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Taking advantage of the invariance of the generalised canonical momentum associated
with a translational symmetry along a given direction, we describe the dynamics of a
plasma by solving an ensemble of N relativistic reduced Vlasov equations coupled in a
self-consistent way with the Maxwell equations. This approach, hereafter referred to as
the multi-stream model, allows for a drastic reduction in the computational time com-
pared with the full kinetic Vlasov–Maxwell approach. It is also well adapted to a parallel
environment. In addition, we extend the model to a two-dimensional geometry in the
configuration space, which makes it possible to treat the interaction between several insta-
bilities of beam–plasma and Weibel type, with a relatively small number of streams. The
model provides an exact description of current densities perpendicular to a cyclic coordi-
nate, which are responsible, at both fundamental and microscopic levels, for key features
of energy transfer, plasma heating and magnetic reconnection processes in collisionless
plasmas.
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1. Introduction

Halfway between the N body and fluid descriptions, the Vlasov equation describes
a wide variety of media: they go from nuclear matter to the expanding universe, to
semiconductors and of course plasmas; it applies also to problems of star dynamics
and it also has a quantum counterpart, the so-called Wigner equation. Including the
degrees of freedom related to spin, a Vlasov-like equation can be recovered (Brodin
et al. 2008; Lundin & Brodin 2010), which describes the evolution of a probability
distribution in extended phase space (x, p, s), where x denotes the position, p the
momentum and s the spin variable on the unit sphere, leading to a dimensionality of
the global phase space of eight, which make the numerical treatment of this kinetic
equation difficult. Furthermore, next-generation high-power laser systems, that can
be focused to ultrahigh intensities exceeding 1023 W cm−2, will enable new physics
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regimes. In the presence of high-amplitude electromagnetic fields, the motion of
charged particles and their spin are affected by radiation reaction. These problems
require the modelling of the spin of particles, which makes the phase space nine-
dimensional in a relativistic regime, i.e. when quantum electrodynamics corrections
are taken into account in the Vlasov equation (see Li et al. 2021).

A similar problem is encountered in the covariant formulation of the relativistic
Vlasov equation (Marsden et al. 1986; Brizard & Chan 1999; Liboff 2003), expressed
in terms of phase-space coordinates xμ, which represent space–time coordinates,
and pμ the momentum-energy coordinates, with phase space thus exhibiting a high
dimensionality of the order of eight.

The Vlasov equation plays a central role in these studies. Here we focus on its
application to plasmas, and on a reduction technique, which under some hypothe-
ses, allows for a ‘simpler’ description that is at the same time more convenient from
a computational point of view, and more insightful for the interpretation of some
phenomena. Nevertheless, due to the relevance of Vlasov-type models to a vari-
ety of physical systems, the reduction technique we present can be useful in other
domains of physics, too. In plasmas, the Vlasov equation describes the evolution
of the distribution function f (x, p, t) of charged particles in a plasma, under the
self-consistent interaction of the electromagnetic field, as determined by the Maxwell
equations, where the current and charge distributions are determined by the particle
populations. For these reasons, the Vlasov equation is intrinsically nonlinear.

The kinetic reduced approach we discuss here is the ‘multi-stream model’. This
model, first introduced by Ghizzo et al. (1990) for the study of Raman scattering
and then by Inglebert et al. (2011, 2012a,b), Ghizzo & Bertrand (2013) and Ghizzo
(2013a) for Weibel-type instabilities, is based on a Hamiltonian reduction technique,
which uses the canonical invariant associated with the translation invariance along
a space coordinate, so to reduce the dimension in momentum space. The idea of
using the invariance of the canonical momentum for the numerical integration of
the Vlasov equation was probably first introduced by Dickman, Morse & Nielson
(1969), who used it to study instabilities in magnetic confinement devices. Morse
& Nielson (1971) used it for the phase-space diagnostics of particle-in-cell (PIC)
simulations of Weibel’s instability. Clustering particles according to the values of
exact invariants is similar to that for adiabatic invariants, on which the notions of
‘phase-space zonal structures’ (Falessi & Zonca 2019) or of ‘particle modes’ intro-
duced in gyro-kinetic models (Ghizzo & Del Sarto 2023) are grounded. Both can
be regarded as reduced descriptions associated with the presence of constants of
motions. In a gyro-kinetic framework, a multi-stream reduction technique was also
used by Manfredi et al. (1995).

The use of exact invariants allows us to identify a broad class of exact nonlinear
solutions of the Vlasov–Maxwell system. These can be used to reconstruct the global
dynamics of phase space. In a 1D2V approach, the modelling strategy combines a
full kinetic description of the dynamics in the longitudinal direction, i.e. the direc-
tion of the space coordinate, with a Hamiltonian reduction, which is used to select
a class of exact solutions to describe the dynamics in the perpendicular direction in
terms of a sum of particle ‘bunches’ or ‘streams’. Of course, if the number Nstream

of streams is large, the numerical cost of the description of the system can also be
considerable. Nevertheless, several nonlinear interacting physical phenomena (such
as instabilities) can be well described even with a few streams (Nstream = 1, 2) as we
discuss in this work. Other processes, such as the classical Weibel (1959) instability
or reconnection processes, would probably require a larger, although hopefully not
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prohibitive, number of streams (Nstream ∼ 5). Although this model was initially devel-
oped in plasmas, it is very general and not only can its use be extended to other
areas of physics, but also it can be used to improve current numerical schemes for
solving the Vlasov, Boltzmann or Liouville equations.

The present work generalises the multi-stream approach to a two-dimensional
(2-D) configuration, i.e. to five phase space dimensions (2D3V). The model is
extended to a 2-D coordinate in space, say x and y, where the corresponding
momentum components p‖ = (px , py) are treated in a full kinetic way, while the
perpendicular component p⊥ = pz ez is replaced with an ensemble of ‘streams’. This
model presents three main advantages. From a physical point of view, it is always
possible to describe any perpendicular temperature effect (i.e. along pz) with at least
three streams, whose density and average momentum separation in the pz coor-
dinate concur to define a temperature. Three streams are sufficient to accurately
represent any distribution function up to its second-order moment. By increasing
the number of ‘streams’ and by modifying their distribution in the pz coordinate,
it is then possible to establish an initial correspondence up to an arbitrarily high
fluid moment of the distribution function (see Ghizzo, Sarrat & Del Sarto 2017).
From a numerical point of view, this method also allows for a drastic reduction
in the computational time, theoretically of the order of Npz /Nstream, i.e. the ratio of
the sampling used in the direction pz over the total number of ‘streams’. Finally,
having a simpler mathematical model also allows for better insights into the physical
processes described.

The paper is organised as follows. In § 2, we present the basic equations of the
full kinetic Vlasov–Maxwell (relativistic Vlasov electromagnetic, VLEM) solver. The
reduced Hamiltonian multi-stream model in a one-dimensional (1-D) configuration
space is recalled in § 3.1. The extension to a 2-D system is presented in § 3.2. Basic
equations and the new algorithm implementation of the multi-stream model for a
2-D plasma are presented in §§ 3.2.1 and 3.2.2, respectively. Section 3.2.3 is devoted
to the conservation of the global scheme, while we recall in § 3.2.4 how the cou-
pling with the Maxwell equations is realised. In § 3.3 the possible extension of the
Vlasov equation to quantum physics and the covariant case is presented. We recall in
§ 4.1 the fundamental properties of filamentation in the Vlasov approach. Numerical
tests are presented in § 4: the relativistic parametric instability (self-induced trans-
parency) (in § 4.2), the current filamentation instability (CFI) (in § 4.3) and the
Weibel instability (WI) (in § 4.4). Finally a 2-D example is presented in § 4.5 for the
oblique instability (OI). A more complex example with five streams and magnetic
self-organisation (involving magnetic reconnection) is then investigated in § 4.6. The
last example is provided with the aim of highlighting the properties of the model in
terms of accuracy and efficiency. We present performances of the multi-stream code
in § 5.2, while we recall those of the VLEM code in § 5.1. Finally, conclusions are
presented in § 6.

2. Relativistic Vlasov–Maxwell equations and the full kinetic VLEM code
2.1. Basic equations

The electron distribution function f = f (x, y, p, t) obeys the relativistic Vlasov
equation

∂ f

∂t
+ p

mγ
· ∂ f

∂x
+ e

(
E + p × B

mγ

)
· ∂ f

∂ p
= 0, (2.1)
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where the Lorentz factor is given by

γ =
√

1 + p2

m2c2
, (2.2)

and p = mγ v is the electron kinematic momentum. We choose the Coulomb gauge
(divA = 0, where A is the vector potential) and ions are considered just as a fixed
neutralising background. The Vlasov equation (2.1) is self-consistently coupled with
the Maxwell equations

∂ E
∂t

− c2rotB + J
ε0

= 0 and
∂ B
∂t

+ rotE = 0, (2.3)

together with the Poisson law divE = ρ/ε0 and the condition divB = 0, where the
electron current density J and the charge density ρ are defined by

J = e
∫

p
mγ

f d3 p and ρ = e
∫

f d3 p − en0. (2.4)

Here n0, e < 0 and m are the fixed background ion density, the elementary charge
and electron rest mass, respectively.

2.2. The full kinetic VLEM approach
We first recall the global numerical scheme of the VLEM code implemented on a

parallel computer in 1-D or 2-D Cartesian geometry and in 2-D or 3-D momentum
space.

From a numerical point of view, the numerical integration of the Vlasov equation
(2.1) is based on the use of a semi-Lagrangian technique, detailed in Sonnendrucker
et al. (1999), Begue, Ghizzo & Bertrand (1999), Ghizzo, Huot & Bertrand (2003)
and Sarrat et al. (2017), allowing the integration of (2.1) along its characteristics.
The semi-Lagrangian Vlasov solver implies two main steps.

(i) The use of a time-splitting scheme, which allows us to separate the numerical
integration in configuration space (i.e. x) and momentum space ( p) by solving
the following sequence of equations:

step (a): ∂ f

∂t
+ p

mγ
.
∂ f

∂x
= 0 for t ∈ [tn, tn+1/2

]
, (2.5)

step (b): ∂ f

∂t
+ e

(
E + p × B

mγ

)
· ∂ f

∂ p
= 0 for t ∈ [tn, tn+1

]
. (2.6)

After, step (a) is solved again for a time t in the interval [tn+1/2, tn+1].
(ii) For each advection equation (2.5) or (2.6), the integration is realised along

the backward characteristics by researching the feet of the characteristics. The
Vlasov equation (2.1) is thus integrated in the original phase space by treat-
ing the convective term (particle free motion) and the acceleration term in p
separately.
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It must be mentioned that the time-splitting scheme, first introduced by Cheng &
Knorr (1976), presents shortcomings that prevent its direct application for three-
dimensional advection in the momentum space p when strong relativistic effects are
taken into account (see Huot et al. 2003 for more details).

The VLEM solver uses a domain decomposition only in the (x, y) configuration
space plane with the local 1-D cubic spline method introduced by Crouseilles, Latu
& Sonnendrucker (2007) with adapted boundary conditions which make possible
a reconstruction of f on the global space domain even on the cell boundaries.
For the treatment in the momentum space, VLEM uses a global 2-D or three-
dimensional cubic B-spline advection in p, depending on the 1-D (VLEM1D2V)
or 2-D (VLEM2D3V) version in the configuration space. Thus, we only decompose
the spatial domain into patches (or cells), each patch being devoted to one (message
passing interface, MPI). Since the free-advection term (i.e. p/(mγ )) does not depend
explicitly on the x or y variables, a splitting technique is also possible in x and y
and only the 1-D local spline interpolation technique is necessary in that case. One
cell computes its own local cubic spline coefficients by solving linear systems, and
Hermite boundary conditions are imposed on all the cells to reconstruct a smooth
numerical solution. The domain decomposition in space is also used to solve the
Maxwell equations in a self- consistent way with the Vlasov equation. Thus, the full
kinetic and relativistic VLEM solver uses a fully parallelised hybrid MPI/OpenMP
approach.

3. The multi-stream model

We here outline the extension of the 1-D multi-stream model to 2-D spatial
geometry. To this end, we first recall the 1-D model.

3.1. The multi-stream model in one-dimensional geometry

3.1.1. Basic equations
Let us consider a plasma model consisting of a collection of electrons embedded in a
1-D box with a fixed homogeneous neutralising ion background. Although the multi-
stream model with one spatial dimension has already been presented by Bertrand
et al. (2005) and Ghizzo & Bertrand (2013), it is worth recalling its main features,
particularly regarding its extension to higher dimensions.

For this purpose, let us consider the Hamiltonian of a single particle in an electro-
magnetic field (E, B) in a 1-D configuration space, specifically in the x direction.
Here the 1-D geometry refers only to space, whereas the velocity, momentum and
vector potential are three-dimensional. The Hamiltonian takes the form

H = mc2

⎡⎣√1 + (P c − e A)2

m2c2
− 1

⎤⎦+ eφ (x, t), (3.1)

where φ is the electric potential. In (3.1), P c = p + e A is the canonical momentum
which depends on the particle momentum p = mγ v.

In the Coulomb gauge divA = 0, we can express the vector potential as A =
A⊥(x, t) = (0, Ay, Az). The perpendicular component of the electron’s canoni-
cal momentum is here conserved, P c⊥ = p⊥ + e A⊥ = const. We can express the
Hamilton equations in the transverse directions as follows:

dP c⊥
dt

= −∇⊥ H = 0, (3.2)
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while in the longitudinal direction, the equation takes the form

dPcx

dt
= −∂ H

∂x
. (3.3)

From now on we use Cj to denote P c⊥ of a group of particles having the same value
of the conserved canonical momentum component:

P c⊥ = p⊥ + e A⊥ = const. = Cj . (3.4)

This conservation law (3.4) allows us to sample any distribution function in the
momentum space associated with the translation invariance with a superposition
of Dirac δ distributions, representing different ‘streams’ of particles, each ‘stream’
fulfilling the Vlasov equation (2.1). Thus, the full one-particle distribution function
f (x, p, t) can be written as a sum of Dirac δ distributions:

f
(
x, px , p⊥, t

)= Ns∑
j=−Ns

α j Fj (x, px , t) δ
[

p⊥ − (Cj − e A⊥
)]

. (3.5)

As we will see later, in the generalisation of the model to two spatial dimen-
sions, the parameter α j acts as a normalisation factor for the distribution function,
which depends on the nature of the equilibrium distribution under considera-
tion. This allows us to assert that the j th distribution Fj is normalised to one,
i.e.

∫
dxdpx Fj(x, px , t) = 1. By introducing the change of variable f j(x, px , t) =

α j Fj(x, px , t), the distribution function f j is now normalised by the coefficient α j

and thus satisfies the normalisation condition
∫

dxdpx f j(x, px , t) = α j . The global
normalisation of the distribution function f imposes the condition

∑
j=1,Nstream

α j = 1
among the different coefficients α j .

We can now consider a plasma where the electrons are divided in Nstream =
2Ns + 1 ‘bunches’ or ‘streams’ of particles. Each stream j (for j = −Ns, −Ns +
1, . . . , 0, 1, . . . , Ns) has the same initial perpendicular canonical momentum Cj and
its dynamics is described by a reduced Hamiltonian given by

Hj (x, px , t) = mc2
[
γ j (x, px , t) − 1

]+ eφ (x, t), (3.6)

with the corresponding associated Lorentz factor

γ j(x, px , t) =
√

1 + p2
x

m2c2
+ (Cj − e A⊥(x, t))2

m2c2
. (3.7)

Thus the multi-stream model can be reformulated as a summation of 2Ns + 1 Vlasov
equations describing the dynamics of each cold electron stream. We obtain for each
stream j

d f j

dt
= ∂ f j

∂t
+ ∂ Hj

∂px

∂ f j

∂x
− ∂ Hj

∂x

∂ f j

∂px
= 0, (3.8)

whose derivation using (3.6) and (3.4) leads to the ‘reduced’ Vlasov equations
given by

∂ f j

∂t
+ px

mγ j

∂ f j

∂x
+
[

eEx − 1
2mγ j

∂

∂x
((Cj − e A⊥(x, t))2)

]
∂ f j

∂px
= 0. (3.9)
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The set of these 2Ns + 1 Vlasov equations is then self-consistently coupled with the
Maxwell equations. Let us discuss how this task can be accomplished.

In a 1-D spatial configuration, it is possible to separate the electric field into two
parts, i.e. E = Ex ex + E⊥, where the longitudinal contribution Ex = −(∂φ/∂x) is a
pure electrostatic field which obeys the Maxwell–Gauss equation and the transverse
contribution is given by E⊥ = −(∂ A⊥/∂t). In the absence of any external magnetic
field, B is purely perpendicular and is now given by B⊥ = rotA⊥. The Maxwell
equations rotE = −(∂ B/∂t) and divB = 0 are satisfied in a natural way, since we
have rot(−(∂ A⊥/∂t)) = −(∂/∂t)(rotA⊥) and div(rotA⊥) = 0 (using the relation B =
rotA).

This allows us to simplify the procedure with which the Vlasov equations (3.9)
are coupled with the Maxwell equations (2.3). Equations (3.9) are solved in a self-
consistent way with the Maxwell–Gauss equation given by

∂ Ex

∂x
= e

ε0

[ +Ns∑
j=−Ns

n j (x, t) − n0

]
, (3.10)

where n j is the density of the j th electron ‘stream’ determined by the relation

n j (x, t) =
∫ +∞

−∞
dpx f j (x, px , t). (3.11)

The Maxwell–Ampère equation rotB⊥ = μ0(J⊥ + ε0(∂ E⊥/∂t)) is written only for
the perpendicular direction and can be transformed into a wave equation for the
vector potential A⊥ in the form

∂2 A⊥
∂t2

− c2 ∂2 A⊥
∂x2

= 1
ε0

+Ns∑
j=−Ns

J⊥ j (x, t), (3.12)

where the source term is given by

J⊥ j = e

m

(
Cj − e A⊥

) ∫ +∞

−∞
dpx

f j

γ j
(3.13)

Finally, the reduced Vlasov equations given by (3.9) are self-consistently coupled
to the Maxwell–Gauss equation (3.10) and the wave equation (3.12). For each
population j , the source terms are defined by (3.11) and (3.13).

In this case, the longitudinal component of the Lorentz force is expressed as
FLx = −(1/2mγ j)(∂/∂x)((Cj − e A⊥(x, t))2), which can be written as

FLx = e

mγ j

[(
Cj − e A⊥

)
.
∂ A⊥
∂x

]
= e

(
p⊥

mγ j
× B⊥

)
x

. (3.14)

This expression involves only the perpendicular momentum of the electron.
From a numerical standpoint, it is feasible to solve the Maxwell equations pre-

sented in (2.3) self-consistently alongside the Vlasov equations. This can be achieved
using the standard Yee (1966) technique combined with a leapfrog scheme for solv-
ing the Maxwell equations. This approach is facilitated by the potential decoupling
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between the electrostatic and electromagnetic components of the electric field. The
transverse vector potential A⊥ can be readily computed from the relation

∂ A⊥
∂t

= −E⊥, (3.15)

which in turn allows for the determination of the Lorentz factor γ j via (3.7).
The multi-stream model presents a compelling framework that enables us to

succinctly express the invariance of the generalised canonical momentum in the
perpendicular direction. Due to the fundamentally nonlinear nature of the model, it
holds greater general significance than its applications to the study of Weibel-type
instabilities. For example, it can provide a novel approach to determine stationary
Vlasov–Maxwell solutions in the relativistic regime. While the overall formalism was
introduced by Ghizzo & Bertrand (2013) with a specific focus on the linear regime
of Weibel-type instability, a comprehensive analysis of the saturation mechanisms
associated with Weibel-type instabilities is detailed in Ghizzo (2013a). Further fea-
tures associated to the non-propagative pure Weibel case are discussed in Del Sarto,
Ghizzo & Sarrat (2024).

3.1.2. The case of a single stream
We now focus on the case of a single stream. Because this model, restricted to a
1-D (i.e. 2-D phase-space) system and with a single ‘stream’, is the ‘building block’
of a 2-D multi-stream approach, it is interesting to analyse it and its numerical
integration scheme in more detail, so to underscore the advantages and constraints
of the method. The Hamiltonian of a single ‘bunch’ of particles with equal energy
and canonical momentum takes the form H = mc2γ (x, px , t) + eφ(x, t) and the
corresponding reduced Vlasov equation reads

∂ f

∂t
+ px

mγ

∂ f

∂x
+
[

eEx − mc2

2γ

∂

∂x

(
a2
)] ∂ f

∂px
= 0, (3.16)

where the Lorentz factor is γ (x, px , t) =√1 + (p2
x/m2c2) + a2(x, t) and a =

(e|A⊥|/mc) is the normalised amplitude of the perpendicular potential vector A⊥
of an electromagnetic wave. It appears that the direct integration using a 2-D full
advection of the reduced relativistic Vlasov equation, given by (3.16), is necessary to
obtain accurate solutions. It can be easily shown that (3.16) can take a conservative
form:

∂ f

∂t
+ ∂

∂x

(
px

mγ
f

)
+ ∂

∂px

[(
eEx − mc2

2γ

∂

∂x

(
a2
))

f

]
= 0, (3.17)

since we have (∂/∂x)(px/mγ (x, px , t)) + (∂/∂px)(eEx − (mc2/2γ (x, px , t))
(∂/∂x)(a2)) = 0.

Thus, the modification of the Lorentz factor, induced by the Hamiltonian reduc-
tion technique, imposes a spatial dependence on the Lorentz factor. This prevents
the use of a time-splitting scheme as expressed in (3.17) and as is generally used in
‘Eulerian’ schemes of the Vlasov equation integration. From a numerical point of
view this can be penalising as far as parallelisation is concerned. As we shall see in
the more general case of a 2-D approach, we can overcome this issue by making a
judicious use of the time-splitting technique, provided that each elementary ‘brick’
is kept in the form of a 2-D advection.
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Equation (3.17) is completed by the Gauss equation:

∂ Ex

∂x
= e

ε0
[n(x, t) − n0], (3.18)

where

n(x, t) =
∫ +∞

−∞
f (x, px)dpx . (3.19)

In a 1-D system, the Maxwell equations (2.3) take a transverse form and a leapfrog
scheme can be used to solve the magnetic B and electric E components of field in an
alternate way. In the Yee (1966) method, the spatial derivatives of field components
are evaluated using the simple two-point centred difference scheme. In principle, the
derivatives in time are also discretised with second-order centred difference approxi-
mations, but the updates of B and E are staggered in time by one quarter time step.
Thus we have for the perpendicular electric field:

En+1/4
⊥i = En−1/4

⊥i + c2
t

2

(
rotBn

⊥
)

i
− 
t J n

⊥i

2ε0
, (3.20)

where the source term is given by

J⊥(x, t) = −e2A⊥
me

∫ +∞

−∞

f

γ
dpx . (3.21)

The discretised version of the magnetic field components reads as

Bn+1/2
⊥i+1/2 = Bn

⊥i+1/2 − 
t

2

(
rotEn+1/4

⊥
)

i+1/2
, (3.22)

to calculate the vector potential component A⊥ leading to

An+1/2
⊥i = An

⊥i − 
t

2
En+1/4

⊥i . (3.23)

Numerical details for integrating the ‘rot’ operator are summarised in § 3.2.4.

3.1.3. The semi-Lagrangian technique
While the Eulerian approach consists of discretising the phase space on a fixed grid
and applying either finite differences or finite volume or spectral method schemes,
the semi-Lagrangian approach uses also the characteristics of the Vlasov equation,
i.e. the concept of particle trajectory. This method of integration on an Eulerian
grid is referred to here as the ‘Vlasov’ method by comparison with the Lagrangian
approach (PIC method) although both methods solve the Vlasov equation.

Let us first recall the principles of the semi-Lagrangian method. By introducing the
notation x̃ = (x, px) and U = ((px/mγ ), eEx − (mc2/2γ ) (∂/∂x) (a2)) for the phase-
space coordinates and advection field, the characteristics of (3.16) are solutions of
the dynamical system

dX̃
dt

= U(X̃(t), t), (3.24)

where we denote by X̃(t; x̃, ts) the solution at time t whose value is x̃ at time ts . We
can now suppress the tilde notation in (3.24) to simplify the presentation. Taking

https://doi.org/10.1017/S002237782510072X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782510072X


10 M. Antoine, A. Ghizzo, D. Del Sarto and E. Deriaz

X(t) a solution of (3.24), we have

d
dt

( f (X(t), t)) = ∂ f

∂t
+ dX

dt
.
∂ f

∂x
= ∂ f

∂t
+ U (X(t), t) .

∂ f

∂x
= 0, (3.25)

which indicates that f is constant along the characteristics; hence,

f (X(t; x, ts), t) = f (X(ts; x, ts), ts) = f (x, ts), (3.26)

for any times t and ts and phase-space coordinates x. Thus, given the value of the
distribution function f at the mesh points, at any given time step, we obtain the new
value at mesh point xi using the fact that

f ∗ = f (xi , tn+1) = f (X(tn; xi , tn+1), tn). (3.27)

For each mesh point xi , f is computed in two steps.

Step1: Find the starting point of the characteristic ending at xi , i.e. X(tn; xi , tn + �t);
�t is the time step used in the numerical scheme.

Step2: Compute f (X(tn; xi , tn + �t), tn) by interpolation, f being known only on the
mesh points at time tn = n�t .

For step 1, the starting point of the characteristic is obtained to second-order
accuracy by

X(tn+1) − X(tn)

�t
= xi − X(tn)

�t
= U

(
X
(
tn+1/2

)
, tn+1/2

)
. (3.28)

Writing X(tn+(1/2)) = [X(tn + 
t) + X(tn)]/2, there exists ψ i such that the quantity
X(tn) can be written in the form X(tn) = xi −ψ i and X(tn + �t) = xi , which allows
us to write (3.28) in the following form:

ψ i = �tU
(

xi − ψ i

2
, tn+1/2

)
. (3.29)

This can be solved iteratively for the unknown ψ i by writing

ψ
(k+1)

i = �tU

(
xi − ψ

(k)

i

2
, tn+1/2

)
. (3.30)

Once ψ i are known, f (xi −ψ i , tn) is interpolated by a tensor product of cubic
B-splines.

The overall scheme is shown in figure 1: the distribution function f n+1, calcu-
lated at time tn+1 = (n + 1)�t from the data of f at time tn, is duplicated; a second
distribution f ′n+1/2 has been introduced with an initial shift of half a time step. In
this way, the two distributions f and f ′ are alternately advected. To advect the
function f , the Poisson equation (3.18) is solved using data from f ′n+1/2 , which is
itself advected in turn using the longitudinal electric field En+1

x calculated at time
tn+1, from data from f n+1. This process, together with the iterative sequence (3.30),
enables both 2-D advections to be solved to the second order in time. The transverse
electric field is calculated successively at times tn+1/4 and tn+3/4, alternately with the
magnetic field B⊥ and vector potential A⊥ at times tn+1/2 and tn+1.
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FIGURE 1. Illustration of the numerical scheme used in the 1-D multi-stream code: the different
shifts or advections for solving the set of Vlasov equations (bottom frame) are represented by
black arrows; the top and middle frames correspond to the computation of the electric field and
to the magnetic field together with the vector potential.

The scheme used for a single stream can be easily extended to a number Nstream

of streams, increasing the level of code parallelism since the various streams can be
distributed over different MPI processes. The reconstruction of f is made using the
characteristics in the backward direction in time, which is equivalent to considering,
at each time step, a new set of ‘particles’ located on the grid and to determining the
characteristic feet and then interpolating the function using the grid points in the
immediate neighbourhood.

3.2. The extension to a two-dimensional system
The Hamiltonian reduction is a procedure that ‘eliminates’ a redundant degree

of freedom from a Hamiltonian system by providing an equivalent description in a
smaller-dimensional phase space. In essence, it is equivalent to the reduction of the
configuration space in analytical mechanics, allowed by the use of holonomic con-
straints. This procedure is based on the homogeneity of space in a given direction –
say z – i.e. a translational invariance in space along z for a Hamiltonian of the
kind H = mc2γ + eφ, and it leads to the invariance of momentum according to the
Noether theorem. It results in the invariance of the generalised canonical momentum
Pcz = pz + eAz(x, y, t) = const. through the Hamilton equation

dPcz

dt
= −∂ H

∂z
= 0. (3.31)

In this case the reduced description is characterised by a subgroup of 2Ns + 1
‘streams’, each stream being described by the Hamiltonian Hj . It is the symmetry of
the global Hamiltonian (here associated to the lacking z variable) that motivates
the choice of the reduced variables, the so-called distribution of the generalised
canonical momentum C j . Thus the general form of the distribution function may
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be represented in the following form (where x = (x, y, 0)):

f (x, p, t) =
Ns∑

j=−Ns

f j

(
x, p‖, t

)
δ
[

pz − (C j − eAz (x, y, t)
)]

. (3.32)

This Hamiltonian reduction technique is not merely an approximation of the phys-
ical system under study; it provides a description of the system’s dynamics based on
a class of exact solutions that arises from a particular symmetry of the system. This
technique reduces the dimensionality of the phase space due to the conservation of
the generalised canonical momentum. Furthermore in the numerical integration, the
existence of an analytical solution enhances the convergence of the global solution by
providing a better description of the current density Jz in the z direction, as it is con-
structed from the multi-stream representation of the distribution function given in
(3.32). Finally, the model can be applied to any type of distribution function, includ-
ing relativistic distribution cases, thus allowing for the reintroduction of a notion
of temperature anisotropy, which is generally impossible with a Maxwell–Jüttner
distribution.

3.2.1. Basic equations
By writing the Hamiltonian in the standard form

H = mc2

√
1 + (P c − e A) . (P c − e A)

m2c2
+ eφ (x, y, t), (3.33)

where P c = p + e A is the canonical momentum, i.e. the conjugate variable to the
configuration space x = (x, y, 0), it is possible to reduce the dimensionality of
the phase space. In the Coulomb gauge (divA = 0), we have A = (Ax , Ay, Az) =
A‖ + A⊥, with A‖ = (Ax , Ay, 0), A⊥ = (0, 0, Az). Since A does not depend on the
z variable, we have (∂ Ax/∂x) + (∂ Ay/∂y) = 0 in the Coulomb gauge. The magnetic
field B = rotA satisfies the following set of equations:

Bx = ∂ Az

∂y
, By = −∂ Az

∂x
and Bz = ∂ Ay

∂x
− ∂ Ax

∂y
, (3.34)

allowing one to separate the different contributions of the transverse magnetic (TM)
(Ex , Ey, Bz) and transverse electric (TE) (Ez, Bx , By) modes. By denoting the in-
plane (by symbol ‖) and the z-component (as the perpendicular or ⊥) contributions
of the canonical momentum, we have P c = P c‖ + P c⊥ with P c⊥ = Pcz ez and P c‖ =
Pcx ex + Pcy ey , the Hamilton equations read as

dx
dt

= ∂ H

∂ P c
and

dP c

dt
= −∂ H

∂x
. (3.35)

Along the z direction, the perpendicular direction here, we have

Pcz = pz + eAz (x, y, t) = const. ≡ C j , (3.36)

since dPcz/dt ≡ Ṗcz = −∂ H/∂z = 0. Therefore, without loss of generality, we
can consider a plasma where particles are divided into Nstream = 2Ns + 1
‘streams’, each stream j (for j ∈ [−Ns, Ns]) having the initial perpendicular
momentum C j . We can now define for each particle population j , a reduced
Hamiltonian denoted Hj which satisfies the definition

Hj = mc2γ j + eφ (x, y, t), (3.37)
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where the Lorentz factor γ j , associated with the particle stream j , is defined by

γ j =
√

1 +
(

P c‖ − e A‖
)
.
(

P c‖ − e A‖
)

m2c2
+
(
C j − eAz (x, y, t)

)2
m2c2

. (3.38)

Denoting p‖ = (px , py, 0) and x = (x, y, 0), for each particle stream j , the corre-
sponding Hamilton equations read as

dx
dt

= ∂ Hj

∂ P c‖
= P c‖ − e A‖

mγ j
= p‖

mγ j
, (3.39)

dP c‖
dt

= −∇Hj = − 1
2mγ j

∇ (P c‖ − e A‖
)2 − e∇φ − 1

2mγ j
∇ (C j − eAz

)2
= e

mγ j

[
p‖.∇ A‖ + p‖ × (∇ × A‖

)]− e∇φ − 1
2mγ j

∇ (C j − eAz

)2
, (3.40)

where ∇ = ∂x ex + ∂y ey. By noting that dP c‖/dt = d p‖/dt + e∂ A‖/∂t + e p‖.∇ A‖/
mγ j , (3.40) reads as

d p‖
dt

+ e∂ A‖
∂t

= e

mγ j
p‖ × Bz ez − 1

2mγ j
∇ (C j − eAz

)2 − e∇φ. (3.41)

Finally, the Hamilton equations become

dx
dt

= p‖
mγ j

, (3.42)

d p‖
dt

= eE‖ + e

mγ j
p‖ × Bz ez − 1

2mγ j
∇ (C j − eAz (x, y, t)

)2
, (3.43)

where we have used the definition E‖ = −∇φ − ∂ A‖/∂t . We can now define,
for each particle population j , a distribution function denoted f j(x, p‖, t) which
satisfies the following relativistic Vlasov equation:

d f j

dt
= ∂ f j

∂t
+ dx

dt
· ∇ f j + d p‖

dt
· ∂ f j

∂ p‖
= 0, (3.44)

or equivalently,

∂ f j

∂t
+ px

mγ j

∂ f j

∂x
+ py

mγ j

∂ f j

∂y
+
[

eEx + epy Bz

mγ j
− 1

2mγ j
∂x

(
C j − eAz

)2] ∂ f j

∂px

+
[

eEy − epx Bz

mγ j
− 1

2mγ j
∂y

(
C j − eAz

)2] ∂ f j

∂py
= 0. (3.45)

We have used the invariance property Pcz = pz − eAz(x, y, t) = const. = C j in the
perpendicular direction to the plane (x, y). Equation (3.45) is coupled to

∂ Az

∂t
= −Ez. (3.46)
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For each population of particles corresponding to the ‘bunch’ j , the source terms
used in the Maxwell equations are defined by the following quantities:

J ‖, j = e
∫

d2 p
p‖

mγ j
f j , Jz, j = e

(
C j − eAz

) ∫
d2 p

f j

mγ j
. (3.47)

Finally, the global source terms are

J ‖ =
+Ns∑

j=−Ns

J ‖, j and Jz =
+Ns∑

j=−Ns

Jz, j . (3.48)

At this stage, several points are worth highlighting:

(i) The relation (3.46) is not an approximation, since the electric potential does
not depend on the z variable.

(ii) In (3.45) the Lorentz factor γ j becomes dependent both on the particle
momentum and on the space variables, rendering obsolete the use of a stan-
dard time-splitting technique by separating the global solution of the Vlasov
equation into four 1-D equations.

(iii) The Hamiltonian reduction technique can also be used in a Lagrangian scheme
(PIC codes).

3.2.2. The numerical scheme with two dimensions in configuration space
In applied mathematics, the Strang splitting method (Strang 1968) is a numerical
technique used to solve differential equations that can be decomposed into a sum
of differential operators. This method can be extended to tackle multi-dimensional
partial differential equations by reducing them to a sum of lower-dimensional prob-
lems. The time-splitting technique was first introduced by Cheng & Knorr (1976) for
solving the Vlasov–Poisson system. More recently, following the work of Morrison
(1980), Crouseilles, Einkemmer & Faou (2015) proposed a new splitting method
based on the decomposition of the Hamiltonian functional in the following form:

H [χ ] = 1
2
ε0

∫
|E|2 d3x + 1

2
ε0c2

∫
|B|2 d3x + 1

2
m
∫

|v|2 f (x, v, t) d3xd3v

=HE +HB +H f . (3.49)

This formulation relates to the Vlasov–Maxwell system in the non-relativistic regime,
where HE ,HB and H f represent the contributions of electric, magnetic and kinetic
energy, respectively. Here, χ = ( f, E, B) is a vector dependent on the distribution
function f and on the electromagnetic components E and B. In the Hamiltonian
formalism, the different components χi satisfy the equation ∂χi/∂t = {χi ,H}, where
{·} is the Poisson bracket. From the relation H=HE +HB +H f one can construct
an approximate solution in the form

χ (t) = exp
(HE t

2

)
exp

(HBt

2

)
exp

(H f t
)
exp

(HBt

2

)
exp

(HE t

2

)
χ (0). (3.50)

This expression represents the solution obtained through the Strang splitting scheme,
which is a second-order-accurate method. The primary challenge when attempting
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to cast the Vlasov–Maxwell equations into Hamiltonian form lies in identifying a
suitable set of canonical variables. This task is complicated by the fact that the
components χi are non-canonical and that the Poisson bracket takes on a complex
form. The multi-stream technique provides a more straightforward approach as it
utilises canonical variables.

In the multi-stream approach, a similar Strang splitting technique can be applied
to solve the system consisting of 2Ns + 1 reduced Vlasov equations (3.45). Thus, the
Vlasov equations (3.45) can be split in the following sequence, where each resolution
step preserves the exact conservation of f j :

stepX (t)
[

f j

] : ∂ f j

∂t
+ px

mγ j

∂ f j

∂x
− 1

2mγ j
∂x

(
C j − eAz

)2 ∂ f j

∂px
= 0, (3.51)

stepY (t)
[

f j

] : ∂ f j

∂t
+ py

mγ j

∂ f j

∂y
− 1

2mγ j
∂y

(
C j − eAz

)2 ∂ f j

∂py
= 0, (3.52)

together with

stepR (t)
[

f j

] : ∂ f j

∂t
+ e

(
Ex + py Bz

mγ j

)
∂ f j

∂px
+ e

(
Ey − px Bz

mγ j

)
∂ f j

∂py
= 0, (3.53)

where the Lorentz factor is given by

γ j =
√

1 + p2
x

m2c2
+ p2

y

m2c2
+
(
C j − eAz (x, y, t)

)2
m2c2

. (3.54)

Taken separately, the previous steps, linked to the X ,Y and R operators, can be
exactly integrated along their respective characteristics, using 2-D B-spline interpo-
lation techniques. Thus each step, denoted by the X ,Y and R operators, allows one
to exactly conserve the mass since the corresponding advections are made globally in
the considered phase-space variables (see § 3.2.3). Another advantage of the method
is the possibility of treating large 2-D (global) advections without limitation on the
time step. Indeed, in comparison with the semi-Lagrangian scheme used in the fully
kinetic code VLEM2D3V, the advections employed in the multi-stream code are now
global and require the global inversion of a tridiagonal matrix. In the VLEM2D3V
code, the spatial advections are local and necessitate a Courant–Friedrichs–Lewy
condition on the time step, which is not the case here.

At each step X or Y , a transposition is applied between advected and non-advected
variables (a domain decomposition may then be applied for ‘non-advected’ vari-
ables). However, in the full kinetic VLEM2D3V version, local spline interpolations
are used, so transpositions are not necessary.

Thus a formal solution of (3.51)–(3.53) can be obtained in the form of a sequence
of successive ‘shifts’ of advections X (
t/2),Y(
t/2) made over half a time step
�t/2:

stepX (
t/2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

transpose f n
(
x, y, px , py

)⇒ f n
t

(
x, y, px , py

)
,

compute f ∗
t

(
x, y, px , py

)= f n
t

(
x − px

mγ j


t

2
, y, px

+ 
t

4mγ j
∂x

(
C j − eAz

)2
, py

)
,

transpose f ∗
t

(
x, y, px , py

)⇒ f ∗ (x, y, px , py

)
.

(3.55)
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At the end of this step, performed by advancing the system over half a time step
�t/2, a global 2-D advection in the x̃ = (x, px) phase space is required. A matrix
transposition is then performed between the variables (x, px) and the spatial coordi-
nates (x, y) so as to enable calculation of the electromagnetic field components at the
end of each sequence; here the electromagnetic field uses a domain decomposition
in configuration space. The 2-D advection in (x, px) is performed via a global inver-
sion of the matrix with respect to the (x, px) coordinates, the domain decomposition
being performed in the perpendicular directions ỹ = (y, py). The bars introduced in
the notation refer to the domain decomposition used for parallelism. This procedure
is reproduced for all X (
t/2), Y(
t/2) shifts, and the R(
t) rotation to restore
the domain decomposition:

stepY (
t/2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

transpose f ∗ (x, y, px , py

)⇒ f ∗
tbis

(
x, y, px , py

)
,

compute f ∗∗
tbis

(
x, y, px , py

)= f ∗
tbis

(
x, y − py

mγ j


t

2
, px , py

+ 
t

4mγ j
∂y

(
C j − eAz

)2)
,

transpose f ∗∗
tbis

(
x, y, px , py

)⇒ f ∗∗ (x, y, px , py

)
.

(3.56)

This is followed by the R rotation integration over a full time step 
t :

stepR (
t) : compute f ∗∗∗ (x, y, p) = f ∗∗ (Pn+1 (x, y, p)
)
, (3.57)

where a Boris (1970) method is used to solve the step R(
t) by separating the
electric and magnetic contribution of the electromagnetic field, and by rewriting the
characteristics of (3.53) in the form

v+ − v− = e

2m

(
v+ + v−)× Bz ez, (3.58)

where vn = pn/(mγ n
j ) = v− − eE‖
t/(2m) and vn+1 ≡ pn+1/(mγ n+1

j ) = v+ + eE‖

t/(2m). The shifts of the distribution function f j , over half a time step, along
the directions x−px and y−py , are denoted with X (
t/2), Y(
t/2), respectively,
and the ‘rotation’ in the momentum space over a full time step is indicated as R(
t).

Several remarks must be made:

(i) A straightforward way to distribute the computational work involved across
processors is to assign a part of the x−y grid to each processor. Thus, the
code is initially parallelised by using a regular spatial domain decomposition in
the x and y directions, which is used when solving the Maxwell equations and
the rotation step R for the Vlasov equation. Transpositions are then required
to adapt this domain decomposition for each shift in x−px (denoted X ) and
y−py (denoted Y).

(ii) Transpositions of the global matrix are required before and after each X (
t/2)
or Y(
t/2) shift. The transposed quantities are denoted by x, y, px and py in
(3.55)–(3.57), i.e. the phase-space variables for which a domain decomposition
has been applied.

(iii) Information shared between the threads of neighbouring subdomains combines
OpenMP and MPI. The numerical scheme parallelises computed-bounds loop
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FIGURE 2. Illustration of the numerical scheme used in the multi-stream code in two dimen-
sions in configuration space: the different shifts or advections for solving the set of Vlasov
equations (bottom frame) are represented by black arrows; the top and middle frames corre-
spond to the computation of the electric field and to the magnetic field together with the vector
potential.

with OpenMP on a local processus, sharing communications between threads,
and inter-processor communications are handled by MPI.

(iv) Another level of parallelisation is also introduced in the multi-stream model by
distributing the different ‘streams’ on different MPI processes. According to
the MPI terminology, non-blocking communications were used, point-to-point
communications can be performed with non blocking semantics as well, having
resources free for computation.

(v) The global scheme f n+1
j =X (
t/2) ◦Y(
t/2) ◦R(
t) ◦Y(
t/2) ◦

X (
t/2) f n
j , illustrated in figure 2, exhibits second-order accuracy in

time (see Appendix A). Thus the semi-Lagrangian model used in the multi-
stream approach can be seen as a generalisation of the well-known Cheng &
Knorr (1976) technique, based on the use of the time-splitting scheme and
non-local cubic spline interpolation of the distribution function. The operator
◦ acts as a convolution product of two operators A and B, which applies
to the distribution function f (x, p, t) between two given times, defined by
f (t2)[x, p] =A ◦B f (t1) =A(B f (t1)[x, p]); the operators A and B being
chosen from the operators X , Y and the rotation R. The second-order
accuracy results from the fact that the time stencil is centred, which provides
a symmetric self-adjoint numerical integrator.

3.2.3. Conservation of the global scheme
The Vlasov equations (3.45) can be rewritten in a global advective form:

∂ f j

∂t
+ U (X, t) · ∂ f j

∂ X
= 0, (3.59)
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where X = (x, y, px , py) denotes the generalised phase-space coordinate and

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px

mγ j

py

mγ j

eEx + e
py Bz

mγ j
− 1

2mγ j
∂x

(
C j − eAz

)2
eEy − e

px Bz

mγ j
− 1

2mγ j
∂y

(
C j − eAz

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.60)

the generalised advection field. Since U is divergence free, we can put (3.59) in a
conservative form:

∂ f j

∂t
+ ∂

∂ X
· [U (X, t) f j

]= 0. (3.61)

By now separating each 2-D advection, (3.61) reads

∂ f j

∂t
+ ∂

∂ X x
· [U x (X , t) f j

]+ ∂

∂ X y
· [U y (X , t) f j

]+ ∂

∂ X p
· [Up (X , t) f j

]= 0,

(3.62)
where

U x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

px

mγ j

0

− 1
2mγ j

∂x

(
C j − eAz

)2
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and Xx =

⎛⎜⎜⎝
x
0
px

0

⎞⎟⎟⎠ , (3.63)

U y =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
py

mγ j

0

− 1
2mγ j

∂y

(
C j − eAz

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and X y =

⎛⎜⎜⎝
0
y
0
py

⎞⎟⎟⎠ , (3.64)

and finally

Up =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

e

(
Ex + py Bz

mγ j

)
e

(
Ey − px Bz

mγ j

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and X p =

⎛⎜⎜⎝
0
0
px

py

⎞⎟⎟⎠ . (3.65)

It is well known that we can solve separately (3.62) with keeping second-order
accuracy (see Marchuk 1982) by solving the following sequence of conservative
equations:
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∂ f j

∂t
+ ∂

∂ Xx
· [Ux (X , t) f j

]= 0, (3.66)

∂ f j

∂t
+ ∂

∂ X y
· [Uy (X , t) f j

]= 0, (3.67)

∂ f j

∂t
+ ∂

∂ X p
· [Up (X , t) f j

]= 0, (3.68)

in a symmetric time-centred way, i.e. (3.66) and (3.67) are integrated over half a
time step, while (3.68) is solved over a full time step. We repeat the sequence of
resolution of (3.67) and (3.66) over half a time step. As each advection field Ux, Uy

and Up is divergence free, we can recover the sequence of advective equations given
in (3.51)–(3.53).

3.2.4. Resolution of the Maxwell equations
Finally, the reduced Vlasov equations given by (3.45) for −Ns � j �+Ns (with
a total number of 2Ns + 1 ‘streams’) are self-consistently coupled to the Maxwell
equations for the two sets of TM and TE components of the electromagnetic field:

∂ Ex

∂t
= c2 ∂ Bz

∂y
− Jx

ε0
, (3.69)

∂ Ey

∂t
= −c2 ∂ Bz

∂x
− Jy

ε0
, (3.70)

∂ Bz

∂t
= ∂ Ex

∂y
− ∂ Ey

∂x
(3.71)

and
∂ Ez

∂t
= c2

(
∂ By

∂x
− ∂ Bx

∂y

)
− Jz

ε0
, (3.72)

∂ Bx

∂t
= −∂ Ez

∂y
, (3.73)

∂ By

∂t
= ∂ Ez

∂x
. (3.74)

We have used here the well-known Yee (1966) scheme to solve the Maxwell equa-
tions where the TE and TM modes are decoupled. In order to ensure high speed
and accuracy, it is convenient to use a domain decomposition in the configuration
(x, y) grid and a leapfrog scheme for the integration of the electromagnetic field in
time. The leapfrog scheme is thus applied to the space coordinates too, which means
that electric and magnetic fields are shifted in time by 
t/4 and some components
of them are also shifted by 
x/2 and 
y/2, as illustrated in the top and middle
frames in figure 2. Thus, the electric components are defined at times tn−1/4, tn+1/4

and tn+3/4 (as a usual subcycling technique used in PIC codes), while the magnetic
and Az components are defined at times tn, tn+1/2 and tn+1, and the current density J
is computed from (3.48) at times tn and tn+1/2. As a result, the discretised expressions
of (3.69)–(3.71), in Cartesian coordinates, can be written as
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E
n+ 1

4

x i+ 1
2 , j

= E
n− 1

4

x,i+ 1
2 , j

+ c2
t

2
y

(
Bn

z i+ 1
2 , j+ 1

2
− Bn

z i+ 1
2 , j− 1

2

)
− 
t

2ε0
J n

x i+ 1
2 , j

, (3.75)

E
n+ 1

4

y i, j+ 1
2
= E

n− 1
4

y,i, j+ 1
2
+ c2
t

2
x

(
Bn

z i+ 1
2 , j+ 1

2
− Bn

z i− 1
2 , j+ 1

2

)
− 
t

2ε0
J n

y i, j+ 1
2
, (3.76)

B
n+ 1

2

z i+ 1
2 , j+ 1

2
= Bn

z i+ 1
2 , j+ 1

2
− 
t

2
x

(
E

n+ 1
4

y i+1, j+ 1
2
− E

n+ 1
4

y i, j+ 1
2

)
+ 
t

2
y

(
E

n+ 1
4

x i+ 1
2 , j+1

− E
n+ 1

4

x i+ 1
2 , j

)
.

(3.77)

The discretised versions of (3.72)–(3.74) are

B
n+ 1

2

x i, j+ 1
2
= Bn

x i, j+ 1
2
− 
t

2
y

(
E

n+ 1
4

z i, j+1 − E
n+ 1

4
z i, j

)
, (3.78)

B
n+ 1

2

y i+ 1
2 , j

= Bn
y i+ 1

2 , j
+ 
t

2
x

(
E

n+ 1
4

z i+1, j − E
n+ 1

4
z i, j

)
, (3.79)

E
n+ 1

4
z i, j = E

n− 1
4

z,i, j + c2
t

2
x

(
Bn

y i+ 1
2 , j

− Bn
y i− 1

2 , j

)
− c2
t

2
y

(
Bn

x i, j+ 1
2
− Bn

x i, j− 1
2

)
− 
t

2ε0
J n

z i, j ,

(3.80)

together with

J n
z i, j = e

+Ns∑
l=−Ns

(
Cl − eAn

z i, j

) ∫ f n
l

mγl
dpxdpy and A

n+ 1
2

z i, j = An
z,i, j − 
t

2
E

n+ 1
4

z i, j . (3.81)

The sequence for the integration of the Maxwell equations is repeated two
times, in order to compute the values of the advections terms (px/(mγ j), ∂x(C j −
eAz)

2/(2mγ j)) and (py/(mγ j), ∂y(C j − eAz)
2/(2mγ j)) in (3.51), (3.52) at times tn+1/4

and tn+3/4 required for solving the x − px and y − py 2-D advections, respectively.
Finally the 2-D advection in px − py can also be performed after computing the
advection field E∗

‖ = (En+1/4
‖ + En+3/4

‖ )/2 and using the data of Bn+1/2
z . As indicated

in figure 2, the current densities J n
‖ and J n+1/2

‖ are computed at time tn = n
t and
at the end of the first sequence X (
t/2) ◦Y(
t/2), respectively.

3.3. Relevance of the multi-stream approach to systems
beyond classical Vlasov plasmas

We conclude this section by noting that the Hamiltonian reduction implemented
with the multi-stream description may find broader applications than classical plas-
mas. In principle, it involves any Hamiltonian system described by Vlasov- or
Liouville-like equations, and displaying the appropriate symmetry (i.e. the presence
of a cyclic coordinate). Two examples that we discuss here are the non-relativistic
Vlasov–Maxwell system including spin effects and the covariant formulation of the
relativistic Vlasov model.

First, the scalar non-relativistic spin Vlasov–Maxwell system is described in the
extended phase space (x, p, s) for an electron distribution function G(x, p, s, t).
As shown in Marklund & Morrison (2011), the previous Hamiltonian formulation
can be viewed as a classical pre-quantisation property where a new distribution is
introduced in the form F(x, p, ŝ, t) = G(x, p, s, t)δ(|s| − (�/2)), where it obeys the
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same kind of Vlasov equation but with a reduced dimensionality in phase space.
This is the consequence of the existence of Casimir invariants

∫
d9zC(G, s2) = const.

and the integral reduces from integration over the global phase space element
d9z = d3xd3 pd3s to d3xd3 pd2s with d2s = sin θsdθsdϕs and ŝ is the unit spin vec-
tor. Second, the Vlasov equation can also be extended to a more general treatment,
i.e. in a covariant description expressed in terms of the phase-space coordinates
(x0 = ct, x; p0 = E/c, p) (Marsden et al. 1986; Liboff 2003; Cary & Brizard 2009).
Furthermore, a variational formulation for the Vlasov–Maxwell system has been pre-
sented in Brizard (2000) that uses constrained variations for the Vlasov distribution
in an eight-dimensional phase space.

Here we adopt the general notation x for the three-dimensional configura-
tion space. Here xμ = (x0, x) denotes the space–time position of a particle and
pμ = (p0, p) its momentum–energy coordinates. In the case of a system com-
posed of charged particles submitted to an electromagnetic field Fμν , where
Fμ = (e/m)pν Fμν , the equation of motion for the four-momentum pμ is

dpμ

dt
= eFμν

m
pν ≡ eFμνuν, (3.82)

where uμ = (u0 = γ c, u = γ v) = dxμ/dτ is the four-velocity and d/dτ = γ d/dt is
the derivative with the proper time. We use the Minkowski space–time metric
gμν = diag(−1, +1, +1, +1). We have pμ = muμ and Fμν = ∂μ Aν − ∂ν Aμ denotes
the Faraday tensor. The contravariant space–time derivatives are ∂μ = gμν∂ν =
(−∂/∂x0, ∇) and Aμ = (A0 = φ/c, A) is the four-potential. The relativistic Vlasov
equation is recovered as usual and reads

dF
dτ

= uμ
∂F
∂xμ

+ Fμ (xμ, pμ)
∂F
∂pμ

= 0. (3.83)

Since the number of particles in the system is assumed to be conserved, the eight-
current in μ space must also be conserved and the continuity equation reads

∂

∂xμ

[
dxμ

dτ
F (xμ, pμ)

]
+ ∂

∂pμ

(
dpμ

dτ
F
)

= 0. (3.84)

Using the (xμ, pμ) notation, with the usual definition of the momentum–energy
four-vector for pμ, the electron distribution function F =F(xμ, pμ) satisfies the
covariant relativistic Vlasov equation (3.83) which reads

pμ
∂F
∂xμ

+ e
∂F
∂pμ

Fμβ pβ = 0. (3.85)

In an eight-dimensional phase space, this scalar equation takes the explicit form

∂F
∂t

+ p
mγ

· ∂F
∂x

+ e

(
E + p

mγ
× B

)
· ∂F

∂ p
+ e

(
p

mγ
· E
)

∂F
∂p0

= 0. (3.86)

The covariant relativistic equation (3.86) formally has an additional degree of free-
dom compared with the ‘classical’ expression of the Vlasov equation (2.1) and the
motion of a charged particle is located on the surface H= (pμ pμ)/(2m) = −mc2/2,
that derives from the condition pμ pμ = −m2c2, H being a Lorentz scalar (see Brizard
& Chan (1999) for more details). By considering a solution in the form

F (xμ, pμ) = δ
(

p0 − mγ c
) f (x, p, t)

γ
, (3.87)
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where f is the usual distribution written in the six-dimensional phase space (x, p)
and γ the Lorentz factor, and after a p0-integration over (3.86), we recover the usual
expression of the relativistic Vlasov equation given by (2.1).

It can be seen that the formal solution provided by (3.87) constitutes a class
of exact solutions describing the physics of collisionless plasmas in a relativistic
regime (Vlasov–Maxwell model) under the constraint pμ pμ = −m2c2, which reflects
the Einstein relation between the energy of an electron E and its momentum p, i.e.
p2 − ((E/c))2 = −m2c2.

We thus see that both the non-relativistic spin and the (relativistic) covariant for-
mulation in the Vlasov description correspond to Hamiltonian reduction techniques
based on the introduction of a Dirac distribution function which corresponds to the
metric constraint pμ pμ = −m2c2 in the covariant formulation of the Vlasov equa-
tion or two spin degrees of freedom with a fixed |s| = �/2. Thus such a Hamilton
reduction procedure can be applied again in the presence of translation symmetry
using the invariance of canonical momentum in a transverse direction.

4. Numerical experiments

In this section we apply the multi-stream scheme in a series of numerical tests
and we compare the resulting solutions with a reference full kinetic simulation.
Identifying the possibilities and accuracy afforded by the reduced Hamiltonian
model is of practical interest, especially in geometries and configurations that com-
plicate the form of the physical solution, for example, to describe non-Maxwellian
distribution functions in a relativistic regime. At the same time, for each physical
problem, a sort of hierarchy can be established in the relevance of the solutions of
the Vlasov equation. This allows us to focus only on a few of the typical or simpli-
fied ‘exact classes’ of solutions of the Vlasov equation. It is here that appropriate
solutions to the reduced Vlasov equation become useful. In all simulations, we used
normalised units, the space variables are normalised to de = c/ωp, time to the inverse
of the electron plasma frequency ω−1

p and momenta to mc.

4.1. Filamentation aspects in Lagrangian and Eulerian schemes
In order to understand the advantages and disadvantages of the numerical tech-

nique associated with the resolution of the reduced Vlasov–Maxwell system governed
by (3.16) and (3.23), coupled in a self-consistent way with the Maxwell equations
(3.20)–(3.22), we consider the case of the interaction of a high-intensity laser wave
interacting with a plasma.

From a numerical point of view, the modelling of the Vlasov–Maxwell system
relies mainly on two numerical techniques. The first, and most widely used, is the
PIC method.

Particle codes involve a Lagrangian formulation: the PIC scheme can be regarded
as a discretisation of phase space in terms of a superposition of moving elements,
usually referred to as super-particles. In PIC codes, super-particle trajectories are
computed from the electromagnetic fields, prescribed on a fixed grid whose typical
size is of order of the Debye length. At the end of the time step, the charge of
each ‘super-particle’ is redistributed among the neighbouring grid points, allowing
one to solve the Maxwell equations. This process used in PIC codes (the redistri-
bution of the charge of super-particles) involves a smoothing of the information
which efficiently decreases the individual effects introduced by the grid. This makes
the PIC code a very well adapted scheme to follow the kinematic filamentation of
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the distribution function in velocity space, one of the fundamental properties of the
Vlasov equation. In the filamentation process, the information transfer from small
to large wavenumbers follows from the energy transfer between scales and informa-
tion is usually conserved in a continuum velocity space (i.e. when the size of the
elementary cell tends to zero) and the entropy is exactly conserved.

In Vlasov simulations that are performed on a (Eulerian) fixed grid in phase space,
the grid inevitably becomes too coarse as the fine graining develops. Such a process
leads to an entropy increase. Thus, this ‘filamentation’ problem is well known in
Eulerian Vlasov simulations, while the PIC approach is not affected by this problem
and the filamentation is usually very well described in a Lagrangian framework.
However, the kinematic filamentation of f can also interact with the filamentation
induced by certain physical instabilities, leading to modifications in the dynamics
of f through a heating process in the presence of developed turbulence (Ghizzo,
Del Sarto & Betar 2023; Ghizzo & Del Sarto 2023). We shall see that the multi-
stream model can improve the numerical description of the filamentation in the
semi-Lagrangian case, by introducing an exact solution of the distribution in the
form of a Dirac comb, while preserving the ‘noiseless’ character of the code. In this
way, the multi-stream approach could offer certain advantages for certain physical
solutions where the filamentation of f can play a primordial role, as can be the
case in CFIs or in Weibel-type instabilities, both associated with the emergence and
amplification of a magnetic field in the system.

On the other hand, the Eulerian or Lagrangian techniques use a statistical
approach where the graininess parameter g = 1/(n0λ

3
D) tends towards zero. This

characteristic is one of the undeniable advantages of the Eulerian or semi-Lagrangian
methods, and is often referred to as a noiseless code (in the statistical sense). The
re-introduction of a ‘numerical grain’ effect in the PIC code, associated with the
finite size of the super-particles, leads to an amplification of the ‘thermal’ noise of
the particles; this property is often associated with the increase in numerical ‘noise’
encountered in PIC codes. This process is obviously a major drawback in PIC codes,
and a number of numerical techniques have been developed to reduce this noise
without, however, succeeding in eliminating it completely. This problem makes it
difficult to describe the tails of distribution functions in the PIC approach, whereas
Eulerian and semi-Lagrangian techniques are less prone to this problem, provided
sufficient phase-space sampling is used. Thus, the use of a multi-stream model can
considerably reduce this problem through judicious selection of ‘streams’, by posi-
tioning two streams in these very low-density regions. This is an advantage that can
in principle be used both in the semi-Lagrangian code and in a PIC approach.

4.2. The case of a single stream in relativistic laser–plasma interaction
and kinematic filamentation aspects

Before making a systematic comparison between the reduced multi-stream model
and the fully kinetic VLEM code, it is worth returning to the single-stream case,
which models a cold plasma in the perpendicular direction. This example, although
simplified, highlights some of the fundamental properties of the Vlasov equation,
such as the filamentation of f in the velocity space, and how the information is
processed in the usual techniques for numerically solving the Vlasov equation. In the
case of a single-stream model, (3.16) is used to solve the reduced Vlasov equation
in phase space. This model constitutes the elementary ‘brick’ which is used in any
Hamiltonian reduction approach in the case of a higher dimensionality of the phase
space. The corresponding numerical scheme has been presented in § 3.1.3.
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We focus then on the relativistic regime of laser–plasma interaction. A well-known
solution is given by Akhiezer & Polovin (1956) for a circularly polarised electro-
magnetic wave in a homogeneous plasma, corresponding to A2

⊥ = const., and the
linear dispersion relation of a propagating electromagnetic wave of frequency ω0

and wavevector k0, is given by ω2
0 = (ω2

p/γ0) + k2
0c2, where the Lorentz factor γ0 is

given by γ 2
0 =√1 + a2

0 .
The simulation that we describe now has been performed using a ratio of the

electron mean density to the critical density of n0/nc = 1 (nc being usually defined
as mω2

0ε0/e2) and a quiver momentum value of a0 = eE0/mω0c = √
3, which cor-

responds to a laser intensity of Iλ2
0 = 8.2 × 1018 W cm−2 µm2 (where λ0 is the

pump wavelength). The initial electron temperature is kBTe = 3 keV. The initial
large-amplitude pump wave (ω0, k0) is described by the electric field component
E⊥ = (0, E0 cos k0x, E0 sin k0x). Choosing k0c/ωp = 1/

√
2, we obtain ω0 = ωp, i.e. a

ratio of n0/γ0nc = 0.5, i.e. well below the relative plasma density. Here, we have
used a phase-space sampling of Nx Npx of 512 × 768 points and a time step of
�tωp = 0.01.

The corresponding plasma wave predicted by theory is then very close to 2
k.
Here, we have solved the dispersion relation, i.e.

D+ D− = ω2
pa2

0

2γ 3
0

(
k2c2

Dp
− 1
)

(D+ + D−), (4.1)

where Dp and D± correspond, respectively, to the dispersion relation of the electron
plasma wave and of the electromagnetic waves in the relativistic plasma. We have
the usual relations:

Dp = ω2 − ω2
p

γ0
; D± = (ω ± ω0)

2 − (k ± k0)
2 c2 − ω2

p

γ0
. (4.2)

By solving the dispersion relation in the case of a cold plasma, the growth rate of the
relativistic parametric instability of the most unstable mode is located at kc/ωp =
1.40 and corresponds to a maximum growth rate of ηth/ωp � 0.409. In figure 3
we have plotted, on top, the time evolution of the most unstable plasma mode
(here mode 2) on a logarithmic scale: the curve indicates a growth rate of around
ηnum/ωp � 0.406 ± 0.003 in good agreement with the expected value predicted by
the linear theory (for a cold plasma). But the more striking point is that we did not
introduce any initial density perturbation in our simulation. The instability starts just
from the round-off error, which for a 64-bit machine is of order 10−15. This result
clearly demonstrates that the low-noise character of the multi-stream code allows a
very powerful and extremely precise study of the growth of instabilities over a large
number of decades.

The last point concerns the problem of the filamentation in x−px phase space. To
demonstrate the efficiency of our algorithm, we look now at the particle dynamics in
phase space. Figure 3 (bottom frames) shows the behaviour of the electron distribu-
tion function in the x−px phase space at two times taken in the nonlinear regime of
the instability. Here, the formation of smaller and smaller filaments in phase space
results from the physical process induced by the relativistic parametric instability,
which is well recovered in the multi-stream approach.
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FIGURE 3. Top: time evolution of the most unstable plasma mode (here the mode 2) on a
logarithmic scale obtained by the multi-stream code with one ‘stream’. The curve exhibits a
growth rate close to ηnum/ωp � 0.406 in good agreement with the expected value predicted by
the linear theory (for a cold plasma). Bottom: the phase-space representation of the electron
distribution function at two different instants. The arrow indicates the first time close to the
saturation where the distribution is plotted (at left).

4.3. The case of the current filamentation instability
The following example demonstrates the possibility of describing the CFI (Fried

1959) with a limited number of streams. Here, two streams are sufficient for an
accurate description of the nonlinear saturation process of a CFI instability produced
by two counter-streaming electron (physical) beams.

Potential applications include laser–plasma interaction (Silva et al. 2002; Tzoufras
et al. 2006; Okada & Ogawa 2007), astrophysics (Tautz & Schlickeiser, 2005a,b;
Bret et al. 2013; Petersen, Glenzer & Fiuza 2021) and gamma-ray burst sources
(Medvedev & Loeb 1999; Medvedev 2006).

The initial distribution condition is composed of two Maxwellians with beam
momenta centred at C1/mc = −0.9 and C2/mc = 0.9. Here, we focus attention on
purely transverse initial perturbation (on the magnetic Bz component) with wavevec-
tor of type k0 = k0ex , i.e. along the x direction (here the longitudinal direction),
perpendicular to the two counter-streaming electron beams. We have chosen a
symmetric case corresponding to beam densities of n01 = n02 = 0.5n0. Only the fun-
damental mode (for the magnetic field) k0c/ωp = 1 is excited. The corresponding
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FIGURE 4. Time evolution of the normalised magnetic field component (eBz/mωp)(x =
(Lx/2), t), in logarithmic scale. As expected, the magnetic field is amplified and the linear
growth rate is found to be in good agreement with the theoretical value predicted by the linear
dispersion relation of CFI.

initial magnetic field is then given by eBz/mωp = (eB0/mωp) sin((k0c/ωp) (xωp/c))
in normalised units, with an amplitude perturbation of eB0/mωp = 10−4. Electron
plasma temperature is kBTe = 2 keV, in both the px and py directions in the
VLEM1D2V version, while in the reduced model only the px direction has a
non-zero temperature. We keep the same temperature in the reduced model.
The phase-space sampling used here in the VLEM1D2V version is Nx Npx Npy

= 256 × 2572, i.e. 1.69 × 107 grid points or ‘particles’. The time step used in both
simulations is 
tωp = 0.003. The phase-space sampling, used in the multi-stream
simulation, is somewhat higher, with Nx Npx corresponding to 5132 grid points.

First, in order to obtain an accurate estimation of the growth rate of the instability
in the linear phase, we have solved, for the corresponding physical parameters of
simulation, the linear dispersion relation obtained directly from the multi-stream
model which reads as in the fluid approximation(

1 −
Ns∑
j=1

ω2
pj

ω2Γ0 j

)(
−ω2 + k2c2 +

Ns∑
j=1

ω2
pj

Γ 3
0 j

+ k2c2

ω2

Ns∑
j=1

ω2
pj

Γ 3
0 j

C2
j

m2c2

)

= −k2c2

ω4

(
Ns∑
j=1

ω2
pj

Γ 2
0 j

C j

mc

)2

, (4.3)

where Γ0 j =
√

1 + (C2
j /m2c2). In figure 4, we present the time evolution of the com-

ponent (eBz/mωp)(x = (Lx/2), t) of the magnetic field, measured at half of the
box length, in a logarithmic scale. As expected, the magnetic mode is unstable and
grows with a linear growth rate of ηnum/ωp � 0.448 ± 0.003, in good agreement with
the theoretical value of ηth/ωp = 0.450, for a value of kc/ωp = 1, obtained by solv-
ing (4.3). Indeed the magnetic energy shows the same behaviour in the full kinetic
VLEM1D2V model, exhibiting the same growth rate (not shown here).
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FIGURE 5. Representation of the distribution function in the x−py phase space (top) and in the
x−px phase space (middle) using the full kinetic VLEM1D2V code. In the bottom frame, the
corresponding x−px phase-space representation of the sum of the streams in the case of CFI.

Figure 5 shows the behaviour of electrons, respectively, in the x−py and x−px

phase space in the top and middle frames using the full kinetic VLEM1D2V code.
The distribution functions have been averaged over the lacking dimension, i.e. here
in the px and py direction, respectively.

The corresponding numerical results obtained from the reduced multi-stream code
are shown in the bottom frame in figure 5, at the same time tωp = 27, during
the saturation regime. In order to make a direct comparison in the x−px phase-
space plane, we have made the sum of the different bunches

∑
j=1,2 f j . Clearly, the

wave–particle dynamics (trapping and acceleration) is correctly described in the
reduced model, even with just two ‘streams’: the detailed mechanism of plasma
wave breaking is identical in both simulations.

We clearly see that the behaviour of f in the transverse phase space, i.e. in x−py ,
shows that the different particle streams responsible for CFI keep a temperature
quite close to the temperature given with the initial condition, despite the appearance
of an inhomogeneous structure in f̃ (x, py, t) = ∫ f dpx . It can be also noted that the
linear stage of CFI (so as the classical temperature-driven WI) does not depend on
the heat flux term (Sarrat, Del Sarto & Ghizzo 2016). These features of the CFI
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may thus explain why only two streams ultimately prove sufficient to recover, with
a high degree of accuracy, the characteristics of CFI both in the linear regime and
in the nonlinear regime of the instability.

4.4. The case of the Weibel instability
We now briefly illustrate the physical mechanism for the thermal anisotropy-driven

WI (Weibel 1959; Morse & Nielson 1971), in a 1-D configuration space. Weibel
instabilities are encountered in laser–plasma interaction in the relativistic regime
(Silva et al. 2002; Okada & Ogawa 2007; Petersen et al. 2021), in astrophysics
(Califano, Pegoraro & Bulanov 1997; Fonseca et al. 2003; Schaefer-Rolffs, Lerche
& Schlickeiser 2006; Schaefer-Rolffs & Tautz 2008; Lazar et al. 2009; Grassi et al.
2017; Schoeffler et al. 2016; Schlickeiser 2004; Schaefer-Rolffs & Schlickeiser 2005)
and collisionless shocks in astrophysics (Medvedev & Loeb 1999; Medvedev 2006;
Park et al. 2015).

We first carry out a VLEM1D2V simulation of WI, using as initial condition
a Maxwellian distribution function with a temperature anisotropy corresponding
to kBTx = 1 keV and kBTy = 50 keV along the longitudinal px and perpendicular py

components, respectively. We first consider a single unstable mode k0. The numerical
space domain, in dimensionless units, is given by Lx = 2π/k0. Here, we choose
k0c/ωp = 1.75. We perturb the system by a magnetic field term δBz = B0 sin k0x
with eB0/mωp = 10−4 as initial amplitude. The phase-space sampling for the full
kinetic VLEM1D2V code is Nx Npx Npy equal to 2563, and we choose a time step of
�tωp = 0.005.

The introduction of a small perturbation of the magnetic field leads to the sepa-
ration of the currents in space, thereby producing the amplification of the magnetic
field. Thus, both currents and magnetic fields increase exponentially. Indeed it is
these alternating currents that drive the instability and lead to the complex ‘Y’ shape
of the distribution function met in the x−py phase space, already observed in Vlasov
simulations in Ghizzo (2013b).

In figure 6, the plots of the electron distribution function in the x−px and x−py

phase space are shown in the top frame and in the bottom frame, respectively, at
time tωp = 71, i.e. in the saturation phase of WI. Although the distribution exhibits a
complex shape in the x−py phase space, we see that the multi-stream code is able to
recover the dynamics of f in the longitudinal x−px phase space, even with a small
number of ‘numerical streams’ (five here). It is clear from the plot of f in x−py that
the dynamics of the distribution results from a separation of the electron population
into two kinds of ‘bunches’ of particles linked to the separation of the currents.
These particle bunches seem to be linked directly to the property of invariance of
the canonical momentum in the perpendicular direction. The results of the nonlinear
VLEM1D2V simulations show not only that the nonlinear saturation is governed
by strong magnetic trapping as expected, but also that the concept of ‘stream’ is
important in WI.

Because we want to compare the case of the WI driven by a temperature
anisotropy with the multi-stream code, we need to know precisely how we may
reintroduce the concept of ‘temperature’ along the ‘lacking’ py variable. This task
is made easier by considering the equivalence in the sense of the moments of the
distribution function or, in other words, by looking at the equivalence in the fluid
momentum sense between the reduced multi-stream distribution and a continuous
distribution function (see also Ghizzo et al. (2017) and Del Sarto et al. (2024) for
the non-relativistic case).
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FIGURE 6. Illustration of the phase-space representation of the distribution function in the
x−px plane (top) and in the x−py plane (bottom), obtained from the simulation of WI car-
ried out using the VLEM1D2V code. Note the appearance in the dynamic of f of two kinds
of ‘anti-symmetric’ coherent structures in the bottom panel. The plots have been realised by
averaging the distribution on the lacking variable (on py and px for the top and bottom panels,
respectively).

Let us now consider a Maxwellian distribution FM( p) of thermal veloc-
ity vth,y along the py coordinate. By defining the averaged quantity h(py) =∫

FM(px , py)dpx , we can write the h function in form h(py) =∑+Ns
j=−Ns

α jδ(py − C j),
i.e. in the form of 2Ns + 1 ‘streams’, where the coefficients α j and C j allow one to
rebuild the shape of the distribution in the py direction and to recover the concept
of temperature Ty (Inglebert et al. 2011; Ghizzo & Bertrand 2013). We may define
the 2n moment of h(py) as∫ +∞

−∞
p2n

y h(py)dpy =
+Ns∑

j=−Ns

α j C
2n
j . (4.4)

By assuming that the j th stream verifies the symmetry properties C− j = −C j and
α− j = α j for j = 1, . . . , Ns , together with the choice C0 = 0, (4.4) leads in the case
of a Maxwellian distribution to

2
+Ns∑
j=1

α j C
2n
j = (2n − 1)!! (kB Tym

)n
. (4.5)
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Equation (4.5), together with the normalisation condition
∑+Ns

j=−Ns
α j = 1, allows us

to reconstruct the distribution in the form of 2Ns + 1 streams whose distribution
along the py direction can be used to describe any given type of Ty temperature
distribution. In the general case, (4.5) has the form of a Vandermonde system, which
can become ill-conditioned for large values of the number of streams. Following
Inglebert et al. (2012b), a more convenient way consists of a regular sampling of
the py axis, for an equispaced set of C j values. For instance for Ns = 2 (i.e. five
streams), we have to solve the following reduced system:

α0 + 2α1 + 2α2 = 1, (4.6)

2α1C
2
1 + 2α2C

2
2 = m2v2

th,y, (4.7)

2α1C
4
1 + 2α2C

4
2 = 3m4v4

th,y, (4.8)

where v2
th,y = kBTy/m. By imposing C0 = 0, C1 = mvth,y and C2 = 2mvth,y , we obtain

α0 = 1/2, α1 = 1/6 and finally α2 = 1/12.
A comparison between both VLEM1D2V and the multi-stream codes (using five

‘streams’) has already been presented in figure 4 of Inglebert et al. (2012b). For the
multi-stream code, we have reproduced two simulations using the same phase-space
sampling of Nx Npx of 512 × 1024 grid points (with the same time step of �tωp =
0.0025), by changing the number of streams. Numerical simulations using the multi-
stream code have been carried out using identical parameters of k0, kBTx = 1 keV
and kBTy = 50 keV as previously used in the full kinetic treatment.

The temporal evolution of the magnetic field component eBz/mωp(x = (Lx/2), t),
measured at half the box length, is shown in figure 7 in the case of just three
streams (top) and then seven streams (bottom). The curves show no major differ-
ence in the linear regime of the instability, and both vary with the expected growth
rate of ηnum/ωp � 0.40 ± 0.003, in perfect agreement with the theoretical predic-
tions and expected results of Inglebert et al. (2012b), demonstrating the model
convergence with a fairly modest number of 5–7 streams. Remarkably, the linear
phase is perfectly described with just three streams. However, differences appear
in the saturation regime, notably in the oscillatory behaviour of the magnetic field,
characterised by field oscillation at the bounce frequency induced here by mag-
netic trapping. This frequency is better described in the multi-stream model, which
requires the selection of at least five streams.

Last but not least, another point deserving some comments concerns the impor-
tance of the invariance of the canonical momentum in the complex shape of f ,
for instance observed in figure 6 (bottom panel). First, a ‘reduced’ Hamiltonian
analysis is fundamental in connection with the behaviour of the distribution func-
tion. Figure 8 highlights the importance of the trapping process for certain values
of the canonical momentum. The top panel shows the behaviour of the distribu-
tion function, obtained from the simulation based on the full kinetic approach (the
VLEM1D2V code). At the top, the distribution function f (x, px , py = py,th), i.e.
plotted for a value of the py variable close to the electron thermal momentum
(with vy,th �√kBTy/m ∼ 0.312c and py,th = mγthvy,th, γth being the Lorentz factor
corresponding to the thermal velocity), is presented at time tωp = 71. The middle
and bottom frames in figure 8 correspond, respectively, to plots of the five-stream
and seven-stream models, for the stream corresponding to the same value of the
momentum py = C j − eAy. This clearly shows that the complex behaviour of the
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FIGURE 7. For the study of WI, plot of the magnetic field eBz(x = (Lx/2), t)/mωp in a log-
arithmic scale versus time, in the case of the multi-stream code: three streams (top) and seven
streams (bottom). The linear WI regime is perfectly described in both cases, although some
differences persist in the WI saturation regime. The bounce frequency is well described from
five streams upwards. The case of seven streams is similar to that of five streams, showing that
convergence is obtained for a low number of streams.

distribution function in the x−py plane is intrinsically linked to the overall dynamics
of the distribution, and in part to the magnetic trapping process of f j . We can see
that the main characteristics of the distribution function are perfectly recovered for
a relatively small number of streams.

However, some differences are observed in the representation of the distribution
function in the x−px phase space. The representation of the central trapping region
(O-point) is slightly distorted in the case of the multi-stream model (middle and
bottom plots in figure 8), compared with the plot obtained with the fully kinetic
code (at the top). Regarding the X-point, at the centre of the plots in figure 8, an
increase of ‘noise’ is observed near the X-point, which can lead to an oscillatory
behaviour of the distribution function and the appearance of negative values in the
distribution function (a numerical artefact, quantitatively negligible, produced by the
semi-Lagrangian method). However, these negative values are observed in regions
where the density of the distribution function remains very low (of the order of 10−5

in absolute values), and their absolute value decreases when seven streams are used
(see the bottom plot).

The last plot shows the formation of ‘arms’ induced by the rapid rotation of the
trapping structure around itself. The trapping mechanism is primarily magnetic in
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nature. The rotation of the central vortex (trapping structure) induces the formation
of two rotating arms that become increasingly thin as they rotate, reminiscent of the
filamentation process of the distribution function in velocity space. Filamentation
leads to the creation of a finer structure in velocity space and then in phase space.
While the filamentation process of f is generally well described in Lagrangian codes
such as PIC, it can pose a significant challenge in an Eulerian approach. The multi-
stream technique allows for a significant reduction in computation time (of the
order of Npy /Nstream, i.e. the ratio between the sampling used for the description
in the py momentum space and the number of streams, here close to 256/7 ∼ 36).
This reduction in the computation time can be used to increase the sampling of
the distribution function in phase space (the sampling is multiplied by four in the
multi-stream model), while maintaining a reasonable CPU time. Therefore, the use
of a semi-Lagrangian approach, coupled with the Hamiltonian reduction technique,
offers a modelling tool capable of finely tracking this filamentation process.

Thus the reduced model can provide a deeper physical insight, depending on
the kind of model simplification that has been performed. By reducing the gen-
eral solution to a subclass of exact solutions of the Vlasov–Maxwell system based
on the invariance of the generalised canonical momentum, the driving idea is to
reduce the complexity of the physical problem, not only from the mathematical
and numerical, but also from the conceptual point of view, so that the funda-
mental ingredients and mechanisms at play can be better recognised. Thus, the
multi-stream model is well suited to describe the full nonlinear dynamics of a
plasma in the presence of Weibel-type instabilities: the conservation of the canon-
ical momentum appears to play a fundamental role in the saturation scenario of
the instability due to magnetic trapping. Additional features related to nonlin-
ear charge-separation effects associated with the linear growth of WIs have been
highlighted through the multi-stream representation (see Del Sarto et al. (2024)
for more details).

4.5. The case of the oblique current filamentation instability
The example here discussed corresponds to the case of so-called ‘oblique’ CFI

modes. Choosing the k wavevector in the (x, y) plane, with two electron (physical)
beams always positioned along the py direction, leads to a kind of coupling between
CFI, described in § 4.3, and the two-stream instability (TSI), of a purely electrostatic
nature, which requires modelling in two spatial dimensions. In addition, this case
provides a test case for evaluating the effectiveness of the various 2-D advections,
X , Y and R which are made in the respective x−px , y−py and finally px−py spaces.

4.5.1. The electrostatic–electromagnetic nature of the initial perturbation
Guided by the linear analysis of the dispersion relation of oblique Weibel-type modes
reported in Ghizzo et al. (2020a) and Ghizzo & Del Sarto (2020b), we start with a
simulation carried out with the VLEM2D3V code for the study of the OI in the weak
relativistic regime. The system is initialised by two symmetric electron beams of nor-
malised velocities β1 = vy1/c � −0.67 and β2 = vy2/c � 0.67, counter-propagating in
the y direction. Charge and current neutrality are initially ensured by imposing
n1 + n2 = n0 and n1β1 + n2β2 = 0 for all simulations corresponding to the non-
propagative branch of the OI: the box lengths are Lx = 4.088de and L y = 2.513de

(where de = c/ωp). A sampling of the distribution function in the configuration space
is chosen to be Nx Ny = 2562, i.e. the simulation uses a grid spacing of 
x = 0.0160de

and 
y = 0.00985de. The most unstable mode (determined via the linear dispersion
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FIGURE 8. Representation of the distribution function in x−px phase space in the case of
WI. Top: plot obtained from the VLEM1D2V code for a population of particles positioned at
py ∼ −2pth,y ; middle: plot of the localised stream at py = C−2 − eAy = −2pth,y − eAy from
the multi-stream code with five streams; bottom: plot of the equivalent stream obtained from
the multi-stream code with seven streams. Temperatures are kBTx = 1 keV and kBTy = 50 keV,
respectively, in the px and py directions.

relation in Ghizzo et al. (2020a)) is excited with kxde � 3.05 and kyde = 5, which
correspond to Fourier modes (nx , ny) = (2, 2). The initial distribution function is
composed of two drifted Maxwellian distributions f (x, p, t = 0) =∑ j=1,2 n j F0 j( p),
where

F0 j = 1(
2πm2c2β2

th

)3/2 exp

(
− p2

x + (py − p j

)2 + p2
z

2m2c2β2
th

)
, (4.9)

and where βth =√kBTeq/(mc2) is the thermal velocity normalised to the light velocity

c, p j = mΓ0 jβ j c and Γ0 j = 1/

√
1 − β2

j the corresponding Lorentz factor. Here we
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choose, for each propagating electron beam, the same temperature of kBTeq = 6 keV.
The symmetry of the temperature of the beams is a further requirement in order to
afford the decoupling of electrostatic and electromagnetic modes (see Sarrat et al.
(2016) for more details). The distribution function is perturbed by purely transverse
magnetic fluctuations introduced in the z component of the magnetic field in the
form of a sine perturbation δBz = δB0 sin(nx
kx x + ny
ky x), allowing one to excite
the most unstable mode of wavevector components (kx , ky, 0) with a perturbation
amplitude of eδB0/mωp = 0.005. A sampling of Npx Npy Npz of 643 points was used
in the momentum space and the time step is 
tωp = 0.008.

The multi-stream model is integrated by solving the reduced Vlasov equations
given in (3.45), with five streams, coupled in a self-consistent way with (3.46) and
with the Maxwell equations. For the initial distribution function, we consider a
similar case to that previously studied in the VLEM2D3V code. For modelling a
temperature in the pz direction, we again use (4.6). In the case of the multi-stream
model, a small perturbation is applied on both transverse magnetic components in
the following form:

Ex = −kyδB0ωp

k2
x + k2

y

sin
(
kx x + ky y

)
, Ey = kxδB0ωp

k2
x + k2

y

sin
(
kx x + ky y

)
,

Bz = δB0 sin
(
kx x + ky y

)
. (4.10)

The choice of this perturbation is due to the fact that, for oblique propagation with
respect to the beams, the CFI, quasi-static if excited alone with a perpendicular prop-
agation, couples with the TSI by becoming propagative: both Ex and Ey components
are thus involved, although only the component Bz of the magnetic field grows in
time.

The magnetic field generated in the purely electromagnetic CFI is quasi-static, as it
is spatially localised and typically does not propagate. When the initial perturbation
is strictly perpendicular to the direction of the antiparallel electron beams and the
beams are symmetric, the instability remains purely electromagnetic. In this case, the
linear growth can be entirely decoupled from electrostatic fluctuations. However,
if the wavevector of the perturbation becomes oblique to the orientation of the
beams, the CFI couples with the electrostatic TSI and leads to the so-called OI. This
coupling introduces a time-dependent characteristic to the electrostatic mode. As a
result, the combined CFI–TSI mode imparts a propagative nature to the magnetic
field perturbation that gives rise to a resonant character of the instability. Note
that, in the considered geometry, the only electromagnetic component of the OI is
related to the perturbation on Az. Therefore, the electromagnetic perturbation on the
component Ez is completely decoupled from the electrostatic fluctuations associated
with Ex and Ey.

Thus, the manner in which the initial perturbation is introduced into the system
can lead to a transient regime that varies in duration in the multi-stream code. The
length of the transition phase is highly dependent on the accuracy with which the
unstable eigenmode is represented. While a simple perturbation of the magnetic
field components is sufficient to initiate the instability in the VLEM2D3V code, a
coherent perturbation must be introduced in the multi-stream code, affecting both
the electromagnetic fields and the vector potential, as well as the distribution func-
tion. This difference is related to the construction of the multi-stream code, which
somewhat ‘decouples’ the dynamics of the distribution function f obtained from
the advections, as described by (3.51)–(3.52), and the vector potential calculated

https://doi.org/10.1017/S002237782510072X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782510072X


Journal of Plasma Physics 35

from equation (3.46), from the behaviour of f described by the global rotation
in (3.53).

Concerning the transverse electric components, a similar perturbation has been
introduced in the form

Ez = δE0 sin
(
kx x + ky y

)
, Bx = kyδE0

ω0
sin
(
kx x + ky y

)
,

By = −kxδE0

ω0
sin
(
kx x + ky y

)
, (4.11)

where ω2
0 = ω2

p + (k2
x + k2

y)c
2. A corresponding perturbation is added in the z

component of the vector potential:

Az = −δE0

ω0
cos
(
kx x + ky y

)+ δE0

ω0
× 10−3

15∑
nx ,ny=1

sin(nx
kx x + ny
ky y), (4.12)

together with a small-amplitude perturbation to excite a broad spectrum of unstable
modes, characterised by (4.12). Concerning the distribution function, both the per-
turbation in density and momentum are introduced in a self-consistent way with the
perturbations given on the electromagnetic field components. Thus we have

f (x, p, t = 0) = [1 + δn cos
(
kx x + ky y

)] ∑
j=1,2

n j F0 j

(
px − Px , py − β j cΓ0 j − Py

)
,

(4.13)
where the perturbed (fluid) momenta are Px = (ekyδB0/(k2

x + k2
y)) cos(kx x + ky y),

Py = (ekxδB0/(k2
x + k2

y)) cos(kx x + ky y) and δn/n0 = 0.005, eδB0/mωp = 0.005 and
eδE0/mωpc = 0.05. In (4.12), the quantities 
kx = 2π/Lx and 
ky = 2π/L y are the
fundamental Fourier modes in the x and y directions, respectively. We choose their
normalised values to be 
kxde � 1.53 and 
kyde = 2.50. The perturbation is applied
to the mode (nx , ny) = (2, 2), which corresponds to the wavevector components
kxde � 3.05 and kyde = 5. The phase space sampling is Nx Ny = 2562 and Npx Npy =
1282, the time step used in simulations is 
tωp = 0.005.

4.5.2. Nonlinear saturation processes
The CFI is the main basic plasma process which generates a strong magnetic field Bz.
In its oblique version (OI), studied here, a coupling with the electrostatic TSI is also
possible, allowing also for the growth of an electrostatic component of the electric
field. This configuration corresponds to a 2-D system, in which the kinetic energy
density εK = (1/Lx L y)

∫
d2x

∫
d3 p mc2(γ − 1) f (x, p, t) is converted into magnetic

energy density εm = (1/Lx L y)
∫

d2x(1)/(2)ε0c2|B|2 and electric energy density εe =
(1/Lx L y)

∫
d2x(1)/(2)ε0|E|2. From a numerical point of view, the various energy

densities are normalised to n0mc2.
In figure 9, we have superimposed the time evolution of the magnetic energy in a

logarithmic scale obtained from the VLEM2D3V code (in black) and that obtained
from the multi-stream code (in blue). The curves show the same growth rate, close
to ηnum/ωp = 0.405 ± 0.003, in agreement with the theoretical maximum growth rate
ηth/ωp ∼ 0.40 predicted by the dispersion relation obtained by Ghizzo et al. (2020a).
The curves show a time delay in the start-up of the instability (close to the time
difference tdelayωp ∼ 60), with the OI in the VLEM2D3V code starting later. This
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FIGURE 9. Time evolution of the z component of the magnetic energy εm,z , in a logarithmic
scale, in the case of an OI with a hybrid character, both electromagnetic (CFI) and electrostatic
(TSI), for a system consisting of two electron counter-streaming beams. The black curve corre-
sponds to the VLEM2D3V code, while the blue curve was obtained from the multi-stream (ms)
code (with five streams). Physical parameters are identical in both simulations.

time delay is attributed to a difference in the perturbations introduced in the two
different numerical codes.

In both numerical approaches (fully kinetic with the VLEM code and reduced
with the multi-stream code), the Vlasov equation is solved using a semi-Lagrangian
scheme, which exhibits a very low level of numerical noise. The start-up of the
instability is highly sensitive to the type of perturbation initially introduced. If the
component of the vector potential Az is not initially perturbed, the code remains
perfectly stable over very long time scales.

Thus, the multi-stream code requires the introduction of a coherent perturbation
not only in the components of the electromagnetic fields (E, B) and the vector
potential A, but also in the distribution function, which accounts for perturbations
in both density and velocities induced by the initial electromagnetic field. Such a
perturbation is necessary to initiate the WI, as the code begins in a noiseless state
with the electrostatic and electromagnetic components of the electric field being
decoupled from the outset. In contrast, the VLEM2D3V code does not require such
modifications to the initial conditions; only a perturbation in the magnetic field com-
ponent is necessary. However, we subsequently introduced the same modifications
in the VLEM2D3V code to facilitate the comparison shown in figures 15–19.

Figure 10 shows the temporal evolution of the magnetic energy εm,z calculated
from the Bz component (top) as well as the evolution of the average density (bottom).
A perturbation is introduced in the components of the electromagnetic field, similar
to the simulation case shown in figure 9.

Note that this kind of perturbation in the multi-stream code does not allow a
fast onset of the OI, because of the reasons provided in § 4.5.1, related to the way
the numerical integration is performed. In this simulation case, the particle density
is very well conserved (the relative density variation is here limited to 10−8). The
simulation case depicted in figure 10 shows the excellent stability of the code, since
the initial metastable equilibrium condition is preserved up to about 105 iterations.
The variation (∼10−8) of the relative density begins at about tωp � 200 due to the
onset of the instability from a long transient time (the given perturbation allows,
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FIGURE 10. An example of the OI in which the coupling between CFI and TSI does not take
place. The initial perturbation is introduced only in the fields but not in the distribution function:
because of the way the algorithm advances quantities, this induces a much longer transient
before the OI eigenmode is formed and starts growing. Therefore, for a long time interval the
system remains stable. Top: the time evolution of the z component of the magnetic energy εm,z .
Bottom: the time evolution of the mean density which exhibits a good conservation.

nevertheless, the onset of a small-amplitude OI). The density conservation could
be in principle improved by increasing the refinement of the phase-space mesh.
However, its imperfect conservation cannot be avoided, since it is mostly due to
the open boundary conditions in the momentum space: this, combined with the
broadening of the distribution function (visible, for the case of an OI, on the px

component in the bottom frame of figure 12), unavoidably makes the particles on
the tail of the distribution ‘escape’ from the simulation box.

When, instead, the initial perturbation is introduced in the multi-stream model
on both the electromagnetic field components and the initial distribution function
(to ensure in-phase start-up of the electromagnetic field and vector potential), the
OI eigenmode develops over a much shorter transient time. However, the instabil-
ity growth rate remains unchanged, and the magnetic field fluctuation level and
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FIGURE 11. Top: time evolution of the mean density (total mass) obtained in the case of the
multi-stream (ms) code (with five streams) using the numerical scheme shown in figure 2,
based on the alternating use of 2-D advections and a time-splitting scheme. Bbottom: the
corresponding total energy versus time. Note that the average relative density is kept at
(1.005 − 1.000)/1 = 0.5 % for 32 000 iterations, i.e. a simulation time of tωp � 160.

magnetic bounce frequency remain similar in both numerical approaches, even
in the instability saturation regime. It should also be noted that the polarisa-
tion of the electromagnetic wave remains quasi-linear, with a dominant TM mode
component.

Figure 11 shows the conservation of mass and energy in a simulation involving
2-D advections. The relative total mass is conserved within (1.005 − 1.000)/1 =
0.5 % when applying advection methods X (x, px), Y (y, py) and R (px , py). In
contrast, total energy conservation is afforded within a relative error of (0.3580 −
0.3568)/0.3568 � 0.3 % over 32 000 iterations, i.e. a simulation time of tωp � 160
(for a time step of 
tωp = 0.005). However, mass conservation is less effective com-
pared with the results shown in figure 10. This can be attributed to the instability
causing significant heating of the distribution function, which broadens the distri-
bution in momentum variables px and py as observed in figure 12. A much better
conservation of density would require an increase in the size of the simulation box in
momentum space, thereby enhancing the sampling of the distribution function with
respect to the momentum coordinates. While this is entirely feasible, it necessitates
an increase in CPU computation time. An alternative can be to employ an adap-
tive mesh refinement technique by incorporating grid refinement strategies as in
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FIGURE 12. Representation of the distribution function in the x−px phase space. Top: plot of
the mean distribution f̃ (x, px ) = ∫ f (x, y = L y/2, p, t)dpy dpz , obtained from the full kinetic
VLEM2D3V code. The colour plots in the middle and bottom frames correspond to the distri-
bution of the central beam (positioned in pz ∼ C0 = 0) and the last stream obtained from the
multi-stream code (with five streams). Note that the last stream (bottom), corresponding to a
momentum of pz ∼ 2pz,th (twice the thermal momentum), is made up of an electron population
of lower density. Thus, the multi-stream (ms) code is perfectly suited to a fine description of
wave–particle interaction, including in the tail regions of the distribution function.
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Antoine et al. (2025), so as to reduce computational time. In figure 12 plots
of the distribution function f̃ (x, px) = ∫ f (x, y = L y/2, p, t)dpy dpz are presented
showing when the saturation regime is well established.

At the top of figure 12, the plot of the distribution function corresponds to the
result obtained with the fully kinetic VLEM2D3V code, which accounts for the
complete dynamics of f in momentum space (i.e. there are no ‘streams’ here). This
colour plot corresponds to the time tωp = 400, when the saturation of the OI is well
established. The middle panel highlights a similar dynamics obtained with the multi-
stream code at an equivalent time (i.e. when the instability has reached the saturation
regime). This plot highlights the dynamics of f for the central stream, specifically
for the population of electrons that belong to the core of the distribution (with a
momentum pz ∼ 0). In the saturation regime, the dynamics of f is characterised
by the emergence of two magnetic trapping structures that rotate one around the
other. As a result, the distribution function experiences significant broadening in px ,
indicative of a heating process.

The multi-stream model provides a detailed description of wave–particle inter-
actions, even in regions of phase space with very low densities. An example is
illustrated in the bottom plot of figure 12, which shows the behaviour of the distribu-
tion function for a momentum value of pz ∼ 2pth,z (twice the thermal momentum),
corresponding to the distribution function of the fifth ‘stream’ (with an initial density
much lower compared with the central stream). Such an analysis would require a
very large number of ‘particles’ in a PIC code and/or very high sampling of f in
momentum space in the case of a direct approach using the VLEM2D3V code. It is
observed that the trapping process, which is of a mixed nature – both electrostatic
(induced by TSI) and magnetic (induced by CFI) – is more significant in regions of
very low densities.

The bottom frame in figure 12, shows the corresponding behaviour of the dis-
tribution function f̃ j=2(x, px) = ∫ f j=2(x, y = L y/2, p, t)dpy , averaged over the py

component, obtained from the multi-stream code, with five streams. It can be noted
that the actual density of the distribution function, at a location of pz ∼ 2pz,th in
momentum space, must be corrected by the normalisation factor α2 = 1/12 (recalling
that α0 = 1/2 and α−1 = α1 = 1/6 and α−2 = α2).

In the case where the number of streams in the code is increased, for example
to 2Ns + 1 = 11, this normalisation factor α5 becomes of the order of 10−5 for the
eleventh stream, which corresponds approximately to a position of the last stream at
pz = 5pz,th, meaning it is in the tail of the Gaussian distribution. This demonstrates
that it is possible to describe, at a lower CPU cost, the wave–particle interac-
tions occurring in regions of very low density, provided that one of the streams
is positioned in the tail of the Gaussian distribution.

The plots exhibit a structure characterised by the appearance of two vortices, due
to strong magnetic trapping, and a heating process in the longitudinal direction
(according to momentum along px ). Note, in the lower plot in figure 12, that the
heating process is slightly more pronounced for a population of electrons chosen at
the value of pz ∼ 2pz,th. These results demonstrate that the multi-stream model can
be used to recover the electron dynamics during OI at a lower numerical cost.

The reconstruction of the global distribution function from the five streams does
not allow for a precise determination of the nature of wave–particle interactions.
For example, the mechanism of saturation of CFIs is often induced by the forma-
tion of magnetic trapping structures. Such structures can appear in the tails of the
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distribution function at very low densities: they represent information that is often
‘hidden’ in the global distribution function and is difficult to observe directly. Thus,
the early PIC simulations by Morse & Nielson (1971) highlighted magnetic trap-
ping structures through the implementation of a type of diagnostics that utilises the
invariance of the canonical momentum, which allows for the selection of the ’pop-
ulation’ of super-particles involved in trapping. An example of how magnetic and
electrostatic trapping differently affect streams of particles corresponding to differ-
ent values of the momentum was shown in Del Sarto et al. (2024) (see e.g. figure 15
therein). In general, the multi-stream technique allows for an easier characterisation
of the role played by different types of particle trapping, thanks to having partitioned
the distribution into ‘streams’. The actual reconstruction of the streams is used in
the code only for determining source terms.

4.5.3. Coupling mechanisms between electrostatic and electromagnetic modes
A multiple modelling approach, utilising both numerical experiments conducted with
the fully kinetic code VLEM2D3V and a ’simplified’ multi-stream code, has illumi-
nated various coupling scenarios between electrostatic and electromagnetic modes
that play a significant role in numerous instabilities, including CFI, TSI, Weibel and
oblique modes. The fluid approach, which incorporates the dynamics of the pres-
sure tensor, has also proven particularly effective for this type of analysis. Several
coupling mechanisms have been identified:

(i) A first type of linear coupling was demonstrated by Sarrat et al. (2016) in the
context of studying a CFI-type instability induced by two counter-propagating
electron beams. A coupling between electrostatic modes (related to TSI) and
electromagnetic modes (related to CFI) arises due to finite temperature effects,
which can be induced, for example, by an anisotropy between the temper-
atures of beams. The use of a multi-stream model is of particular interest
as it helps to better understand the origin of the coupling. The multi-stream
model explains the origin of the linear coupling between purely electromag-
netic and electrostatic modes, which had been already noted and attributed to
kinetic effects in Bret, Gremillet & Bellido (2007) and in Sarrat et al. (2016)
using a fluid approach including the full-pressure tensor dynamics. By intro-
ducing the (non relativistic) pressure tensor and the heat flux tensor in the form
π = nm(〈vv〉 − uu) and Q = nm〈(v − u)(v − u)(v − u)〉, respectively, the den-
sity n, the mean velocity u and the pressure tensor π satisfy the first three
Vlasov moment equations:

∂n

∂t
+ ∇ · (nu) = 0, (4.14)

du
dt

= ∂u
∂t

+ u · ∇u = e

m
(E + u × B) − ∇ · π

nm
, (4.15)

∂π

∂t
+ ∇ · (uπ) + ∇u · π + (∇u · π)T = e

m
[E + π × B + (π × B)T ] − ∇ · Q,

(4.16)
where the superscript T expresses matrix transpose and the 〈·〉 operator an
average in the velocity coordinates v with respect to the electron distribution
f (x, v, t). By incorporating the dynamics of the pressure tensor into a fluid
model, it becomes possible to apply a large-scale hydrodynamic approach to
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fully three-dimensional plasmas, even in scenarios where kinetic effects due to
pressure anisotropy become significant. This enhanced fluid model serves as a
viable alternative to more computationally intensive kinetic simulations (such
as PIC or Vlasov methods) in multi-scale collisionless plasma regimes, where
the interactions between large spatial scales and microscopic dynamics can-
not be treated separately. Such an approach has been recently implemented
in nonlinear numerical investigations by Kuldinow & Hara (2025). The full-
pressure tensor equation, which corresponds to the second-order moment of
the Vlasov equation, can be closed by completely neglecting the heat flux
term during the linear stage. In particular, the dynamics of the pressure
tensor is described here by (4.16), which is a spatio-temporal equation that
takes into account the temporal evolution of the pressure tensor, particularly
through the introduction of the second term in (4.16) and it is as usually
computed by taking the second-order anisotropic velocity moment of Vlasov
equation. The multi-stream model, through the data of the components of the
Π tensor, provides insights into the dynamics of the tensor in the relativistic
regime.

(ii) A second-order coupling mechanism, highlighted by Del Sarto et al. (2024),
results from a nonlinear coupling between electromagnetic and electrostatic
fluctuations, that leads to the emergence and amplification of electrostatic
modes for wavevectors ke = 2kem , where kem is the wavevector associated with
the electromagnetic field. This type of coupling can occur also in the presence
of multiple instabilities, such as the coupling between WI and CFI, which can
arise even during the linear phase of the instability. This coupling manifests
itself in the linear stage of these instabilities. It is physically due to the fact
that electrons moving in a non-homogeneous magnetic field bend their orbits
around magnetic maxima by reducing their own gyration radius, as the mag-
netic field increases. The electron density then increases in the corresponding
region, where the initial charge neutrality is thus violated (as the larger inertia
of ions impedes them in responding on comparable time scales).

(iii) Finally, a significant coupling mechanism was identified by Ghizzo & Del
Sarto (2020b). The use of a fluid model that includes the nonlinear dynamics
of the pressure tensor has revealed the existence of a second ‘low-frequency’
branch in the dispersion relation of an OI (CFI plus TSI). The ‘propagative’
nature of this branch allows these new modes to resonate and be amplified in
the presence of developed turbulence. In conventional approaches, the search
for unstable modes in the dispersion relation of a kinetic plasma relies on find-
ing the zeros of the dispersion relation, an approach that becomes particularly
challenging and complex in the presence of Fried and Conte functions, leading
to the emergence of an infinite number of solutions. A standard technique thus
consists of identifying the most unstable mode for a given wavevector. The use
of a multi-stream model or a fluid model that incorporates the dynamics of
the pressure tensor enables the dispersion relation to be expressed as a poly-
nomial, allowing for the determination of all roots (an example is provided
by (4.3)). This technique has highlighted the existence of a second branch of
unstable modes (the ‘low-frequency’ branch), whose growth rate remains sig-
nificantly similar to that of the ‘high-frequency’ branch. In the presence of
developed turbulence, these low-frequency modes lead to the conversion of
magnetic energy into internal energy, i.e. to a novel heating mechanism – a
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process of energy conversion that remains decoupled from magnetic recon-
nection (MR) processes (this heating mechanism has been observed by Ghizzo
et al. (2023, 2024) in the case of linear polarisation of electromagnetic modes,
i.e. for components of the form (Ex , Ey, Bz), thus excluding any reconnection
process).

In the following section, we explore the possibility of a different type of coupling
between electrostatic and electromagnetic modes, a process dominated by the plasma
self-organisation in connection with MR.

4.6. Multi-stream simulation using five streams: coupling CFI–magnetic reconnection
The last example, which we discuss in this subsection, demonstrates the capabilities

of the multi-stream code to model a case of coupling between OI and WI, in which a
temperature anisotropy is combined with two electron counter-propagating beams.
This last example shows the possibility of the emergence of a MR process, previously
observed by Califano et al. (2001), driven by the plasma self-organisation.

The topological configuration, used here, where the beams are propagating inside
the (x, y) plane and where a MR process takes place, allows us to study the coupling
of OI with MR in presence of a secondary instability, as for instance WI, driven by
a temperature anisotropy with T⊥ = Tz � T‖ = Tx = Ty. The relative importance of
energy conversion and topological change as defining properties of reconnection
and the extent to which they are linked are key issues in MR.

Two simulations have been performed using the full kinetic VLEM2D3V and
the multi-stream code (with five streams) with the same physical parameters as
before: the in-plane temperature is taken identical in all cases and maintained at
kBT‖ = 6 keV, with a perturbation introduced into both the components of the elec-
tromagnetic field and the initial distribution function (perturbed in both density and
velocity). We take a lower level of perturbation in amplitude, i.e. δn/n0 = 0.005,
eδB0/mωp = 0.005 and eδE0/mωpc = 0.005.

The simulation, carried out with VLEM2D3V, uses numerical parameters analo-
gous to the results presented in § 4.5, except for the sampling of Npx Npy Npz = 323

points for representing the distribution function in momentum space, and for values
of the momentum vector included in the intervals |px |, |py|� 3mc and |pz|� 5mc.
A second simulation, for identical physical parameters, has been performed with
the multi-stream code, with five streams, with a higher sampling of Npx Npy = 1282

points and with a time step of �tωp = 0.008.
Identical perturbations have been implemented in both codes, as well as a mag-

netic perturbation term. Here, both OI and WI are initially excited at the same time,
leading to the generation and amplification of an electromagnetic field with two
types of modes: a TM mode, induced by OI, which leads to the amplification of an
electromagnetic wave governed by the (Ex , Ey, Bz) components, in agreement with
the results of § 4.5, and a TE mode, induced by the coupling with WI, of (Ez, Bx , By)
components implicated in the MR process.

Figure 13 shows the dynamics of the magnetic field lines in the plane (x, y), for
the Bx−By components of the magnetic field, as the result of the coupling between
OI and WI. At the top, the reconnection processes in the (x, y) plane are clearly
visible at time tωp = 48 in the plot of the magnetic field lines obtained from the
simulation performed by the VLEM2D3V code. The bottom panel shows the result
obtained from the reduced model at an equivalent time: we observe a very good
agreement between the two models, showing the emergence of an ultrafast process
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FIGURE 13. Illustration of the lines of the components (Bx , By) of the magnetic field in the
(x, y) plane. The curves are plotted during a first MR process in the nonlinear saturation regime
in presence of a temperature anisotropy; the streams have a temperature Tz larger than the paral-
lel temperature. The simulation has been performed using the VLEM2D3V code (top) and the
multi-stream model with five streams (bottom).

of reconnection of the field lines in the (x, y) plane, induced here by the coupling
between the OI and WI.

Figure 14 shows the dynamics of the magnetic field lines at two later instants,
obtained from the multi-stream code. The density of the field lines is the same as
that used in figure 13. The top panel shows the formation of two chains of mag-
netic islands at time tωp = 155, in the saturation regime, located at xωp/c ∼ 1 and
xωp/c ∼ 3, each exhibiting around 15 reconnection sites. The dynamics of these
chains, however, remains complex and displays an oscillatory behaviour over time.
The chains of islands show a certain stability over time, although there are modu-
lations in the size of the magnetic islands. The magnetic components (Bx , By) are
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FIGURE 14. Nonlinear evolution of the system, showing magnetic reconnection/annihilation
processes, obtained with the multi-stream model. The system is identical to that observed in
figure 13 in the nonlinear saturation regime at later times, in the presence of temperature
anisotropy. About 15 reconnection sites are observed, forming two chains of magnetic islands
(top). The self-organisation of the system leads to processes of merging the islands until the
appearance of two mesoscopic islands; the streams have a temperature Tz larger than the par-
allel temperature. The simulation has been performed using the multi-stream model with five
streams.

amplified through the WI, introduced by an anisotropy in the plasma temperature
in the direction perpendicular to the reconnection plane (in Tz here). Note that both
chains of magnetic islands are almost homogeneous in the y direction.

The bottom panel in figure 14 shows a process of self-organisation of the magnetic
field that leads to the emergence of two large-scale magnetic vortices, occupying the
size of the box. This results from the coupling between the CFI (current-driven
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FIGURE 15. Corresponding behaviours of the z component of the magnetic energy versus time
for the different numerical approaches: the full kinetic VLEM2D3V code (in black) together
with the corresponding multi-stream code (in blue). Top: evolution versus time. Bottom: the
same diagnostic is now presented in a logarithmic scale. We have used five streams in the multi-
stream (ms) code to describe the OI–WI interaction.

instability) associated with the two electron counter-propagating beams and the WI
induced by the temperature anisotropy.

A global view of the temporal dynamics of the magnetic field is presented in
figure 15, which shows the z component of the magnetic energy versus time (top)
for the two simulations performed using the VLEM2D3V code (in black) and the
multi-stream code (in blue). A slight time delay between the energy amplification
in the linear regime is clearly observed. The growth rate remains identical in both
simulations, as expected. A plot in a logarithmic scale is added in the bottom frame.

The maximum amplitude of the magnetic energy is, however, slightly higher in the
case of the multi-stream model. In both simulations, the dominant component of the
magnetic field eBz/mωp is driven by CFI.

The oscillatory behaviour in the multi-stream simulation, observed for instance
in figure 15 (top panel), and carried out with five streams and a temperature of
Tz = 300 keV, has a numerical ‘bounce’ frequency of the order of ωnum � 0.46ωp

in the nonlinear saturation regime, i.e. close to the magnetic bouncing frequency,
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estimated from the relation (see Davidson et al. 1972; Ghizzo 2013b)

ωb

ωp
=
√

k0c

ωp

p1

mΓ01

ωce

ωp
�
√

1.536 × 0.9
1.34532

× 0.35 � 0.51. (4.17)

In relation (4.17), we have used a value of 0.35 for the maximum of the magnetic
field component eBz/mωp (to calculate the ratio of the electron cyclotron frequency
to the plasma frequency ωce/ωp = eBz,max/mΓ01ωp) where the Lorentz factor Γ01 is
introduced to take into account the relativistic correction; the wavevector k0c/ωp =
1.536 corresponding to the CFI on the mode (nx , ny) = (1, 0).

We obtain a lower estimate than the theoretical value given by formula (4.17),
indicating that magnetic trapping is not the only process involved in the nonlinear
saturation of the instability. Thus, electrostatic trapping (induced by the ‘TSI-like
component’ of the OI) plays an important role in the saturation of the OI. Another
process may also be involved, related to the generation of temperature anisotropy:
since Tz � T‖, specifically a secondary WI can develop, which leads to the amplifi-
cation of TM modes and MR process. The spontaneous generation of a secondary
WI, developing in the nonlinear stage of primary relativistic CFI-type modes, has
been already observed by Tomita and Ohira (2016).

In the presence of a WI, the dynamics of the distribution function in the phase
space can become particularly complex (as observed for example in figure 6 in § 4.4).
In order to study this aspect, it is interesting to analyse in more detail the behaviour
of the electron distribution, in the VLEM2D3V simulation, during the start of the
plasma reorganisation process that leads to the reconnection mechanism.

We present in figure 16 the behaviour of the distribution in the momentum space
px−pz , at two different times. In the top panel of figure 16, the initial distribution
is represented, showing the distribution’s anisotropy in temperature along the ‘hot’
direction pz. In the bottom panel of figure 16 the distribution is plotted at time
tωp = 48, i.e. at the beginning of the saturation process, when the magnetic energy
begins to decrease in figure 15. A heating process is observed in the longitudinal
direction along px , associated with the decrease in the magnetic field. As we see
in figure 17, this mechanism is indeed associated with an energy transfer process
towards the px component, although the multi-stream model slightly overestimates
it. This energy transfer occurs via the xx component of the second-order anisotropic
fluid moment:

Πi j =
∫

pi p j

mγ (x, y, px , py)
f (x, y, px , py)dpx dpy. (4.18)

This tensor encompasses the contribution of both the kinetic energy and of the
internal energy of the system.

Note that the tensor Πi j is not an extension of the classical (non-relativistic) pres-
sure tensor π = nm(〈vv〉 − uu) in the relativistic regime. Tensor π was previously
introduced with (4.14)–(4.16). Nevertheless, the tensor Πi j can provide an indication
of the presence of anisotropy (off-diagonal term), allowing for the identification of
potential couplings between various instabilities.

In MR, wave–particle interactions give rise to an energy transfer from the mag-
netic energy to kinetic energy. This is supported by the plot of the spatial average of
the tensor component Πik , which in the multi-stream model is given by

〈Πik〉 = 1
Lx L y

Ns∑
j=−Ns

∫
dxdy

∫
dpxdpy

pi pk

mγ j(x, y, px , py)
f j , (4.19)
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FIGURE 16. Representation of the distribution function f̃ (px , pz) = ∫ dpy f (x = (Lx/2),
y = (L y/2), px , py, pz) in the px−pz momentum space, obtained from the VLEM2D3V
code, in the case of the coupling of WI and OI, for a relativistic transverse temperature of
kBT⊥ = kBTz = 300 keV.

versus time, which is shown in figures 17–19. It must be pointed out that a similar
definition can be used to define the quantity Πzz just by replacing pz with pz ≡
C j − eAz(x, y, t). The corresponding formula in the full kinetic treatment is

〈Πi j〉 = 1
Lx L y

∫
dxdy

∫
d3 p

pi p j

mγ ( p)
f (x, y, p, t). (4.20)

From figure 18, which presents the dynamics of the 〈Πyy〉 component of the
tensor, we observe a significant decrease in the 〈Πyy〉 component associated with the
growth of 〈Πxx〉. It should be noted that the transverse components 〈Πxy〉, 〈Πxz〉 and
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FIGURE 17. Plot of the 〈Πxx 〉 component versus time in both numerical approaches, the multi-
stream model with five stream (in blue), together with the full kinetic VLEM2D3V code (in
black). We have used an initial distribution with a perpendicular temperature Tz = 300 keV
leading to MR via the secondary WI.

FIGURE 18. Plot of the 〈Πyy〉 component versus time in both numerical approaches, the multi-
stream model with five streams (in blue) together with the full kinetic VLEM2D3V code (in
black). We have used an initial distribution with a perpendicular temperature Tz = 300 keV
leading to MR via the secondary WI.

〈Πyz〉 remain negligible compared with the components of the diagonal of the tensor,
namely the components 〈Πxx〉, 〈Πyy〉 and 〈Πzz〉. However, in figure 18 we note a
small difference in the values of the 〈Πyy〉 component, at the initial time tωp = 0,
obtained with the fully kinetic (VLEM2D3V) and with the reduced (multi-stream)
versions, the reduced model giving a slight overestimation of the 〈Πyy〉 component.

A global reorganisation takes place in which collisionless wave–particle interac-
tions transfer the energy stored in the beams and in the magnetic field into the
kinetic energy of the plasma. While the beginning of the dynamics, driven by this
propagative OI mode, is very similar to the dynamics met in § 4.5, a transition
towards a different dynamics is observed in its nonlinear evolution. When sev-
eral propagative OI modes are excited, this dynamics leads to the emergence of a
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FIGURE 19. Plot of the 〈Πzz〉 component versus time in both numerical approaches, the multi-
stream model with five streams (in blue) together with the full kinetic VLEM2D3V code (in
black). We have used an initial distribution with a perpendicular temperature kBTz = 300 keV
leading to MR via the secondary WI.

direct-like cascade to smaller scales. Such a cascade-like structure can be observed
in figure 13 in the structure of the chain of magnetic vortices in the magnetic field
lines. This mechanism can induce deep modifications in the energy transfer and can
lead to a strong stochastic heating of the distribution function in the px direction.

Finally, a second ‘heating’ process is also observed in the pz direction as well
(in the time interval 25� tωp � 50), as indicated by the observation of the temporal
variation of the 〈Πzz〉 component of the tensor in figure 19. The blue curve represents
the evolution of the quantity 〈Πzz〉 as a function of time, estimated from formula
(4.19) in the multi-stream code. We have also plotted the same quantity calculated
from the distribution function data obtained from the VLEM2D3V code.

The full kinetic VLEM2D3V code provides a detailed view of the dynamics of the
〈Πzz〉 component over time. After the first phase, linked to the transfer of energy
εm → εK (magnetic into kinetic energy), we observe a kinetic cooling process in the
dynamics of 〈Πzz〉, which is much more pronounced in VLEM2D3V, suggesting
that a larger number of streams is now required to describe this process in the
multi-stream code.

5. Performance
5.1. Full kinetic VLEM code

The Vlasov–Maxwell VLEM code is currently running on the Jean Zay computer
of the IDRIS centre in a hybrid OpenMP/MPI version. Performance tests have been
performed on this architecture mainly for the 2D3V version of the semi-Lagrangian
VLEM code. To study the performance of the parallel algorithm, we introduced the
speed-up SMPI(p), defined as follows:

SMPI (p) = Elapsed process time on 16 cores
Elapsed process time on p cores

. (5.1)

The algorithm is parallelised using a domain decomposition method in the posi-
tion (x, y) space. The MPI version allows the communication of data necessary
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FIGURE 20. The theoretical speed-up is plotted as a solid line. The blue circles represent the
value obtained from the speed-up during the test simulations. The speed-up is evaluated from
formula (5.1), i.e. the effective time spent in the processor (elapsed time). Here, we observe an
efficiency of around 94 % up to 2048 MPI processes (for four OpenMP tasks). This study was
carried out on the Jean Zay architecture for the VLEM2D3V code. At 4096 MPI processes, the
speed-up remains high with an efficiency close to 84 %.

for domain decomposition (in particular the transfer of boundary functions of sub-
domains and first derivatives for Hermite polynomials). These simulations were
performed with a phase-space sampling of Nx Ny Npx Npy Npz = 1024 × 1024 × 163 for
500 time iterations. Given the memory size constraints, we used Nthread = 4 OpenMP
tasks for these simulations (it was not possible to use a single OpenMP task here
due to the large sampling chosen).

In figure 20, we observe a good behaviour of the speed-up SMPI(p) as a function
of the number of MPI processes p, with an efficiency close to 84 % even with a very
high number of MPI processes. This result is mainly due to the type of parallelism
chosen for OpenMP, here carried out at fine grains, that is, by using PARALLEL
type directives, which corresponds to a parallelisation on the loops; in this case the
latency times are more important.

We have now run VLEM2D3V with several OpenMP tasks for a constant number
of MPI processes (here chosen to be 1024 MPI processes), using a phase-space
sampling of Nx Ny = 5122 and Npx Npy Npz = 163, for 500 temporal iterations. The
speed-up SOpenMP(p) is calculated from the following relation:

SOpenMP (p) = Elapsed process time on one OpenMP task
Elapsed process time on p OpenMP tasks

. (5.2)

The results obtained are presented in figure 21. The speed-up SOpenMP(p) increases
with the number of OpenMP tasks, p. The test was carried out up to a maximum
number of p = 16 threads. Up to 8 threads, we observe a correct efficiency. We show
in figure 21 that the efficiency strongly decreases although the speed-up remains
more or less constant beyond four OpenMP tasks. However, in the case of this
configuration with a high number of MPI processes, the efficiency remains of the
order of 50 % at four OpenMP tasks (with a parameter TCPU/TElapsed ∼ 3.574 close
to Nthread = 4) up to 40 % for Nstream = 8 (with a parameter TCPU/TElapsed ∼ 6.66). On
the other hand, the efficiency falls to 20 % for Nthread = 16.
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FIGURE 21. The theoretical speed-up is plotted as a solid line. The blue squares represent the
value obtained from the speed-up during the test simulations using the VLEM2D3V code. The
speed-up is evaluated using formula (5.2). This study was carried out on the Jean Zay calculator.

The performance gain of up to eight OpenMP tasks is encouraging. It indicates
that improvements can be achieved through multi-task coupling and single-processor
vectorisation, particularly by rewriting certain sections of the code related to the
processing of internal loops. In principle, it is indeed possible to use a coarse-grained
parallelisation, i.e. by introducing a second domain decomposition according to the
OpenMP tasks. Maybe this improvement will be implemented in the future, but for
the moment it is not a priority task, since it would imply a substantial rewriting of
the source code. Note also that speed-up and efficiency are measured in effective
run conditions using significant resources in memory size.

5.2. The multi-stream scheme
In this subsection, we present a performance analysis of the multi-stream code.

The code uses a domain decomposition similar to that of VLEM, enabling the
parallel solution of Maxwell’s equations using a numerical scheme analogous to
that employed by VLEM2D3V. However, the advections are now mainly 2-D. This
implies transpositions of the matrix, in order to use inversion algorithms for tridiago-
nal matrices, the interpolation technique being realised with a tensor product of 1-D
advections. We have thus run the multi-stream code with several MPI processes, for
a constant number of OpenMP tasks, here chosen to be four OpenMP threads, using
a phase-space sampling of Nx Ny = 2562, Npx Npy = 322, for 500 time iterations. In all
the simulations performed, the multi-stream code has five streams and therefore at
least five MPI processes are needed. The speed-up is calculated using

SMPI-ms (p) = Elapsed process time on 5 MPI processes
Elapsed process time on p MPI processes

. (5.3)

The results are depicted in figure 22, showing a good level of parallelisation
up to 1280 processors, despite the use of successive matrix transpositions during
2-D advection changes. It is interesting here to estimate the CPU times required
for both simulations, based on a 2-D spatial configuration. For the OI, studied in
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FIGURE 22. The theoretical speed-up is shown as a solid line. The blue circles represent the
speed-up values obtained from test simulations using the multi-stream code. The speed-up
S MPI-ms is calculated using formula (5.3). This study was carried out on the Jean Zay computer.

§ 4.5, the simulation carried out using the VLEM2D3V code required 12 successive
restarts (for a time of tωp = 500 , i.e. 60 000 time iterations), for 256 MPI processes
and 8 OpenMP tasks. This corresponds to a total elapsed time of 7.5 × 108 s for a
simulation using a sampling of Nx Ny N 3

p = 2562 × 643 grid points in the global phase
space, i.e. a computation time of 0.356 × 10−9 s per time step, per grid point and
per core.

The multi-stream code requires a time of 2.9 × 108 s for a sampling of Nx Ny N 2
p =

2562 × 1282 grid points and 256 × 5 MPI processes and 4 OpenMP tasks and 105

iterations, i.e. 0.542 × 10−9 s per time step, per grid point and per core. This is of
the same order of magnitude as the elementary time, which seems justified since the
multi-stream code uses a global matrix inversion technique for global B-spline inter-
polation. The VLEM code, on the other hand, uses a local interpolation method,
which speeds up the computation time. However, given the large memory require-
ments (16 × 643 points per MPI process), this leads to an OpenMP efficiency of 4.1
for eight OpenMP tasks (i.e. around 50 %), whereas the multi-stream version gives
an acceleration rate of 3.5 for four OpenMP tasks, i.e. an OpenMP efficiency of
87.5 %. The use of B-splines, on the other hand, delivers a gain of at least a factor of
2 over the more time-sensitive local advection technique. An equivalent simulation
with Nx Ny N 2

p = 2562 × 642 grid points in phase space, and 30 000 temporal itera-
tions, using 1024 MPI processes and four OpenMP tasks, for example, finally leads
to a reduction factor of around 33 to achieve a simulation equivalent to that carried
out with VLEM2D3V for equivalent accuracy.

6. Conclusion

The multi-stream model, based on a Hamiltonian reduction technique that is
grounded on the exact invariance of the perpendicular canonical momentum, has
been extended to incorporate a two-coordinate space dependence, with applications
to a Vlasov–Maxwell plasma. The model consists of a set of kinetic reduced Vlasov
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equations allowing us not only to reduce the dimension of the global phase space,
but also to restrict the study to specific classes of solutions corresponding to exact
canonical invariants. These solutions make it possible to reduce the complexity from
a numerical point of view by allowing for a more accurate description of current
densities that may be responsible for MR events driven by Weibel-type instabilities.
A key component of this multi-stream model consists of approximating any distribu-
tion function with a finite number of ‘streams’ or ‘particle bunches’, as a summation
over an ensemble of Dirac distributions. This offers the possibility of simplifying the
analytical calculations in both linear and nonlinear regimes of Weibel-type instabili-
ties. This formulation gives also a clear description of the nonlinear energy transfer
towards small spatial scales, and thus of a kinetic heating mechanism in collision-
less plasmas, the kinetic mechanism in phase space resulting from wave–particle
interactions.

By means of a direct comparison with the full kinetic Vlasov approach, we have
shown that the multi-stream model provides a very accurate description of the nonlin-
ear relativistic regime of the current filamentation instability. We have demonstrated
that the multi-stream model offers an accurate description of the kinetic plasma
dynamics even with a small number of ‘streams’, by thus providing a relatively sim-
ple fundamental framework, which allows us to bridge different types of instabilities,
as for instance CFI, the WI and even MR instabilities. The number of exact con-
servation laws associated with translational invariance with respect to a coordinate,
upon which the multi-stream approach is based, also facilitates the development of
an intuitive understanding of energy transfer processes in turbulent plasmas. These
conservations, which can be interpreted as kinematic constraints in phase space,
of course do not strictly hold under more general plasma conditions, in which an
exact translational invariance is lacking. Nevertheless, the behaviour observed in the
‘ideal’ case often persists, at least at the lowest order, when the translation invariance
is valid only in an approximate sense.

Furthermore, the multi-stream model allows us to describe in principle any particle
distribution function, even much different from a Maxwell–Boltzmann one, and
even in a relativistic regime (e.g. a Maxwell–Jüttner distribution). Any distribution
function can be indeed approximated with an arbitrary accuracy, which is fixed by
the number of streams used: increasing their number makes it possible to establish
the equivalence between fluid moments of increasingly higher order, as they are
evaluated from both the original and the multi-stream particle distribution.

This equivalence is strict just initially. The question then arises as to the number
of streams that are required to describe an accurate time evolution. In this sense, the
correspondence between the number of streams and fluid moments allows for some
useful guide criteria. For example, the physics of phenomena close to thermodynam-
ical equilibrium is typically determined by the zeroth (density), first (momenta) and
second (energy and internal energy) moments alone, meaning that just three streams
would be required. Vlasov plasmas are usually out-of-equilibrium systems, but we
have shown that, interestingly, as few as five streams suffice to describe well the
essential physics of nonlinear processes related to a wide class of beam–plasma insta-
bilities, at least in their early nonlinear stage. This formally corresponds to having
included the physics related to the heat flux tensor as well. Adding further streams,
related to higher-order velocity moments, can then increase the time interval over
which a good correspondence between the full kinetic and reduced kinetic model is
afforded also in the nonlinear regime. The corresponding computational gain with
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respect to full kinetic simulations (even in the case, for example, of a number of
streams of O(10) or even of O(20)) is thus evident.

We finally note that the numerical results we have discussed in relation to Vlasov–
Maxwell plasma can, in principle, be relevant to a much broader range of physical
phenomena. We have demonstrated that by considering certain symmetries or prop-
erties of the system, the Hamiltonian reduction technique – extended to two spatial
dimensions – has enabled us to address the coupling between various instabilities,
CFIs, OIs and WIs, which can facilitate the transfer of magnetic energy into inter-
nal energy. This model, however, could be extended, in principle, to a wider range
of problems requiring the treatment of the Vlasov or Liouville equations in high-
dimensional phase space. Examples have been discussed in § 3.3, related to both the
covariant formulation of the relativistic Vlasov equation and quantum mechanical
applications. In this regard we note that, for example, a recent use of the 1-D multi-
stream model, involving a single stream in § 4.2, has recently been implemented
by Crouseilles et al. (2023) in the quantum Vlasov equation, including spin effects,
enabling the study of the interaction of a laser wave in a quantum plasma in a
reduced phase space.
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Appendix A. Order of the multi-stream scheme in time

The Lagrangian formulation using the Vlasov characteristics
From the trajectory of a particle, that follows the characteristics of the Vlasov equa-
tion, it is possible to determine the position xn, yn and the velocity of a particle
vn

x , vn
y at time tn = n�t .
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Let us now consider the equations describing the particle motion in a 2-D system
(we keep the same notation to simplify the presentation):

dx

dt
= vx (t) = px (t)

mγ (t)
and

dy

dt
= vy (t) = py (t)

mγ (t)
, (A.1)

d
dt

(mvxγ ) = e
(
Ex + vy Bz − vz By

)
and

d
dt

(
mvyγ

)= e
(
Ey − vx Bz + vz Bx

)
,

(A.2)and where the Lorentz factor γ is now defined in (A.2) by

γ = 1√
1 − (v2

x/c2
)− (v2

y/c2
)− (v2

z /c2
) . (A.3)

From (A.1) and since

d
dt

(γ vx) = γ

(
1 + v2

xγ
2

c2

)
dvx

dt
+ vxvyγ

3

c2

dvy

dt
+ vxvzγ

3

c2

dvz

dt
, (A.4)

d
dt

(
γ vy

)= vxvyγ
3

c2

dvx

dt
+ γ

(
1 + v2

yγ
2

c2

)
dvy

dt
+ vyvzγ

3

c2

dvz

dt
, (A.5)

d
dt

(γ vz) = vxvzγ
3

c2

dvx

dt
+ vyvzγ

3

c2

dvy

dt
+ γ

(
1 + v2

z γ
2

c2

)
dvz

dt
. (A.6)

The system of (A.4)–(A.6) is a system of linear equations. The use of a Cramer’s
rule leads to the following system:

dvx

dt
= 1

γ 3

(
1 + v2

yγ
2

c2
+ v2

z γ
2

c2

)
d
dt

(γ vx) − vxvy

γ c2

d
dt

(
γ vy

)− vxvz

γ c2

d
dt

(γ vz), (A.7)

dvy

dt
= −vxvy

γ c2

d
dt

(γ vx) + 1
γ 3

(
1 + v2

xγ
2

c2
+ v2

z γ
2

c2

)
d
dt

(
γ vy

)− vyvz

γ c2

d
dt

(γ vz), (A.8)

dvz

dt
= −vxvz

γ c2

d
dt

(γ vx) − vyvz

γ c2

d
dt

(
γ vy

)+ 1
γ 3

(
1 + v2

xγ
2

c2
+ v2

yγ
2

c2

)
d
dt

(γ vz). (A.9)

We have

xn = xn+1 − v
n+ 1

2
x �t = xn+1 −

(
vn+1

x + vn
x

2

)
�t + O(�t3), (A.10)

yn = yn+1 − v
n+ 1

2
y �t = yn+1 −

(
vn+1

y + vn
y

2

)
�t + O(�t3). (A.11)

Let us introduce the Lorentz force in the form

F
n+ 1

2
x = e

(
E

n+ 1
2

x + v
n+ 1

2
y B

n+ 1
2

z − v
n+ 1

2
z B

n+ 1
2

y

)
,

F
n+ 1

2
y = e

(
E

n+ 1
2

y − v
n+ 1

2
x B

n+ 1
2

y + v
n+ 1

2
z B

n+ 1
2

x

)
,

F
n+ 1

2
z = e

(
E

n+ 1
2

z + v
n+ 1

2
x B

n+ 1
2

z − v
n+ 1

2
y B

n+ 1
2

x

)
. (A.12)
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We have

vn
x = vn+1

x + �t

⎡⎣F
n+ 1

2
x

mγ 3

((
vn+1

x

)2
γ 2

c2
− γ 2

)
+vn+1

x vn+1
y F

n+ 1
2

y

mc2γ
+vn+1

x vn+1
z

mc2γ
F

n+ 1
2

z

⎤⎦+O(�t3),

(A.13)

vn
y = vn+1

y + �t

⎡⎣vn+1
x vn+1

y F
n+ 1

2
x

mc2γ
+ F

n+ 1
2

y

mγ 3

((
vn+1

y

)2
γ 2

c2
− γ 2

)
+vn+1

y vn+1
z F

n+ 1
2

z

mc2γ

⎤⎦+O(�t3).

(A.14)Using relations (A.13) and (A.14), the particle position reads

xn = xn+1 − pn+1
x �t

mγ
+ �t2

⎡⎣ F
n+ 1

2
x

2mγ 3

(
γ 2 −

(
pn+1

x

)2
m2c2

)

− pn+1
x pn+1

y F
n+ 1

2
y

2mc2γ 3
− pn+1

x pn+1
z F

n+ 1
2

z

2mc2γ 3

⎤⎦+ O(�t3), (A.15)

yn = yn+1 − pn+1
y �t

mγ
+ �t2

[
− pn+1

x pn+1
y

2mc2γ 3
F

n+ 1
2

x

+ F
n+ 1

2
y

2mγ 3

(
γ 2 −

(
pn+1

y

)2
m2c2

)
− pn+1

y pn+1
z F

n+ 1
2

z

2mc2γ 3

⎤⎦+ O(�t3). (A.16)

The ‘Eulerian’ formulation
To make a comparison with previous estimations, we have to determine data at time
tn from the data of the characteristics at time tn+1. Consider first what happens to the
distribution function as 2-D advections X ,Y and R are applied successively, through
the global sequence f n+1

j =X (
t/2) ◦Y(
t/2) ◦R(
t) ◦Y(
t/2) ◦X (
t/2) f n
j to

the initial distribution function f n
j (x, y, px , py, t = n
t). The index j which charac-

terises the j th stream is omitted to simplify the presentation. We have also simplified
the notation by denoting the phase-space variables at time tn+1 by x, y, vx and vy (i.e.
using x ≡ xn+1, y ≡ yn+1, vx ≡ vn+1

x , vy ≡ vn+1
y and finally γ j ≡ γ n+1

j ). Thus,

f n+1
j

(
x, y, vx , vy

)= f n
j

(
xn, yn, vn

x , vn
y

)
, (A.17)

with

xn = x − px

mγ j

�t

2
− pn

x

mγ n
j

�t

2
+ O(�t3), (A.18)

yn = y − py

mγ j

�t

2
− pn

y

mγ j

�t

2
+ O(�t3), (A.19)

with γ n
j = γ n

j (xn, yn, pn
x , pn

y) and

pn
x = px − e

(
E

n+ 1
2

x + vy + vn
y

2
B

n+ 1
2

z − vn
z B

n+ 1
2

y

)
�t + O(�t3), (A.20)
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pn
y = py − e

(
E

n+ 1
2

y − vx + vn
x

2
B

n+ 1
2

z + vn
z B

n+ 1
2

x

)
�t + O(�t3). (A.21)

By introducing the Lorentz force contribution from (A.12), we can write

xn = x − px

mγ j
�t + �t2

⎡⎣F
n+ 1

2
x

(γ 2
j − (p2

x/m2c2))

2mγ 3
j

− px py F
n+ 1

2
y

2m3c2γ 3
j

− pxv
n
z F

n+ 1
2

z

2m2c2γ 2
j

⎤⎦
+ O(�t3), (A.22)

y = y − py

mγ
�t + �t2

⎡⎣− px py F
n+ 1

2
x

2m3c2γ 3
j

+ F∗
y

(γ 2
j − (p2

y/m2c2))

2mγ 3
j

− pyv
n
z F

n+ 1
2

z

2m2c2γ 2
j

⎤⎦
+ O(�t3), (A.23)

where En+1/2
x,y,z = Ex,y,z(x − (px)/(2mγ )�t, y − (py)/(2mγ )�t), Bn+1/2

z = Bz(x −
(px)/(2mγ )�t, y − (py)/(2mγ )�t) and γ is the mean Lorentz factor estimated via
the data of the different γ j . Finally, we obtain for the particle’s velocity

vn
x ≡ pn

x

mγ n
j

= px

mγ j
+ �t

⎡⎣F
n+ 1

2
x

((
p2

x/m2c2
)− γ 2

j

)
mγ 3

j

+ px py F
n+ 1

2
y

m3c2γ 3
j

+ pxv
n
z F

n+ 1
2

z

m2c2γ 2
j

⎤⎦
+ O(�t2), (A.24)

vn
y ≡ pn

y

mγ n
j

= py

mγ
+ �t

⎡⎣ px py F
n+ 1

2
x

m3c2γ 3
j

+ F
n+ 1

2
y

((
p2

y/m2c2
)− γ 2

j

)
mγ 3

j

+ pyv
n
z F

n+ 1
2

z

m2c2γ 2
j

⎤⎦
+ O

(�t2
)
. (A.25)

By comparing equations (A.15), (A.16), (A.13) and (A.14) using the characteristics
and (A.24), (A.25), (A.22) and (A.23), we see without difficulty that the splitting
scheme integrates the distribution function from the global sequence X (
t/2) ◦
Y(
t/2) ◦R(
t) ◦Y(
t/2) ◦X (
t/2) along the characteristics correctly to the
second order in �t , provided that each shift is made at the first order.
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