∧

∧n
i=1 Ai ⇒ D ∈ ArgK(D).

The simple proofs of (arg-re) and (arg-mono) are left to the reader. □

By Lemma 11.1, Propositions 10.2 and 11.1, and Theorem 10.2 we get:

Corollary 11.3. Let ∼ ∈ {∼io
∩AExt,∼

io
∩PExt}. Any IO-logic whose metarules

include LS and CT satisfies Cs(∼) and LLEs(∼).

In view of Corollary 11.1 the logics IO⋆
i with i ∈ {3,4} from Fig. 26 are

s-cumulative, since their notions of argument satisfy (arg-strict).

Lemma 11.2. Any IO-logic IO⋆
i from Fig. 26 satisfies (arg-strict).

Proof. Concerning (i) we note that if A ∈ As, since ID ∈ Rm, also (A,A) ∈
ArgK(∅). Concerning (ii), where D ⊆ Rd, suppose A1, . . . ,An → B ∈ RL
and there are (B1,A1), . . . , (Bn,An) ∈ ArgK(D). So, Bi ∈ CnL(As) for each
i = 1, . . . ,n. So, C ∈ CnL(As) where C =

∧n
i=1 Bi. By (LS), (C,Ai) ∈ ArgK(D)

for each i = 1, . . . ,n. By AND, (C,D) ∈ ArgK(D) where D =
∧n

i=1 Ai. Since
D→ B ∈ RL and by RW, (C,B) ∈ ArgK(D). □

By Corollary 11.1 and Lemmas 11.1 and 11.2 we get:

Corollary 11.4. Let X ∈ {A,P} and i ∈ {3,4}. ∼io
∩Xext satisfies s-cumulativity

for IO⋆
i .

Example 38. s-cumulativity is not satisfied for IO+i since Ref does not hold.
Consider K = 〈{p},RCL,Rid

d ∪ {> ⇒ ¬p},IO4〉. Clearly, there are maxicon
sets including > ⇒ ¬p in view of which K ∼/ p, where∼ ∈ {∼io

∩AExt,∼
io
∩PExt}.

The situation is different when considering K′ = 〈{p},RCL, {> ⇒
¬p},IO4 ∪ {ID}〉. Now, the only D-extension is ∅ and therefore K′ ∼ p since
( p,p) ∈ ArgK′(∅) due to the presence of the metarule 7→ p⇒ p.

The following example demonstrates that the OR metarule allows for a form
of disjunctive reasoning that is not available in systems without.

Example 39. Let K = 〈As,RCL,Rd,IO4〉, where Rd = {p ⇒ q ∨ t, q ⇒
s, t ⇒ s} and As = {p}. Note that ( p, s) ∈ ArgK(Rd) in view of the proof:
(q ⇒ s), (t ⇒ s) 7→ (q ∨ t ⇒ s) 7→ ( p ∧ (q ∨ t) ⇒ s) (by OR and LS)
and ( p ⇒ q ∨ t), ( p ∧ (q ∨ t) ⇒ s) 7→ ( p ⇒ s) by CT. Note also that Rd is
consistent. Therefore, K ∼io

∩PExt s and K ∼io
∩AExt s. The situation is different

for weaker logics; for example, if we let R′m = IOi where i ∈ {1,2,3} and
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Nonmonotonic Logic 69

K′ = 〈As,RCL,Rd,R′m〉, then ( p, s) < ArgK′(Rd) and so K′ ∼/ io
∩PExt s and

K′ ∼/ io
∩AExt s.

If OR is available, we get ORs(∼io
∩PExt) for base logics that satisfy (arg-or)

and (arg-ex) (such as CL, see Section 11.1).

Proposition 11.5. Let i ∈ {2,4} and ∼ = ∼io
∩PExt. If (arg-or) and (arg-ex), we

have ORs(∼) for IOi, IO+i , IO⋆
i .

Proof. Let ∼ = ∼io
∩PExt. Suppose K ⊕s A ∼ C and K ⊕s B ∼ C and consider

D ∈ DExt(K ⊕s A ∨ B). Assume for a contradiction that D is inconsist-
ent in both K ⊕s A and K ⊕s B. So, there are (D,E), (D′,¬E) ∈ ArgK⊕sA(D)
and (F,G), (F′,¬G) ∈ ArgK⊕sB(D). By (arg-ex) and LS, (G,E), (G′,¬E) ∈
ArgK⊕sB(D) for some G,G′ ∈ CnL(As ∪ {B}). By (arg-or), D ∨ G,D′ ∨ G′ ∈
CnL(As∪{A∨B}). So, by OR, (D∨G,E), (D′∨G′,¬E) ∈ ArgK⊕sA∨B(D). This
shows that D is inconsistent in K ⊕s A ∨ B, which is a contradiction.
So, D ⊆ ConsK⊕sA(D) or D ⊆ ConsK⊕sB(D). Without loss of generality,

assume the former. Thus, there is a D′ ∈ maxconK⊕sA(K) for which D ⊆ D′.
Assume for a contradiction that D′ is inconsistent in K ⊕s A ∨ B. So, there are
(D,E), (D′,¬E) ∈ ArgK⊕s(A∨B)(D′). Since D,D′ ∈ CnCL(As ⊕s A ∨ B) and by
(arg-or), also D,D′ ∈ CnCL(As ⊕s A). But then D′ is not consistent in K ⊕s
A, which is a contradiction. So, D′ is consistent in K ⊕s A ∨ B and by the
⊆-maximally of D, D = D′. Since K ⊕s A ∼ C, C ∈ Con[ArgK⊕sA(D)].
Altogether this shows that K ⊕s A ∨ B ∼ C. □

An immediate consequence of Corollary 11.4 and Proposition 11.5 is:48

Corollary 11.5. Let i ∈ {3,4}. If (arg-or) and (arg-ex), ∼io
∩PExt satisfies

s-preferentiality for IO⋆
i .

12 Greedy Accumulation: Properties and Reiter’s
Default Logic

In this section we take a closer look at greedy accumulation. We start by
considering some of the properties of nonmonotonic inference for greedy accu-
mulation in Section 12.1.We then investigate Reiter’smore general formulation
of default rules in Section 12.2. In Section 12.3 we show that default logic can
be considered a form of formal argumentation.

48 The situation is different for ∼io
∩AExt and the systems IO

⋆
i (for i ∈ {2, 4}). For instance, the

knowledge base K2 in Table 9 can easily be adjusted for input–output logics to serve as a
counterexample.
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70 Philosophy and Logic

12.1 Properties of Nonmonotonic Reasoning
As we have seen in Section 10.3, some properties of nonmonotonic inference
(Propositions 10.1 to 10.3, in particular CT, LLE, Ref, and RW) hold for greedy
accumulation. In this section we present some negative results.

Example 40 (Makinson, 2003). We consider the default theory

K = 〈As : ∅, Ad : ∅, RCL, Rd : { ⇒ q, p ∨ q⇒ ¬q}〉.

We get one D-extension, namely {⇒ q} with corresponding P-extension
CnCL({q}) and soK ∼∩AExt q,K ∼∩AExt p∨q,K ∼∩PExt q, andK ∼∩PExt p∨q.
When considering K ⊕s ( p∨ q) resp. K ⊕d ( p∨ q) the situation changes. We

now have the additional D-extension {p∨ q⇒ ¬q} resp. {p∨ q, p∨ q⇒ ¬q}
with the corresponding P-extension CnCL({p,¬q}). Thus, where ⊕ ∈ {⊕s,⊕d},
K ⊕ ( p ∨ q) ∼/∩AExt q and K ⊕ ( p ∨ q) ∼/∩PExt q.

The example shows that CMdoes not hold for greedy accumulation. The next
example shows that also OR fails (it is analogous to Example 30 for temperate
accumulation).

Example 41. Let ⊕ ∈ {⊕s,⊕d},∼ ∈ {∼∩AExt,∼∩PExt}, and

K = 〈As : ∅, Ad : ∅, RCL, Rd : {p⇒ r, q⇒ r}〉.

We note thatK ⊕ p ∼ r andK ⊕ q ∼ r, althoughK ⊕ ( p∨ q) ∼/ r (since the only
D-extension of K ⊕ ( p ∨ q) is ∅).

It is not surprising that several alternative formulations of default logic have
been introduced to obtain CT or OR, a discussion of which goes beyond the
scope of this Element (see Section 12.3).

12.2 Nonnormal Defaults
Reiter’s default logic is one of the most prominent NMLs to reason with default
rules such as “Birds usually fly.” In Reiter’s original account defaults are more
expressive in the sense that they allow one to express additional consistency
assumptions. They have the following general form:

r =
A1, . . . ,An B1, . . . ,Bm

C
. (12.2.1)

Besides the bodyBody(r) = {A1, . . . ,An} and a headHead(r) = C, each default
rule also comes with justifications Just(r) = {B1, . . . ,Bm}. WhereRd is a set of
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generalized defaults we call knowledge bases of the form 〈As,Rs,Rd〉 Reiter
default theories.49

Example 42. We compare the following two defaults:

d1 =
hasMotive guilty ∧ suspect

suspect

d2 =
hasMotive guilty ∧ suspect

guilty ∧ suspect

Defaults of the form d2, for which the justification is identical to the conclusion,
are called normal defaults. Both, d1 and d2 have the same conditions of defeat:
defeat happens if we learn that a person is not guilty or not suspect. However,
d1 has a weaker conclusion in that it only allows one to infer that the person
who has a motive is suspect, but unlike d2 it does not warrant the inference
to the person’s guilt as well. The use of nonnormal defaults is motivated by
cases in which the conclusion is logically weaker than the justification. From
the perspective of argumentation these are cases in which we do not only want
to retract inferences when being rebutted, but also allow other forms of defeat
which are expressed in terms of richer justifications (one may think of these
justifications as anchors for undercuts).

Definition 12.1. Let K= 〈As,Rd,Rs〉 be a Reiter default theory and D ⊆ Rd.
We let ArgK and ArgK(D) be defined similar to Definition 5.1: a ∈ ArgK iff

• a = 〈A〉∅, where A ∈ As. We let Con(a) = A, Sub(a) = {a}, andRd(a) = ∅.
• a = 〈a1, . . . ,an ⇒ A〉D, where a1, . . . ,an ∈ ArgK, D =

⋃n
i=1Rd(ai) ∪ {r},

and

r = Con(a1), . . . ,Con(an) B1, . . . ,Bm
A

∈ Rd.

We let Con(a) = A, Sub(a) = ⋃n
i=1 Sub(ai) ∪ {a}, andRd(a) = D.

• a = 〈a1, . . . ,an → A〉D, where a1, . . . ,an ∈ ArgK, Con(a1), . . . ,Con(an) →
A ∈ Rs, and D =

⋃n
i=1Rd(ai).

We let Con(a) = A, Sub(a) = ⋃n
i=1 Sub(ai) ∪ {a}, andRd(a) = D.

Where a ∈ ArgK and D ⊆ Rd, we let Def(a) =df Rd(a) and ArgK(D) =df
{a ∈ ArgK | Def(a) ⊆ D}. We let TrigK(D) be the set of all r ∈ Rd such that

49 In order to simplify things, we omit, e.g., priorities from the presentation in this section.
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for all A ∈ Body(r) there is an a ∈ ArgK(D) with Con(a) = A. Where E is a
set of L-sentences, we let ConsK(E) be the set of all r ∈ Rd for which each
B ∈ Just(r) is consistent with E . We let Trig>K(E,D) = TrigK(D) ∩ ConsK(E).

D-extensions of Reiter default theories are generated by an algorithm, sim-
ilar to GreedyAcc. However, we need to accommodate the consistency check
(in the loop guard, line 3) to the additional ingredient of defaults, their justifi-
cations. Since justifications need not be implied by the heads of their respective
defaults, the consistency check cannot proceed iteratively anymore. This is to
avoid that a justification of a default added earlier conflicts with the head of
one added later on in the procedure. Reiter solved this problem by means of a
semi-inductive procedure in which the reasoner has to first guess the outcome.
Consistency checks are then performed relative to the guessed set of sentences.
This results in the algorithm GREEDYACCGEN.50

Algorithm 5 Generalized Greedy Accumulation
1: procedure GREEDYACCGEN(K,D) ▷ where K = 〈As,Rd,Rs〉 and D ⊆ Rd
2: D⋆← ∅ ▷ init
3: E ← Con[ArgK(D)] ▷ the guessed P-extension
4: while ∃r ∈ Trig>K(E,D⋆) \D⋆ do ▷ scan triggered and consistent

defaults
5: D⋆← D⋆ ∪ {r} ▷ update scenario
6: end while ▷ no more triggered and consistent defaults
7: if D = D⋆ then
8: return(D⋆) ▷ correct guess
9: else
10: return(failure) ▷ incorrect guess
11: end if
12: end procedure

Definition 12.2. A Reiter D-extension of a Reiter default theory K= 〈As,Rd,

Rs〉 is a set D ⊆ Rd for which D =GREEDYACCGEN(K,D). Its corresponding
A-extension is ArgK(D), and its corresponding P-extension is Con[ArgK(D)].
We write again DExt(K) [resp. AExt(K), PExt(K)] for the set of Reiter D-
[resp. A-,P-]extensions of K.

Example 43. We consider K= 〈As,Rd,RCL〉, where

As = {t, t′} and Rd =
{
r1 : t p,¬s

p , r2 : t
′ s
s

}
.

We simulate two runs of GREEDYACCGEN.

50 An alternative algorithm without the need to guess has been proposed in Łukaszewicz (1988).
It also avoids the problem of nonexisting extensions in Example 44.
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Nonmonotonic Logic 73

1. When running GREEDYACCGEN(K, {r1}), E is the set {t, t′,p} closed under
classical logic. In the first round of the while-loop we add r1 to D⋆. In the
second round we add r2 since its justification is also consistent with E . This
leads to failure since D⋆ , {r1}.

2. We consider GREEDYACCGEN(K, {r2}). Now E is the set {t, t′, s} closed
under classical logic. Since r1 is inconsistent with E , the loop terminates
with D⋆ = {r2} and therefore returns the only D-extension of K.

Reiter’s format of defaults and the GREEDYACCGEN algorithm gener-
alize greedy accumulation as presented in Section 5.2.1. Suppose we
have a knowledge base K= 〈As,Rd,Rs〉 with only defaults of the form
r=A1, . . . ,An ⇒ B. We can translate K to a Reiter default theory K′ by
translating each default r to a Reiter default

A1, . . . ,An B
B

Applying GREEDYACC to K and GREEDYACCGEN to K′ will lead to the same
D-extensions (under the translation) and therefore the same P-extensions
(Łukaszewicz, 1988).
Nevertheless, the introduction of generalized defaults may lead to scenarios

in which no D-extensions exist.

Example 44. Consider K= 〈As,Rd,RCL〉 where As = {p} and Rd only
contains the default r=

p ¬q
q . We have two possible guesses to run

GREEDYACCGEN: D1 = {r} and D2 = ∅. Note that with the first guess the algo-
rithm never enters the while-loop, since the justification ¬q of r is inconsistent
withCon[ArgK(D1)]=CnCL({p,q}) and it therefore returns failure. With the
second guess, however, since¬q is consistent withCon[ArgK(∅)]=CnCL({p}),
the while-loop is entered and r is added to D⋆, again leading to failure.

Similarly as described in Section 10.2 for normal default theories, also Reiter
D-extensions can be characterized in terms of fixed-points.

Proposition⋆ 12.1. Let K= 〈As,Rd,Rs〉 be a Reiter default theory, D ⊆Rd,
and E =Con[ArgK(D)]. D is a Reiter D-extension of K iff D =Trig>K(E,D).

12.3 An Argumentative Characterization of Reiter’s Default Logic
In this section we demonstrate that there is a natural argumentative charac-
terization of extensions of Reiter default theories.51 For this we use a slightly

51 A similar translation is proposed in Bondarenko et al. (1997). The translation presented here
is generalized to prioritized default theories in Straßer and Pardo (2021).
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Figure 27 Illustration of Example 45.

generalized language sent^L = sentL ∪ {^A | A ∈ sentL}. The unary operator
^ will track the consistency assumptions underlying the justifications in gen-
eralized defaults. For this, it need not get equipped with logical properties, but
it will be used when defining argumentative attacks.

Definition 12.3. Given a Reiter default theory K = 〈As,Rd,Rs〉, we define
the argumentation framework AFK = 〈Arg(K′),{〉, where K′ = 〈As,A′d,
Rs ∪R′s〉, A′d contains ^B for every sentence B, and r′ = A1, . . . ,An,^B1, . . . ,

^Bn → C ∈ R′s iff

r = A1, . . . ,An B1, . . . ,Bm
C

∈ Rd. (12.3.1)

We let a { b if there is a b′ ∈ Sub(b) such that Con(a) ∈ Con(b′), where
^A = {¬A} for all sentences A.

Example 45 (Ex. 43 cont.). We recall K = 〈As,Rd,RCL〉 from Example 43.
In Fig. 27 we see an excerpt of AFK. The only Reiter D-extension of K is
D =

{t′ s
s

}
. Its induced P-extension corresponds exactly to the consequences

of the arguments in the only stable A-extension of K′ (highlighted).

The following result shows that the correspondence between Reiter exten-
sions and stable A-extensions is not coincidental.

Theorem⋆ 12.1 Let K = 〈As,Rd,Rs〉 be a general default theory and K′ as
in Definition 12.3. Then

1. for every Reiter P-extension E of K, there is a stable A-extension X of K′

for which Con[X ] ∩ sentL = E ,
2. for every stable A-extensionX of K′,Con[X ]∩sentL is a Reiter P-extension

of K.

Selected Further Readings
Metatheoretic properties of reasoning on the basis of maxicon sets in the
style of Rescher and Manor have been thoroughly studied in Benferhat et al.
(1997). A well-known prioritized version is provided in Brewka (1989).
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Nonmonotonic Logic 75

An overview on the state of the art in input–output logic can be found in
Parent and van der Torre (2013). Input–output logics have also been applied
to causal and explanatory reasoning in many works by Bochman: Bochman
(2005) is a good starting point. Proof theories for input–output logics that
allow for Boolean combinations of defeasible conditionals are presented in
Straßer et al. (2016) and van Berkel and Straßer (2022). The latter also pro-
vides a translation of input/output logic to formal argumentation. Hansen’s
approach to (prioritized) deontic conditionals falls within temperate accumu-
lation (Hansen, 2008), while Horty’s follows the greedy approach of deontic
logic (Horty, 2012).
An overview on many variants of default logic can be found in

Antoniou and Wang (2009). Due to the problems indicated in Section 12.1,
some cumulative variants have been proposed (Antonelli, 1999; Brewka, 1991)
as well as disjunctive versions (Gelfond et al., 1991). In Poole (1985) special
attention is paid to specificity.
Moore’s autepistemic logic has close links to default logic (Denecker et al.,

2011; Konolige, 1988) and to logic programming (Gelfond & Lifschitz, 1988).
The equi-expressivity of adaptive logics and default assumptions have been
shown in Van De Putte (2013). A modal selection semantics (as presented
in Sections 5.3 and Section 15) for default logic has been studied in
Lin and Shoham (1990).

PART IV SEMANTIC METHODS
In this final part of the Element we move the focus from syntax to semantics.
The main underlying method will be based on imposing preference orders on
interpretations and selecting specific interpretations of the given information.
In Section 13 we will study a well-known semantics for defaults (Kraus et al.,
1990) based on the idea of preferring more “normal” models over less “nor-
mal” ones. In particular, we investigate a sophisticated method to determine
the set of defaults that are entailed by a given set of defaults, the Rational Clo-
sure (Lehmann & Magidor, 1992). Section 14 provides an overview on some
quantitative methods for providing meaning to defaults, including probabilistic
methods. In Section 15 we use the idea of ordering models to obtain a seman-
tics for temperate accumulation. Finally, in Section 16 we introduce one of the
central paradigms in logic programming, answer set programming, and show
how it is closely related to both default logic and formal argumentation. In this
way, we once more demonstrate that although the underlying formal methods
of NMLs are quite diverse, they often result in the same consequence relations
and extensions (recall Fig. 14).
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13 A Semantics for Defaults
In Section 1.1 we proposed to interpret defaults A⇒B as “If A then nor-
mally/typically/usually/etc. B”. The argumentation (Part II) and accumulation
methods (Part III) model reasoning with defaults by focusing on inference
rules: arguments are formed by treating ⇒ as a defeasible inference rule
and the notions of consistency and conflict are used to obtain nonmonotonic
consequence relations. In this way the meaning of ⇒ is characterized in a
syntax-based, proof-theoretic way.
In what follows, we will interpret A⇒ B in a semantic, model-theoretic way,

by:

(⋆) B holds under the most normal/plausible/etc. situations in which
A holds.

This interpretation naturally leads to nonmonotonicity: while Anne jogsmost
mornings (morning ⇒ jog), rainy mornings are exceptional (morning ∧
rain ⇏ jog).
The proposed interpretation can bemade precise by usingmodels of the form

M = 〈S,≺,v〉 with a nonempty set of situations S which are interpreted by
means of an assignment function v : Atoms → ℘(S) that associates atoms
with the set of those situations (also referred to as states) in which they hold,
and an order ≺ ⊆ S × S that orders situations according to their normality. We
read s ≺ s′ (where s, s′ ∈ S) as expressing that s′ is less normal than s. Where
s ∈ S we let

• (M, s) |= >
• (M, s) |= A for an atom A iff s ∈ v(A)
• (M, s) |= ¬A iff (M, s) 6|= A
• (M, s) |= A ∧ B iff (M, s) |= A and (M, s) |= B
• (M, s) |= A ∨ B iff (M, s) |= A or (M, s) |= B.

We let ⟦A⟧M =df {s ∈ S | (M, s) |= A} be the set of all situations which
validate A and skip the subscript whenever the context disambiguates. Such
sets of situations are called propositions. Following the idea expressed in (⋆),
we let:52

• M |= A⇒ B iff in all s ∈ min≺(⟦A⟧), (M, s) |= B.

52 The idea of using semantic selections to give meaning to conditionals predates NMLs. Stal-
naker used a selection function to give meaning to counterfactuals (R. F. Stalnaker, 1968),
while Lewis used semantic spheres (Lewis, 1973).
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Note that validity for A⇒ B is defined globally, not relative to a given state.
In the following we write⇒M for the set of all A⇒ B for whichM |= A⇒ B,
and we write A⇒M B in case A⇒ B ∈ ⇒M. We will call⇒M the conditional
theory induced by M.
By letting A <M B =df A∨B⇒M ¬Bwe can express that A is “more normal”

than B. Indeed, if in all minimal states of A∨B, A∧¬B holds, then the minimal
states of A are ≺-lower than those of B.
One may think of M as a model of the belief state of an agent. A ⇒M B

expresses that if the agent were to learn A, she would believe B, where> ⇒M B
means that, absent new information, the agent believes B. If A <M B, the agent
would be less surprised when learning A than when learning B.

Example 46. LetM = 〈S,≺,v〉 where S = {s1, s2, s3}, v( p)=S, v(q)= {s1, s3},
v(r)= {s1, s2}, v(s)= {s3}, and≺= {(s2, s3)}.We have, for instance,min≺(⟦p⟧) =
{s1, s2},min≺(⟦q⟧)= {s1, s3},min≺(⟦p∨q⟧)= {s1, s2},min≺(⟦r∨s⟧)= {s1, s2},
and min≺(⟦p ∧ q⟧) = {s1, s3}. Thus,
1. p⇒M r and p ∨ q⇒M r,
2. r ∨ s⇒M ¬s and so r <M s,
3. but p ⇏M ¬q and p ∧ q ⇏M r.

In models with infinite sequences of more and more normal states we may
face situations in which min≺(⟦A⟧) is empty, although ⟦A⟧ is not. To exclude
such scenarios, we restrict the focus on only thosemodels for which it holds that
for all sentences A and all s ∈ ⟦A⟧\min≺(⟦A⟧) there is an s′ ∈ min≺(⟦A⟧) such
that s′ ≺ s. Models that satisfy this requirement are called smooth (Kraus et al.,
1990) or stuttered (Makinson, 2003). In what follows we will discuss some
other basic properties one may impose on ≺, such as transitivity (if s1 ≺ s2 and
s2 ≺ s3, then also s1 ≺ s3) or irreflexivity (s ⊀ s).
In particular, we will study two classes of well-behaved models by

only considering models for which the underlying order ≺ has specific
properties.

13.1 Preferential Models
Let us now state properties one may expect from the conditional theory ⇒M

induced by a model M. For this, we adjust the properties from Section 4 to
statements of the form A⇒ B.
The properties are to be read as closure conditions on a set of defaults D.

For example, REF states that A⇒ A ∈ D for all sentences A, or CM states that
if A ⇒ B,A ⇒ C ∈ D, then also A ∧ B ⇒ C ∈ D for all sentences A,B,C.
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LLE If `CL A ≡ B, then A⇒ C iff B⇒ C.
RW If A `CL B and C⇒ A implies C⇒ B.
REF A⇒ A.
OR If A⇒ C and B⇒ C, then A ∨ B⇒ C .
CM If A⇒ B and A⇒ C, then A ∧ B⇒ C.
CT If A⇒ B and A ∧ B⇒ C, then A⇒ C.

We call a set of defaults D preferential theory in case it is closed under these
properties.
Given the intuitive nature of the previously mentioned properties, a nat-

ural question is: what kinds of models give rise to preferential theories?
With Kraus et al. (1990) we call M= 〈S,≺,v〉 a preferential model in case ≺
is smooth, irreflexive, and transitive. It is an easy exercise to confirm that
the preceding properties hold for ⇒M, where M is a preferential model. We
paradigmatically consider CM (for which smoothness is needed) and OR.
For CM, suppose that A ⇒M B and A ⇒M C. In case min≺(⟦A ∧ B⟧) = ∅,

trivially A ∧ B ⇒ C. Otherwise, consider some s ∈ min≺(⟦A ∧ B⟧). Assume
for a contradiction that s < min≺(⟦A⟧). Thus, by smoothness, there is a
s′ ∈ min≺(⟦A⟧) such that s′ ≺ s. Since s′ ∈ min≺(⟦A⟧) and A ⇒M B,
(M, s) |= B and so (M, s) |= A ∧ B. But then s was not ≺-minimal in ⟦A ∧ B⟧,
a contradiction. So, s ∈ min≺(⟦A⟧) and so (M, s) |= C since A ⇒M C. Thus,
A ∧ B⇒M C.
For OR suppose that A⇒M C and B⇒M C. If min≺(⟦A∨B⟧) = ∅, trivially

A ∨ B ⇒ C. Otherwise consider an s ∈ min≺(⟦A ∨ B⟧). Assume for a con-
tradiction that s < min≺(⟦A⟧) ∪ min≺(⟦B⟧). Then, there is a s′ ∈ ⟦A⟧ ∪ ⟦B⟧
such that s′ ≺ s. Since s′ ∈ ⟦A ∨ B⟧, this contradicts the ≺-minimality of s.
So, s ∈ min≺(⟦A⟧) ∪ min≺(⟦B⟧) and so, by the supposition, (M, s) |= C. So,
A ∨ B⇒M C.
Altogether, it can be shown that:

Theorem 13.1 (Kraus et al., 1990). If M = 〈S,≺,v〉 is a preferential model,
⇒M is a preferential theory.

Also the inverse holds, that is, any preferential ⇒ can be characterized
by a preferential model. As a result, preferential models provide an adequate
semantic characterization of preferential theories.

Theorem 13.2 (Kraus et al., 1990). If D is a preferential theory, then there is
a preferential model M for which⇒M = D.
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Nonmonotonic Logic 79

13.2 Ranked Models
Preferential models do not, in general, validate the rational monotonicity
property:53

RM If A⇒ B and A ⇏ ¬C then A ∧ C⇒ B.

RM has in A ⇏ ¬C a negative condition. A set of defaults D is closed
under RM if for all sentences A,B,C, if A ⇒ B ∈ D and A ⇒ ¬C < D, then
A ∧ C ⇒ B ∈ D. A preferential theory D that is closed under RM is called
rational.

Example 47 (Example 46 cont.). In our example we have: p⇒M r and p ⇏M

¬q, but p ∧ q ⇏M r. So,⇒M does not validate RM, although it is preferential.

As Example 47 shows, preferential models M do not, in general, give
rise to rational theories ⇒M. What kind of models are such that their
induced conditional theories are rational? The key will be to let all states be
comparable.
Preferential models allow for incomparabilities of states in the following

sense: there are s1, s2, s3 for which s2 ≺ s3 but s1 is not comparable to s2 and
s3. We have such a situation in Example 46. We notice that this is responsible
for a violation of RM by⇒M.
The RM property holds if the set of minimal states of A ∧ C is contained

in the set of minimal states of A, in case there are some minimal states of A
that validate C. In view of A ⇏ ¬C, one may expect them to be, since there
are indeed minimal states of A that do not satisfy ¬C and in which therefore
C holds. In our example the outlier is s3 ∈ min≺(⟦p ∧ q⟧) \ min≺(⟦p⟧). The
situation improves if s1 is comparable to s2 and/or to s3. In the rightmost model
of Fig. 28 we have p⇒M r, p ⇏M ¬q, and p ∧ q⇒M r (while in the model in
the center we have p⇒M ¬q).
A rankedmodel M = 〈S,≺,v〉 is a preferential model for which ≺ ismodular,

that is, for all s1, s2, s3, if s2 ≺ s3, then s1 ≺ s3 or s2 ≺ s1. It can easily be
seen that an order is modular in case its states can be “ranked” by a function
r : S → T to a total order 〈T , <〉 in such a way that s ≺ s′ iff r(s) < r(s′). So,
any states s1 and s2 in a ranked model are comparable in that r(s1) ≤ r(s2) or
r(s2) < r(s1). Ranked models provide an adequate semantic characterization of
rational theories.

53 RM has a corresponding principle CV in Lewis’s logic VC, as studied in the context of
counterfactuals (Lewis, 1973).
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80 Philosophy and Logic

Figure 28 (Left) The preferential modelM = 〈S,≺,v〉 of Example 46.
(Middle and Right) Ranked modelsM′ = 〈S,≺′,v〉 based on modular

extension ≺′ of ≺. The dashed arrow is optional.

Theorem 13.3 (Lehmann and Magidor (1992)). (i) If M is a ranked model,
⇒M is a rational theory. (ii) If D is a rational theory, there is a ranked model
M for which⇒M = D.

13.3 What Does a Conditional Knowledge Base Entail?
While so far our focus has been on semantic characterizations of defaults, we
now turn to a different, although related question. Given a set of defaultsD (of
the form A⇒ B): what other defaults follow from them? To answer this ques-
tion, one may take the principles LLE, RW, REF, OR, CM, and CT (and RM)
underlying preferential (resp. rational) consequence relations and use them as
metarules Rm, just like we have seen metarules being applied to defeasible
rules in the context of input–output logic (see Section 11.3.2).
The set of metarules consisting of LLE, RW, REF, OR, CM and CT is often

referred to as system P, while adding RM to P results in system R. Where
S ∈ {P,R}, we write A ⇒ B ∈ CnS(D) if A ⇒ B is derivable from D by
means of the metarules in S.

Example 48. Supposewe have the set of defaultsD = {environmentalist⇒
vegan; environmentalist⇒ avoidsFlying}. Then, environmentalist∧
vegan⇒ avoidsFlying follows from D in both system P and system R (by
means of CM).

Given the representational results Theorems 13.1 to 13.3 from Sections 13.1
and 13.2 concerning the adequacy of preferential resp. of ranked models, it is
easy to see that P- and R-entailment can be semantically expressed. We say that
a preferential modelM is a model of D iff for all A⇒ B ∈ D, A⇒M B.
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Nonmonotonic Logic 81

Theorem 13.4 (Lehmann and Magidor, 1992). Where D is a set of defaults,
A⇒ B ∈ CnP(D) iff for all preferential models M of D, A⇒M B.

The preferential theory CnP(D) is called the preferential closure of D. It is
interesting, and maybe somewhat disappointing, to observe that for any D, P-
entailment and R-entailment are identical, that is, CnP(D) = CnR(D). This is
for a rather trivial reason: the rule RM is also applied to negated defaults, no
set of defaultsD contains such objects, and so RM is never applied. In fact, the
question is, what is a more rewarding interpretation of⇏ in the context of RM?
It seems reasonable to consider RM as a closure principle, that is, a principle
that extends CnR(D) to a set RatClosure(D) for which:

(†) if
(α1) A⇒ B ∈ RatClosure(D) and
(α2) A⇒ ¬C < RatClosure(D),

(γ) then A ∧ C⇒ C ∈ RatClosure(D).

But, how to find such a set RatClosure(D)? A first idea could be to simply
take the theory provided by the intersection of the theories induced by ranked
models of D. But, as the following example shows, this does not work.

Example 49 (Example 48 cont.). We now show that, although

(α1) in all ranked models ofD, d1 : environmentalist⇒ vegan holds; and
(α2) there are ranked models of D in which d2 : environmentalist ⇒
¬drummer doesn’t hold; but
(γ) there are ranked models of D in which d3 : environmentalist ∧
drummer⇒ vegan doesn’t hold.

Given D, in view of d2, being a drummer is irrelevant to the question whether
environmentalists are usually vegans (d1). If Anne is an environmentalist who
happens to be a drummer, this should still allow us to infer that she (likely)
is a vegan (d3). While from an intuitive point of view the rule RM seems to
exactly allow for the strengthening of an antecedent with information that is
not atypical for the antecedent (like being a drummer for being an environ-
mentalist), the example demonstrates that it doesn’t fulfill this role. For this we
consider the following states (where i, j,k ∈ {0,1} and in the case of si,j,k3 we let
(i, j,k) < {(1,0,1), (1,1,1)}):
Figure 29 shows two ranked models of D. OnlyM2 validates d3. Not soM1,

since

s0,1,13 ∈ min≺(⟦environmentalist∧drummer⟧) and (M1, s0,1,13 ) 6|= vegan.
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82 Philosophy and Logic

s1 s2 si,j,k3 si,j,k4

environmentalist 1 1 1 0
vegan 1 1 i i
drummer 0 1 j j
avoidsFlying 1 1 k k

Figure 29 Two ranked models of Example 49.

The problem withM1 is that it validates d2 due to the fact that

min≺(⟦environmentalist⟧) = {s1}
and in s1, ¬drummer is true. In contrast, inM2,

min≺(⟦environmentalist⟧) = {s1, s2}
and since in s2 drummer holds, d2 is invalid in this model, and by means of RM
it has to be the case that d3 holds. Indeed, inM2 we have:

min≺(⟦environmentalist⟧) ⊇ min≺(⟦environmentalist∧drummer⟧).
In sum, although each ranked model M satisfies RM for its induced the-

ory⇒M, RM as interpreted in (†) is not satisfied for the consequence relation
induced by the ranked models. We need another approach.
In order to let RM fulfill this role, it would seem that we need to interpret

sentences ¬B as not being default entailed by A (i.e., A ⇒ ¬B) as much as
possible, in order to allow for the inference from A⇒ C to A∧B⇒ C via RM.
After all, in all rankedmodelsM ofD in which d2 doesn’t hold, d3 holds (unlike
in ourM1). So, our strategy is to somehow trade in the invalidity ofmore general
defaults (A⇒ ¬B) for the validity of more specific defaults (A∧B⇒ C). How
to execute this tricky task?

Figure 29 gives a hint at a procedure for this: when moving from modelM1

toM2 we ranked one state, namely s2, more normal. We can generalize this: our
goal is to rank each state as normal as possible. This intuitive idea can be made
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Nonmonotonic Logic 83

precise in terms of imposing an order ⊏ on the ranked models of a given set
of defaults D and to select the best model. The way two ranked modelsM and
M′ of D are compared has an argumentative interpretation. Suppose there are
two discussants, one arguing in favor of M, the other one in favor of M′. Each
discussant produces attacks against the model favored by the other agent and
defends her model against such attacks.M is preferred toM′ (written:M ⊏ M′)
if the proponent ofM can attackM′ such that the proponent ofM′ cannot defend
M′, andM can be defended from every attack by the latter. But, how are attacks
and defenses supposed to work?
A proponent of M may attack the model M′ favored by the other agent by

accusing it of validating too many inferential relations, that is, by pointing to a
default A⇒ B that holds inM′ but not inM. Recall that our goal is to invalidate
for arbitrary A and B the default A⇒ B, if possible. There is a trade-off though,
since invalidating some A⇒ ¬Bmay lead, via RM, to the strengthening of the
antecedent of others, for example, from A⇒ C to A ∧ B⇒ C.
In Fig. 29, the discussant arguing in favor of M1 may attack the proponent

of M2 by stating that

environmentalist ∧ drummer⇒M2 vegan,

while environmentalist ∧ drummer ⇏M1 vegan.

However, a way to defend M1 is to point out that (a)

environmentalist⇒M1 ¬drummer, (a)

while environmentalist ⇏M2 ¬drummer,

and (b) environmentalist is according to M1’s standards even more nor-
mal than environmentalist∧drummer (formally, environmentalist <M1

environmentalist ∧ drummer).
Altogether, our informal discussion motivates the following definition of an

order ⊏ between models of a set of defaults D. For this we let

⇒↓AM =df {C⇒ D ∈ ⇒M | C <M A}.

Definition 13.1. Where M and M′ are two ranked models, M ⊏ M′ iff the
following two conditions hold:

(defeat) there is an A⇒ B ∈ (⇒M′ \⇒M) such that⇒↓AM ⊆ ⇒M′ , and
(defense) for all A⇒ B ∈ (⇒M \⇒M′), (⇒↓AM′ \⇒M) , ∅.

(defeat) expresses that there is an attack from M to M′ which is undefend-
able, while (defense) expresses that every attack fromM′ toM can be defended.
In terms of the preceding described argumentative reading, the two conditions
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84 Philosophy and Logic

describe winning conditions for the proponent of M when arguing with an
opponent favoringM′.

Definition 13.2. In case there is a unique ⊏-minimalmodelM among all ranked
models of a given set of defaults D,⇒M is called the rational closure of D.54

Example 50 (Example 49 cont.). We consider models M1 and M2 in Fig. 29.
We have M2 ⊏ M1. (defeat) holds since

environmentalist⇒ ¬drummer ∈ (⇒M1 \⇒M2 )

and⇒↓environmentalist
M2

= ∅ ⊆ ⇒M1 .

Also (defense) holds, for example, whereA = environmentalist∧drummer,
although A⇒ vegan ∈ ⇒M2 \⇒M1 , there is

environmentalist⇒ ¬drummer ∈ (⇒↓AM1
\⇒M2 ).

We now discuss an alternative characterization of the rational closure in
terms of ranking sentences according to their normality (relative to D). This
will also help defining a significant class of sets of defaults for which the
rational closure exists, so-called admissible sets (see Proposition 13.1). For this
we inductively associate sentences with ordinals via a function rank. We say
that a sentence A is exceptional for D in case > ⇒ ¬A ∈ CnP(D), so in case
D expresses that normally A is false. Similarly, A⇒ B ∈ D is exceptional for
D if A is exceptional for D. We collect the exceptional defaults in D in the set
Exc(D). WhereD0 = D, we letDτ+1 = Exc(Dτ) for all successor ordinals τ+1
and Dτ =

⋃
τ′<τ Dτ′ for all limit ordinals τ. Now, some sentence A has a rank

for D in case there is a least ordinal τ for which A is not exceptional for Dτ , in
which case the rank of A is τ. Otherwise, A has no rank.55

Example 51 (Example 50 cont.). For all A ∈ {environmentalist,vegan,
avoidsFlying,drummer}, A and ¬A are not exceptional for D and so have
rank 0. Exceptional forD are, for instance, environmentalist∧¬vegan and
environmentalist∧vegan∧¬avoidsFlying. These formulas have rank 1.

We call a setD admissible if for every sentence A that has no rank, A⇒ ⊥ ∈
CnP(D). Examples for admissible sets are sets D based on a finite language

54 An equivalent approach to Rational Closure has been defined on the basis of ϵ -semantics (see
Section 14.1) under the name of system Z (Goldszmidt & Pearl, 1990; Pearl, 1990).

55 In case our language only contains finitely many atoms, say n many, there is an upper limit to
the rank, namely 2n.
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Nonmonotonic Logic 85

(a languagewith only finitelymany atoms), or for which the preferential closure
has no infinite sequences of more and more normal sentences.

Proposition 13.1 (Lehmann and Magidor (1990)). WhereD is admissible, the
rational closure of D exists and it consists of all A⇒ B for which A ∧ ¬B has
no rank, or for which rank(A) < rank(A ∧ ¬B).

Example 52 (Example 51 cont.). In view of Proposition 13.1, for instance,
environmentalist ∧ vegan ⇒ avoidsFlying is in the rational closure of
D since environmentalist∧vegan has rank 0 while environmentalist∧
vegan ∧ ¬avoidsFlying has rank 1.
However, environmentalist ∧ ¬vegan ⇒ avoidsFlying is not in the

rational closure of D since

environmentalist ∧ ¬vegan

and environmentalist ∧ ¬vegan ∧ ¬avoidsFlying

have the same rank, namely 1. This shows that rational closure “suffers” from
the drowning problem (see Section 1.2): since nonvegans are exceptional with
respect to environmentalist⇒ vegan, they turn out exceptional also with
respect to environmentalist⇒ avoidsFlying.56

14 Quantitative Methods
So far, we have interpreted A⇒ B as B holds in the most normal situations in
which A holds (recall (⋆)). According to a similar idea:

(⋆′) A⇒ B holds if, given A, B is more normal/plausible/etc. than ¬B.

The notion of normality was rendered precise in terms of a preference order on
the logically possible situations. Instead of this qualitative approach, one may
follow the idea behind (⋆′) but proceed quantitatively and interpret A ⇒ B in
terms of probabilities: given A, B is more probable than ¬B. In what follows
we introduce the central approach to probabilistic semantics by Adams (1975),
which corresponds to system P.57

56 Some follow-up work tackles this problem by penalizing models in the comparison of models
for violations of defaults (whereM violates A⇒ B if A holds inM but B does not) such that the
penalty is the higher the more specific the default is (Goldszmidt et al., 1993; Lehmann, 1995).

57 In Eagle (2024) the reader finds an introduction to inductive logics which are used to
probabilistically study the support that some evidence provides for a claim.
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86 Philosophy and Logic

Table 11 The states and probability functions for Example 53.

situation s s |= b s |= f s |= w P1 P2

s1 ✓ .2 .1
s2 ✓ ✓ .2 .1
s3 ✓ ✓ .2 .2
s4 ✓ ✓ ✓ .4 .2
s′1 0 .1
s′2 ✓ 0 .1
s′3 ✓ 0 .1
s′4 ✓ ✓ 0 .1

14.1 Adams’ Approach: ϵ-Semantics
We again consider a set of situations S interpreted via an assignment v :
Atoms→ {0,1}.58
We now equip ℘(S) with a probability function P which maps sets of sit-

uations into [0,1] such that (1) P(S) = 1 and (2) for any pairwise disjoint
S1, . . . ,Sn ∈ ℘(S), P(S1 ∪ . . .∪Sn) =

∑n
i=1 P(Si). We call eachM = 〈S,P,v〉 a

probabilistic model. For every formula A, a probabilistic model provides infor-
mation of how probable it is to be in a situation consistent with A. Where
⟦A⟧M = {s ∈ S | (M, s) |= A} (we skip the subscript when the context dis-
ambiguates), we will write P(A) instead of P(⟦A⟧) for the formal expression of
this information. The conditional probability P(A | B) is, as usual, defined by
P(A∧B)
P(A) in case P(A) > 0 (otherwise, it is undefined). It expresses the probability

of being in a situation in which A holds, given that B holds.

Example 53. Let Atoms = {b, f,w}, where b stands for ‘being a bird’, f for
‘flying’ and w for ‘having wings’. The probabilistic models M1 = 〈S,P1,v1〉
andM2 = 〈S,P2,v2〉 are given by Table 11.
We have, for instance, P1(b) = P1({s1, . . . , s4}) = 1, P1(b ∧ f) =

P1({s3, s4}) = .6 and therefore P1(f | b) = .6/1 = .6, while P2(b) = .6,
P2(b ∧ f) = .4 and P2(f | b) = .4/.6 = 2/3.

We now define when a default A ⇒ B holds in a given probabilistic model
M = 〈S,P,v〉 (in signs, A ⇒M B). A consequence relation can then be
defined as follows. Where D is a set of defaults: A ⇒ B ∈ Cnϵ (D) iff for all

58 In order to slightly simplify the discussion, we stick to a finite language.
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Nonmonotonic Logic 87

probabilistic modelsM of D, A⇒M B.59 Before moving to Adams’ approach,
we state three naive ideas. LetM = 〈S,P,v〉.

Naive 1 A⇒1
M B, iff P(A ∧ B) > P(A ∧ ¬B) or if P(A) = 0.60

Naive 2 A⇒2
M B, iff P(B | A) > P(¬B | A) or if P(A) = 0.

Naive 3 A⇒3
M B, iff P(B | A) > τ for some threshold value τ (such as τ = .5),

or if P(A) = 0.61

We note that approaches Naive 1 and Naive 2 are equivalent since, in case
P(A) > 0: P(B | A) > P(¬B | A), iff P(A∧B)

P(A) >
P(A∧¬B)
P(A) , iff P(A∧B) > P(A∧¬B).

The weakness of the preceding naive approaches can be illustrated by applying
them to our example.

Example 54 (Example 53 cont.). Let i ∈ {1,2,3}. In modelM1 we have P1(b∧
w) = P1({s2, s4}) = .6 > P1(b ∧ ¬w) = P1({s1, s3}) = .4 which is why b⇒i

M1

w. Similarly, P1(b ∧ f) = P({s3, s4}) = .6 > P1(b ∧ ¬f) = P1({s1, s2}) = .4,
which is why b ⇒i

M1
f. However, since P1(b ∧ f ∧ w) = P1({s4}) = .4 <

P1(b ∧ ¬(f ∧ w)) = P1({s1, s2, s3}) = .6, we also have b ⇏i
M1

f ∧ w, even
b⇒i

M1
¬(f ∧ w).

This means that AND is violated for the induced consequence relation. This
model allows for a situation where b ⇒M1 f,b ⇒M1 w,b ⇒M1 ¬(f ∧ w),
albeit {b, f,¬(f ∧ w)} is an inconsistent set. Similarly, other central properties
of nonmonotonic entailment, such as CT, fail in our naive approaches.

In view of these weaknesses, Adams introduced another approach. In his
semantics the degree of assertability of A ⇒ B is modelled by the conditional
probability P(B | A). In a nutshell, the central idea is that some A ⇒ B is
entailed by a set of defaults D in case its assertability approximates 1 when
the elements of D are being interpreted as increasingly assertable. In formal
terms, let P be a proper probability function for D in case P(B | A) > 0 for all
A⇒ B ∈ D. We define:

Definition 14.1 (ϵ-entailment, Adams, 1975; Pearl 1989). Let D ∪ {A ⇒ B}
be a set of defaults. We define: A ⇒ B ∈ Cnϵ (D), iff, for any ϵ ∈ (0,1], there

59 Adams considers knowledge bases of the form 〈Ad,Rd 〉. Our restriction to knowledge bases
consisting of sets of defaults D is without loss of generality since, in Adams’ system, factual
assumptions A are equivalent to > ⇒ A.

60 In Section 14.2 we show, however, that when utilizing other types of quantitative measures,
this idea does not suffer from the problems discussed later for probability measures.

61 By using big-stepped probabilities, the problems indicated later for approaches based on
probabilistic thresholds can be avoided (see Benferhat et al. (1999)).
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88 Philosophy and Logic

is a δ ∈ (0,1] such that for all proper probability functions P for D: if, for all
C⇒ D ∈ D, P(D | C) ≥ 1 − δ, then P(B | A) ≥ 1 − ϵ .

Does this approach lead to a more well-behaved entailment relation and what
are characteristic properties of ϵ-entailment? Let us have another look at our
example.

Example 55 (Example 54 cont.). Where D = {b⇒ ¬f,b⇒ w}, we have, for
instance, b⇒ ¬f∧w ∈ Cnϵ (D). In order to show this, let ϵ ∈ (0,1] be arbitrary
and consider a probability function P. We need to find a δ ∈ (0,1] such that if
P(¬f | b),P(w | b) ≥ 1− δ, then P(¬f∧w | b) ≥ 1− ϵ . Let δ = ϵ/2 and suppose
that P(¬f | b),P(w | b) ≥ 1 − δ. Then,

P(¬f ∧ w | b) = 1 − P(f ∨ ¬w | b)

= 1 − P((f ∨ ¬w) ∧ b)
P(b) ≤ 1 −

(
P(f ∧ b)
P(b) +

P(¬w ∧ b)
P(b)

)
= 1 − (P(f | b) + P(¬w | b))
= 1 − ((1 − P(¬f | b)) + (1 − P(w | b))) = P(¬f | b) + P(w | b) − 1
≥ 2(1 − δ) − 1 = 2 − 2δ − 1 = 1 − 2δ = 1 − ϵ

What we have just shown in the context of our example is not coincidental.
Indeed, the proof of AND for ϵ-entailment follows exactly the structure of
the proof in Example 55. What is more, ϵ-entailment can be shown to coincide
with system P for finite knowledge bases (Geffner, 1992; Lehmann&Magidor,
1990): a remarkable correspondence between two rather different perspectives
on the meaning of⇒.

14.2 Other Quantitative Approaches
We close this section with some pointers to related approaches. While in
Adams’ approach we find a probabilistic characterization of P-entailment, the
reader maywonder whether alsoR-entailment can be represented by a quantita-
tive approach. Indeed, utilizing a nonstandard probabilistic approach including
infinitesimal values, Lehmann and Magidor (1992) present a variant of Adams’
system that characterizes rational entailment.
Instead of probability measures other quantitative measures have been uti-

lized in the literature to give meaning to defaults. We let S again be a finite set
of situations and v : Atoms→ ℘(S) an assignment function.

• A possibility measure (Dubois & Prade, 1990) Poss : ℘(S) → [0,1] deter-
mines the possibility of a set of situations, from impossible (0) to maximally
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Nonmonotonic Logic 89

possible (1).62 It is required that Poss(∅) = 0, Poss(S) = 1, and for any
S ′ ⊆ S, Poss(S ′) = maxs∈S′(Poss({s})). A possibilistic model M is of the
form 〈S,Poss,v〉.
• An ordinal ranking function (Goldszmidt & Pearl, 1992; Spohn, 1988) κ :
℘(S) → {0,1, . . . ,∞} associates each set of situations with a level of sur-
prise, from unsurprising (0) to shocking (∞). It is required that κ(S) = 0,
κ(∅) = ∞, and, for any S ′ ⊆ S, κ(S ′) = mins∈S′(κ({s})). An ordinal ranking
model M is of the form 〈S, κ,v〉.

It is easy to see that letting s ≺ s′ iff Poss({s}) > Poss({s′}) in the context
of a possibilistic model M = 〈S,Poss,v〉 [resp. iff κ(s) < κ(s′) in the context
of an ordinal ranking model M = 〈S, κ,v〉] gives rise to a ranked model M′ =
〈S,≺,v〉.
In each of these approaches the meaning of defaults in a given model is

defined analogous to the underlying idea of (⋆′):

• Where M = 〈S,Poss,v〉 is a possibilistic model, we let A ⇒M B iff
Poss(⟦A⟧) = 0 or Poss(⟦A ∧ B⟧) > Poss(⟦A ∧ ¬B⟧)
• WhereM = 〈S, κ,v〉 is an ordinal rankingmodel, we letA⇒M B iff κ(⟦A⟧) =
∞ or κ(⟦A ∧ ¬B⟧) > κ(⟦A ∧ B⟧).
We say that a possibilistic model [resp. an ordinal ranking model] M is a

model of a set of defaults D in case A⇒M B for all A⇒ B ∈ D.
For instance, a possibilisticmodel verifiesA⇒ B just in caseA is impossible,

or if A∧B is strictly more possible than A∧¬B. Since ranking functions model
the level of surprise an agent would face when learning that some A is true,
according to a ranking function A⇒ B is valid in case A would cause maximal
surprise or if learning aboutA∧Bwould cause strictly less surprise than learning
about A ∧ ¬B.

Example 56 (Ex. 53 cont.). We consider the set of states S in Example 53.
Fig. 30 shows a cardinal ranking function κ and a possibility function Poss.
Recall that for S ′ ⊆ S,

κ(S ′) = mins∈S′(κ({s})) and Poss(S ′) = maxs∈S′(Poss({s})),

which is why the figure fully characterizes κ and Poss by illustrating what val-
ues are assigned to single states.WhereMκ = 〈S, κ,v〉 andMPoss = 〈S,Poss,v〉,
we have:

62 Necessity is a separate technical notion in possibility theory, defined by Nec(S′) = 1 − Poss
(S \ S′).
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90 Philosophy and Logic

Figure 30 Example 56. (Left) The cardinal ranking κ. (Right) The possibility
function Poss.

• b⇒Mκ f∧w since κ(⟦b∧(f∧w)⟧)= κ({s4})= 0< 1= mins ∈ {s1 ,s2 ,s3 }(κ({s}))
= κ(⟦b ∧ ¬(f ∧ w)⟧)
• b⇒MPoss f∧w sincePoss(⟦b∧(f∧w)⟧)=Poss({s4})= 1> .9= maxs∈{s1 ,s2 ,s3 }
(Poss({s}))= κ(⟦b ∧ ¬(f ∧ w)⟧)
• ¬w ⇏Mκ ¬f since κ(⟦¬w ∧ ¬f⟧)= mins∈{s1 ,s′1 } = 1 6 < 1= mins∈{s3 ,s′3 }
= κ(⟦¬w ∧ f⟧), and
• ¬w ⇏MPoss ¬f sincePoss(⟦¬w∧¬f⟧)= maxs∈{s1 ,s′1 } = .9 ≮ .9= maxs∈{s3 ,s′3 }
= Poss(⟦¬w ∧ f⟧).

Entailment relations are induced in the usual way. Given a set of defaultsD,
we let

• A ⇒ B ∈ Cnposs(D) iff for all possibilistic models M = 〈S,Poss,v〉 of D,
A⇒M B,
• A ⇒ B ∈ Cnrank(D) iff for all ordinal ranking models M = 〈S, κ,v〉 of D,
A⇒M B.

It is a most astonishing result in NML that all these different perspectives lead
exactly to a characterization of P-entailment, a result that strongly underlines
the central character of its underlying reasoning principles.

Theorem 14.1 (Dubois and Prade, 1991; Geffner, 1992; Lehmann and Magi-
dor, 1992). Let D be a finite set of defaults. We have: A ⇒ B ∈ CnP(D)
iff A ⇒ B ∈ Cnϵ (D) iff A ⇒ B ∈ Cnposs(D) iff A ⇒ B ∈ Cnrank(D) iff
A⇒ B ∈ CnR(D).

15 A Preferential Semantics for Some NMLs
In this section we present a preferential semantics for logics based on temperate
accumulation and knowledge bases of the type 〈As,Ad,RL〉,63 such as Rescher

63 In Section 11.3.1 we have denoted this class of knowledge bases by Kmcon.
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Nonmonotonic Logic 91

andManor’s logics based on maxicon sets andMakinson’s default assumptions
(see Section 11.3.1).
In fact, this is exactly the semantics we introduced in Section 5.3, so our

main aim in this section is to show its adequacy for temperate accumulation.
We refer to Examples 21 and 22 in Section 5.3 for an illustration of this idea.
Let us briefly recall the general setup. We work in the context of a Tarski

logic L (such as classical logic) which has an adequate model-theoretic seman-
tic representation: for any set of L-sentences S ∪ {A} it holds: S ` A iff for all
L-models M of S (i.e., for all B ∈ S, M |= B) it is the case that M |= A. In par-
ticular, we assume that the consistency of a set of sentences S can be expressed
byML(S) , ∅.
In order to determine whether A defeasibly follows fromK, we compare the

L-models of the strict assumptionsAs in terms of how normal they interpret the
defeasible assumptions inAd. For this, we consider the normal part of a given
model M, which is simply the subset of defeasible assumptions it validates:
NK(M) =df {A ∈ Ad | M |= A}. Now we define an order on the L-models of
As by:

M �K M′ iff NK(M′) ⊆ NK(M).

We select the most normal models of K and define a consequence relation ∼�
by:

K ∼� A iff for allM ∈ min�K (M(As)),M |= A.

In the following we show how∼tem
∩PExt and∼

tem
∩AExt can be characterized by a

semantics based on �.64 For this wemake use of the characterization of temper-
ate accumulation in terms ofmaxicon sets (see Lemma 10.1 and Theorem 10.1).

Theorem 15.1. LetK = 〈As,Ad,RL〉 be a knowledge base. Then,K ∼tem
∩PExt A

iff K ∼� A.

The theorem follows in view of the following lemmas.

Lemma 15.1. For every M ∈ min�(M(As)), NK(M) ∈ maxcon(K).

Proof. Suppose that M ∈ min�(M(As)) and let D =N (M). Thus, D ∪ As

is consistent. Consider some D′ ⊆Ad for which D′∪As is consistent and

64 Also ∼tem
∪ext can be characterized by a similar semantics; for details, see how this is achieved

in adaptive logics in, e.g., Batens (2007), and Straßer (2014). In adaptive logics the seman-
tic selection for ∼tem

∩PExt corresponds to the so-called minimal abnormality strategy, while the
semantic selection for ∼tem

∩AExt corresponds to the reliability strategy. Adaptive logics offer
adequate dynamic proof theories for each of these semantic methods.
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92 Philosophy and Logic

D ⊆ D′. Thus, there is a M′ ∈ M(As ∪ D′). Since D′ ⊆ N (M′),
N (M) ⊆ N (M′) and by the �-minimality of M, N (M′) = D = D′. Thus,
D ∈ maxcon(K). □

Lemma 15.2. For every D ∈ maxcon(K) there is an M ∈ min�(M(As)) for
which NK(M) = D.

Proof. Suppose D ∈ maxcon(K). By the consistency of D ∪ As, there is an
M ∈M(As ∪ D). Consider a M′ ∈M(As) for which N (M) ⊆ N (M′). Then
N (M′)∪As is consistent. SinceD ⊆ N (M) and the maximality ofD,N (M′) =
D. So, N (M′) = N (M) and thus, M ∈ min�(M(As)). □

Proof of Theorem 15.1. K ∼tem
∩PExt A, iff [by Proposition 11.3], for all D ∈

maxcon(K), A ∈ CnL(As ∪ D), iff [by Lemmas 15.1 and 15.2], for all M ∈
min�(M(As)), M |= A, iff, K ∼� A. □

We now move on to characterize ∼tem
∩AExt semantically. We can capture this

consequence relation by defining a threshold function τ on the degree of
normality a selected model is allowed to have.

τ : K 7→
⋂
{NK(M′) | M′ ∈ min�(M)}

core�(K) =df {M ∈M(As) | NK(M) ⊇ τ(K)} .

So the core of K consists of those models whose normal part contains at least
all those sentences that are part of the normal parts of every �-minimal model.
Clearly, each �-minimal model belongs to the core, but possibly also other
models. Let, moreover,

K ∼core
� A iff for allM ∈ core�(K),M |= A.

Given that core�(K) ⊇ min�(M(As)), the consequence relation ∼core
� will

typically give rise to a more cautious reasoning style than∼�.

Example 57 (Example 21 cont.). For our K′ = 〈A′s,A′d,RCL〉 with

A′s = {p, p ∧ ¬ab1 ⊃ q, p ∧ ¬ab2 ⊃ r, q ∧ ¬ab3 ⊃ ¬r, r ⊃ s, ¬r ⊃ s},

and A′d = {¬ab1,¬ab2,¬ab3} we have three minimal models: M1 with
NK′(M1)= {¬ab1,¬ab2}, M2 with NK′(M2)= {¬ab1,¬ab3}, and M3 with
NK′(M3)= {¬ab2,¬ab3} (see Fig. 12). So, τ(K′)= ∅ and therefore core�(K′)
=M(As), and K′ ∼core

� A iffAs `CL A. This highlights the fact that∼core
� leads

to a more cautious reasoning style than∼�.
We now consider K2 = K′ ⊕s q = 〈A2

s ,Ad,RCL〉, where A2
s = A′s ∪ {q}. In

Fig. 31 we highlight the models in core�(K2). In this case min�(M(A2
s )) ⊊
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Nonmonotonic Logic 93

Figure 31 The order � on the models of K2 in Example 57. Highlighted are
the models in core�(K2). The atoms p,q, and s are true in every model of A2

s .

core�(K2) ⊊ M(A2
s ). This is reflected, for instance, in the consequences

K2 ∼core
� ¬ab1 while As ⊬CL ¬ab1, and K2 ∼� ¬(ab2 ∧ ab3) while K2 ∼/ core

�
¬(ab2 ∧ ab3).

With Lemmas 15.1 and 15.2 we immediately get:

Corollary 15.1. Let K = 〈As,Ad,RL〉 be a knowledge base and M ∈M(As).
Then, M ∈ core�(K) iff NK(M) ⊇

⋂maxcon(K).

Theorem 15.2. Let K = 〈As,Ad,RL〉 be a knowledge base. Then, K ∼core
� A

iff K ∼tem
∩AExt A.

Proof. SupposeK ∼tem
∩AExt A. Thus, by Proposition 11.3,

⋂maxcon(K)∪As `L
A. Let M ∈ core�(K). By Corollary 15.1, N (M) ⊇

⋂maxcon(K) and so M ∈
M(⋂maxcon(K) ∪As). Thus,M |= A. So, K ∼core

� A.
Suppose K ∼/ tem

∩AExt A. Thus, by Proposition 11.3,
⋂maxcon(K) ∪As ⊬L A.

So, there is a M ∈ M(As ∪
⋂maxcon(K)) such that M 6 |= A. So, N (M) ⊇⋂maxcon(K). By Corollary 15.1, M ∈ core�(K). So, K ∼/ core

� A. □
Combining our previous results with the result in Proposition 11.3, we get:

Corollary 15.2. Let K = 〈As,Ad,RL〉 be a knowledge base. Then,

1. K ∼tem
∩PExt A iff K ∼mcon

∩Pext A iff K ∼� A.
2. K ∼tem

∩AExt A iff K ∼mcon
∩Aext A iff K ∼core

� A.

16 Logic Programming
Logic programming is a declarative approach to problem solving. The idea
is that a user describes a given reasoning problem by means of a so-
called logic program in a simple syntax, without the need of encoding an
algorithm to solve the problem. Automated proof procedures or semantic

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108981699
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.154, on 31 Oct 2025 at 13:11:56, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108981699
https://www.cambridge.org/core


94 Philosophy and Logic

methods are then used to provide answers to queries. With the addition of
negation-as-failure(-to-prove) (Section 16.1) or default negation, logic
programming became a key paradigm in NML. It gave rise to a rich variety of
applications, from legal reasoning (Sergot et al., 1986), to planning (including
applications for the Space Shuttle program in Nogueira et al. (2001)), to cogni-
tive science (Stenning & Van Lambalgen, 2008), and others. In this section we
will introduce one of the central semantical approaches based on stable models
(Section 16.2), which under the addition of classical negation became known
as answer set programming (in short: ASP, Section 16.3). In Section 16.4 we
note that ASP and default logic coincide under a translation and that ASP can
be considered a form of formal argumentation.

16.1 Normal Logic Programs and Default Negation
A logic program in its simplest form is a collection of strict inference rules of
the form

B1, . . . ,Bn → A (16.1.1)

where A,B1, . . . ,Bn are atomic formulas (incl. > or ⊥).65 These rules are called
the clauses of the program. Factual information is represented by rules with
empty bodies, such as → A. We reason with such programs as one would
expect: C follows from a program Π = {R1, . . . ,Rn} just in case there is an
argument based on R1, . . . ,Rn with the conclusion C (recall Definition 5.1).
Similar to default logic, logic programming also accommodates defeasible

assumptions in the body of rules such as:

On Sunday mornings Jane goes jogging, except it is stormy.

In logic programming the “except …” part is expressed with a dedicated
negation ∼ whose exact interpretation we discuss as follows:

sundayMorning,∼stormy → jogging (16.1.2)

More generally, we are now dealing with rules of the form

B1, . . . ,Bn,∼C1 . . . ,∼Cm → A (16.1.3)

where A,B1, . . . ,Bn,C1, . . . ,Cm are atomic formulas. Sets of rules Π of the
form (16.1.3) are called normal logic programs. The technical term for ∼ is

65 These rules are often written “A← B1, . . . , Bn”, but in order to keep our presentation coher-
ent, we write them in the same way as the strict rules in previous sections. Since we don’t
consider rules with empty conclusions in this Element, we added ⊥ to express (somewhat
unorthodoxically) clauses such as B1, . . . , Bn → equivalently by B1, . . . , Bn → ⊥. This is
an inconsequential for what follows.
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Nonmonotonic Logic 95

“negation-as-failure(-to-prove)” or simply “default negation.” The basic idea
is that ∼A is considered true in the context of Π unless there is an argument for
A (based on Π). So, jogging is entailed by the program only consisting of the
rule (16.1.2), but if we add → stormy it should not be entailed.
How to define a nonmonotonic consequence relation for negation-as-failure?

Prima facie, the following simple (but ultimately flawed) idea seems to be in
its spirit. We consider arguments that can be built with the rules in the given
programΠ and that are based on defeasible assumptions of the type ∼A. Let for
this Π∼ be all formulas of the type ∼A, where A occurs in some rule in Π and
letKΠ be the knowledge base consisting of the defeasible assumptions Π∼ and
the strict rules in Π. So KΠ is of the form 〈As : ∅,Ad : Π∼,Rs : Π,Rd : ∅〉,
or in shorter notation 〈Π∼,Π〉. We then let an atom A be entailed by Π just in
case the following two criteria are fulfilled:

1. there is an argument a for A in ArgKΠ (recall Definition 5.1), and
2. there is no argument for C in ArgKΠ for any ∼C occurring in a.

This would allow us to conclude jogging from

Π1 = { → sundayMorning, sundayMorning,∼stormy → jogging}.

The reason is that, whereK1 =KΠ1 = 〈Π∼1 ,Π1〉, there is an argument a inArgK1

for jogging, namely a= 〈〈 → sundayMorning〉, 〈∼stormy〉 → jogging〉,
and there is no argument for stormy in ArgK1 . At the same time, this approach
blocks the conclusion jogging from Π′1 = Π1 ∪ { → stormy} since now
there is an argument b = 〈 → stormy〉 for stormy in ArgK′1 , whereK

′
1 = KΠ′1 .

However, we run quickly into problems with our naive approach once the
logic programs are slightly more involved.

Example 58. Consider, for instance, the following logic program:

Π2 = {→ s, ∼s → q, ∼q → r}

In this case, although it seems reasonable to infer r, our naive approach doesn’t
permit it. To see this, we observe that the argument ar = 〈〈∼q〉 → r〉 for
r relies on the assumption ∼q. Although q can be concluded in view of a
(counter-)argument aq = 〈〈∼s〉 → q〉 based on the assumption ∼s, the latter is
problematic since s follows strictly in Π2 by the argument as = 〈 → s〉. This
kind of reinstatement, in which an attacked argument is successfully defended
by a nonattacked argument, cannot be handled by our naive approach.66

66 We give an adequate argumentative characterization in Section 16.4.
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96 Philosophy and Logic

Several ways that deal with such and similar problems have been proposed
in various semantics for logic programming (see e.g., Eiter et al. (2009)). In
the following we will focus paradigmatically on one of the central approaches
based on so-called stable models (Gelfond & Lifschitz, 1988).

16.2 Stable Models
A way to tackle the problem of reasoning with logic programs that contain
default negation is by considering interpretations of programs. Let us start
with the simple case of a ∼-free logic program Π consisting of rules of the
form (16.1.1). A modelM of Π is a function that associates each atom C occur-
ring in a rule in Π with true (written M |= C) or false (written M 6 |= C). As
usual, we let M |= > and M 6 |= ⊥. Where r = B1, . . . ,Bn → A, we write M |= r
(“M validates r”) in case M |= B1, …, M |= Bn implies M |= A. A compact
representation is by lettingM be the set of those atoms in Π that it interprets as
true (and so C ∈ M iffM |= C).67

Example 59. Let Π = { → p, p → q} and consider M1 = ∅, M2 = {p},
M3 = {q}, and M4 = {p,q}. Then, M1, M2, and M3 are not models of Π: M1

and M3 violate the first rule (since p < M1 and p < M3) and M2 violates the
second rule (since q < M2 although p ∈ M2). The only model of Π isM4.

It is easy to see that a ∼-free programΠ has aminimal model, that is, a model
M of Π such that for all other models M′ of Π, M′ 1 M. In fact, as the reader
can easily verify, the minimal program will consist exactly of the conclusions
of arguments based on the rules in Π.

Fact 16.1. LetΠ be a ∼-free program. Then, Con[ArgKΠ ] is the minimal model
of Π.

As we have seen in the previous section, things get more interesting when
we also consider default negation ∼. For this we adjust the notion of validity in
a model.

Definition 16.1. LetM ∪ {C} be a set of atoms. We let

• M |= C, iff, C ∈ M or C = > and
• M |= ∼C, iff,M 6 |= C.

Where r is a rule of type (16.1.3),

67 The set of atoms that occur in a program Π is called its Herbrand base and sets of atoms in the
Herbrand base of Π are called Herbrand interpretations of Π.
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Nonmonotonic Logic 97

• M |= r, iff,M |= B1, …, M |= Bn, M |= ∼C1, …,M |= ∼Cm impliesM |= A.

We write M∼
Π
for the set {∼C ∈ Π∼ | M |= ∼C} and Atoms(Π) for the set of

atoms occurring in Π.
Let Π be a normal logic program and M ⊆ Atoms(Π). We say that M is a

model of Π in case M |= r for all r ∈ Π. We write M(Π) for the set of all
models of Π.

By having another look at Π2 we note that not all models of a given program
are equally representative of a rational reasoner.

Example 60 (Example 58 cont.). We consider the following candidates for
models of Π2:

M1 = {s, r} M2 = {s,q, r} M3 = {s}

We haveMi |= ∼q for i ∈ {1,3} andM2 6 |= ∼q.M3 is not a model of Π2 since
M3 6 |= ∼q → r. M1 andM2 are models of Π2.
However, we also notice problems with M2. In particular we have M2 |= q,

although the only argument for q based on Π2 is 〈∼s〉 → q whileM2 6 |= ∼s. So,
q is “unfounded” in M2: it is valid but not supported by an argument in M2. A
desideratum for us will thus be that models M of a program Π are founded in
these programs in the sense that every atom contained inM can be inferred by
means of Π and the defeasible assumptionsM∼

Π
inM. Let us make this precise.

Definition 16.2. LetΠ be a normal logic program andM ⊆ Atoms be a model.
We let KM

Π
=df 〈M∼Π,Π〉 be the knowledge base consisting of the defeasible

assumptions in M∼
Π
and the rules in Π. A model M of Π is founded (in Π)

if for each A ∈ M there is an argument a ∈ ArgKM
Π
with conclusion A (so,

M = Con[ArgKM
Π
] ∩ Atoms(Π)).

In order to filter out unfounded models, Gelfond and Lifschitz (1988) have
proposed the concept of a reduction program.

Definition 16.3. Given a modelM ofΠ, we let the reduction ofΠ byM, written
ΠM, be the result of (i) replacing each occurrence of a ∼-negated formula ∼C
inΠ by> in caseM |= ∼C and by⊥ else, and of (ii) adding the rule r> =→ >.

Definition 16.4. Let Π be a normal logic program.M is a stable model of Π in
case it is identical to the minimal model of ΠM. We write stable(Π) for the set
of stable models of Π.
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98 Philosophy and Logic

It is reassuring to note that (a) ΠM is a ∼-free program and therefore has a
minimal model (see Fact 16.1), and (b) if M is a model of ΠM, then it is also a
model of Π.

Lemma 16.1. Let M ⊆ Atoms(Π) and M ∈M(ΠM). Then, M ∈M(Π).

Proof. Let A1, . . . ,An,∼C′1, . . . ,∼C′m → B ∈ Π such that A1, . . . ,An ∈ M and
M |= ∼C′i for each i ∈ {1, . . . ,m}. Thus, A1, . . . ,An,>, . . . ,> → B ∈ ΠM. Since
M ∈M(ΠM), B ∈ M. □

Example 61 (Example 60 cont.). Let us put this idea to a test with Π2 and the
two modelsM1 = {s, r} andM2 = {s,q, r}.

Π2 Π
M1
2 Π

M2
2

∼q → r > → r ⊥ → r
∼s → q ⊥ → q ⊥ → q
→ s → s → s

→ > → >

The minimal model of ΠM1
2 isM1, the minimal model of ΠM2

2 isM′2 = {s} ⊊
M2. So, as expected, whileM1 is a stable model of Π2, M2 is not.

Stable models do not exist for every program. Indeed, for some logic
programs the only existing models are unfounded ones.

Example 62. A case in point is Π⊥ = {∼p → p}. Note that M0 = ∅ is not
a model of Π⊥ since M0 |= ∼p and so p would have to be true in M0 to be a
model of Π⊥. So we are left withM1 = {p}. But this model is not founded.68

Programs containing conflicts may give rise to several stable models.

Example 63. As a simple example, consider Πconf = {∼q → p,∼p → q}.
M0 = ∅ is not a model of Πconf, since both rules are applicable inM0, but p,q <
M0. On the other hand, Mpq = {p,q} is not minimal (and hence unfounded),
since neither rule is applicable inMpq.We are left withMp = {p} andMq = {q}.
As the reader can easily verify, these two models are stable.

68 There are three-valued semantics for stable models in which a stable model exists that assigns
to p a third truth value, undecided (Przymusinski, 1990).
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Nonmonotonic Logic 99

16.3 Extended Logic Programs and Answer Sets
So far we have limited our attention to a rather weak language, only consisting
of atoms and their default negations. We now will add another negation ¬ to
the mix which will behave more similar to classical negation. This puts us in
the realm of extended logic programs, which are sets of rules of the form

ℓ1, . . . , ℓn,∼ℓ′1, . . . ,∼ℓ′m → ℓ (16.3.1)

where ℓ, ℓ1, . . . , ℓn, ℓ′1, . . . , ℓ
′
m are ¬-literals, that is, atoms or ¬-negated atoms.

Lit¬(Π) denotes the set of all ¬-literals occurring in an extended program Π.
It is our task now to enhance the notion of a model to extended programs.

A simple way is by means of a translation τ of a given extended program Π
to a normal program Π′ (Gelfond & Lifschitz, 1991) in which each occurrence
of some ℓ = ¬p is replaced by a new atom p′ (not occurring in Π). We then
consider only those modelsM of τ(Π) for which

• p < M or p′ < M for all atoms p or
• M contains all p and p′ for all atoms p in Π.69

We then translate M back by considering τ−1(M) = {A ∈ M | A ∈ Atoms} ∪
{¬A | A′ ∈ M}, replacing atoms of the form p′ by ¬p. IfM is a stable model of
Π′ then we define τ−1(M) to be a stable model of Π. The latter are also known
as answer sets of Π.
Of course, we can also define a nonmonotonic consequence relation based

on answer sets: where A is a ¬-literal, or a ∼-negated ¬-literal and Π is an
extended logic program we let:

Π ∼asp A iff for all answer sets M of Π,M |= A.

Example 64. We consider the extended logic program Π3 consisting of:

r1 = sundayMorning, ∼stormy, ∼¬jogging → jogging

r2 = working, ∼jogging → ¬jogging

r3 = → sundayMorning

r4 = → working

In the translated program τ(Π3), rules 1 and 2 are replaced by:

r′1 = sundayMorning, ∼stormy, ∼jogging′ → jogging

r′2 = working, ∼jogging → jogging′

69 This condition makes sure that from an inconsistent program anything is derivable (see
Example 65).
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100 Philosophy and Logic

Table 12 Models of τ(Π3) (Example 64)

M1 M2 M3 M4 M5

working ✓ ✓ ✓ ✓ ✓
sundayMorning ✓ ✓ ✓ ✓ ✓
jogging ✓ ✓ ✓
jogging′ ✓ ✓ ✓
stormy ✓ ✓ ✓
r′1 ✓ ✓ ✓ ✓ ✓
r′2 ✓ ✓ ✓ ✓ ✓

We have two stable models of τ(Π3), as the reader can easily verify by
inspecting Table 12.

M1 = {sundayMorning, working, jogging} and
M2 = {sundayMorning, working, jogging′}.

So, the answer sets of Π3 areM1 and

M′2 = {sundayMorning, working, ¬jogging}.

We note that ¬stormy < M1∪M′2, butM1 |= ∼stormy andM2 |= ∼stormy.
This shows that negation-as-failure as interpreted in answer set programming
does not realize a closed-world assumption in the strong sense that every atom
A that is not derivable is interpreted as strongly negated, ¬A.70
If we add the additional rule → stormy to Π3, resulting in Π′3, we end up

with one answer set, namely

M3 = {sundayMorning, working, stormy, ¬jogging}.

In terms of nonmonotonic consequence we have

• Π3 ∼asp ∼stormy, while Π′3 ∼asp stormy, and
• Π′3 ∼asp ¬jogging, while Π3 ∼/asp jogging and Π3 ∼/asp ¬jogging.

Example 65. There are extended programs with only inconsistent (stable)
models, for example, Π⊥ = { → p, → ¬p}. The only model of τ(Π⊥)= {→
p, → p′} is M⊥ = {p,p′}. So the only model of Π⊥ is τ−1(M⊥)= {p,¬p}.

70 Alternative interpretations of ∼ are offered, e.g., by the completion semantics (Clark,
1977) and its weak variant that led to applications in the psychology of reasoning
(Stenning & Van Lambalgen, 2008).
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Nonmonotonic Logic 101

16.4 Answer Sets, Defaults, and Argumentation
Answer sets are closely related to the extensions of Reiter’s default logic (Sec-
tion 12.2).71 We can translate a clause of the form (16.3.1) to a (possibly)
nonnormal default by

τrei
(
ℓ1, . . . , ℓn,∼ℓ′1, . . . ,∼ℓ′m → ℓ

)
=
ℓ1, . . . , ℓn −ℓ′1, . . . ,−ℓ′m

ℓ
,

where for an atom A, −A =df ¬A and −¬A =df A. Let the resulting translation
of an extended program Π be

Krei(Π) =
〈
As : ∅,RCL,Rd : {τrei(r) | r ∈ Π}

〉
.

Example 66. We have Krei(Π3) = 〈∅,RCL,Rd〉, where Rd consists of the
following general default rules:

d1 =
sundayMorning ¬stormy,jogging

jogging d2 =
working ¬jogging

¬jogging

d3 = sundayMorning d4 = working

Theorem 16.1 (Gelfond and Lifschitz, 1991). Let Π be an extended program
and M ⊆ Lit¬(Π). Then,

1. if M ∈ stable(Π), then CnCL(M) ∈ PExtgr(Πrei), and
2. for every E ∈ PExtgr(Πrei) there is exactly one M ∈ stable(Π) for which

E = CnCL(M).

Given this result the metatheoretic results for Reiter’s greedy approach
immediately apply (see Section 12.1), such as cautious transitivity for∼asp.72

In the following we show that answer sets can also be expressed in logical
argumentation.73 Wewill improve our previous naive attempt (see Section 16.1
and recall the problematic Example 58) by allowing for reinstatement.

Definition 16.5. Let Π be an extended logic program. We let AFΠ =

〈ArgKΠ ,{〉, where KΠ = 〈Π∼,Π〉 and for a,b ∈ ArgKΠ , we let a attack b
(in signs a{ b) if there is a sub-argument 〈∼ℓ〉 of b such that Con(a) = ℓ.

71 There are also close relations to temperate accumulation. E.g., in Besold et al. (2017) we find
a characterization of input-ouput logic in logic programming.

72 For this one has to define Π ⊕s A by Π ∪ {→ A}.
73 Close connections between various semantics of logic programming and structured argumen-

tation have been observed in Caminada and Schulz (2017).
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102 Philosophy and Logic

Figure 32 Argumentation framework for Examples 67 (left) and 68 (right).
We omit nonattacked arguments.

Example 67 (Example 64 cont.). We considerΠ3 and list arguments inArgKΠ3
that give rise to the argumentation framework in Fig. 32 (left).

a0 = 〈 → working〉 b3 = 〈∼stormy〉
a1 = 〈 → sundayMorning〉 c1 = 〈a1,b2,b3 → jogging〉
b1 = 〈∼jogging〉 c2 = 〈a0,b1 → ¬jogging〉
b2 = 〈∼¬jogging〉

We obtain two stable extensions of AFΠ3 :

E1 = {a0,a1,b2,b3,c1} and E2 = {a0,a1,b1,b3,c2}.

The set of conclusions (in Lit¬(Π3)) of arguments in the two stable models
correspond to the two answer sets of Π3, namely:

M1 = {working, sundayMorning, jogging} and
M2 = {working, sundayMorning, ¬jogging}

Example 68 (Example 58 cont.). We consider the problematic example for our
naive argumentation-based account, Π2. We have the following arguments in
ArgKΠ2 , giving rise to the argumentation framework in Fig. 32 (right).

a1 = 〈∼s〉 b1 = 〈 → s〉 b2 = 〈a1 → q〉
a2 = 〈∼q〉 b3 = 〈a2 → r〉

The unique stable extension of AFΠ2 is E = {b1,a2,b3} (highlighted). The
set of atoms in Con[E] is identical to the only stable model ofΠ2, namely {s, r}.

The correspondence is not coincidental. For a given extended logic program
Π let stable>(Π) be the set of consistent answer sets ofΠ, that is, those stable
models of Π that do not contain contradictory literals.74

Theorem⋆ 16.2. Let Π be an extended logic program.

74 Recall thatArgKΠ (M
∼
Π
) denotes those arguments inArgKΠ which only make use of defeasible

assumptions in M∼
Π
.
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Nonmonotonic Logic 103

1. If M ∈ stable>(Π), then ArgKΠ (M∼Π) ∈ stable(KΠ).
2. If E ∈ stable(KΠ) and M = Con[E] ∩ Lit¬, then M ∈ stable>(Π).

Selected Further Readings
Friedman and Halpern (1996) provided a unifying approach to default reason-
ing based on plausibility orders covering many of the previously mentioned
NMLs, such as the preferential semantics of Kraus et al. (1990), the possibilis-
tic approach by Benferhat et al. (1992), ordinal rankings by Spohn (1988), and
ϵ-semantics (Adams, 1975; Pearl, 1989). Another generalization is provided
in Arieli and Avron (2000), who go beyond a classical base logic. Preferential
conditionals have been embedded in the scope of a full logical language (so that
they are allowed to occur in the scope of logical connectives such as ∧,∨,¬)
in conditional logics (Asher & Morreau, 1991; Boutilier, 1994a; Friedman
& Halpern, 1996). First-order versions of preferential consequence relations
and conditional logics have been investigated, for example, in Delgrande
(1998); Friedman et al. (2000) and Lehmann and Magidor (1990). Proof the-
ories for conditional logics in the style of Kraus et al. (1990) can be found in
Giordano et al. (2009), and for rational closure in Straßer (2009b) in terms of
adaptive logics. Deep connections between preferential approaches and belief
revision have been observed in many places, for example, Boutilier (1994b),
Gärdenfors (1990), Rott et al. (2021).
Logics based on preferential semantics and logic programming have been

characterized in terms of artificial neural nets; see for example Besold et al.
(2017), Hölldobler and Kalinke (1994), and Leitgeb (2018).
An overview and introduction to logic programming with an emphasis on

answer sets is, in book form, Lifschitz (2019), and more compactly, Eiter et al.
(2009). As the reader will expect, many variants of logic programming exist,
including disjunctions (Minker, 1994), preferences (Schaub & Wang, 2001),
probabilities (Ng & Subrahmanian, 1992) with connections to deep learning
(Manhaeve et al., 2021), and so on. Logic programming has been success-
fully applied in the psychology of reasoning (Saldanha, 2018; Stenning & Van
Lambalgen, 2008).
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Appendix A
Proofs for Part II
A.1 Proofs for Section 10

Proofs of Theorem 10.2 and Proposition 10.1

Let in this section i ∈ {s,d}, nmL be a NML with an associated class of
knowledge bases KnmL and let K ∈ KnmL.

Lemma A.1. If (arg) holds, we have: (i) If D ⊆ Def(K ⊕i A) and A ∈
Con[ArgK(D 	Ki A)], Con[ArgK(D 	Ki A)] = Con[ArgK⊕iA(D)]. (ii) If D ⊆
Def(K) and A ∈ Con[ArgK(D)], Con[ArgK(D)] = Con[ArgK⊕iA(D ⊕i A)].

Proof. Item (i). “⊆” follows by (arg-mono). For “⊇” we consider the two cases
(a) A ∈ Def(K) and (b) A < Def(K). In case (a), D 	Ki A = D. By (arg-
trans),Con[ArgK⊕A(D⊕A)] ⊆ Con[ArgK(D	Ki A)]. SinceCon[ArgK⊕A(D)] ⊆
Con[ArgK⊕A(D ⊕ A)], “⊇” follows. Item (ii) is analogous. □

Fact A.1. Let D ⊆ ℘(Def(K)). Then,⋂{ArgK(D) | D ∈ D} = ArgK(
⋂

D).

Theorem⋆ 10.2. Given (arg), the logical dependencies of Fig. 23 hold for both
accumulation methods.

Proof. Items .1, .2, .3, and .4 are trivial.
For (i) supposeK ∼∩PExt A. Ad (i.1). Suppose CTi(DExt) and E ∈ PExt(K).

Thus, there is a D ∈ DExt(K) for which E = Con[ArgK(D)]. By CTi(DExt),
D ⊕i A ∈ DExt(K ⊕i A). Since K ∼∩PExt A, A ∈ E . By Lemma A.1 (ii),
Con[ArgK⊕iA(D ⊕i A)] = E ∈ PExt(K ⊕i A).
Ad (i.2). Suppose CMi(DExt) and E ∈ PExt(K ⊕i A). Thus, there is a D ∈

DExt(K ⊕i A) for which E = Con[ArgK⊕iA(D)]. By CMi(DExt), D 	Ki A ∈
DExt(K). Since K ∼∩PExt A, A ∈ Con[ArgK(D 	i A)]. By Lemma A.1 (i),
Con[ArgK(D 	Ki A)] = E ∈ PExt(K).
For (ii) suppose K ∼∩AExt A. So, there is an a ∈ ⋂{ArgK(D) |

D ∈ DExt(K)} with Con(a)=A. By Fact A.1, where D⋆=
⋂DExt(K),

a ∈ ArgK(D⋆). Clearly, K ∼∩PExt A. Ad (ii.1). Suppose CTi(DExt) and
K ⊕i A ∼∩AExt B. So, there is a b ∈ ⋂{ArgK⊕iA(D) | D ∈ DExt(K ⊕i A)}
with Con(b) = B. We have to show that there is a c ∈ ⋂{ArgK(D) | D ∈
DExt(K)}(= ArgK(D⋆)) with Con(c) = B.
By Fact A.1, whereD† =

⋂DExt(K ⊕i A), b ∈ArgK⊕iA(D†). By CTi(DExt),
D† ⊆ D⋆ ⊕i A. So, b ∈ ArgK⊕iA(D⋆ ⊕i A). By (arg-trans), there is a c ∈
ArgK(D⋆) with Con(c) = Con(b).
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Appendix A 105

Ad (ii.2). Suppose CMi(DExt) andK ∼∩AExt B. So, there is a b ∈ ArgK(D⋆)
with Con(b) = B. Let D‡ =

⋂DExt(K ⊕i A). By CMi(DExt), D‡ 	Ki A ⊇ D⋆.
By (arg-mono), b ∈ ArgK⊕iA(D‡) and hence K ⊕i A ∼∩AExt B.
Ad (iii.1). Suppose CTi(PExt), K ∼∩PExt A, and K ⊕i A ∼∩PExt B. Consider

E ∈ PExt(K). By CTi(PExt), E ∈ PExt(K ⊕i A). By the supposition, B ∈ E .
So, for all E ∈ PExt(K), B ∈ E and hence K ∼∩PExt B. Ad (iii.2). Suppose
CMi(PExt), K ∼∩PExt A, and K ∼∩PExt B. Consider E ∈ PExt(K ⊕i A). By
CMi(PExt), E ∈ PExt(K). By the supposition, B ∈ E . So, for all E ∈ PExt(K⊕i
A), B ∈ E and hence K ⊕i A ∼∩PExt B. □

Proposition⋆ 10.1. Let i ∈ {s,d}. Given (arg), CT i(DExt) holds for both
accumulation methods.

Proof. Let ⊕ = ⊕i and τ ∈ {tem,gr}. SupposeK ∼τ∩PExt A. LetD ∈ DExtτ(K)
and so A ∈ Con[ArgK(D)]. We have to show that D ⊕ A ∈ DExtτ(D ⊕ A). By
Lemma A.1, Con[ArgK(D′)] = Con[ArgK⊕A(D′ ⊕ A)] for any D ⊆ D′ ⊆
Def(K). Thus, (⋆), ConsK(D) ⊕ A = ConsK⊕A(D ⊕ A) and TrigK(D) ⊕ A =
TrigK⊕A(D ⊕ A).
By Theorem 10.1, D = ConsK(D) (τ = tem) resp. D = Trig>K(D) (τ = gr).

With (⋆), D ⊕ A = ConsK(D ⊕ A) resp. D ⊕ A = Trig>K(D ⊕ A), and so
D ⊕ A ∈ DExtτ(D ⊕ A). □

Proof of Propositions 10.2 and 10.3

Throughout the section we consider a given nmL with (a nonprioritized) K ∈
KnmL and let i ∈ {s,d} and τ ∈ {tem,gr}. We suppose that (arg-re) holds,
A ∈ CnRs ({B}), and B ∈ CnRs ({A}).

Lemma A.2. Let D ⊆ Def(K). Then

(i) Con[ArgK⊕sA(D)] = Con[ArgK⊕sB(D)],
(ii) ConsK⊕sA(D) = ConsK⊕sB(D), and
(iii) Trig>K⊕sA(D) = Trig>K⊕sB(D).

Proof. For (i) let a ∈ ArgK⊕sA(D). By (arg-re), there is a b ∈ ArgK⊕sB(D) with
Con(a) = Con(b). Analogously for the other direction and thus (i) holds. Ad
(ii). By (i), for every C ∈ Def(K),

Con[ArgK⊕sA(D ⊕d C)] = Con[ArgK⊕sB(D ⊕d C)].

Thus, ConsK⊕sA(D) = ConsK⊕sB(D). (iii) follows by (i–ii). □

Lemma A.3. Let D ⊆ Def(K ⊕d A) and A ∈ D. Then
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(i) Con[ArgK⊕dA(D)] = Con[ArgK⊕dB((D 	Kd A) ⊕d B)],
(ii) (ConsK⊕dA(D) 	Kd A) ⊕d B = ConsK⊕dB((D 	Kd A) ⊕d B), if D ⊆

ConsK⊕dA(D), and
(iii) (Trig>K⊕dA(D) 	

K
d A) ⊕d B = Trig>K⊕dB((D 	

K
d A) ⊕d B).

Proof. Ad (i). “⊆”. Consider a ∈ ArgK⊕dA(D). By (arg-re), there is a b ∈
ArgK⊕dB((D 	Kd A) ⊕d B) with Con(a) = Con(b).
“⊇”. Consider b ∈ ArgK⊕dB((D	Kd A) ⊕dB). If B < Def(b), b ∈ ArgK⊕dA(D).

Else, by (arg-re), there is an a ∈ ArgK⊕dA(D)withCon(a) = Con(b). Altogether
this proves (i).
Ad (ii). Suppose D ⊆ ConsK⊕dA(D). Since by (i), for all C ∈ Def(K),

Con[ArgK⊕dA(D ⊕d C)] = Con[ArgK⊕dB(((D 	Kd A) ⊕d B) ⊕d C)], we have: C ∈
ConsK⊕dA(D) iffC ∈ ConsK⊕dB((D	Kd A)⊕dB). SinceCon[ArgK⊕dA(D)] is con-
sistent and by (i), so isCon[ArgK⊕dB((D	Kd A)⊕dB)]. So, B ∈ ConsK⊕dB((D	Kd
A) ⊕d B). Altogether this proves (ii).
(iii) follows with (i) and (ii). □

Lemma A.4. Let D ⊆ Def(K) and A,B < D. Then

(i) Con[ArgK⊕dA(D)] = Con[ArgK⊕dB(D)],
(ii) ConsK⊕dA(D) = ConsK⊕dB(D) if A < ConsK⊕dA(D), and
(iii) Trig>K⊕dA(D) = Trig>K⊕dB(D).

Proof. Suppose A , B, otherwise the lemma is trivial. Ad (i). This holds
trivially since A,B < D.
Ad (ii). We first note that (⋆) Con[ArgK⊕dA(D ⊕d A)] is inconsistent since

A < ConsK⊕dA(D).
Consider C ∈ Def(K) \ {A,B}. Since by (i) Con[ArgK⊕dA(D ⊕d C)] =

Con[ArgK⊕dB(D ⊕d C)], C ∈ ConsK⊕dA(D) iff C ∈ ConsK⊕dB(D).
So, ConsK⊕dA(D) \ {A,B} = ConsK⊕dB(D) \ {A,B}. We now show A,B <

ConsK⊕dA(D) ∪ ConsK⊕dB(D) which completes the proof of (ii).
Suppose A ∈ Def(K). Trivially,

Con[ArgK⊕dA(D ⊕d A)] = Con[ArgK⊕dB(D ⊕d A)].

By (⋆),A < ConsK⊕dB(D). Moreover, by LemmaA.3,Con[ArgK⊕dB(D⊕dB)] =
Con[ArgK⊕dA(D ⊕d A)] and so by (⋆), B < ConsK⊕dB(D).
Suppose A < Def(K). Then, A < ConsK⊕dB(D) since ConsK⊕dB(D) ⊆

Def(K ⊕d B) and A < Def(K ⊕d B). By Lemma A.3, Con[ArgK⊕dB(D ⊕d B)] =
Con[ArgK⊕dA(D ⊕d A)] and by (⋆), B < ConsK⊕dB(D).
If B < Def(K), B < ConsK⊕dA(D) since ConsK⊕dA(D) ⊆ Def(K ⊕d A) and

B < Def(K ⊕d A).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108981699
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.154, on 31 Oct 2025 at 13:11:56, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108981699
https://www.cambridge.org/core


Appendix A 107

If B ∈ Def(K), and where † follows by Lemma A.3,

Con[ArgK⊕dA(D ⊕d B)] = Con[ArgK⊕dA⊕dB(D ⊕d B)] =
†

Con[ArgK⊕dA⊕dA(D ⊕d A)] = Con[ArgK⊕dA(D ⊕d A)].

By (⋆), B < ConsK⊕dA(D).
(iii) follows immediately with (i) and (ii). □

Lemma A.5. Let ⊕ = ⊕i, D ∈ DExt(K ⊕ A), and

πi(D) =


D i = s

D \ {B} i = d,A < D
(D 	Kd A) ⊕d B i = d,A ∈ D

Then,

(i) πi(D) ∈ DExt(K ⊕ B) and
(ii) Con[ArgK⊕A](D) = Con[ArgK⊕B(πi(D))].

Proof. By Theorem 10.1,

D = ConsK⊕A(D) (τ = tem) resp. D = Trig>K⊕A(D) (τ = gr). (†)

Consider i = s. So D ⊆ Def(K). By (†) and Lemma A.2, (ii) and D =
ConsK⊕B(D) resp. D = Trig>K⊕B(D) and so (i).
Consider i = d. If A ∈ D, by (†) and Lemma A.3, (ii) Con[ArgK⊕A(D)] =

Con[ArgK⊕B((D 	Kd A) ⊕ B)] and (D 	Kd A) ⊕ B = ConsK⊕B((D 	Kd A) ⊕ B)
(τ = tem) resp. (D 	Kd A) ⊕ B = Trig>K⊕B((D 	Kd A) ⊕ B) (τ = gr) and so (i)
πd(D) ∈ DExtτ(K ⊕ B).
If A < D, assume first for a contradiction that B ∈ D. Then D ⊆ Def(K) and

K ⊕ B = K. By (arg-re), Con[ArgK⊕A(D ⊕ A)] ⊆ Con[ArgK⊕A(D)] (since for
every argument a in ArgK⊕A(D ⊕ A) there is a b ∈ ArgK⊕A(D ⊕ B(= D)) with
Con(a) = Con(b)). Since Con[ArgK⊕A(D)] is consistent, so is ArgK⊕A(D ⊕ A).
But then A ∈ ConsK⊕A(D) resp. A ∈ Trig>K⊕A(D) in contradiction to (†). So,
B < D. By (†) and Lemma A.4, (ii) Con[ArgK⊕A(D)] = Con[ArgK⊕B(D)] and
D = ConsK⊕B(D) (τ = tem) resp. D = Trig>K⊕B(D) (τ = gr) and so (i)
D ∈ DExtτ(K ⊕ B). □

Proposition⋆ 10.2. Let i ∈ {s,d}, τ ∈ {tem,gr} and ∼ ∈ {∼τ∩AExt,∼
τ
∩PExt}. If

(arg-re), LLEi(∼) holds.

Proof. Suppose K ⊕i B ∼τ∩AExt C. By Fact A.1, there is an argument a ∈
ArgK⊕iB(

⋂DExtτ(K ⊕i B)) with Con(a)=C. Since, by Lemma A.5, {πi(D) |
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108 Appendix A

D ∈DExtτ(K ⊕i A)} ⊆DExtτ(K ⊕i B), a ∈ArgK⊕iB(
⋂{πi(D) |D ∈DExtτ(K ⊕i

A)}). Let b ∈ ArgK⊕iA with Con(b) = Con(a) as in (arg-re). We show that (†)
b ∈ ArgK⊕iA(

⋂DExtτ(K ⊕i A)) which implies K ⊕i A ∼τ∩AExt C.
For (†), first consider the case i = s. Then Def(a) = Def(b) and πs(D) = D.

Therefore
⋂{πs(D) | D ∈ DExtτ(K ⊕s A)} =

⋂DExtτ(K ⊕s A) and therefore
(†).
Consider now the case i = d and let D ∈ DExtτ(K ⊕d A).
Suppose first that B < Def(a). Then by (arg-re) Def(a) = Def(b). Since

Def(a) ⊆ πd(D), Def(b) ⊆ πd(D). Either D \ {B} = πd(D) or (D 	Kd A) ⊕d B =
πd(D). In the first case Def(b) ⊆ D \ {B} ⊆ D and in the second case,
since B < Def(b), Def(b) ⊆ D 	Kd B ⊆ D. Altogether Def(b) ⊆ D for any
D ∈ DExtτ(K ⊕d A) and so (†).
Suppose now that B ∈ Def(a). Then by (arg-re), Def(b) = (Def(a) \ {B}) ∪
{A}. Either D \ {B} = πd(D) or (D 	Kd A) ⊕d B = πd(D). The former case
is impossible since Def(a) ⊆ πd(D) and B ∈ Def(a). Since D is an arbitrary
member ofDExtτ(K⊕dA), πd(D′) = (D′	Kd A)⊕dB for allD′ ∈ DExtτ(K⊕dA).
This means that A ∈D′ for every D′ ∈DExtτ(K ⊕d A). Since Def(b) \ {A} ⊆
Def(a) ⊆ (D 	Kd A) ⊕d B and B < Def(b), Def(b) ⊆ D. Altogether, this proves
(†).
Suppose K ⊕i B ∼τ∩PExt C. Let D ∈DExtτ(K ⊕i A). By Lemma A.5, πi(D)
∈DExt(K ⊕i B) and Con[ArgK⊕iA(D)]=Con[ArgK⊕iB(πi(D))]. Since C ∈Con
[ArgK⊕iB(πi(D))], also C ∈Con[ArgK⊕iA(D)]. So, K ⊕i A ∼τ∩PExt C. □

Proposition⋆ 10.3. Let τ ∈ {tem,gr} and∼ ∈ {∼τ∩AExt,∼
τ
∩PExt,∼

τ
∪Ext}. If (arg-

strict), Ref (∼) and RW (∼) hold.

Proof. For (Ref(∼)) we have to show thatK⊕sA ∼ A. By (arg-strict) a = 〈A〉 ∈
ArgK⊕sA(∅) and so a ∈

⋂
D∈DExt(K⊕sA) ArgK⊕iA(D). This implies, K ⊕s A ∼ A.

The proof of (RW(∼)) is similar and left to the reader as an easy exercise. □

A.2 Proofs for Section 11
Proof of Proposition 11.1

Proposition⋆ 11.1. Let i ∈ {s,d}. Given (arg), Ci(DExt) holds for KΩ.

Proof. Suppose (arg) and K ∼tem
∩PExt A. In view of Proposition 10.1 we only

have to show CMi(DExt). Let D ∈ DExt(K ⊕i A). By Theorem 10.1, D =
ConsK⊕iA(D). We have to show that D 	Ki A = ConsK(D 	Ki A). By (arg-
mono), Con[ArgK(D 	Ki A)] ⊆ Con[ArgK⊕iA(D)] and by the consistency of D
in K ⊕i A, D 	Ki A is consistent in K. Thus, there is a D′ ∈ DExt(K) such that
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D 	Ki A ⊆ D′. By the supposition, A ∈ Con[ArgK(D′)] and by Lemma A.1,
Con[ArgK(D′)] = Con[ArgK⊕iA(D′⊕iA)]. Also, we have, Con[ArgK⊕iA(D)] ⊆
Con[ArgK⊕iA(D⊕iA)]. Since Con[ArgK⊕iA(D⊕iA)] ⊆ Con[ArgK⊕iA(D′⊕iA)]
and the latter set is consistent,D⊕iA is consistent inK⊕iA. So,D⊕iA = D′⊕iA
and therefore D 	Ki A = D′. Thus, D 	Ki A ∈ DExt(K). □

Proof of Theorem 11.2

Theorem⋆ 11.2. Let nmL be based on temperate accumulation, let K ∈ KnmL
be of the form 〈As,Ad,Rs,Rd〉, and let K⋆ be the translation defined in
Definition 11.1. Then, DExt(K) = DExt(K⋆) and PExt(K) = PExt(K⋆).

In the proof of Theorem 11.2 we make use of the following lemma.

Lemma A.6. 1. For every a ∈ ArgK there is an a⋆ ∈ ArgK⋆ with Con(a) =
Con(a⋆) and DefK(a) = DefK⋆(a⋆).

2. For every a⋆ ∈ ArgK⋆ for whichR⋆
s (a) ⊆ Rmp

s ∪Rs there is an a ∈ ArgK
for which Con(a) = Con(a⋆) and DefK(a) = DefK⋆(a⋆).

3. Let D ⊆ Def(K). Then (i) Con[ArgK(D)] = Con[ArgK⋆(D)] ∩ sentL and
(ii) ConsK(D) = ConsK⋆(D).

Proof. We show item 1. Item 2 is shown analogously. It is shown inductively
over the length of a. In the base case, a = 〈A〉 ∈ ArgK for some A ∈ Ad ∪As.
Then let a⋆ = a.
For the inductive step, suppose that a = a1, . . . ,an ⇒ A ∈ ArgK, where

r = (A1, . . . ,An ⇒ A) ∈ Rd and Con(ai) = Ai for each i = 1, . . . ,n. By the
inductive hypothesis, for each i ∈ {1, . . . ,n}, there is an a⋆i ∈ ArgK⋆ with
Con(ai) = Con(a⋆i ) and DefK(ai) = DefK⋆(a⋆i ). Let a⋆ = a⋆1 , . . . ,a

⋆
n , 〈r〉 →

A. Clearly, Con(a) = Con(a⋆) = A and DefK(a) =
⋃n

i=1 DefK(ai) ∪ {r} =
DefK⋆(a⋆). The case a = a1, . . . ,an → A ∈ ArgK is analogous.
Item 3. (i) follows immediately with Items 1 and 2. (Note that for all a ∈

ArgK⋆(D) for whichRcp
s (a) , ∅, Con(a) < sentL.) We consider (ii).

“⊆”. We recall that Def(K) = Def(K⋆). Suppose d ∈ Def(K) \ ConsK⋆(D)
and assume for a contradiction that d ∈ ConsK(D). Let D′ = D ∪ {d}. Since
Con[ArgK(D′)] is consistent and by (i), there is an r ∈ Rd for which r,¬r ∈
Con[ArgK⋆(D′)]. Thus, there is a c⋆ = a⋆1 , . . . ,a

⋆
n ,b⋆ → ¬r ∈ ArgK⋆(D′),

where Con(a⋆i ) = Ai for each i = 1, . . . ,n, Con(b⋆) = ¬B. Note that r ∈ D′

and Rcp
s (a⋆i ) = ∅ = Rcp

s (b⋆). But then, by item 2 and since a⋆1 , . . . ,a
⋆
n ,b⋆ ∈

ArgK⋆(D′), there is a b ∈ ArgK(D′) with Con(b) = ¬B and there are ai ∈
ArgK(D′) with Con(ai) = Ai. Thus, also d = a1, . . . ,an ⇒ B ∈ ArgK(D′). But
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since B,¬B ∈ Con[ArgK(D′)] this is in contradiction to its consistency. So,
d ∈ DefK \ ConsK(D).
“⊇”. Suppose d ∈ ConsK⋆(D). Thus, Con[ArgK⋆(D∪{d})] is consistent and

so, by item 2, is Con[ArgK(D ∪ {d})]. Thus, d ∈ ConsK(D). □

Proof of Theorem 11.2. Let D ∈ DExt(K). By Theorem 10.1, D = ConsK(D).
By Lemma A.6, ConsK⋆(D) = ConsK(D). By Theorem 10.1, D ∈ DExt(K⋆).
The other direction is analogous. □

A.3 Proofs for Section 12
Proof of Proposition 12.1

Proposition⋆ 12.1. Let K = 〈As,Rd,Rs〉 be a Reiter default theory, D ⊆ Rd,
and E = Con[ArgK(D)]. D is a Reiter D-extension of K iff D = Trig>K(E,D).

Proof. (⇒) LetD = 〈r1, . . . , rn〉 be the product of GreedyAccGen(E,D),D0 =

∅, andDi = {r1, . . . , ri} for i = 1, . . . ,n.We have to show thatD = Trig>K(E,D).
For (⊇) assume there is a r ∈ Trig>K(E,D) \ D. But then, r is added to D at
line 5 and so r ∈ D, which is a contradiction. For (⊆) we first observe that
D ⊆ TrigK(D) by the construction of GreedyAccGen(E,D). Assume for a
contradiction that D ⊈ ConsK(E,D). But then for some i ∈ {1, . . . ,n}, some
J ∈ Just(ri) is inconsistent with E in K and therefore ri < ConsK(E) ⊆
Trig>K(E,Di−1), which is a contradiction. So, D ⊆ ConsK(E,D), and thus,
D ⊆ Trig>K(E,D).
(⇐) LetD = Trig>K(E,D) consist of nmany rules inRd. It is easy to see that

D can be enumerated by 〈r1, . . . , rn〉whereD0 = ∅, r1 ∈ TrigK(D0),D1 = {r1},
and ri+1 ∈ TrigK(Di) \Di and Di+1 = {r1, . . . , ri+1} for every 0 ≤ i < n.
Since for each i ∈ {1, . . . ,n}, ri ∈ Trig>K(E,Di−1) \ Di−1 (note that ri ∈

ConsK(E,D) = ConsK(E,Di−1)), there is a run of GREEDYACCGEN(K,D) in
which in each round i ∈ {1, . . . ,n}, ri is added to D⋆. Note that after round
n the algorithm terminates and returns D since Trig>K(E,D) = D and so
Trig>K(E,D) \D = ∅. □

Proof of Theorem 12.1

Theorem⋆ 12.1. Let K = 〈As,Rd,Rs〉 be a general default theory and K′ as
in Definition 12.3. Then

1. for every Reiter P-extension E of K, there is a stable A-extension X of K′

for which Con[X ] ∩ sentL = E ,
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2. for every stable A-extension X of K′, Con[X ] ∩ sentL is a Reiter P-
extension of K.

In order to prove Theorem 12.1, let K = 〈As,Rd,Rs〉 be a Reiter default
theory and K′ its translation as in Definition 12.3. We denote the members
of Rd by r and their corresponding rules in K′ by r′. In order to prove the
correspondence between Reiter P-extensions ofK and stable extensions ofK′,
we show two correspondences on the level of arguments. We let DExt(K) be
the set of Reiter D-extensions of K.

Lemma A.7. Let D ∈ DExt(K), E = Con[ArgK(D)], E^ = {^A | ¬A < E},
and X = ArgK′(E^). We have:

1. for every a ∈ ArgK(D) there is an a′ ∈ X with Con(a) = Con(a′), and
2. for every a′ ∈ X with Con(a′) ∈ sentL there is an a ∈ ArgK(D) with

Con(a) = Con(a′).

Proof. Item 2. This is shown by an induction on the length of a′ ∈ X . In the
base case a′ = 〈A〉 for A ∈ As and therefore, where a = a′, a ∈ ArgK(D). In the
inductive step a′ has one of two forms, where a′1, . . . ,a

′
n ∈ X with Con(a′1) =

A1, . . . ,Con(a′n) = An:

• either a′ = a′1, . . . ,a
′
n, 〈^B1〉, . . . , 〈^Bm〉 → C where

r = A1, . . . ,An B1, . . . ,Bm
C

∈ Rd and ^B1, . . . ,^Bm ∈ E^,
• or a′ = a′1, . . . ,a

′
n → C where A1, . . . ,An → C ∈ Rs.

By the inductive hypothesis, there are a1, . . . ,an ∈ ArgK(D) with Con(a1) =
A1, . . . ,Con(an) = An. In the first case, ¬B1, . . . ,¬Bm < E and A1, . . . ,An ∈ E .
Therefore, r ∈ Trig>K(E,D) and so by Proposition 12.1, r ∈ D. Thus, a =
a1, . . . ,an ⇒ C ∈ ArgK(D). In the second case, a = a1, . . . ,an → C ∈
ArgK(D). Item 1 is shown analogously. □

Lemma A.8. Let X ∈ stable(K′), E = Con[X ] ∩ sentL, E ′ = {A | ^A ∈
Con[X ]}, D = {r ∈ Rd | Just(r) ⊆ E ′ and Body(r) ⊆ E}. We have:

1. for every a ∈ ArgK(D), there is an a′ ∈ X with Con(a) = Con(a′), and
2. for every a′ ∈ X with Con(a′) ∈ E , there is an a ∈ ArgK(D) with Con(a) =

Con(a′).

Proof. Item 1. This is shown by an induction on the length of a ∈ ArgK(D). In
the base case a= 〈A〉 where A ∈ As. Since a has no attackers, a ∈ X . For the
inductive step we have two cases: either a is of the form a1, . . . ,an → C or of
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112 Appendix A

the form a1, . . . ,an ⇒ C, whereCon(ai)=Ai (for i= 1, . . . ,n) andA1, . . . ,An →
C ∈ Rs resp.

A1, . . . ,An B1, . . . ,Bm
C

∈ D for^B1, . . . ,^Bm ∈ Con[X ]. By the
inductive hypothesis, a′1, . . . ,a

′
n ∈ X . In the former case b1 = a′1, . . . ,a

′
n →

C ∈ X and in the latter case b2 = a′1, . . . ,a
′
n, 〈^B1〉, . . . , 〈^Bm〉 → C ∈ X .

The reason is that any attacker of b1 resp. b2 is either an attacker of some a′i ∈
X or of some 〈^Bi〉 ∈ X . By the conflict-freeness of X , X does not attack
b1 resp. b2. By the stability of X , b1 ∈ X resp. b2 ∈ X . Item 2 is shown
analogously. □

We are now ready to prove Theorem 12.1.

Proof of Theorem 12.1. Item 1 Let D ∈ DExt(K). Let E,E^, and X as in
Lemma A.7. Then, (†) Con[X ] ∩ sentL = E . We have to show that X ∈
stable(K′). Assume for a contradiction that there are a′,b′ ∈ X such that
a′ attacks b′. Thus, there is a B for which 〈^B〉 ∈ Sub(b′), ^B ∈ E^, and
Con(a′) = ¬B. By (†), ¬B ∈ E which is a contradiction to ^B ∈ E^. Suppose
now that a′ ∈ ArgK′ \ X . So, there is an 〈^B〉 ∈ Sub(a′) for which ^B < E^.
Thus, ¬B ∈ E and by (†) there is an b′ ∈ X with Con(b′) = ¬B that attacks a′.
Thus, X ∈ stable(K′).
Item 2 Suppose X ∈ stable(K′). Let E,E ′, and D be as in Lemma A.8.

By Proposition 12.1 we have to show that (i) D = Trig>K(E,D) and (ii)
E = Con[ArgK(D)]. Item (ii) follows with Lemma A.8. Since for every r ∈ D,
Body(r) ⊆ E = Con[ArgK(D)] ∩ sentL, also D ⊆ TrigK(D). Let now
B ∈ Just(r) for some r ∈ D. So, 〈^B〉 ∈ X and by the conflict-freeness
of X , ¬B < E . So, D ⊆ Trig>K(E,D). Consider now a r ∈ Trig>K(E,D). So,
Body(r) ⊆ E and for each B ∈ Just(r), ¬B < E . Thus, by the stability of X , for
each B ∈ Just(r), 〈^B〉 ∈ X and so B ∈ E ′. Thus, r ∈ D. □
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Appendix B
Proofs for Part III

B.1 Proof of Proposition 16.2
The following fact is an immediate consequence of the definitions of ΠM and
M∼
Π
.

Fact B.1. LetM ⊆ Lit(Π) andΠ be a logic program. Then,Con[ArgKΠ (M∼Π)]∩
Lit(Π) = Con[ArgK

ΠM
].

WhereM ⊆ Lit¬(Π), let τ(M) = {A ∈ Atoms | A ∈ M} ∪ {A′ | ¬A ∈ M}.

Lemma B.1. Let Π be an extended logic program and M ⊆ Lit¬(Π) be
consistent. Then, M ∈ stable>(Π) iff M = Con[ArgKΠ (M∼Π)] ∩ Lit¬(Π).

Proof. Let Π′ = τ(Π)τ(M) be the reduction model (see Definition 16.3) of the
translated program τ(Π) modulo the translated model τ(M) and let K′ = KΠ′ .
We have: M ∈ stable>(Π), iff τ(M) is the minimal model of Π′, iff (by Fact
16.1) τ(M) = Con[ArgK′], iff (by Fact B.1)

τ(M) = Con[ArgKτ(Π) (τ(M)
∼
τ(Π))] ∩ Lit(τ(Π)).

By the 1:1 nature of τ, this is equivalent to M = Con[ArgKΠ (M∼Π)] ∩ Lit¬(Π).
□

Lemma B.2. Let Π be an extended logic program, X ⊆ ArgKΠ , and M =
Con[X ] ∩ Lit¬(Π). Then, X ∈ stable(KΠ) iff X = ArgKΠ (M∼Π).

Proof. “⇒”. Suppose X ∈ stable(KΠ). “⊇”. Suppose a < X . By the stability
of X there is a b ∈ X such that b { a. So, there is a 〈∼ℓ〉 ∈ Sub(a) such that
Con(b) = ℓ. Since ℓ ∈ M, ∼ℓ < M∼

Π
and so a < ArgKΠ (M∼Π).

“⊆”. Suppose a < ArgKΠ (M∼Π). Thus, there is a 〈∼ℓ〉 ∈ Sub(a) such that
∼ℓ < M∼

Π
. So, ℓ ∈ M. Thus, there is a b ∈ X with Con(b) = ℓ for which b{ a.

By the conflict-freeness of X , a < X .
“⇐”. Let X = ArgKΠ (M∼Π). Suppose a ∈ X , b ∈ ArgKΠ , and a { b. So,

there is a 〈∼ℓ〉 ∈ Sub(b) such that Con(a) = ℓ. So, ℓ ∈ M and so ∼ℓ < M∼
Π
.

Thus, b < X and X is conflict-free. Let now b ∈ ArgKΠ \ X . So, there is a
〈∼ℓ〉 ∈ Sub(b) for which ∼ℓ < M∼

Π
. Thus, ℓ ∈ M and so there is an a ∈ X with

Con(a) = ℓ. Since a{ b we have shown that X ∈ stable(KΠ). □

Theorem⋆ 16.2. Let Π be an extended logic program.
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114 Appendix B

1. If M ∈ stable>(Π), then ArgKΠ (M∼Π) ∈ stable(KΠ).
2. If E ∈ stable(KΠ) and M = Con[E] ∩ Lit¬, then M ∈ stable>(Π).

Proof. Ad 1 Suppose M ∈ stable>(Π). By Lemma B.1,

M = Con[ArgKΠ (M
∼
Π)] ∩ Lit¬(Π).

By Lemma B.2, ArgKΠ (M∼Π) ∈ stable(KΠ).
Ad 2 Suppose E ∈ stable(KΠ) and letM=Con[E] ∩ Lit¬(Π). By Lemma B.2,

E = ArgKΠ (M∼Π). By Lemma B.1,M ∈ stable>(Π). □
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