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ABSTRACT: This paper presents the MBSE-Graph-RAG framework to address key challenges in Model-Based
Systems Engineering (MBSE). Traditional MBSE tools suffer from usability barriers, limited accessibility, and
integration challenges. By combining knowledge graphs with Retrieval-Augmented Generation (RAG), the
proposed framework enables AI-Augmented engineering through natural language interactions and automated
system architecture generation. A systematic literature review establishes a solid research foundation, identifying
gaps in AI-assisted MBSE. Key contributions include a structured MBSE-Graph interface, improved usability via
Large Language Models (LLMs), and automated graph construction aligned with SysML. A proof-of-concept
demonstrates the potential of this approach to enhance MBSE by reducing complexity, improving data
accessibility, and supporting engineering collaboration.
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1. Introduction
Engineering projects increasingly demand faster development cycles, innovation, and multidisciplinary
collaboration. AlthoughModel-Based Systems Engineering (MBSE) offers a structured way to manage
complexity by modeling requirements, functions, and architectures, it faces two persistent barriers: (1)
mainstream MBSE tools (e.g., Cameo Systems Modeler, Enterprise Architect) are complex to learn,
inhibiting broader user adoption; and (2) leveraging historical data under Data Driven Systems
Engineering (DDSE) is cumbersome due to data exchange issues and unwieldy plug-ins. Large
language models (LLMs) such as GPT or Llama could alleviate these challenges by providing advanced
analytics and natural-language interactions, yet their integration into MBSE remains underexploited. To
address these gaps, this paper proposes retrieval augmented generation (RAG) with knowledge graphs
as a means to represent MBSE system architectures more intuitively.
Problem Statement: Existing MBSE and DDSE approaches are limited by steep learning curves,
proprietary tool constraints, and difficulties in harnessing unstructured historical data. Further, embedding
AI technologies (like LLMs) into MBSE requires substantial, often prohibitive development efforts. As a
result, automated model analysis and user-friendly, AI-driven interfaces remain elusive, preventing MBSE
from reaching its full potential in complex engineering environments. A new approach is thus needed to
streamline MBSE workflows, promote more natural user interactions, and simplify data integration.
Research Contribution: To overcome these challenges, we introduce theMBSE-Graph-RAG framework,
which automatically generates system architectures from unstructured data, enabling an AI-Augmented SE
process. By integrating LLMs with knowledge graphs, the framework provides natural-language access to
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modeled information. Its key contributions include: (1) MBSE-Graph-RAG Framework – Combines
knowledge-graph-based system architecture representation with LLMs to improveMBSE data accessibility
andusability. (2)MBSE-Graph-RAGforNatural Language Interaction–Lowers the entry barrier for non-
experts, providing intuitive access toMBSE data and reducing reliance on specialized modeling editors. (3)
Automatic MBSE-Graph Construction – Demonstrates how unstructured data can be harnessed to enrich
systems engineering, paving the way for broader DDSE adoption.

1.1. Design Science Research Methodology
The MBSE-Graph-RAG framework was developed following the Design Science Research
Methodology (DSRM) (Peffers et al., 2007), ensuring a systematic approach to engineering research:
Problem Identification identified the shortcomings of existing MBSE tools, the difficulty of integrating
unstructured data, and the need for natural-language interaction. Definition of Objectives set goals to
automate MBSE-graph construction, enhance data accessibility, and improve usability via Graph
Retrieval-Augmented Generation (GraphRAG) and LLMs. Design and Development integrated AI
techniques with knowledge graphs to automate system architecture creation and enable natural-language
queries. Demonstration provided a use case that transforms unstructured engineering data into a
structured knowledge graph, illustrating enhanced MBSE practices. Evaluation has not yet been
formally conducted for the conceptual application. Communication involved disseminating the
framework and findings through this paper, benefiting both academic and industrial stakeholders.
This iterative, feedback-driven methodology ensured that both the technical and user-centric needs of
MBSE were addressed. The solution concept is currently under development, with the presented version
being the result of the third development cycle.

1.2. Key concepts and definition of terms
Model-Based Systems Engineering (MBSE): Formalizes the entire system lifecycle via modeling
languages like SysML (Lu et al., 2022). Data-Driven Systems Engineering (DDSE): Incorporates data
analytics and machine learning to enhance decision-making and system performance (Borth & van
Gerwen, 2018; R. S. Kenett et al., 2020; Tissen et al., 2023). AI-Augmented Systems Engineering
(AI-ASE): Extends DDSE by applying advanced AI—especially LLMs—to handle unstructured data
and reduce complexity in system models. Ontologies: Provide standardized data patterns and rules,
crucial for automated reasoning in knowledge graphs (Fu et al., 2021). Knowledge Graphs: Capture
semantically rich, interconnected nodes (e.g., requirements) and edges (e.g., relationships), vital for
holistic MBSE data exploration (Gutierrez & Sequeda, 2020; Lu et al., 2022). Graph Retrieval-
Augmented Generation (GraphRAG): Integrates LLMs with knowledge graphs for contextually
accurate and explainable outputs (Enzo, 2024). Semantic Web Technologies: RDF, OWL, and
SPARQL facilitate semantic data structuring and querying in knowledge graphs (Zindel et al., 2022).
Graph Analytics: Focuses on analyzing node-link networks to uncover patterns and complex
relationships beyond what traditional tabular data can reveal.

1.3. Problem analysis
Modern products and development processes are increasingly complex, pushing traditional, document-
based SE to its limits. As systems grow in scale and interdisciplinary scope, it becomes challenging to
maintain coherent, consistent models across various domains. Inefficient reuse of system models
exacerbates the issue, as the growing number of model files makes it difficult to locate and repurpose
existing knowledge for new products (Fu et al., 2021). Moreover, MBSE data is scattered across different
disciplines and stored in heterogeneous modeling languages, formats, and syntaxes, complicating data
integration and interoperability (Zindel et al., 2022). A key driver behind the adoption of graph analytics
in MBSE is the need to analyze complex relationships and dependencies among system elements.
Traditional approaches struggle with sophisticated analyses—for example, cyber resilience or life cycle
assessments—because modern systems exhibit multi-layered interdependencies that are not readily
captured or queried in siloed models (Dwivedi, 2018; G. M. Schweitzer et al., 2022). In the early design
phase, limited system knowledge hampers informed decision-making, yet it is precisely during this stage
that design choices have the greatest downstream impact (G. Schweitzer et al., 2023). Challenges also
arise in design space exploration, where engineers seek to understand the implications of numerous
design variations. Existing MBSE methods rarely provide robust techniques for managing the
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combinatorial complexity of design options (Timperley et al., 2024). Furthermore, conducting lifecycle-
oriented analyses (e.g., LCE/LCSA) demands a holistic approach that captures extensive cause-and-
effect chains—an area in which fragmented data landscapes fall short (G. M. Schweitzer et al., 2022;
G. Schweitzer, 2023). Beyond these technical obstacles, the literature highlights additional adoption
barriers. Many MBSE tools require extensive manual effort to model and maintain architectures,
especially when incorporating historical and unstructured data (Chami and Bruel, 2018). The complexity
and steep learning curves of existing solutions often deter non-expert users. In parallel, the lack of
standardization and interoperability between tools results in data silos, limiting collaboration and reuse.
The proposed MBSE-Graph-RAG Framework directly tackles these issues by automating system
architecture generation through LLMs, introducing natural-language interfaces, and providing a tool-
independent semantic layer with knowledge graphs. By addressing both the technical and usability
hurdles, it seeks to promote more scalable, cost-effective MBSE practices, ultimately leading to faster
innovation and higher-quality engineering outcomes.

2. Related works
This literature review follows the structured methodology proposed by Webster and Watson (2002),
providing a comprehensive analysis of AI-ASE with a focus on the integration of AI, Knowledge Graphs,
and MBSE. The review aims to assess how advanced AI techniques, particularly Graph Analytics, can
enhance MBSE applications by enabling better insights, decision-making, and efficiency in the system
development process. (Webster & Watson, 2002) A systematic search strategy was conducted using the
IEEE database with a targeted search string, yielding 194 results, of which 6 relevant papers were
identified. The relevant papers listed below in Table 1. Additional insights from peer reviewers and a
snowballing approach contributed 5 more studies, ensuring a thorough coverage of the topic. The review
employs a concept-centric organization, structuring insights around key themes such as DDSE, AI-ASE,
GraphRAG, and Semantic Web Technologies.
Search string: ( “MBSE”OR “Systems Engineering”OR “product lifecycle management”OR “PLM” )
AND ( “Engineering Graph” OR “Knowledge Graph” OR “Graph-based Database” OR “Graph
Database” )
In line with Webster and Watson’s approach, the review synthesizes and analyzes the literature to
highlight significant insights, contradictions, and trends. The analysis identified a growing trend towards
using graph-based methods and integrating AI techniques within MBSE to improve system model
generation and management.

Table 1. Overview related works

Reference Titel

(Zindel et al., 2022) Building a Semantic Layer for Early Design Trade Studies in the Development
of Commercial Aircraft

(Fu et al., 2021) Building SysML Model Graph to Support the System Model Reuse
(Huang et al., 2023 - 2023) Design and Implementation of Ground PHM Sample Machine
(Lu et al., 2022) Design Ontology Supporting Model-Based Systems Engineering Formalisms
(Dwivedi, 2018) Implementing Cyber Resilient Designs through Graph Analytics Assisted

MBSE
(Timperley et al., 2024) Mapping the MBSE Environment and Complementary Design Space

Exploration
(Chami et al., 2019) A First Step towards AI for MBSE: Generating a Part of SysML Models from

Text Using AI
(Schweitzer et al., 2022) Detection of Cause-Effect Relationships in Life Cycle Sustainability Assessment
(Schweitzer et al., 2023) Engineering Graph as an Approach to Support Design Decisions in Product

Development
(Schweitzer, 2023) Einsatz von KI in der Produktentwicklung auf Basis eines Engineering-Graph
(Kasper et al., 2024) The Digital Thread for System Lifecycle Management with a Native Graph

Database
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2.1. Approaches to integrating graph analytics in MBSE: key findings and
trends

Transformation of SysML into Knowledge Graphs: A prominent method for integrating graph
analytics into MBSE involves transforming SysML models into Knowledge Graphs. This process
converts SysML elements and their relationships into graph data structures, utilizing a SysML
metamodel ontology as the schema (Chami et al., 2019; Fu et al., 2021; Lu et al., 2022; Zindel et al.,
2022). By adopting this approach, existing modeling artifacts can be effectively reused, and advanced
analyses of the complex interrelationships within system architectures become feasible. Research such as
“Building SysML Model Graph to Support the System Model Reuse” demonstrates how these
transformations enable semantic searches and the fusion of multiple subgraphs, thus enhancing the reuse
and maintainability of system models. Semantic Layers and Unified Ontologies: Another strategy
frequently highlighted in the literature is the development of a tool-independent semantic layer using
ontologies created with OML, OWL, or RDF. Such semantic layers establish a single “source of truth”
that standardizes terminologies, streamlines data exchange, and enhances interoperability across diverse
modeling environments (Fu et al., 2021; Lu et al., 2022; Schweitzer, 2023; Zindel et al., 2022). The
GOPPRRE framework, for example, presents a Unified MBSE Ontology that integrates core MBSE
concepts and relationships, supporting data interoperability throughout the system lifecycle. This
approach is exemplified in “Building a Semantic Layer for Early Design Trade Studies in the
Development of Commercial Aircraft”, where a semantic layer using Semantic Web Technologies
enables automatic instantiation of MBSE data into a knowledge graph. Engineering Graph and Digital
Thread Concepts: The concept of an Engineering Graph, as discussed by Schweitzer et al. (2023),
extends the knowledge graph paradigm by linking and analyzing data from a wide array of engineering
systems—such as PLM, ERP, and IoT systems—within a unified graph. This enables a holistic view of
engineering data, supporting advanced analytics and decision-making (Schweitzer, 2023; Schweitzer
et al., 2023). Complementarily, the Digital Thread approach leverages graph databases to connect
lifecycle data across different phases of product or system development, enhancing data consistency and
transparency (Kasper et al., 2024; Schweitzer, 2023; Schweitzer et al., 2022) These connected
frameworks improve lifecycle management and allow early detection of design risks, offering a robust
foundation for lifecycle sustainability assessments and design decision support. Knowledge Graphs for
Design Space Exploration: Knowledge graphs are also used for Design Space Exploration (DSE),
where they capture the complex relationships among MBSE formalisms, tools, methods, and design
variables. By structuring these elements in a graph, engineers can efficiently navigate design alternatives
and identify optimal solutions based on specific requirements and constraints (Dwivedi, 2018; Timperley
et al., 2024; Zindel et al., 2022). For instance, the paper “Mapping the MBSE Environment and
Complementary Design Space Exploration Techniques” illustrates how knowledge graphs support
systematic evaluation of design trade-offs, enhancing the ability to select the most suitable MBSE
environments and methods. Ontologies, AI, and Lifecycle Management: Ontologies, combined with
AI methods, play a crucial role in achieving advanced lifecycle management. Tools such as OWL, RDF,
and SPARQL facilitate robust data handling and querying, while AI techniques—including entity
matching, pattern recognition, and Large Language Models (LLMs)—automate portions of the MBSE
workflow (Chami et al., 2019; Fu et al., 2021; Huang et al., 2023 - 2023; Kasper et al., 2024; Lu et al.,
2022; Schweitzer, 2023). These technologies assist in converting unstructured data into standardized
models, identifying anomalies within large-scale architectures, and supporting constraint-based
optimization of system configurations. The paper “A First Step towards AI for MBSE” highlights
how LLMs can facilitate the generation of SysML models from textual descriptions, showcasing the
early potential of AI-augmented MBSE solutions.
The literature consistently underscores the promise of knowledge graphs and semantic technologies in
enhancing reusability, interoperability, and analytics within MBSE. Research trends indicate a growing
focus on Digital Thread implementations, cross-domain ontologies, and AI-enhanced approaches for
improved data integration and lifecycle management. However, challenges remain in scaling these
methods to industrial contexts, automating ontology evolution, and incorporating advanced optimization
techniques into a unified graph-based framework.
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2.2. Prior work and felimitation from the state of the art
This paper builds on a rich body of research that highlights the synergy of semantic technologies,
AI-driven techniques, and MBSE. Like Heissen et al. (2024) and Kulkarni et al. (2024), our work
leverages LLMs to interpret and transform unstructured data into structured MBSE artifacts, thereby
reducing manual modeling effort (Heissen et al., 2024; Kulkarni et al., 2024). We also draw on
established best practices in SysML-to-knowledge-graph transformations (Fu et al., 2021) and ontology-
based semantic layers (Zindel et al., 2022), reusing these core concepts to ensure interoperability and
standardized data representation. In this respect, our approach shares with the state of the art a reliance on
robust ontologies, graph-based data structures, and a recognition of LLMs’ capacity to streamline MBSE
workflows. What differentiates our solution is the systematic integration of RAG with knowledge
graphs to form an adaptive architecture induction pipeline. Unlike prior studies that focus primarily on
static rule-based transformations e.g., (Fu et al., 2021) or domain-specific semantic layers (Zindel et al.,
2022), we emphasize an adaptive, LLM-augmented synthesis of system architectures. This paper goes
further than typical Digital Thread architectures (Kasper et al., 2024) by embedding LLMs directly into
the querying and modeling process, facilitating real-time expansions and modifications to the underlying
graph. Moreover, while prior work underscores the importance of early trade studies and design space
exploration (Timperley et al., 2024), our framework aims to make these activities more accessible
through intuitive, natural-language interfaces rather than specialized modeling editors. Thus, while we
inherit key ideas like graph-based data representation and SysML alignment from existing literature, we
extend them with a focus on adaptive AI and user-centric design, establishing a new methodological
foundation for MBSE workflows.

2.3. Challenges and research gaps
Complexity and Scalability of Large Graphs: As systems grow, their corresponding knowledge
graphs can become exceedingly large and interdependent, leading to computational bottlenecks in
graph analytics (Dwivedi, 2018). Data Quality, Integration, and Tool Interoperability:
Heterogeneous data formats, modeling languages, and vendor-specific tools hinder seamless
integration. Ensuring consistent data quality across these diverse sources remains an ongoing
challenge (Fu et al., 2021; Schweitzer, 2023; Schweitzer et al., 2022). Ontology Development and
Maintenance: Building and updating ontologies require significant domain expertise. The lack of
automated processes for ontology evolution can stall the adoption of knowledge-graph-based MBSE in
rapidly changing engineering environments (Fu et al., 2021; Schweitzer, 2023). Proprietary Data
Formats and Complex MBSE Tool Interfaces: Many MBSE solutions rely on non-interoperable
formats that complicate data sharing. Additionally, steep learning curves for specialized tools can deter
users from fully leveraging MBSE’s benefits. Security Concerns and Dynamic Process Integration:
Aggregating design data in a centralized repository raises confidentiality risks, especially when
multiple stakeholders are involved. Furthermore, integrating dynamic processes such as quality and
change management into a unified knowledge graph is still a research frontier (Dwivedi, 2018).
Generative AI for adaptive Architecture Induction: While LLMs show promise, many existing
frameworks do not fully exploit generative AI to automatically evolve system architectures based on
emerging data or requirements (Timperley et al., 2024). Constraint Programming and Evolutionary
Algorithms within Knowledge Graphs: Few studies investigate how advanced optimization
techniques can be embedded within a knowledge graph framework to systematically configure and
instantiate complex system architectures (Schweitzer, 2023; Timperley et al., 2024; Zindel
et al., 2022).

2.4. Research objectives of this paper
A primary motivation for these research objectives is to address the real-world obstacles highlighted in
the preceding challenges and research gaps. The first objective, Automatic MBSE-Graph
Construction, tackles issues of data quality, integration, and interoperability by unifying historically
siloed engineering data into a single knowledge graph. This consolidation also helps mitigate the skill
barrier linked to ontology development and maintenance, as it partially automates model creation from
unstructured data. Hence, Research Question 1 arises: Can LLMs assist in structuring unstructured data
and support the automated creation of MBSE-graphs? The second objective, Enhanced Usability and
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Information Retrieval via MBSE-Graph-RAG, targets the usability barriers caused by proprietary
data formats and specialized MBSE tool interfaces. By leveraging LLMs for natural-language queries, it
aims to reduce the expertise required to navigate and analyze complex system architectures. This leads to
Research Question 2: Does the use of MBSE-Graph-RAG improve user interaction with system
architectures? Taken together, these objectives serve as a foundational response to multiple identified
gaps, including the need for generative AI techniques, robust data consolidation, and greater scalability.
They also establish the groundwork for potential future extensions, such as incorporating constraint-
based optimization.

3. Development and demonstration proof of concept MBSE-Graph-
RAG

The MBSE-Graph-RAG framework is guided by two main theories, both directly addressing the research
objectives (1) Automated Knowledge-Graph Construction Enhances Data Accessibility: We posit that
structured knowledge graphs improve data accessibility and interoperability in MBSE by consolidating
historically siloed information. Under this assumption, if LLMs can parse unstructured or semi-
structured text to generate consistent nodes and relationships, the resulting graph will reduce manual
modeling effort and mitigate skill barriers tied to ontology development. (2) Natural-Language
Interaction Lowers Usability Barriers: We further hypothesize that integrating LLMs for natural-
language queries will enhance system-model usability. By translating everyday language into precise
graph queries (e.g., Cypher), the framework aims to address common MBSE tool challenges like
proprietary formats and steep learning curves. Ultimately, if LLM-driven interaction proves intuitive,
even non-experts should be able to retrieve and analyze system data with minimal training. The following
Figure 1 shows the underlying solution architecture.

3.1. Automatic MBSE-graph construction
The first design component focuses on capturing and organizing MBSE data into a Neo4j-based
knowledge graph. LLMs are used to interpret raw text, identify key MBSE entities (e.g., requirements,
functions, logical elements), and place them in a coherent graph structure. The process:Data Generation
from Unstructured Engineering Documents: We begin by extracting relevant information (require-
ments, functions, logical elements) from synthetic engineering documentation. LLMs receive domain-
specific prompts to ensure that each entity is captured with sufficient detail and traceability.
Standardizing Terminologies and JSON Data: To maintain consistency, extracted information is
normalized into structured JSON, aligning with SysML-like attributes. This step mitigates common
MBSE challenges around mismatched nomenclatures and tool-dependent formats. Node & Edge
Representation: Each entity—requirement, function, or logical element—is mapped to a node with
attributes (e.g., requirement_id, function_id), while permissible relationships (e.g., “Refine”, “Satisfy”)
are enforced via constraints. Permitted constraints are displayed in the Table 2 below. This ensures
semantic rigor and guards against invalid connections, preserving the integrity of the graph. By
automating these tasks, the framework addresses Research Objective 1—namely, demonstrating that
LLM-driven processes can reduce manual overhead and unify MBSE data into a more accessible format.

Figure 1. Solution architecture integrating knowledge graphs and LLMs in the MBSE-Graph-RAG
framework
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3.2. MBSE-Graph-RAG for natural language interaction
The second design pillar leverages Graph Retrieval-Augmented Generation (GraphRAG) to enable
natural-language queries on top of the MBSE-Graph. Key elements include:
LLM-Driven Query Translation: User queries such as “Which functions satisfy the requirement ‘The
vehicle shall be energy-efficient’?” are parsed by an LLM, which generates corresponding Cypher
queries. Natural-Language Interface: A chat-based user interface reduces the learning curve by
allowing engineers to ask questions in plain English. The LLM dynamically constructs or refines search
criteria, freeing users from specialized query languages. Real-Time Retrieval and Visualization: Query
results are displayed both textually and through subgraph visualizations, enabling more intuitive
exploration of relationships and dependencies within the system. This addresses Research Objective 2,
showing how LLM integration in MBSE can simplify model navigation and foster a more inclusive user
experience. The following Figure 2 displays the user interface:

3.3. Demonstration
To validate the proposed design, we implemented a proof-of-concept prototype, applying the above
processes in a scenario involving synthetic automotive data. Users can issue queries to the MBSE-Graph
—stored in Neo4j—via a chat-based interface. For instance, when asked, “Trace all requirements linked
to the function ‘Optimize fuel efficiency,’” the system automatically: Interprets the Query: The LLM
transforms the natural-language prompt into a Cypher query, following the semantic rules established in
the MBSE-Graph. Retrieves and Presents Information: Neo4j returns the relevant nodes and edges,
which are then displayed as a text summary plus a subgraph visualization. This workflow confirms the
system’s ability to handle real-time data retrieval and to showcase how different MBSE entities
interrelate.

4. Results and discussion
The MBSE-Graph-RAG framework was developed with two primary objectives:(1)Automatic MBSE-
Graph Construction and (2)Enhanced Usability and Information Retrieval via MBSE-Graph-RAG.
The first objective focused on automating the transformation of unstructured engineering data into a

Table 2. Matrix permitted relations between system elements

Row to column Requirement Function Logical

Requirement Derive, dependency Refine Refine
Function Satisfy Connector, composition
Logical Satisfy Connector, composition

Figure 2. Screen capture user interface with chat area, voice command and preview area
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coherent knowledge graph, significantly enhancing data accessibility. The framework demonstrated its
effectiveness by converting synthetic engineering artifacts into SysML-like nodes and relationships,
automating parts of the ontology creation process. This result suggests a positive answer to Research
Question 1—Can LLMs assist in structuring unstructured data and support the automated creation of
MBSE-graphs?—as the LLMs effectively parsed complex textual inputs, reduced manual modeling
efforts, and ensured consistent data representation. However, it is important to note that the testing was
conducted using synthetic data, which may not fully capture the complexity and variability of real-world
MBSE scenarios. This reliance limits the framework’s generalizability until further validation with real-
world datasets is performed. The second objective aimed to improve usability by integrating a natural-
language querying mechanism, allowing users to interact with MBSE data without needing specialized
syntax or deep expertise in MBSE tools. The system enabled natural language queries to be translated
into Cypher queries, providing accurate and contextual information retrieval. This approach directly
addresses Research Question 2—Does the use of MBSE-Graph-RAG improve user interaction with
system architectures?—by demonstrating that participants could navigate and visualize large sets of
MBSE entities more intuitively than with traditional MBSE tools.

4.1. Challenges and limitations
Despite these promising results, the study revealed several challenges and limitations. One major issue
is the scalability of the framework when dealing with large, highly interconnected graphs. Real-time
updates were sometimes slow, and visual feedback lagged, which could hinder usability in industrial-scale
scenarios. The dependency on synthetic data also limits the system’s applicability, as real-world datasets
might introduce complexities and challenges not encountered during testing. The natural language
processing (NLP) capabilities of the system need enhancement to handle ambiguous inputs, as such cases
occasionally led to misaligned or incomplete queries.

4.2. Contributions and future outlook
The MBSE-Graph-RAG framework represents a significant advancement in bridging the gap between
generative AI and data consolidation within MBSE. By integrating knowledge graphs with RAG
techniques, the framework not only simplifies data management but also enhances usability, making
MBSE tools more accessible to non-expert users. This increased accessibility has the potential to drive
broader adoption within the industry. The proof-of-concept demonstrated tangible improvements in
efficiency and data accessibility, showcasing how natural language interactions and automated graph
construction can transform traditional MBSE practices. Future research will focus on validating the
framework with real-world MBSE datasets to ensure robustness and scalability. Key development areas
include enhancing NLP capabilities, optimizing visual performance for large and complex datasets, and
incorporating domain-specific datasets to improve generalizability. Additionally, extending the
framework to support advanced features such as automated ontology evolution, constraint-based
optimization, and dynamic digital thread management will amplify its impact. These enhancements are
expected to refine the framework’s effectiveness, contributing to faster innovation cycles and higher-
quality engineering outcomes. Three primary research directions have been identified to maximize the
MBSE-Graph-RAG framework’s potential: (1) MBSE-GraphMetamodel with Advanced Embedding
Capabilities: A significant research direction involves developing an MBSE-Graph metamodel that can
represent complex embedding rules, such as “include”, “exclude” and other feature-model-like
constraints. This capability is crucial for accurately modeling dependencies and variability within system
architectures, ensuring a flexible yet consistent representation of product configurations. (2) Automated
AI-Augmented Induction of MBSE Graphs: The framework aims to advance the automated creation
of MBSE-graphs using AI technologies. However, achieving this at scale requires robust ontology
development and maintenance mechanisms, as highlighted in the challenges identified in Section 2.3.
Automating the evolution of these ontologies to adapt to changing requirements remains a key focus area.
(3) Automated Instantiation of System Architectures for Product Configurations: One of the most
critical and complex tasks is synthesizing concrete system architectures for specific product
configurations. This process involves ensuring compliance with compatibility constraints, which has
not yet been fully addressed in existing solutions. Effective design space exploration relies heavily on
evolutionary algorithms, which can efficiently navigate complex option spaces to identify optimal
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configurations. For contradiction-free instantiation, the integration of constraint programming is
particularly promising, as it can enforce compatibility rules and maintain system consistency.

5. Conclusion
This paper establishes the methodological foundation for the conceptual application of RAG in MBSE-
Graphs. Through a structured literature review, the need and motivation were systematically compiled,
and the underlying problem was analyzed. Based on these insights, the developed concept provides an
initial outlook for future research and demonstrates its feasibility by presenting a proof of concept. The
MBSE-Graph-RAG framework addresses critical challenges in MBSE by integrating generative AI with
knowledge graphs, enhancing data accessibility, and enabling natural language interaction with system
architectures. By transforming proprietary MBSE data into a graph-based format using Neo4j, the
framework improves usability and lowers the entry barrier for non-expert users. The proof-of-concept
demonstrated how the system automates the conversion of unstructured engineering data into structured
knowledge graphs, reducing manual modeling effort and enabling efficient querying through intuitive
natural language interfaces. While the results are promising, several limitations remain. The framework
currently relies on synthetic data, which may not fully capture the complexity of real-world MBSE
scenarios. Challenges also exist with scalability and the robustness of NLP. To fully realize its potential,
future work will focus on validating the framework with real-world datasets, enhancing NLP capabilities,
and optimizing visualization tools for large and complex graphs. Additionally, extending the system with
advanced features like automated ontology evolution, constraint-based optimization, and support for
complex embedding rules in the MBSE-Graph metamodel will be crucial. These advancements aim to
establish a scalable and adaptive MBSE framework, promoting faster innovation and higher-quality
engineering outcomes through enhanced automation, improved usability, and more comprehensive
engineering workflows. Conducting usability studies with diverse user groups will provide valuable
insights to refine the system further and ensure it meets the needs of both experts and non-experts
effectively.
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