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Abstract

Background. Understanding the mechanisms of major depressive disorder (MDD) improvement
is a key challenge to determining effective personalized treatments.

Methods. To identify a data-driven pattern of clinical improvement in MDD and to quantify
neural-to-symptom relationships according to antidepressant treatment, we performed a second-
ary analysis of the publicly available dataset EMBARC (Establishing Moderators and Biosignatures
of Antidepressant Response in Clinical Care). In EMBARGC, participants with MDD were treated
either by sertraline or placebo for 8 weeks (Stage 1), and then switched to bupropion according to
clinical response (Stage 2). We computed a univariate measure of clinical improvement through a
principal component (PC) analysis on the variations of individual items of four clinical scales
measuring depression, anxiety, suicidal ideas, and manic-like symptoms. We then investigated
how initial clinical and neural factors predicted this measure during Stage 1 by running a linear
model for each brain parcel’s resting-state global brain connectivity (GBC) with individual
improvement scores during Stage 1.

Results. The first PC (PC1) was similar across treatment groups at stages 1 and 2, suggesting a
shared pattern of symptom improvement. PC1 patients’ scores significantly differed according
to treatment, whereas no difference in response was evidenced between groups with the Clinical
Global Impressions Scale. Baseline GBC correlated with Stage 1 PC1 scores in the sertraline but
not in the placebo group.

Using data-driven reduction of symptom scales, we identified a common profile of symptom
improvement with distinct intensity between sertraline and placebo.

Conclusions. Mapping from data-driven symptom improvement onto neural circuits revealed
treatment-responsive neural profiles that may aid in optimal patient selection for future trials.

Introduction

Major depressive disorder (MDD) is a frequent and heterogeneous psychiatric disease (World
Health Organization, 2017). The use of a traditional categorical approach derived from the
Diagnostic and Statistical Manual of Mental Disorders (5th edition) criteria (American Psychi-
atric Association, 2013) severely limits the identification of treatment response predictors
(Perlman et al., 2019). Clinical trials traditionally use predefined scales to compare treatment
with a placebo. However, an existing gap in our field relates to whether there could be a
generalized response pattern that cuts across active treatment and placebo (Gueorguieva,
Mallinckrodt, & Krystal, 2011; Huneke et al., 2022). Indeed, clinical improvement obtained after
antidepressant treatment embeds a placebo response, and both antidepressants and placebos can
induce neurobiological changes that may share commonalities (Benedetti et al., 2005). Further-
more, it remains unknown if patients’ baseline neural configurations are associated with a unique
clinical response pattern. In this study, we intend to test whether a common data-driven profile of
improvement can be identified across both treatment and placebo groups. We evaluated data
from the publicly available dataset EMBARC (Establishing Moderators and Biosignatures of
Antidepressant Response in Clinical Care). EMBARC is a multisite randomized placebo-
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controlled trial in which unmedicated participants with MDD were
treated either by sertraline, a serotonin selective reuptake inhibitor,
or placebo, and then switched to bupropion (an atypical antidepres-
sant) according to clinical response status (Trivedi et al., 2016).
EMBARC collected clinical measures (including item-level data on
depression, anxiety, suicidal ideas, and manic-like symptoms
scales) and baseline neuroimaging data to find markers associated
with antidepressant treatment outcomes (Ang et al., 2022; Beliveau
et al., 2022; Chin Fatt, Cooper, Jha, Aslan, et al., 2021; Chin Fatt,
Cooper, Jha, Minhajuddin, et al., 2021; Chin Fatt et al., 2020, 2023;
Cooper et al, 2019, 2019; Fan et al., 2020; Webb et al., 2019;
Whitton et al., 2019; Zhao et al., 2023). One of the specific aspects
of EMBARC is the remarkable intensity of the placebo effect.
Using the Clinical Global Impressions (CGI) Scale, a clinician
rated a nonspecific 7-point scale providing a single global measure
of improvement, or global clinical scores such as the Hamilton
Rating Scale for Depression (HRSD); no difference in clinical
outcomes was evidenced between the placebo and the sertraline
groups (Chin Fatt et al., 2020; Cooper et al., 2019; Fan et al., 2020;
Pizzagalli et al., 2018; Webb et al.,, 2019; Whitton et al., 2019).
However, clinical and neurological predicting factors of sertraline
and placebo response were identified, some of them being shared
(Fan et al., 2020; Pizzagalli et al., 2018) and others being specific to
the sertraline or the placebo group (Ang et al., 2022; Chin Fatt
et al., 2020, 2023; Chin Fatt, Cooper, Jha, Aslan, et al., 2021; Chin
Fatt, Cooper, Jha, Minhajuddin, et al., 2021; Cooper et al., 2019;
Webb et al., 2019).

Here, we applied a new analytic strategy to evaluate whether the
placebo and the sertraline groups share a common pattern of
symptom improvement. Specifically, we performed a principal
component analysis (PCA) on the variations of individual items
of four clinical scales, resulting in a univariate score of clinical
improvement. We then compared the sertraline and placebo groups
using this score and investigated whether clinical and neural factors
at baseline could predict it. With this approach, we were able to
identify a common clinical profile of symptom improvement that
occurs across placebo and sertraline. Critically, however, both the
intensity of response reflected by this score and the baseline neural
patterns linked to symptom improvement showed a clear difference
between the treatment and placebo groups.

Materials and methods
Data collection, study design, and clinical sample

In EMBARG, patients with MDD received either sertraline (up to
200 mg daily) or placebo for 8 weeks (Stage 1). Then, their treatment
was adapted according to their CGI rating for 8 additional weeks
under double-blind conditions (Stage 2), a CGI score of less than
“much improved” at 8 weeks, being considered as a nonresponse
(Trivedi et al.,, 2016) (see Figure 1). During Stage 2, sertraline non-
responders received bupropion, placebo nonresponders received
sertraline, and responders continued the treatment they received
during Stage 1. Participants underwent a magnetic resonance
imaging (MRI) at baseline and an extensive clinical assessment at
8 and 16 weeks, including four clinical scales of interest: (i) HRSD
(Hamilton, 1960), which assesses depressive symptoms; (ii) Altman
Self-Rating Mania Scale (ASRM) (Altman, Hedeker, Peterson, &
Davis, 1997), which measures manic symptoms; (iii) Concise Health
Risk Tracking (CHRT) (Trivedi et al,, 2011), which evaluates suicidal
propensity and risk; and (iv) Concise Associated Symptoms Tracking
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Scale (CAST) (Trivedi et al, 2011), which reflects both anxiety,
irritability, and manic symptoms. We included 192 patients who
had full clinical data and quality-controlled neuroimaging data at
baseline (see Figure 1 and Table 1).

Dimension reduction of symptom improvement

To estimate data-driven patterns of symptom improvement, we ran
a three-step analysis on the clinical variation, that is, the difference in
score for each item before and after treatment across all 73 items
of the HRSD, ASRM, CHRT, and CAST scales. We first per-
formed dimension reduction of clinical measures using PCA
separately for each group. Then, we evaluated principal compo-
nent (PC) reproducibility using cross-validation. Finally, we
compared PC loadings and scores across groups to identify
shared/distinct axes of symptom improvement. This strategy is
similar to that employed in previous publications of our team
(Ji etal, 2021; Lee et al., 2024; Moujaes et al., 2024).

This data dimension reduction approach enables the detection
of differences between groups in two ways. First, separate group
PCA can yield PCs that differ in terms of geometry (i.e., loadings),
meaning that the type of symptoms changing over time depends
on the treatment group. Alternatively, we can run PCA across
groups, yielding common PCs and show that groups have differ-
ent score distributions for these PCs (i.e., different “intensity” of
change on common axes of clinical variation), using post-hoc
two-sample two-sided ¢-tests. Additional details can be found in
the Supplementary Methods.

Dimension reduction of baseline symptoms

To explore clinical predictive factors of improvement, we applied
the same approach to baseline symptoms. We run a PCA across
participants, regardless of the group, to check whether baseline-
symptom PC loadings would resemble those of the PCs reflecting
improvement (i.e., obtained from the difference of score for each
item before and after treatment) and whether baseline-symptom
PC scores (i.e., severity at baseline) would predict improvement PC
scores (i.e., intensity of clinical response).

Neural data reduction via functional brain-wide parcellation

Neuroimaging data were acquired at baseline during resting state
using a 3T MRI (Greenberg et al., 2015). All scans were processed
using the Quantitative Neuroimaging Environment & ToolboX
(QuNex, https://qunex.yale.edu/) (Ji et al., 2023), which integrates
the Human Connectome Project Pipelines (Glasser et al., 2013).
The preprocessing pipeline is described in the Supplementary
Methods. Neural data were examined at different levels: parcels
(718 parcels), networks (12 networks) and whole brain (brain
average) to assess whether local, functional, or global patterns of
connectivity would be predictive of clinical improvement. Data
were first parcellated following the Cole-Anticevic Brain Net-
work Parcellation (CAB-NP) atlas (Glasser et al., 2016; Ji et al.,
2019). Global brain connectivity (GBC), which correlates the
time series of every voxel (or area) with every other voxel
(or area), was then calculated for each subject at the parcel level
to reduce the dimensionality of the neural feature space (Ji et al.,
2019) (see Supplementary Methods for details about GBC calcu-
lation). For network-level analyses, we averaged GBC values
across parcels belonging to each network — at the cortical and


http://doi.org/10.1017/S0033291725100962
https://qunex.yale.edu/
http://doi.org/10.1017/S0033291725100962
http://doi.org/10.1017/S0033291725100962
http://doi.org/10.1017/S0033291725100962
https://doi.org/10.1017/S0033291725100962

Psychological Medicine 3

Demographics,
, ASRM,
CHRT, CAST

Neuroimaging
[T1w & BOLD]

Randomized
N = 296

Placebo
N =150

Sertraline
N = 146

Stage 1: 8 weeks >
Exclusion, N = 53 Exclusion, N = 51
Missing scales Missing scales

N=44 < > N=35

Missing MRI data Missing MRI data

N=2 N=5
MRI did not satisfy QC MRI did not satisfy QC
N=7 N=11
Sertraline Placebo
N =93 N =99

N\ 4 N\ 4 N 4 N\
Responders Non responders Responders Non responders
N =48 N =45 N =39 N =60
(52%) (48%) (39%) (61%)
N | J N | J N | J N |
4 N\ 4 N\ . N 4 N\
Continue Switch to Continue Switch to
Sertraline Bupropion Placebo Sertraline
N J N J N J N J

Stage 2: 8 weeks @

Exclusion, N = 29
Missing scales

Sertraline Bupropion Placebo Sertraline
N =48 N =34 N =30 N =51

l l !

Figure 1. Study design and analyzed population. In Stage 1, patients with early-onset recurrent MDD were randomized to receive either sertraline up to 200 mg daily or placebo
under double-blind conditions. At Week 8, participants were assessed with the CGl, and those who had a score of less than “much improved” were considered nonresponders. In
Stage 2, nonresponding patients in Stage 1 were switched to another treatment under double-blind conditions: sertraline nonresponders received bupropion, and placebo
nonresponders received sertraline. Responders continued the treatment received during Stage 1. Participants underwent an extensive clinical assessment and a 3T MRI at baseline.
At 8 and 16 weeks, four clinical scales of interest were performed: (i) Hamilton Rating Scale for Depression (HRSD), which assesses depressive symptoms; (i) Altman Self-Rating
Mania Scale (ASRM), which measures manic symptoms; (iii) Concise Health Risk Tracking (CHRT), which evaluates suicidal propensity and risk; and (iv) Concise Associated
Symptoms Tracking Scale (CAST), which reflects both anxiety, irritability, and manic symptoms.

subcortical levels — derived from the CAB-NP atlas. Subcortical ~ Wuetal, 2016). For the brain average level analyses, we averaged
structures of interest were chosen based on previous findings in ~ GBC values across the 718 parcels.

depression (Chen et al., 2018; Chin Fatt et al., 2023; Chin Fatt,
Cooper, Jha, Aslan, et al,, 2021; Godlewska et al., 2018; Karim
et al., 2018; Korgaonkar, Goldstein-Piekarski, Fornito, & Wil-
liams, 2020; Li et al., 2023; Lu et al., 2020; Martens, Filippini, = The interactions between clinical improvement and individual base-
Harmer, & Godlewska, 2022; Rolle et al., 2020; Strege et al., 2023;  line GBC at the parcel-level were measured via a mass univariate

Mass univariate brain-behavior mapping
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Table 1. Baseline patient characteristics

Characteristics PLA, N = 99° SER, N = 93° p-value®
Gender 0.5
Female 63 (64%) 64 (69%)
Male 36 (36%) 29 (31%)
Age (years) 37.73 (1.30) 37.73 (1.46) >0.9
Ethnicity 0.7
American Indian/Alaska 1 (1.0%) 0 (0%)
Native
Asian 5 (5.1%) 5 (5.4%)
Black or African American 16 (16%) 19 (20%)
More than one race 4 (4.0%) 6 (6.5%)
White 73 (74%) 63 (68%)
Subject education (years) 15.39 (0.25) 14.95 (0.28) 0.2
Unknown 0 2
Major depressive disorder: 0.8
Severity at baseline
High 41 (41%) 41 (44%)
Low 58 (59%) 52 (56%)
Major depressive disorder: 0.9
Chronicity at baseline
Chronic 50 (51%) 49 (53%)
Non-chronic 49 (49%) 44 (47%)
HRSD: Hamilton Rating 18.42 (0.44) 18.73 (0.44) 0.6
Scale for Depression
(total score)
ASRM: Altman Self-Rating 1.30 (0.18) 1.42 (0.18) 0.6
Mania Scale (total score)
CHRT: Concise Health Risk 26.96 (0.84) 26.88 (0.81) >0.9
Tracking Scale
(propensity score)
CHRT: Concise Health Risk 5.39 (0.23) 5.54 (0.26) 0.7
Tracking Scale (risk score)
CAST: Concise Associated 29.69 (0.91) 30.39 (0.99) 0.6

Symptoms Tracking Scale
(total score)

n (%); Mean (SEM).
PPearson’s y? test; Welch two-sample t-test.

regression procedure (Ji, Spronk, et al,, 2019). The resulting maps
correspond to the regression coefficients between patients’ clinical
improvement and GBC in each parcel, across all 192 patients. The
greater the magnitude of the coefficient for a given location, the
stronger the statistical relationship between GBC and the clinical
variation across patients during Stage 1. The significance of the maps
was assessed using Permutation Analysis of Linear Models (PALM)
(WinKler et al., 2014). We computed two-tailed Pearson’s correlation,
ran 1,000 permutations, and applied family-wise error rate correction.

To explore whether GBC was statistically associated with first PC
(PC1) measures, we conducted analyses of variances (ANOVAs)
with GBC as a dependent variable, PC1 in interaction with treatment
and networks or subcortical structures, and age, gender, and site as
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covariates. We accounted for repeated measures per participant
using a within-subjects factor (networks) within error structure.

In case there was a significant interaction between PC1 and
treatment, we then measured whether PC1 could be predicted by
GBGC, respectively, in the sertraline and placebo groups. We ran
ANOVA with PCI score as a dependent variable, and GBC inter-
acting with network or subcortical structure separately for each
treatment group, and across different spatial regions (e.g., per
functional brain networks including both cortical and subcortical
regions and per subcortical structures). Additionally, we included
age, gender, and site as independent variables. If there was a
significant effect involving network or subcortical structure, we
studied the correlation between PC1 and GBC for each network
(or subcortical structure) separately.

Finally, if there was a significant interaction between PC1 and
network or subcortical structures in the main ANOVA, we explored
whether GBC in a given network or subcortical structures would
predict PCI regardless of treatment. To do so, we ran an ANOVA
separately for each network/substructure, with PC1 score as a
dependent variable, and GBC interacting with treatment, and age,
gender, and site as independent variables.

Results
Analysis of total scale scores

We first looked at the total scale score variations for each stage.
There was no difference at baseline between treatment groups (see
Figure 2A). The CHRT was the only scale whose scores improved
more in the sertraline than in the placebo group during Stage
1 (variation of CHRT propensity score: p = 0.009; CHRT risk score:
p =0.002). The proportion of responders and nonresponders accord-
ing to the CGI was similar in the two groups at the end of Stage
1 (placebo 39.4% versus sertraline 51.6%, )(2 =24, p =0.12). There
were no significant differences at baseline between responders and
nonresponders (all p > 0.08), suggesting that baseline symptoms were
not predictive of subsequent CGI response status. A more detailed
analysis of total scale scores at baseline and during each stage can be
found in the Supplementary Results.

Identifying clinical improvement geometry using PCA analysis

The geometry of the PC1 is consistent across groups

To explore the geometry of symptom improvement across groups,
we ran separate PCA on the clinical item evolution for each group
during each stage: two groups — sertraline versus placebo — in
Stage 1 (Figure 3A—E and Table 2), and four groups — sertraline
responders, sertraline nonresponders switched to bupropion, pla-
cebo responders, and placebo nonresponders switched to sertra-
line — in Stage 2 (Figure 3F-H and Table 2). Reliability was
assessed with split-half cross-validation. Except for responders
during Stage 2, PCA yielded significant and reliable PC1 in all
groups and stages. Other significant PCs were not reliable (r-
values for split-half cross-validation below 50%, see Supplementary
Figure S1) and were, therefore, not retained for further analyses. The
geometry of PC1, explaining the most variance of symptom improve-
ment in each group, was common across treatment groups, exhib-
iting high correlations of PC1 geometries between groups (Stage 1:
placebo vs. sertraline, r = 0.93, p < 0.001; Stage 2: sertraline newly
introduced vs. bupropion, r = 0.83, p < 0.001). Given this result, we
ran an additional PCA on symptom improvement for each stage,
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Stage 1: sertraline versus placebo
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c
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Symptom
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Symptom
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CHRT

41. things will never get better

42. no future

43. | can do nothing right

44. everything | do turns out wrong

45. there is no one | can depend on

46. the people | care the most for are gone

47. | wish my suffering could just all be over
48. | feel that there is no reason to live

49. | wish | could just go to sleep and not wake

up
50. | find myself saying or doing things without
thinking

51. | often make decisions quickly or "on
impulse"

52. | often feel irritable or easily angered

53. | often overreact with anger or rage over
minor things

54. 1 have been having thoughts of killing myself
55. | have thoughts about how | might kill myself
56. | have a plan to kill myself

Stage 2 non responders:
Introduction sertraline versus switch bupropion

8 weeks 16 weeks

Symptom
evolution

Figure 2. Symptom improvement during stages 1 and 2. (A) Symptom improvement during Stage 1 at the item level for each group (red: sertraline and blue: placebo): scores at the
item level are similar between the two treatment groups at baseline and differ only for the CHRT scores evolution. (B) List of all 73 items across the four clinical scales. (C) Symptom
improvement during Stage 1 in responders and nonresponders according to the CGI (salmon: responders to sertraline, brown: nonresponders to sertraline, light blue: responders to
placebo, and dark blue: nonresponders to placebo). Responders and nonresponders have significant differences in symptom improvement for all clinical scales. (D) Symptom
improvement during Stage 2 (green: patients switched from sertraline to bupropion, orange: patients switched from placebo to sertraline). Patients switched to bupropion have a
lower global CHRT risk score compared to patients switched to sertraline at the beginning of Stage 2 and improved less than participants under sertraline during Stage 2.

pooling all the participants together (i.e., sertraline and placebo
together for Stage 1 [Figure 3B] and all treatment groups together
for Stage 2 [Figure 3G]). We confirmed that the resulting common
PC1 estimated from all participants was highly correlated with
the PCl1s estimated from each group separately (see Figure 3B,G,
Supplementary Results, and Supplementary Figure S2 for a detailed
description of item loadings).

The sertraline group has higher PC1 scores than the placebo group,
while responders have higher scores than nonresponders

The estimation of common PCs of symptom improvement allowed
us to study the distributions of individual participants’ scores on a
common axis of symptom improvement according to their group
and to explore whether treatment groups had different score dis-
tributions on this common PCI.

During Stage 1, the sertraline group had, on average, higher
common PCl1 scores than the placebo group (99 = 3.16, p =0.0018,
see Figure 3C). Responders also had higher scores than nonre-
sponders (sertraline: responders vs. nonresponders: t5; = 8.23,
p < 0.0001, placebo: responders vs. nonresponders: tg, = 8.57,
p < 0.0001, Figure 3E). Nonresponders to sertraline had higher
scores than nonresponders to placebo (ty; = 2.25, p = 0.027),
whereas sertraline and placebo responders’ scores did not differ
(ts2 = 1.54, p = 0.13). During Stage 2, the sertraline group (formerly
nonresponders to placebo in Stage 1) had a higher score than the
bupropion group (formerly nonresponders to sertraline in Stage 1)
(ts0 = 2.39, p = 0.019, Figure 3H). However, it is worth noting that
those two groups were defined on CGI response to placebo and
sertraline, respectively. Therefore, they are not comparable in terms
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of treatment-resistance profiles (one group is naive, whereas the
other is sertraline-resistant) and have different sample sizes. The
groups that received Stage 1 treatment did not significantly differ in
their score distributions (fgy = 0.82, p = 0.42). Overall, using PC1, it
appears that patients receiving sertraline have a higher clinical
improvement than patients under placebo during Stage 1. Super-
iority of sertraline over bupropion is difficult to assert given differ-
ences in terms of resistance profile and sample size.

Predicting clinical improvement

Clinical score at baseline can predict clinical improvement following
treatment based on PCI scores

We then evaluated whether individual clinical measures collected at
baseline could predict individual treatment responses during Stage
1, using the principal axis of symptom improvement (common PC1
scores).

To do this, we estimated the correlation between Stage 1 PC1
scores and baseline clinical scores across subjects and performed an
ANOVA test, where common PC1 scores are dependent variables
and HRSD, ASRM, CHRT, and CAST baseline total scores and
treatment groups (sertraline vs. placebo) are independent variables.

We found that CHRT risk and CAST global scores at baseline
predicted Stage 1 PC1 scores across sertraline and placebo groups
(CHRT: r = 0.20, p = 0.007; CAST: r = 0.20, p = 0.006) with no
differences between the two groups (interaction CHRT x treatment:
F) 188 = 0.6, p = 0.45; interaction CAST x treatment: F; 155 = 0.4,
p = 052). In contrast, HRSD scores and depression severity at
baseline did not predict Stage 1 PC1 scores across sertraline and
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Stage 1: sertraline versus placebo
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Still sertraline

Still placebo
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bupropion
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sertraline

AN -19.00 0
PC1 Score

Figure 3. Principal component analysis on symptom improvement during stages 1 and 2. (A) PC1 loadings: Symptom improvement geometry is very similar between the two groups (red:
sertraline and blue: placebo). (B) PCA pooling all participants yields another PC1 (common PC1: black), which is very similar to the PC1 resulting from PCA run separately on the two
groups. (C) Distribution of scores for common PC1 in each group (red: sertraline subgroup, blue: placebo subgroup, and black: all participants). On average, patients under sertraline have
higher scores than patients under placebo (t;90 = 3.16, p = 0.0018). (D) Results of the same analyses but splitting each treatment group according to clinical CGI response status (salmon:
responders to sertraline, brown: nonresponders to sertraline, light blue: responders to placebo, and dark blue: nonresponders to placebo). PCA again yields a PC1 that explains most
variance and is reliable. (E) Distribution of scores for the PC1 run across all participants (common PC1) for each subgroup of treatment x CGl response. On average, patients not responding
to sertraline have higher scores than patients not responding to placebo (ts7 = 2.25, p = 0.027). (F) Results of the same analyses performed during Stage 2 (green: patients switched from
sertraline to bupropion and orange: patients switched from placebo to sertraline). PCA again yields a PC1 that explains most variance is reliable and is relatively similar in terms of loadings
between the two groups receiving a new medication. (G) Common PC1 loadings and score distribution for Stage 2. PCA pooling all participants yields another PC1 (common PC1: black),
which is very similar to the PC1 resulting from PCA run separately in the different groups. (H) Distribution of scores for common PC1 in each group for Stage 2 (red: responders to sertraline
during Stage 1, blue: responders to placebo during Stage 2, green: switched to bupropion, orange: switched to sertraline, and black: all participants). On average, patients who switched to
sertraline have higher scores than patients who switched to bupropion (tg, = 2.39, p = 0.019).
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Table 2. Principal component analysis results

Percentage of explained variance

Number of

PC1 reliability

Loadings correlation

Group and stage significant PCs All PC PC1 (split-half correlation) between PCs
Improvement stage 1
Sertraline (n = 93) 6 42.6 19.2 0.87 0.93
p <0.001
Placebo (n =99) 5 38.1 19.7 0.86
Sertraline-responders (n = 48) 3 42.6 14.5 0.56 0.78
i p <0.001
Sertraline nonresponders (n = 45) 6 38.1 19.7 0.60
Placebo responders (n = 39) 5 385 15.8 0.56 0.71
p <0.001
Placebo nonresponders (n = 60) 4 2.7 14.3 0.66
Improvement stage 2
Sertraline (previously placebo) (n = 60) 4 43.1 23.5 0.75 0.83
<0.001
Bupropion (previously sertraline) (n = 45) 4 43.2 19.2 0.56 &
Sertraline responders (n = 48) 3 28.4 - <0.50 -
Placebo responders (n = 39) 8 66.3 - <0.50
Improvement across all participants (common PC)
Stage 1 7 42.6 19.6 0.93 0.95
p <0.001
Stage 2 7 45.4 20.0 0.89
Baseline PC
Baseline 11 50.1 10.3 0.60 -

placebo groups, but their interaction with the treatment group was
significant (interaction HRSD X treatment: F; 133 = 5.8, p = 0.017;
interaction depression severity x treatment: F; g5 = 5.6, p =
0.019). Indeed, HRSD scores and depression severity predicted
Stage 1 PC1 scores in the sertraline group, but not in the placebo
group (HRSD sertraline group: r = 0.21, p = 0.040 vs. placebo
group: ¥ = —0.13, p = 0.19; depression severity (high > low)
sertraline group: F;9; = 3.7, p = 0.058 vs. placebo group:
F1o1 = 2.1, p = 0.15). Overall, these results suggest that suicidal
risk (CHRT) and anxiety symptoms (CAST) at baseline predict
clinical improvement as measured by PC1 scores, irrespective of
treatment, whereas depression severity at baseline predicted ser-
traline efficacy specifically.

Principal axis of clinical items at baseline can predict clinical
improvement following treatment

By running the PCA on the baseline symptoms as opposed to PCA
on the delta between time points, we evaluated whether the
baseline-symptoms principal axis of clinical scores could predict
subsequent clinical improvement. The loadings of baseline-
symptoms PCl and common improvement PCl during Stage
1 were found to be significantly correlated (r = 0.69, p < 0.001),
indicating that the improvement concerns symptoms that are
observable at baseline. Moreover, baseline-symptoms PC1 scores
significantly correlated with Stage 1 PC1 scores across groups
(r = 0.20, p = 0.005, interaction baseline-symptoms PC1 scores x
treatment: F 55 = 0.001, p = 0.98), suggesting that the more severe
the baseline symptomatology, the greater the improvement.

It is noteworthy that baseline-symptoms PC1 scores did not
significantly differ between the sertraline and placebo groups
(t136 = —0.82, p = 0.41), confirming that the two groups were
identical at baseline.
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CGl is not predicted by baseline clinical characteristics

In contrast, CGI response status was not predicted by any baseline
characteristics (age, gender, ethnicity, education, MDD severity, MDD
chronicity, HRSD, ASMR, CHRT, CAST, and baseline-symptoms
PCl, all p > 0.08 across subjects and within each treatment group).

Brain-behavior mapping

To identify neural circuits predicting factors of response, we explored
the relationship between resting-state GBC maps at baseline and
clinical improvement during Stage 1. We estimated GBC calculated
at the parcel level and then averaged within each predefined func-
tional network, within each anatomically defined subcortical struc-
ture, and finally within the entire brain. To study the direction of this
effect and compare GBC-PC1 relationship strength between the
sertraline and the placebo groups, we computed GBC-PC1 correl-
ation (r-values). The corresponding brain-behavior correlation maps
and graphs are depicted in Figure 4. To capture the relationships
between GBC and PC1 as a function of treatment and brain level, we
then performed ANOVA following the statistical plan described in
the Methods section.

Resting-state GBC at baseline is similar in the sertraline and the
placebo groups

First, we verified that sertraline and placebo groups had a compar-
able brain connectivity at baseline at the parcel, network, and brain
average levels and did not find any differences between the sertra-
line and placebo groups (all pagjustea > 0.1).

Parcellated GBC at baseline does not significantly predict clinical
improvement or response status

At the parcel level (n = 718, Figure 4A), the interactions between
GBC and scores of common-improvement PC1 (GBC-PC1) did
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Figure 4. Brain-behavior mapping of mood improvement during Stage 1. (A) Top: Correlation between the parcellated resting-state GBC and the PC1 scores in the sertraline (left) and the
placebo (middle) groups during Stage 1, and interaction between the two treatment groups (right). Bottom: Correlation between the parcellated resting-state GBC and the CGl response status in
the sertraline (left) and the placebo (middle) groups, and interaction between the two treatment groups (right). Correlation maps are visually different between the sertraline and the placebo
groups, suggesting that the baseline cerebral predictors of clinical improvement differ according to the pharmacological intervention. Exploratory analyses showed a lower correlation between
GBC-PC1 brain-behavior mapping and GBC-CGI response brain-behavior map in the sertraline group compared to the placebo group, suggesting that CGl response has the same brain predictive
factors as PC1 for placebo but not for sertraline. The interaction between GBC, PC1, and treatment on the one hand, and GBC, CGI response, and treatment on the other hand, displayed in the
right panel, shows how each parcel contributes to the pharmacological response (as opposed to the placebo effect). (B) Network parcellation. (C) Correlation between the parcellated resting-state
GBC regrouped by networks and the PC1 scores in the sertraline (left) and the placebo (right) groups. Each dot represents a parcel, and each horizontal bar represents the mean of correlation r-
values for a given network across subjects. (D) Correlation between the parcellated resting-state GBC regrouped by subcortical regions and the PC1 scores in the sertraline (left) and the placebo
(right) groups. Each dot represents a parcel, and each horizontal bar represents the mean of correlation r-values for a given subcortical region across subjects. (E) Brain average GBC correlation
with PC1 in the two treatment groups during Stage 1 (red: sertraline and blue: placebo). Each dot represents a subject, lines represent the linear regressions, and the shaded areas represent the
95% confidence interval. PC1 scores and GBC were significantly correlated in the sertraline group (Fygs = 11.42, p = 0.0011), but not in the placebo group (Fy, = 0.59, p = 0.44), indicating that
baseline GBC is a predictive factor of pharmacologically-induced clinical improvement.
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not survive correction for multiple comparisons (family-wise
error rate correction, a = 0.05 in PALM (Smith & Nichols,
2009). However, GBC-PC1 brain-behavior mapping was stronger
in the sertraline compared to the placebo group (t7;; = 10.10,
padjusted < 0-001)-

Interestingly, there was a higher correlation between the GBC—
PC1 brain-behavior map and the GBC-CGI response brain-
behavior map in the placebo (r = 0.73, p < 0.001) compared to
the sertraline group (r = 0.56, p < 0.001), suggesting that placebo
brain-behavior mapping is less specific to the measure used for
assessing clinical response.

Functional network GBC at baseline predicts clinical improvement in
both groups

Then, we explored the brain-behavior relationships at a larger
spatial scale of functional cortical networks. Using a predefined
template of canonical functional networks on the same parcellation
scheme, we averaged GBC across parcels belonging to each network
(n = 12, Figure 4B).

GBC differs as a function of PC1 scores, and its interaction with
treatment and networks

We first measured whether GBC at the network level differs as a
function of PCI across treatment groups by running an ANOVA
with GBC as a dependent variable, PC1 in interaction with treatment
and networks, and age, gender, and site. We observed a main effect of
PCI (F} 183 =20.20, p < 0.001), and age and site (all p < 0.001), but no
main effect of treatment group (p = 0.7). There was a significant
interaction between PC1 and treatment (F; ;43 = 10.58, p = 0.001),
between PC1 and networks (Fyj 068 = 2.26, p = 0.010), as well as a
triple interaction between PCl, treatment, and networks
(F11,2068 = 2.07, p = 0.020), indicating that the relationship between
PC1 and GBC differed across networks and treatment groups.

Network-level GBC predicts PCI scores in the sertraline group but not
the placebo group

Given these results and to further explore whether network-level
GBC could predict treatment outcome, we performed an ANOVA
with PC1 as a dependent variable and GBC, network, age, gender,
and site, separately for the sertraline and the placebo group.

In the sertraline group, there was a main effect of GBC on PC1
(F1,1000 = 6.90, p =0.009) and a significant interaction between GBC
and network (F;1 1000 = 2.18, p =0.014). Particularly, positive GBC—
PC1 correlation r-values were observed in the somatomotor,
cingulo-opercular, dorsal attention, language, auditory, posterior-
multimodal, ventral-multimodal, and orbito-affective networks (all
Puncorrected < 0.04), but not in the default-mode network, fronto-
parietal, and visual networks (Figure 4C). However, these network-
level results did not survive Bonferroni multiple comparison cor-
rections (n = 12).

In the placebo group, GBC scores did not significantly predict
PC1 scores, and there was no interaction between GBC and net-
works (all p > 0.4).

GBC in several networks predicts PC1 scores regardless of treatment
In exploratory analyses performed for each network separately
across treatment groups, GBC was predictive of response across
treatment groups in the dorsal attention, the ventral-multimodal,
and the two visual networks (all Fy ;53 > 8.00, all pagjustea < 0.05).

Figure 4C depicts GBC-PC1 correlation r-values for each net-
work in each treatment group to provide a sense of strength and
direction of brain-behavior relationships.
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Amygdala GBC at baseline predicts clinical improvement

Then, we averaged GBC across parcels belonging to the subcortical
structure of interest, that is, amygdala, hippocampus, thalamus, and
striatum with its substructures nucleus accumbens, putamen, and
caudate nucleus.

GBC differs as a function of PCI1 scores, and its interaction with
treatment or subcortical structure

We first measured whether GBC at the subcortical level differs as a
function of PC1, treatment groups, and subcortical structures by
running an ANOVA with GBC as a dependent variable, PCI in
interaction with treatment and subcortical structures, and age, gen-
der, and site as independent variables. We observed a main effect of
PC1 (F; 143 = 10.30, p = 0.002), and age and site (all p < 0.001), but no
main effect of treatment group (p = 0.23). There was a significant
interaction between PC1 and treatment (F; ;43 = 11.30, p = 0.001),
and between PCl and subcortical structures (Fijgs0 = 2.37,
p = 0.009). The triple interaction between PCI, treatment, and
subcortical structures was not significant (Fy 1550 = 0.44, p = 0.93).

Subcortical-level GBC predicts PC1 scores in the sertraline group but
not the placebo group

Given these results and to further explore whether subcortical-level
GBC could predict treatment outcome, we performed an ANOVA
with PCI as a dependent variable and GBC, subcortical structures,
age, gender, and site, separately for the sertraline and the placebo
group.

In the sertraline group, there was no main effect of GBC on PC1
(F1.909 = 0.005, p = 0.95), but a significant interaction between GBC
and subcortical structures (F;q, 999 = 2.71, p = 0.003). Indeed, in the
sertraline group, positive r-values were observed in the nucleus
accumbens, the amygdala, the hippocampus, and the putamen (all
Puncorrected < 0.04, see Figure 4D) but not in the caudate nucleus and
thalamus. These structure-level results did not survive Bonferroni
multiple comparison corrections (1 = 6).

In contrast, in the placebo group, GBC scores did not signifi-
cantly predict PC1 scores (F} 9g9 = 0.02, p = 0.90), and there was no
interaction between GBC and networks (Fjj 969 = 0.39, p = 0.95).

Amygdala GBC predicts PC1 scores regardless of treatment
Exploratory analyses performed for each structure across treatment
groups revealed that GBC in the amygdala was predictive of PC1
scores (Fy 153 = 10.99, pagjustea = 0.007), without interacting with
treatment group.

Figure 4D depicts GBC-PCI correlation r-values for each sub-
cortical structure in each treatment group to provide a sense of
strength and direction of brain-behavior relationships.

Whole brain averaged GBC at baseline is predictive of clinical
improvement under sertraline but not under placebo

Finally, at the whole-brain level, we found that GBC averaged
across 718 cortical and subcortical parcels predicted individuals’
clinical improvement (PC1 scores) in the sertraline group only.
Indeed, there was a main effect of GBC and of treatment on PC1
(GBC: Fy 183 = 11.72, p < 0.001; treatment: F) 153 = 8.74, p = 0.003).
Although the interaction between GBC and treatment was not
significant (F; 133 = 1.96, p = 0.16), a significant correlation between
GBC and PC1 scores was observed in the sertraline group only
(r = 0.34, t9; = 3.41, p < 0.001; placebo group: r = 0.08, ty; = 0.74,
p = 0.46, see Figure 4E). This result suggests that baseline GBC is
predictive of clinical improvement under sertraline but not under
placebo.
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Comparing brain-behavior mapping with CGI response status versus
PC1I scores

To test whether GBC-PC1 brain—behavior mapping differed from
GBC-CGI mapping, we performed the same analysis pipeline at the
functional network and the subcortical levels with CGI response
status as an independent variable instead of PC1. Overall, we
observed the same pattern of results where relationships between
GBC and CGI were observed in the sertraline but not in the placebo
group (see Supplementary results for details). To directly compare
GBC-PC1 and GBC-CGI brain-behavior mappings in each treat-
ment group, we computed GBC-CGI correlation r-values and ran
t-tests between GBC-PC1 and GBC—CGI r-values at the functional
network and the subcortical levels. At the network level, GBC-PC1
r-values were significantly higher than GBC-CGI r-values in the
sertraline group (paired t-test: mean of the difference: 0.53;
t11 = 2.97, p = 0.013). This result was not observed in the placebo
group (p = 0.23) or for subcortical structures (all p > 0.1).

This finding confirms what was observed at the parcel level:
(1) that sertraline brain-behavior mapping differs between PC1 and
CGI measure, and (2) that GBC-PCI mapping is stronger than
GBC—-CGI mapping in this group.

Discussion
Summary of the results

We studied patterns of mood improvement in a cohort of patients
with MDD from the EMBARC clinical trial, treated either with
antidepressants (sertraline or bupropion) or placebo, using a data
dimension reduction approach (i.e., PCA) across targeted clinical
scales. This data-driven approach yielded a single dimension (PC1)
that passed split-half cross-validation testing. This robust PC solu-
tion provided a low-dimensional pattern of mood improvement
and was strikingly similar across both treatment and placebo,
suggesting that mood improvement may evolve along a common
symptom axis. Importantly, sertraline-induced PC1 scores were
greater than placebo-induced PCI scores and better predicted by
baseline clinical and neural characteristics.

Such differences were not observed when using CGI to measure
clinical response.

A better characterization of mood improvement

One of the specific aspects of EMBARC is the intensity of the
reported placebo response. Previous examinations of EMBARC
found no differences between sertraline and placebo efficacy
(Chin Fatt et al., 2020; Cooper et al., 2019; Fan et al., 2020; Pizzagalli
et al., 2018; Webb et al., 2019; Whitton et al., 2019), and common-
alities in predictive factors between the two groups (Cooper et al.,
2019; Fan et al., 2020; Pizzagalli et al., 2018; Whitton et al., 2019;
Zhao et al,, 2023), supporting the idea that a placebo response is
embedded into the antidepressant response (Pecifia et al., 2015). In
our analysis, no difference between the two groups and no clinical
predictive factors could be isolated when using the CGI. However,
by reducing the dimensionality of the data (PCA), we reveal a
higher efficacy in the sertraline group, predicted by both clinical
and neural factors. Interestingly, some patients considered as non-
responders according to the CGI and switched to another treatment
had high common-improvement PC1 scores. Conversely, some
patients considered as responders according to the CGI and stayed
on the same treatment had low common-improvement PC1 scores.
This discrepancy between routine clinical response assessment
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(i.e., CGI) and the low-dimensional measure of mood improvement
(PC1 scores) likely stems from the broad range of symptoms
captured in the PCA (Demyttenaere & De Fruyt, 2003;Maier &
Philipp, 1985 ; Moller, 2001). Indeed, suicidal risk and anxiety
scores significantly influenced the overall pattern in the PCA
solution, especially in the sertraline group. This suggests that the
efficacy of sertraline above placebo might be primarily due to its
antisuicidal and anxiolytic effects. It also raises the possibility that
the pure antidepressant response observed corresponds to a pla-
cebo effect. Additionally, we observed a dissociation between pre-
dictive factors and clinical improvement dimensions. In line with
previous studies, baseline depression severity (HRSD scores) spe-
cifically predicted sertraline efficacy as measured by PC1 (De Carlo,
Calati, & Serretti, 2016; Dodd & Berk, 2004; Webb et al., 2019), even
if HRSD scores themselves were not more improved in the sertra-
line group compared to placebo (Chin Fatt et al., 2020; Cooper et al.,
2019; Fan et al., 2020; Pizzagalli et al., 2018; Webb et al.,, 2019;
Whitton et al., 2019).

How best to measure clinical improvement and which symp-
tomatic dimensions should be included is a thorny question. Many
clinical scales have been validated and are commonly used in
research as well as in clinical practice (Beck et al., 1961; Hamilton,
1960; Montgomery & Asberg, 1979; Rush et al., 2003; Trajkovi¢
etal, 2011; Trull & Ebner-Priemer, 2009). They have strengths and
weaknesses, depending on the clinical severity and subtypes of
depression that should be assessed (Moller, 2001), and have there-
fore different fields of application (Furukawa, 2010; Nezu, McClure,
& Nezu, 2015). Importantly, total scale scores can be biased by the
number of items dedicated to specific domains. For example, the
Hamilton Scale includes many somatic symptoms, leading to an
overestimate of antidepressant efficacy for sedative medications
and an underestimate for drugs associated with somatic side effects
(Maier & Philipp, 1985; Méller, 2001). Similarly, whether patient or
clinician assessments have higher sensitivity and specificity is a
matter of debate (Bailey & Coppen, 1976; Chevance et al., 2020).
Furthermore, global evaluation, such as the CGI, may be subject to a
rater bias (Petkova et al., 2000). All those limitations have been
extensively discussed elsewhere (Cusin, Yang, Yeung, & Fava, 2010;
Demyttenaere & De Fruyt, 2003; Fried, Flake, & Robinaugh, 2022).
In particular, Fried et al. (2022) highlighted that depression may be
a continuum from healthy to severely depressed rather than cat-
egorical, and that depressive symptoms are multidimensional and
therefore not adequately represented by the scale’s total scores.
With our approach, we provide a proof-of-concept that some
caveats can be circumvented by an exhaustive inclusion of multiple-
scale items and their subsequent selection by data-driven reduction.
Specifically, it provides a unidimensional and continuous measure
based on different instruments, which may capture a more valid
phenotype of symptomatic dimensions than CGI or HRSD.

Predicting clinical improvement with baseline functional
connectivity patterns

In turn, we investigated whether distinct baseline resting-state GBC
patterns could predict the magnitude of PC-derived symptom
improvement in each group. Interestingly, although direct correl-
ations between GBC and PC1 did not survive multiple corrections
at the parcel, network, and subcortical structure levels, we found
that whole-brain averaged higher baseline GBC in the sertraline
group predicted greater improvement on the PC1 score, whereas it
was not the case in the placebo group. Moreover, certain brain
structures’ baseline GBC, notably the amygdala, predicted clinical
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improvement across treatment groups. Our findings support pre-
vious analyses of the EMBARC dataset using different techniques
(Chin Fatt et al.,, 2023; Chin Fatt, Cooper, Jha, Aslan, et al., 2021;
Rolle et al., 2020), and align with studies on similar datasets (Chen
et al,, 2018; Godlewska et al., 2018; Karim et al., 2018; Korgaonkar
etal, 2020; Li et al., 2023; Lu et al., 2020; Martens et al., 2022; Strege
et al,, 2023; Wu et al,, 2016). However, contrary to previous find-
ings, there was no significant predictive effect of the DMN (Chin
Fatt et al., 2020, 2023; Chin Fatt, Cooper, Jha, Aslan, et al., 2021;
Dichter, Gibbs, & Smoski, 2015; Goldstein-Piekarski et al., 2018) or
of the rostral anterior cingulate cortex connectivity (Cooper et al.,
2019; Dunlop, Talishinsky, & Liston, 2019; Kemp, Gordon, Rush, &
Williams, 2008; Liston et al., 2014; Pizzagalli, 2011; Pizzagalli et al.,
2018; Posner et al., 2013) on clinical improvement. Similarly, prior
work shows that decreased amygdala connectivity at baseline cor-
relates with positive clinical outcomes (Chen et al., 2008; Li et al,,
2023; Liu et al., 2023; Nakamura et al., 2021; Salomons et al., 2014),
whereas we, and others (Alexopoulos et al., 2012), found an oppos-
ite pattern. These mixed results may be due to the use of GBC for
each parcel instead of focusing on a predefined region of interest or
using connectivity measures restricted to specific networks.

The common geometry of improvement under sertraline and
placebo is underpinned by different mechanisms

More importantly, and in line with previous results (Chin Fatt et al,,
2020, 2023; Chin Fatt, Cooper, Jha, Aslan, et al., 2021; Cooper et al.,
2019; Zhao et al, 2023), our study shows that baseline neural
patterns that relate to sertraline and placebo effects are, in fact,
different. In other words, even if the pattern of mood improvement
is highly similar in both groups, it seems to be related to different
baseline configurations of the neural system. First, clinical improve-
ment amplitude was greater in the sertraline group, suggesting that
pharmacological action amplifies the placebo response. This result
is consistent with the finding that patients under antidepressant
and placebo had a similar time-course of clinical improvement but
different response amplitude (Gueorguieva et al., 2011). Second,
some neural and clinical factors were specifically predictive of
sertraline efficacy, suggesting that pharmacological improvement
relies on more reproducible neurobehavioral features with lower
heterogeneity than placebo response. Additionally, in the sertraline
group, brain patterns predicting clinical improvement differed
according to the variable used to measure improvement (CGI
vs. PC1), particularly at the network level, whereas this was not
the case in the placebo group. This result has two implications. First,
the direct link between CGI response status and PC1 is weaker in
the sertraline group compared to the placebo group, particularly
among nonresponders. This is supported by the wider distribution
of PC1 scores. As the sertraline group showed a significantly greater
improvement in suicidal and anxiety dimensions (both captured by
PC1) compared to placebo, this suggests that CGI could be less
sensitive to these specific dimensions. Second, sertraline may have
different pharmacological mechanisms of action on depression and
suicidal/anxiety. It could be argued that depression improvement is
solely due to the placebo effect, or at least that there is a strong
overlap between those two (Huneke et al., 2022). However, and
crucially, even for the CGI response status, the brain maps observed
in the sertraline group are very different from placebo group. This
indicates that sertraline efficacy measured by CGI response status
is not solely attributable to a placebo effect. Therefore, clinical
improvement after sertraline seems to rely on reproducible neuro-
behavioral features, targeting depression and anxiety/suicidal
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circuits in distinct and specific ways. By contrast, the placebo effect
could be noisier and less differentiated in terms of brain circuits
since placebo clinical improvement was generally less predicted by
brain and clinical patterns compared to sertraline. Overall, by
including clinical features other than depression in the analysis,
we were able to identify brain circuits that appear to be specifically
affected by sertraline’s pharmacological action and go beyond
placebo response.

Limitations and perspectives

Our study has several limitations. First, it is a secondary analysis of a
publicly available dataset. This analysis was, therefore, not initially
planned and could have been biased by previously published data
on the same cohort. Second, we did not reproduce all previously
published findings, probably because we used a different analytical
approach, selected a subset of participants who had clinical meas-
ures at different time points, and had a limited number of partici-
pants, considering what is needed to perform PCA, which raises the
question of generalizability. In this perspective, our results would
highly benefit from replication with an independent and larger
dataset, particularly to explore whether the observed pattern of
mood improvement is specific to this population or more universal.
Third, the design did not include neuroimaging at the end of Stage
1, so we could not map clinical changes to neural evolution and
could solely study predictive factors of clinical improvement. A
longitudinal study would allow measuring how neural patterns
evolve with time according to treatment and response. Finally, only
a few conclusions could be drawn from the second stage since
participants were assigned to a new treatment according to their
clinical response in Stage 1, rendering the groups incomparable.
Comparing different drugs in randomized parallel arms would
allow examining response and predictive factors of various anti-
depressants, and better characterize their pharmacological mechan-
isms of action.

Conclusions

In summary, we discovered a common behavioral signature of
clinical improvement along the mood spectrum, with multiple symp-
tomatic dimensions, on which patients score differently according to
the treatment received. At the behavioral level, improvement under
antidepressants, therefore, corresponds to an amplification of the
placebo response. This improvement was more robustly predicted by
baseline GBC and clinical characteristics in the sertraline group,
suggesting that pharmacological improvement relies on more repro-
ducible and specific neurobehavioral features.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725100962.

Data availability statement. The dataset is publicly available on the National
Institute of Mental Health Data Archive (NDA) (https://nda.nih.gov/edit_col
lection.html?id=2199).

Codes for preprocessing can be found at the following link: https://github.
com/Washington-University/HCPpipelines/pull/156. Quantitative Neuroima-
ging Environment & ToolboX (QuNex) was developed by our lab and is freely
available at https://qunex.yale.edu/. Codes related to behavioral PCA and correl-
ation between GBC and PC are part of N-BRIDGE (Neuro-Behavioral Relation-
ships in Dimensional Geometric Embedding) and are described and available
elsewhere (Ji et al., 2021; Lee et al., 2024; Moujaes et al., 2024).

Additional custom codes are available from the corresponding author upon
reasonable request.


http://doi.org/10.1017/S0033291725100962
https://nda.nih.gov/edit_collection.html?id=2199
https://nda.nih.gov/edit_collection.html?id=2199
https://github.com/Washington-University/HCPpipelines/pull/156
https://github.com/Washington-University/HCPpipelines/pull/156
https://qunex.yale.edu/
https://doi.org/10.1017/S0033291725100962

12

Author contribution. Conceptualization: L.B., CF., A.A,, and ].J. Methodology:
LB,KL,]J,CF,AA,]D,AK, AM, GR, ZT., and ].M. Software: L.B., ].].,
CF, ]D, AK, AM, ZT., GR, AA, and J.M. Validation: C.F,, K.L., and
J.J. Formal analyses: L.B. and C.F. Resources: A.A. Data curation: L.B., C.F., and
Z.T. Writing — original draft: L.B. Writing — review and edit: K.L., J.J., C.F,, M.H,,
MR, ].D, AK, AM, GR, JK, WM, and A.A. Visualization: L.B. Project
administration: A.A. and C.F. Funding acquisition: A.A.

Funding statement. L.B.was supported by the Fondation Bettencourt Schuel-
ler, the Philippe Foundation, the L’Oréal-UNESCO Foundation, and the
National Institute of Mental Health (ROIMH116038 and U01MH121766).
G.R. and ].D. were funded by ARIS grants P3-0338 and J5-4590. A.K. and
AM. were funded by ARIS grants J5-4590 and P5-0110. K.L. was funded by
1U01MH124639-03 (NIMH/NIH/DHHS).

Competing interests. L.B. received honoraria from Janssen and received
compensation as a member of the scientific advisory board of MindMed.
A.A. and J.M. hold equity with Neumora Therapeutics (formerly BlackThorn
Therapeutics), Manifest Technologies, and are co-inventors on the following
patents: A.A.,, ].M., and J.J.: Systems and Methods for Neuro-Behavioral Rela-
tionships in Dimensional Geometric Embedding (N-BRIDGE), PCT Inter-
national Application No. PCT/US2119/022110, filed March 13, 2019, and
J.M., A.A., and W.M.: Methods and tools for detecting, diagnosing, predicting,
prognosticating, or treating a neurobehavioral phenotype in a subject, US
Application No. 16/149,903, 664 filed on October 2, 2018, and US Application
for PCT International Application No. 18/054, 009 filed on October 2, 2018.
J.M. is a contractor for Johnson & Johnson Innovative Medicine. J.J. is an
employee of Manifest Technologies, has previously worked for Neumora, and
is a co-inventor on the following patent: A.A.,J.M., ].].: Systems and Methods for
Neuro-Behavioral Relationships in Dimensional Geometric Embedding (N-
BRIDGE), PCT International Application No. PCT/US2119/022110, filed
March 13,2019. C.F. consults for Manifest Technologies and formerly consulted
for RBNC (formerly BlackThorn Therapeutics). K.L. formerly consulted for
Manifest Technologies. Z.T. has previously consulted for Neumora and consults
for Manifest Technologies. G.R. holds equity and consults in Neumora and
Manifest Technologies. ].D. and A.K. consult for Neurotherapeutix Medical
Services. A.K. and A.M. have previously consulted for Neumora. J.K. holds
equity in Biohaven Pharmaceuticals, Biohaven Pharmaceuticals Medical Sci-
ences, Clearmind Medicine, EpiVario, Neumora Therapeutics, Tempero Bio,
Terran Biosciences, Tetricus, and Spring Care. John Krystal consults for AE
Research Foundation, Aptinyx, Biohaven Pharmaceuticals, Biogen, Bionomics,
Limited (Australia), BioXcel Therapeutics, Boehringer Ingelheim International,
Cerevel Therapeutics, Clearmind Medicine, Cybin IRL, Delix Therapeutics,
Eisai, Enveric Biosciences, Epiodyne, EpiVario, Evidera, Freedom Biosciences,
Janssen Research & Development, Jazz Pharmaceuticals, Leal Therapeutics,
Neumora Therapeutics, Neurocrine Biosciences, Novartis Pharmaceuticals
Corporation, Otsuka America Pharmaceutical, Perception Neuroscience, Praxis
Precision Medicines, PsychoGenics, Spring Care, Sunovion Pharmaceuticals,
Takeda Industries, Tempero Bio, Terran Biosciences, and Tetricus. All other
co-authors declare no competing interests.

References

Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim,
K. O., & Gunning, F. M. (2012). Functional connectivity in the cognitive control
network and the default mode network in late-life depression. Journal of
Affective Disorders, 139(1), 56—65. https://doi.org/10.1016/j.jad.2011.12.002.

Altman, E. G., Hedeker, D., Peterson, J. L., & Davis, J]. M. (1997). The Altman
self-rating mania scale. Biological Psychiatry, 42(10), 948-955. https://doi.
0rg/10.1016/S0006-3223(96)00548-3.

American Psychiatric Association. (2013). Diagnostic and statistical manual of
mental disorders: DSM-5 (5th ed.). American Psychiatric Association. https://
doi.org/10.1176/appi.books.9780890425787

Ang, Y.-S., Bruder, G. E, Keilp, J. G., Rutherford, A., Alschuler, D. M., Pechtel,
P., Webb, C. A., Carmody, T., Fava, M., Cusin, C., McGrath, P. J., Weissman,
M, Parsey, R, Oquendo, M. A., McInnis, M. G., Cooper, C. M., Deldin, P.,
Trivedi, M. H., & Pizzagalli, D. A. (2022). Exploration of baseline and early
changes in neurocognitive characteristics as predictors of treatment response

https://doi.org/10.1017/50033291725100962 Published online by Cambridge University Press

Lucie Berkovitch et al.

to bupropion, sertraline, and placebo in the EMBARC clinical trial. Psychological
Medicine, 52(13), 2441-2449. https://doi.org/10.1017/S0033291720004286.

Bailey, J., & Coppen, A. (1976). A comparison between the Hamilton rating scale
and the Beck inventory in the measurement of depression. The British Journal
of Psychiatry, 128(5), 486—489. https://doi.org/10.1192/bjp.128.5.486.

Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An
inventory for measuring depression. Archives of General Psychiatry, 4(6),
561-571. https://doi.org/10.1001/archpsyc.1961.01710120031004.

Beliveau, V., Hedeboe, E., Fisher, P. M., Dam, V. H., Jorgensen, M. B., Frokjaer,
V. G, Knudsen, G. M., & Ganz, M. (2022). Generalizability of treatment
outcome prediction in major depressive disorder using structural MRI: A
NeuroPharm study. NeuroImage: Clinical, 36, 103224. https://doi.org/10.1016/
j.nicl.2022.103224.

Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S., & Zubieta, ].-K. (2005).
Neurobiological mechanisms of the placebo effect. Journal of Neuroscience,
25(45), 10390-10402. https://doi.org/10.1523/]NEUROSCI.3458-05.2005.

Chen, C.-H,, Suckling, J., Ooi, C.,, Fu, C. H. Y., Williams, S. C. R,, Walsh, N. D.,
Mitterschiffthaler, M. T., Pich, E. M., & Bullmore, E. (2008). Functional
coupling of the amygdala in depressed patients treated with antidepressant
medication. Neuropsychopharmacology, 33(8), Article 8. https://doi.org/
10.1038/sj.npp.1301593

Chen, M.-H,, Li, C.-T., Lin, W.-C,, Hong, C.-]., Tu, P.-C., Bai, Y.-M., Cheng, C.-
M., & Su, T.-P. (2018). Persistent antidepressant effect of low-dose ketamine
and activation in the supplementary motor area and anterior cingulate cortex
in treatment-resistant depression: A randomized control study. Journal of
Affective Disorders, 225, 709—714. https://doi.org/10.1016/j.jad.2017.09.008.

Chevance, A., Gourion, D., Hoertel, N., Llorca, P.-M., Thomas, P., Bocher, R.,
Moro, M.-R,, Laprévote, V., Benyamina, A., Fossati, P., Masson, M., Leaune,
E., Leboyer, M., & Gaillard, R. (2020). Ensuring mental health care during the
SARS-CoV-2 epidemic in France: A narrative review. L’Encéphale, 46(3),
193-201. https://doi.org/10.1016/j.encep.2020.04.005.

Chin Fatt, C. R., Cooper, C., Jha, M. K,, Aslan, S., Grannemann, B., Kurian, B.,
Greer, T. L., Fava, M., Weissman, M., McGrath, P. ], Parsey, R. V., Etkin, A.,
Phillips, M. L., & Trivedi, M. H. (2021). Dorsolateral prefrontal cortex and
Subcallosal cingulate connectivity show preferential antidepressant response
in major depressive disorder. Biological Psychiatry: Cognitive Neuroscience
and Neuroimaging, 6(1), 20-28. https://doi.org/10.1016/j.bpsc.2020.06.019.

Chin Fatt, C. R, Cooper, C. M., Jha, M. K., Minhajuddin, A., Rush, A. J.,
Trombello, J. M., Fava, M., McInnis, M., Weissman, M., & Trivedi, M. H.
(2021). Differential response to SSRI versus placebo and distinct neural
signatures among data-driven subgroups of patients with major depressive
disorder. Journal of Affective Disorders, 282, 602—610. https://doi.org/10.1016/
1.jad.2020.12.102.

Chin Fatt, C.R., Jha, M. K., Cooper, C. M., Fonzo, G., South, C., Grannemann, B.,
Carmody, T, Greer, T. L., Kurian, B,, Fava, M., McGrath, P. ]., Adams, P., McInnis,
M., Parsey, R. V., Weissman, M., Phillips, M. L., Etkin, A., & Trivedi, M. H. (2020).
Effect of intrinsic patterns of functional brain connectivity in moderating anti-
depressant treatment response in major depression. American Journal of
Psychiatry, 177(2), 143—154. https://doi.org/10.1176/appi.ajp.2019.18070870.

Chin Fatt, C. R,, Minhajuddin, A, Jha, M. K., Mayes, T., Rush, A. J., & Trivedi,
M. H. (2023). Data driven clusters derived from resting state functional
connectivity: Findings from the EMBARC study. Journal of Psychiatric
Research, 158, 150—156. https://doi.org/10.1016/j.jpsychires.2022.12.002.

Cooper, C. M., Chin Fatt, C. R,, Jha, M., Fonzo, G. A., Grannemann, B. D.,
Carmody, T., Ali, A, Aslan, S., Almeida, J. R. C,, Deckersbach, T., Fava, M.,
Kurian, B. T., McGrath, P. J., McInnis, M., Parsey, R. V., Weissman, M.,
Phillips, M. L., Lu, H., Etkin, A., & Trivedi, M. H. (2019). Cerebral blood
perfusion predicts response to sertraline versus placebo for major depressive
disorder in the EMBARC trial. EClinicalMedicine, 10, 32—41. https://doi.
0rg/10.1016/j.eclinm.2019.04.007.

Cusin, C,, Yang, H,, Yeung, A., & Fava, M. (2010). Rating scales for depression. In
L. Baer & M. A. Blais (Eds.), Handbook of clinical rating scales and assessment in
psychiatry and mental health (pp. 7-35). Humana Press. https://doi.org/
10.1007/978-1-59745-387-5_2

De Carlo, V., Calati, R., & Serretti, A. (2016). Socio-demographic and clinical
predictors of non-response/non-remission in treatment resistant depressed
patients: A systematic review. Psychiatry Research, 240, 421-430. https://doi.
0rg/10.1016/j.psychres.2016.04.034.


https://doi.org/10.1016/j.jad.2011.12.002
https://doi.org/10.1016/S0006-3223(96)00548-3
https://doi.org/10.1016/S0006-3223(96)00548-3
https://doi.org/10.1176/appi.books.9780890425787
https://doi.org/10.1176/appi.books.9780890425787
https://doi.org/10.1017/S0033291720004286
https://doi.org/10.1192/bjp.128.5.486
https://doi.org/10.1001/archpsyc.1961.01710120031004
https://doi.org/10.1016/j.nicl.2022.103224
https://doi.org/10.1016/j.nicl.2022.103224
https://doi.org/10.1523/JNEUROSCI.3458-05.2005
https://doi.org/10.1038/sj.npp.1301593
https://doi.org/10.1038/sj.npp.1301593
https://doi.org/10.1016/j.jad.2017.09.008
https://doi.org/10.1016/j.encep.2020.04.005
https://doi.org/10.1016/j.bpsc.2020.06.019
https://doi.org/10.1016/j.jad.2020.12.102
https://doi.org/10.1016/j.jad.2020.12.102
https://doi.org/10.1176/appi.ajp.2019.18070870
https://doi.org/10.1016/j.jpsychires.2022.12.002
https://doi.org/10.1016/j.eclinm.2019.04.007
https://doi.org/10.1016/j.eclinm.2019.04.007
https://doi.org/10.1007/978-1-59745-387-5_2
https://doi.org/10.1007/978-1-59745-387-5_2
https://doi.org/10.1016/j.psychres.2016.04.034
https://doi.org/10.1016/j.psychres.2016.04.034
https://doi.org/10.1017/S0033291725100962

Psychological Medicine

Demyttenaere, K., & De Fruyt, J. (2003). Getting what you ask for: On the
selectivity of depression rating scales. Psychotherapy and Psychosomatics,
72(2), 61-70. https://doi.org/10.1159/000068690.

Dichter, G. S., Gibbs, D., & Smoski, M. J. (2015). A systematic review of relations
between resting-state functional-MRI and treatment response in major
depressive disorder. Journal of Affective Disorders, 172, 8-17. https://doi.
org/10.1016/j.jad.2014.09.028.

Dodd, S., & Berk, M. (2004). Predictors of antidepressant response: A selective
review. International Journal of Psychiatry in Clinical Practice, 8(2), 91-100.
https://doi.org/10.1080/13651500410005423.

Dunlop, K., Talishinsky, A., & Liston, C. (2019). Intrinsic brain network
biomarkers of antidepressant response: A review. Current Psychiatry Reports,
21(9), 87. https://doi.org/10.1007/s11920-019-1072-6.

Fan, S., Nemati, S., Akiki, T.J., Roscoe, J., Averill, C. L., Fouda, S., Averill, L. A., &
Abdallah, C. G. (2020). Pretreatment brain Connectome fingerprint pre-
dicts treatment response in major depressive disorder. Chronic Stress, 4,
2470547020984726. https://doi.org/10.1177/2470547020984726.

Fried, E. L, Flake, J. K., & Robinaugh, D. J. (2022). Revisiting the theoretical and
methodological foundations of depression measurement. Nature Reviews
Psychology, 1(6), 358-368. https://doi.org/10.1038/s44159-022-00050-2.

Furukawa, T. A. (2010). Assessment of mood: Guides for clinicians. Journal of
Psychosomatic Research, 68(6), 581-589. https://doi.org/10.1016/j.jpsychores.
2009.05.003.

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub,
E., Ugurbil, K., Andersson, J., Beckmann, C. F,, Jenkinson, M., Smith, S. M., &
Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral
cortex. Nature, 536(7615), 7615. https://doi.org/10.1038/nature18933.

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,
Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen,
D. C,, Jenkinson, M., & Consortium, W. U.-M. H. C. P. (2013). The minimal
preprocessing pipelines for the human Connectome project. Neurolmage, 80,
105-124. https://doi.org/10.1016/j.neuroimage.2013.04.127.

Godlewska, B. R., Browning, M., Norbury, R., Igoumenou, A., Cowen, P. ], &
Harmer, C.J. (2018). Predicting treatment response in depression: The role of
anterior cingulate cortex. The International Journal of Neuropsychopharma-
cology, 21(11), 988-996. https://doi.org/10.1093/ijnp/pyy069.

Goldstein-Piekarski, A. N., Staveland, B. R., Ball, T. M., Yesavage, J., Korgaon-
kar, M. S., & Williams, L. M. (2018). Intrinsic functional connectivity predicts
remission on antidepressants: A randomized controlled trial to identify
clinically applicable imaging biomarkers. Translational Psychiatry, 8(1), 1.
https://doi.org/10.1038/s41398-018-0100-3.

Greenberg, T., Chase, H. W., Almeida, J. R,, Stiffler, R., Zevallos, C. R., Aslam,
H. A, Deckersbach, T., Weyandt, S., Cooper, C., Toups, M., Carmody, T.,
Kurian, B., Peltier, S., Adams, P., McInnis, M. G., Oquendo, M. A., McGrath,
P. J., Fava, M., Weissman, M., & Phillips, M. L. (2015). Moderation of the
relationship between reward expectancy and prediction error-related ventral
striatal reactivity by Anhedonia in Unmedicated major depressive disorder:
Findings from the EMBARC study. American Journal of Psychiatry, 172(9),
881-891. https://doi.org/10.1176/appi.ajp.2015.14050594.

Gueorguieva, R., Mallinckrodt, C., & Krystal, J. H. (2011). Trajectories of
depression severity in clinical trials of duloxetine: Insights into antidepressant
and placebo responses. Archives of General Psychiatry, 68(12), 1227-1237.
https://doi.org/10.1001/archgenpsychiatry.2011.132.

Hamilton, M. (1960). A rating scale for depression. Journal of Neurology,
Neurosurgery, and Psychiatry, 23(1), 56—62. https://doi.org/10.1136/jnnp.23.1.56.

Huneke, N. T. M., Aslan, I. H., Fagan, H,, Phillips, N., Tanna, R, Cortese, S.,
Garner, M., & Baldwin, D. S. (2022). Functional neuroimaging correlates of
placebo response in patients with depressive or anxiety disorders: A system-
atic review. International Journal of Neuropsychopharmacology, 25(6),
433-447. https://doi.org/10.1093/ijnp/pyac009.

Ji,]. L., Deméar, J., Fonteneau, C., Tamayo, Z., Pan, L., Kralji¢, A., Matkovig, A.,
Purg, N., Helmer, M., Warrington, S., Winkler, A., Zerbi, V., Coalson, T. S.,
Glasser, M. F,, Harms, M. P., Sotiropoulos, S. N., Murray, J. D., Anticevic, A., &
Repovs, G. (2023). QuNex — An integrative platform for reproducible neuroi-
maging analytics. Frontiers in Neuroinformatics, 17. https://doi.org/10.3389/
fninf.2023.1104508.

Ji,J. L., Diehl, C,, Schleifer, C., Tamminga, C. A., Keshavan, M. S., Sweeney, J. A.,
Clementz, B. A, Hill, S. K,, Pearlson, G., Yang, G., Creatura, G., Krystal, J. H.,

https://doi.org/10.1017/50033291725100962 Published online by Cambridge University Press

13

Repovs, G., Murray, J., Winkler, A., & Anticevic, A. (2019). Schizophrenia
exhibits bi-directional brain-wide alterations in Cortico-Striato-cerebellar
circuits. Cerebral Cortex (New York, N.Y.: 1991), 29(11), 4463—4487. https://
doi.org/10.1093/cercor/bhy306

Ji,J. L., Helmer, M., Fonteneau, C., Burt, J. B., Tamayo, Z., Demsar, J., Adkinson,
B. D, Savi¢, A, Preller, K. H., Moujaes, F., Vollenweider, F. X., Martin, W.],,
Repovs, G., Cho, Y. T,, Pittenger, C., Murray, J. D., & Anticevic, A. (2021).
Mapping brain-behavior space relationships along the psychosis spectrum.
eLife, 10, e66968. https://doi.org/10.7554/eLife.66968

Ji,J. L., Spronk, M., Kulkarni, K., Repovs, G., Anticevic, A., & Cole, M. W. (2019).
Mapping the human brain’s cortical-subcortical functional network organiza-
tion. NeurolImage, 185, 35-57. https://doi.org/10.1016/j.neuroimage.2018.10.006.

Karim, H. T., Wang, M., Andreescu, C., Tudorascu, D., Butters, M. A., Karp, ]. F.,
Reynolds, C. F., & Aizenstein, H. J. (2018). Acute trajectories of neural activa-
tion predict remission to pharmacotherapy in late-life depression. Neurolmage.
Clinical, 19, 831-839. https://doi.org/10.1016/j.nicl.2018.06.006.

Kemp, A. H., Gordon, E., Rush, A. J., & Williams, L. M. (2008). Improving the
prediction of treatment response in depression: Integration of clinical, cog-
nitive, psychophysiological, neuroimaging, and genetic measures. CNS Spec-
trums, 13(12), 1066—1086. https://doi.org/10.1017/51092852900017120.

Korgaonkar, M. S., Goldstein-Piekarski, A. N., Fornito, A., & Williams, L. M.
(2020). Intrinsic connectomes are a predictive biomarker of remission in
major depressive disorder. Molecular Psychiatry, 25(7), 7. https://doi.org/
10.1038/541380-019-0574-2.

Lee, K., Ji, J. L., Fonteneau, C., Berkovitch, L., Rahmati, M., Pan, L., Repovs, G.,
Krystal, J. H., Murray, J. D., & Anticevic, A. (2024). Human brain state
dynamics are highly reproducible and associated with neural and behavioral
features. PLoS Biology, 22(9), €3002808. https://doi.org/10.1371/journal.
pbio.3002808.

Li, K, Lu, X,, Xiao, C., Zheng, K., Sun, J., Dong, Q., Wang, M., Zhang, L., Liu, B.,
Liu, J., Zhang, Y., Guo, H., Zhao, F., Ju, Y., & Li, L. (2023). Aberrant resting-
state functional connectivity in MDD and the antidepressant treatment effect
— A 6-month follow-up study. Brain Sciences, 13(5), Article 5. https://doi.
org/10.3390/brainscil3050705

Liston, C., Chen, A. C.,, Zebley, B. D., Drysdale, A. T., Gordon, R, Leuchter, B.,
Voss, H. U,, Casey, B. ], Etkin, A., & Dubin, M. J. (2014). Default mode
network mechanisms of Transcranial magnetic stimulation in depression.
Biological Psychiatry, 76(7), 517-526. https://doi.org/10.1016/j.biopsych.
2014.01.023.

Liu, H,, Wang, C,, Lan, X, Li, W,, Zhang, F., Fu, L, Ye, Y, Ning, Y., & Zhou, Y.
(2023). Functional connectivity of the amygdala and the antidepressant and
antisuicidal effects of repeated ketamine infusions in major depressive disorder.
Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1123797.

Lu, F, Cui, Q., Huang, X., Li, L., Duan, X., Chen, H., Pang, Y., He, Z., Sheng, W.,
Han, S., Chen, Y., Yang, Y., Luo, W,, Yu, Y,, Jia, X, Tang, Q., Li, D., Xie, A., &
Chen, H. (2020). Anomalous intrinsic connectivity within and between visual
and auditory networks in major depressive disorder. Progress in Neuro-
Psychopharmacology and Biological Psychiatry, 100, 109889. https://doi.
0rg/10.1016/j.pnpbp.2020.109889.

Maier, W., & Philipp, M. (1985). Improving the assessment of severity of
depressive states: A reduction of the Hamilton depression scale. Pharmacop-
sychiatry, 18(01), 114-115. https://doi.org/10.1055/s-2007-1017335.

Martens, M. A. G., Filippini, N., Harmer, C. J., & Godlewska, B. R. (2022).
Resting state functional connectivity patterns as biomarkers of treatment
response to escitalopram in patients with major depressive disorder. Psy-
chopharmacology, 239(11), 3447-3460. https://doi.org/10.1007/s00213-
021-05915-7.

Moller, H. J. (2001). Methodological aspects in the assessment of severity of
depression by the Hamilton depression scale. European Archives of Psych-
iatry and Clinical Neuroscience, 251 Suppl. 2, I113-20. https://doi.org/
10.1007/BF03035121

Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be
sensitive to change. The British Journal of Psychiatry, 134(4), 382-389.
https://doi.org/10.1192/bjp.134.4.382.

Moujaes, F., Ji, J. L., Rahmati, M, Burt, J. B., Schleifer, C., Adkinson, B. D., Savic,
A., Santamauro, N., Tamayo, Z., Diehl, C., Kolobaric, A., Flynn, M., Rieser,
N., Fonteneau, C., Camarro, T., Xu, J., Cho, Y., Repovs, G., Fineberg, S. K., &
Anticevic, A. (2024). Ketamine induces multiple individually distinct whole-


https://doi.org/10.1159/000068690
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1080/13651500410005423
https://doi.org/10.1007/s11920-019-1072-6
https://doi.org/10.1177/2470547020984726
https://doi.org/10.1038/s44159-022-00050-2
https://doi.org/10.1016/j.jpsychores.2009.05.003
https://doi.org/10.1016/j.jpsychores.2009.05.003
https://doi.org/10.1038/nature18933
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1093/ijnp/pyy069
https://doi.org/10.1038/s41398-018-0100-3
https://doi.org/10.1176/appi.ajp.2015.14050594
https://doi.org/10.1001/archgenpsychiatry.2011.132
https://doi.org/10.1136/jnnp.23.1.56
https://doi.org/10.1093/ijnp/pyac009
https://doi.org/10.3389/fninf.2023.1104508
https://doi.org/10.3389/fninf.2023.1104508
https://doi.org/10.1093/cercor/bhy306
https://doi.org/10.1093/cercor/bhy306
https://doi.org/10.7554/eLife.66968
https://doi.org/10.1016/j.neuroimage.2018.10.006
https://doi.org/10.1016/j.nicl.2018.06.006
https://doi.org/10.1017/S1092852900017120
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1038/s41380-019-0574-2
https://doi.org/10.1371/journal.pbio.3002808
https://doi.org/10.1371/journal.pbio.3002808
https://doi.org/10.3390/brainsci13050705
https://doi.org/10.3390/brainsci13050705
https://doi.org/10.1016/j.biopsych.2014.01.023
https://doi.org/10.1016/j.biopsych.2014.01.023
https://doi.org/10.3389/fnins.2023.1123797
https://doi.org/10.1016/j.pnpbp.2020.109889
https://doi.org/10.1016/j.pnpbp.2020.109889
https://doi.org/10.1055/s-2007-1017335
https://doi.org/10.1007/s00213-021-05915-7
https://doi.org/10.1007/s00213-021-05915-7
https://doi.org/10.1007/BF03035121
https://doi.org/10.1007/BF03035121
https://doi.org/10.1192/bjp.134.4.382
https://doi.org/10.1017/S0033291725100962

14

brain functional connectivity signatures. eLife, 13, e84173. https://doi.org/
10.7554/eLife.84173.

Nakamura, T., Tomita, M., Horikawa, N., Ishibashi, M., Uematsu, K., Hiraki, T.,
Abe, T., & Uchimura, N. (2021). Functional connectivity between the amyg-
dala and subgenual cingulate gyrus predicts the antidepressant effects of
ketamine in patients with treatment-resistant depression. Neuropsychophar-
macology Reports, 41(2), 168-178. https://doi.org/10.1002/npr2.12165.

Nezu, A. M., McClure, K. S., & Nezu, C. M. (2015). The assessment of depres-
sion. In Treating depression (pp. 24-51). John Wiley & Sons, Ltd. https://doi.
0rg/10.1002/9781119114482.ch2

Pecifia, M., Bohnert, A. S. B., Sikora, M., Avery, E. T., Langenecker, S. A., Mickey,
B. J., & Zubieta, J.-K. (2015). Association between placebo-activated neural
systems and antidepressant responses: Neurochemistry of placebo effects in
major depression. JAMA Psychiatry, 72(11), 1087-1094. https://doi.org/
10.1001/jamapsychiatry.2015.1335.

Perlman, K., Benrimoh, D., Israel, S., Rollins, C., Brown, E., Tunteng, J.-F., You,
R, You, E,, Tanguay-Sela, M., Snook, E., Miresco, M., & Berlim, M. T. (2019).
A systematic meta-review of predictors of antidepressant treatment outcome
in major depressive disorder. Journal of Affective Disorders, 243, 503-515.
https://doi.org/10.1016/j.jad.2018.09.067.

Petkova, E., Quitkin, F. M., McGrath, P.]., Stewart, ]. W., & Klein, D. F. (2000). A
method to quantify Rater bias in antidepressant trials. Neuropsychopharma-
cology, 22(6), 6. https://doi.org/10.1016/S0893-133X(99)00154-2.

Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward
biomarkers of treatment response. Neuropsychopharmacology, 36(1), 1.
https://doi.org/10.1038/npp.2010.166.

Pizzagalli, D. A., Webb, C. A,, Dillon, D. G., Tenke, C. E., Kayser, J., Goer, F.,
Fava, M., McGrath, P., Weissman, M., Parsey, R., Adams, P., Trombello, J.,
Cooper, C., Deldin, P., Oquendo, M. A., McInnis, M. G., Carmody, T.,
Bruder, G., & Trivedi, M. H. (2018). Pretreatment rostral anterior cingulate
cortex theta activity in relation to symptom improvement in depression: A
randomized clinical trial. JAMA Psychiatry, 75(6), 547-554. https://doi.
org/10.1001/jamapsychiatry.2018.0252.

Posner, J., Hellerstein, D. J., Gat, I, Mechling, A., Klahr, K., Wang, Z., McGrath,
P.J., Stewart, J. W., & Peterson, B. S. (2013). Antidepressants normalize the
default mode network in patients with dysthymia. JAMA Psychiatry, 70(4),
373-382. https://doi.org/10.1001/jamapsychiatry.2013.455.

Rolle, C. E., Fonzo, G. A., Wu, W., Toll, R,, Jha, M. K., Cooper, C., Chin-Fatt, C.,
Pizzagalli, D. A., Trombello, J. M., Deckersbach, T., Fava, M., Weissman,
M. M, Trivedi, M. H., & Etkin, A. (2020). Cortical connectivity moderators of
antidepressant vs placebo treatment response in major depressive disorder:
Secondary analysis of a randomized clinical trial. JAMA Psychiatry, 77(4),
397-408. https://doi.org/10.1001/jamapsychiatry.2019.3867.

Rush, A. J., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow, B., Klein,
D. N., Markowitz, ]. C., Ninan, P. T., Kornstein, S., Manber, R., Thase, M. E.,
Kocsis, J. H., & Keller, M. B. (2003). The 16-item quick inventory of
depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-
report (QIDS-SR): A psychometric evaluation in patients with chronic major
depression. Biological Psychiatry, 54(5), 573-583. https://doi.org/10.1016/
S0006-3223(02)01866-8.

Salomons, T. V., Dunlop, K., Kennedy, S. H., Flint, A., Geraci, J., Giacobbe, P., &
Downar, J. (2014). Resting-state Cortico-thalamic-striatal connectivity pre-
dicts response to Dorsomedial prefrontal rTMS in major depressive disorder.
Neuropsychopharmacology, 39(2), 2. https://doi.org/10.1038/npp.2013.222.

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement:
Addressing problems of smoothing, threshold dependence and localisation in
cluster inference. NeurolImage, 44(1), 83-98. https://doi.org/10.1016/j.neuro-
image.2008.03.061.

https://doi.org/10.1017/50033291725100962 Published online by Cambridge University Press

Lucie Berkovitch et al.

Strege, M. V,, Siegle, G. ], Richey, J. A., Krawczak, R. A., & Young, K. (2023).
Cingulate prediction of response to antidepressant and cognitive behavioral
therapies for depression: Meta-analysis and empirical application. Brain
Imaging and Behavior. https://doi.org/10.1007/s11682-022-00756-0.

Trajkovi¢, G., Starcevi¢, V., Latas, M., Lestarevi¢, M., Ille, T., Bukumiri¢, Z., &
Marinkovi¢, J. (2011). Reliability of the Hamilton rating scale for depression:
A meta-analysis over a period of 49years. Psychiatry Research, 189(1), 1-9.
https://doi.org/10.1016/j.psychres.2010.12.007.

Trivedi, M. H., McGrath, P. J., Fava, M., Parsey, R. V., Kurian, B. T., Phillips,
M. L., Oquendo, M. A, Bruder, G., Pizzagalli, D., Toups, M., Cooper, C.,
Adams, P., Weyandt, S., Morris, D. W., Grannemann, B. D., Ogden, R. T,,
Buckner, R., McInnis, M., Kraemer, H. C., & Weissman, M. M. (2016).
Establishing moderators and biosignatures of antidepressant response in
clinical care (EMBARC): Rationale and design. Journal of Psychiatric
Research, 78, 11-23. https://doi.org/10.1016/j.jpsychires.2016.03.001.

Trivedi, M. H., Wisniewski, S. R., Morris, D. W., Fava, M., Gollan, J. K., Warden,
D., Nierenberg, A. A., Gaynes, B. N., Husain, M. M,, Luther, J. F., Zisook, S., &
Rush, A.J. (2011). Concise health risk tracking scale: A brief self-report and
clinician rating of suicidal risk. The Journal of Clinical Psychiatry, 72(6), 3609.
https://doi.org/10.4088/JCP.11m06837.

Trivedi, M. H., Wisniewski, S. R., Morris, D. W., Fava, M., Kurian, B. T., Gollan,
J. K., Nierenberg, A. A., Warden, D., Gaynes, B. N., Luther, J. F., & Rush, A.J.
(2011). Concise associated symptoms tracking scale: A brief self-report and
clinician rating of symptoms associated with Suicidality. The Journal of
Clinical Psychiatry, 72(6), 3587. https://doi.org/10.4088/JCP.11m06840.

Trull, T. J., & Ebner-Priemer, U. W. (2009). Using experience sampling
methods/ecological momentary assessment (ESM/EMA) in clinical assess-
ment and clinical research: Introduction to the special section. Psychological
Assessment, 21(4), 457—462. https://doi.org/10.1037/a0017653.

Webb, C. A,, Trivedi, M. H., Cohen, Z. D., Dillon, D. G., Fournier, J. C., Goer, F.,
Fava, M., McGrath, P. J., Weissman, M., Parsey, R., Adams, P., Trombello,
J. M., Cooper, C., Deldin, P., Oquendo, M. A., McInnis, M. G., Huys, Q,,
Bruder, G., Kurian, B. T., & Pizzagalli, D. A. (2019). Personalized prediction
of antidepressant v. placebo response: Evidence from the EMBARC study.
Psychological Medicine, 49(7), 1118-1127. https://doi.org/10.1017/500332
91718001708.

Whitton, A. E., Webb, C. A, Dillon, D. G., Kayser, J., Rutherford, A., Goer, F.,
Fava, M., McGrath, P., Weissman, M., Parsey, R., Adams, P., Trombello, ]. M.,
Cooper, C., Deldin, P., Oquendo, M. A., McInnis, M. G., Carmody, T.,
Bruder, G., Trivedi, M. H., & Pizzagalli, D. A. (2019). Pretreatment rostral
anterior cingulate cortex connectivity with salience network predicts
depression recovery: Findings from the EMBARC randomized clinical trial.
Biological Psychiatry, 85(10), 872-880. https://doi.org/10.1016/j.biop-
sych.2018.12.007.

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E.
(2014). Permutation inference for the general linear model. NeuroImage,
92(100), 381-397. https://doi.org/10.1016/j.neuroimage.2014.01.060.

World Health Organization. (2017). Depression and other common mental
disorders: Global health estimates ( WHO/MSD/MER/2017.2). World Health
Organization. https://apps.who.int/iris/handle/10665/254610

Wu, X, Lin, P, Yang, J., Song, H., Yang, R., & Yang, J. (2016). Dysfunction of the
cingulo-opercular network in first-episode medication-naive patients with
major depressive disorder. Journal of Affective Disorders, 200, 275-283.
https://doi.org/10.1016/j.jad.2016.04.046.

Zhao, K., Xie, H., Fonzo, G. A, Tong, X., Carlisle, N., Chidharom, M., Etkin, A.,
& Zhang, Y. (2023). Individualized fMRI connectivity defines signatures of
antidepressant and placebo responses in major depression. Molecular Psychiatry,
28, 2490-2499. https://doi.org/10.1038/s41380-023-01958-8.


https://doi.org/10.7554/eLife.84173
https://doi.org/10.7554/eLife.84173
https://doi.org/10.1002/npr2.12165
https://doi.org/10.1002/9781119114482.ch2
https://doi.org/10.1002/9781119114482.ch2
https://doi.org/10.1001/jamapsychiatry.2015.1335
https://doi.org/10.1001/jamapsychiatry.2015.1335
https://doi.org/10.1016/j.jad.2018.09.067
https://doi.org/10.1016/S0893-133X(99)00154-2
https://doi.org/10.1038/npp.2010.166
https://doi.org/10.1001/jamapsychiatry.2018.0252
https://doi.org/10.1001/jamapsychiatry.2018.0252
https://doi.org/10.1001/jamapsychiatry.2013.455
https://doi.org/10.1001/jamapsychiatry.2019.3867
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1016/S0006-3223(02)01866-8
https://doi.org/10.1038/npp.2013.222
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1007/s11682-022-00756-0
https://doi.org/10.1016/j.psychres.2010.12.007
https://doi.org/10.1016/j.jpsychires.2016.03.001
https://doi.org/10.4088/JCP.11m06837
https://doi.org/10.4088/JCP.11m06840
https://doi.org/10.1037/a0017653
https://doi.org/10.1017/S0033291718001708
https://doi.org/10.1017/S0033291718001708
https://doi.org/10.1016/j.biopsych.2018.12.007
https://doi.org/10.1016/j.biopsych.2018.12.007
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://apps.who.int/iris/handle/10665/254610
https://doi.org/10.1016/j.jad.2016.04.046
https://doi.org/10.1038/s41380-023-01958-8
https://doi.org/10.1017/S0033291725100962

	A common symptom geometry of mood improvement under sertraline and placebo associated with distinct neural patterns
	Introduction
	Materials and methods
	Data collection, study design, and clinical sample
	Dimension reduction of symptom improvement
	Dimension reduction of baseline symptoms
	Neural data reduction via functional brain-wide parcellation
	Mass univariate brain-behavior mapping

	Results
	Analysis of total scale scores
	Identifying clinical improvement geometry using PCA analysis
	The geometry of the PC1 is consistent across groups
	The sertraline group has higher PC1 scores than the placebo group, while responders have higher scores than nonresponders

	Predicting clinical improvement
	Clinical score at baseline can predict clinical improvement following treatment based on PC1 scores
	Principal axis of clinical items at baseline can predict clinical improvement following treatment
	CGI is not predicted by baseline clinical characteristics

	Brain-behavior mapping
	Resting-state GBC at baseline is similar in the sertraline and the placebo groups
	Parcellated GBC at baseline does not significantly predict clinical improvement or response status
	Functional network GBC at baseline predicts clinical improvement in both groups
	GBC differs as a function of PC1 scores, and its interaction with treatment and networks
	Network-level GBC predicts PC1 scores in the sertraline group but not the placebo group
	GBC in several networks predicts PC1 scores regardless of treatment
	Amygdala GBC at baseline predicts clinical improvement
	GBC differs as a function of PC1 scores, and its interaction with treatment or subcortical structure
	Subcortical-level GBC predicts PC1 scores in the sertraline group but not the placebo group
	Amygdala GBC predicts PC1 scores regardless of treatment
	Whole brain averaged GBC at baseline is predictive of clinical improvement under sertraline but not under placebo
	Comparing brain-behavior mapping with CGI response status versus PC1 scores


	Discussion
	Summary of the results
	A better characterization of mood improvement
	Predicting clinical improvement with baseline functional connectivity patterns
	The common geometry of improvement under sertraline and placebo is underpinned by different mechanisms
	Limitations and perspectives

	Conclusions
	Supplementary material
	Data availability statement
	Author contribution
	Funding statement
	Competing interests
	References


