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Using direct numerical simulations, we systematically investigate the inner-layer
turbulence of a turbulent vertical buoyancy layer (a model for a vertical natural convection
boundary layer) at a constant Prandtl number of 0.71. Near-wall streaky structures of
streamwise velocity fluctuations, synonymous with the buffer layer streaks of canonical
wall turbulence, are not evident at low and moderate Reynolds numbers (Re) but manifest
at high Re. At low Re, the turbulent production in the near-wall region is negligible;
however, this increases with increasing Re. By using domains truncated in the streamwise,
spanwise and wall-normal directions, we demonstrate that the turbulence production in
the near-wall region at moderate and high Re is largely independent of large-scale motions
and outer-layer turbulence. On a fundamental level, the near-wall turbulence production
is autonomous and self-sustaining, and a well-developed bulk is not needed to drive
the inner-layer turbulence. Near-wall streaks are also not essential for this autonomous
process. The type of thermal boundary condition only marginally influences the velocity
fluctuations, revealing that the turbulence dynamics are primarily governed by the mean-
shear induced by the buoyancy field and not by the thermal fluctuations, despite the current
flow being solely driven by buoyancy. In the inner layer, the spanwise wavelength of the
eddies responsible for positive shear production is remarkably similar to that of canonical
wall turbulence at moderate and high Re (irrespective of near-wall streaks). Based on these
findings, we propose a mechanistic model that unifies the near-wall shear production of
vertical buoyancy layers and canonical wall turbulence.

Key words: turbulent convection, turbulent boundary layers, buoyant boundary layers

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 1021 A45-1

Check for
updates


https://orcid.org/0000-0003-3509-0176
https://orcid.org/0000-0002-8032-0017
https://orcid.org/0000-0001-6348-6392
https://orcid.org/0000-0003-2011-9300
https://orcid.org/0000-0001-5255-8741
mailto:krishna.reddy.maryada@auckland.ac.nz
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.10742&domain=pdf
https://doi.org/10.1017/jfm.2025.10742

https://doi.org/10.1017/jfm.2025.10742 Published online by Cambridge University Press

K.R. Maryada, S.W. Armfield, M. MacDonald, P. Dhopade and S.E. Norris

1. Introduction

Buoyancy-driven boundary layer flow next to a vertical heated surface is central to
many natural and industrial flows (Fan e al. 2021). For example, concerning industrial
flows, where the Reynolds/Grashof numbers are low-to-moderate, these are applicable
for modelling room ventilation systems and free convection cooling of mechanical and
electrical components (Bejan 2013). On geophysical scales, where the Reynolds/Grashof
numbers are large, these are relevant to understanding anabatic flows over steep cliffs and
melting of ice sheets (Wells & Worster 2008; McConnochie & Kerr 2016; Giometto et al.
2017; Howland et al. 2022).

The ambient is often (weakly) stably stratified in most real-world situations, and natural
convection boundary layers frequently develop over vertical surfaces under such conditions
(Bejan 2013). The vertical buoyancy layer, based on Prandtl’s one-dimensional solution
for ‘mountain-valley winds’ (Prandtl 1952), is a model of a vertical natural convection
boundary layer immersed in a stably stratified medium (Gill 1966), and it has been studied
through the years to understand the dynamics of vertical convection in the presence of
ambient stable stratification. The current study uses the same formulation to model a
vertical buoyancy-driven boundary layer.

Most studies on vertical buoyancy layers focus on stability and transition (e.g. Gill &
Davey 1969; Tao, Le Quéré & Xin 2004; McBain, Armfield & Desrayaud 2007; Maryada
et al. 2022), with there being only a few studies investigating the turbulent structure.
Fedorovich & Shapiro (2009) investigated the vertical buoyancy layer’s mean flow and
one-point turbulent statistics with a constant heat flux thermal boundary condition. The
authors found that the turbulent mean flow profiles were qualitatively similar to the laminar
flow. At the low-to-moderate Reynolds numbers investigated, most of the turbulence was
observed in the outer layer, and no signs of significant inner-layer turbulent activity were
reported. In both laminar and turbulent vertical convection (both with and without ambient
stable stratification), the velocity maximum and its corresponding wall-normal location are
often used in the theoretical analyses of the flow close to the heated wall (Lin & Armfield
2005; Ng et al. 2017; Ke et al. 2021; Howland et al. 2022) or to demarcate the different
regions of the flow (Tsuji & Nagano 1988a; Lin, Armfield & Patterson 2008; Fedorovich &
Shapiro 2009; Ke et al. 2023). In terms of demarcation, the region between the heated wall
and the velocity maximum is often defined as the inner layer, inner flow region or near-
wall region. The region beyond the velocity maximum is defined as the outer layer, outer
side or outer bulk region. In this study, we also use the velocity maximum to demarcate the
different flow regions. The ‘outer layer’ is defined as the wall-normal region beyond the
velocity maximum, while the ‘inner layer’ is defined as the wall-normal region between
the heated wall and the velocity maximum. Note that this is different to the traditional
inner and outer layer definitions commonly employed in canonical wall turbulence, and
any mention of the inner and outer layers in this paper corresponds to the above definitions.

As an extension to the study of Fedorovich & Shapiro (2009), Giometto et al.
(2017) investigated the turbulent structure of vertical buoyancy layers using a constant
temperature excess boundary condition and found that the two flows are qualitatively
similar in the outer layer. Giometto ez al. (2017) also investigated the inner-layer turbulence
by examining the one-point turbulent kinetic energy (TKE) budget equation and proposed
a four-layer structure, with the inner layer featuring a laminar-like sublayer and a buffer
layer where nonlinear TKE transport terms mostly balance dissipation and viscous
diffusion. Using two-point correlations and energy spectra, it was also shown that the
outer layer of the vertical buoyancy layer is populated with streamwise-elongated large-
scale motions (LSMs) of streamwise velocity fluctuations, carrying significant amounts of
TKE and Reynolds shear stress (Schumann 1990; Maryada et al. 2023).

1021 A45-2


https://doi.org/10.1017/jfm.2025.10742

https://doi.org/10.1017/jfm.2025.10742 Published online by Cambridge University Press

Journal of Fluid Mechanics

Vertical natural convection boundary layers immersed in stably stratified environments,
such as the buoyancy layer, share many similarities with their unstratified counterparts
(Bejan 2013). Significant progress has been made on this front in the past few decades
when compared with its stratified counterparts; hence, it is briefly reviewed here.

Unstratified turbulent natural convection boundary layers over vertically heated surfaces
were investigated using theoretical analyses, numerical simulations and experiments for
well over 50 years. The experimental studies in the twentieth century (e.g. Vliet & Liu
1969; Cheesewright & Doan 1978; Miyamoto & Okayama 1982; Tsuji & Nagano 1988a,
b) demonstrated that the turbulence development in vertical natural convection boundary
layers is drastically different from turbulent boundary layers (canonical wall turbulence).
These studies revealed that turbulent activity is primarily dominant in the outer layer.
Direct numerical simulations (DNSs) (Abedin, Tsuji & Hattori 2009; Gayen, Griffiths &
Kerr 2016; Howland et al. 2022) and experiments (McConnochie & Kerr 2016; Parker
et al. 2021; Nakao et al. 2023) of vertical convection at different Prandtl numbers in the
subsequent years confirmed the observations regarding the turbulence activity in the outer
layer. This behaviour is qualitatively similar to the turbulent vertical buoyancy layer, at
least at the Reynolds numbers investigated in prior studies (Fedorovich & Shapiro 2009;
Giometto et al. 2017; Maryada et al. 2023).

However, turbulence is not always limited to the outer layer of vertical natural convection
boundary layers. It was theorised by Wells & Worster (2008) that vertical natural
convection boundary layers first undergo a laminar—turbulent transition to a turbulent state
where most of the turbulence is dominant in the outer layer (also see Kraichnan (1962) and
Grossmann—-Lohse theory of Rayleigh-Bénard convection (Grossmann & Lohse 2000)).
At higher Reynolds/Grashof numbers, such as those relevant to geophysical scales, the
vertical natural convection boundary layer undergoes a second transition, where the
inner layer becomes turbulent in the sense of Prandtl and von Karmén. In this regime,
appreciable turbulent activity is present in the inner and outer layers, with the inner layer
exhibiting signatures of canonical wall turbulence, i.e. near-wall streaks (Kline et al. 1967,
Hutchins & Marusic 2007; Hwang, Lee & Sung 2020). Following the terminology of the
Grossmann—Lohse theory from hereon, the first turbulent regime is termed the ‘classical
regime’, and the second turbulent regime is termed the ‘ultimate regime’.

The DNS results of Ng et al. (2017) and Ke et al. (2023) have provided compelling
evidence of such a transition. At low-to-moderate Reynolds/Grashof numbers, most of
the turbulence is observed in the outer layer, with the inner layer being weakly turbulent.
The inner layer of a buoyancy-driven vertical boundary layer becomes turbulent in the
sense of Prandtl and von Kdrman at sufficiently high Reynolds/Grashof numbers. It was
demonstrated that at sufficiently high Grashof numbers, the inner layer is characterised by
peaks in the streamwise and spanwise energy spectra of streamwise energy fluctuations,
whose wavelengths are comparable to the near-wall streaks observed in canonical wall
turbulence.

Despite the promising results of Ng et al. (2017) and Ke et al. (2023), our understanding
of turbulence in the inner layer of vertical convection is far from complete, with there
even being contradictory views on the turbulence dynamics that are central to governing
buoyancy-driven boundary layers.

For example, Tsuji & Nagano (1988b) and Hattori et al. (2006) suggest that the
Reynolds shear stress in the inner layer is almost zero. However, the experimental
results of Miyamoto & Okayama (1982), and the numerical simulations of Fedorovich &
Shapiro (2009), Kis & Herwig (2012), Giometto et al. (2017), Sebilleau et al. (2018), Ke
et al. (2020, 2023) and Maryada et al. (2023) contend that in vertical convection, the
Reynolds shear stress in the near-wall region can be negative both in isothermal and stably
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stratified environments. The lack of consensus also extends to the streamwise buoyancy
flux, responsible for TKE production in vertical convection (To & Humphrey 1986). In
unstratified vertical convection, Miyamoto & Okayama (1982) argue that it is negative in
the inner layer; however, Tsuji & Nagano (1988b) argue the contrary. Giometto et al. (2017)
and Maryada et al. (2023) only report positive values of buoyancy flux in the inner layer
of vertical buoyancy layers. The results of Ke ef al. (2023) suggest that the behaviour of
the mean buoyancy flux in the near-wall region is a function of Re, with its magnitude
increasing with increasing Reynolds number. Ke et al. (2023) report negative values of
streamwise turbulent heat flux.

Even regarding the inner layer turbulence in general, it has been suggested that the
outer bulk can drive the inner layer and contributes significantly towards the inner-layer
turbulence sustenance in the ultimate regime (Wells & Worster 2008; Ng ef al. 2017).
However, to date, there is no conclusive evidence in support of or against this hypothesis.

It is evident from the above discussion that the near-wall region of vertical natural
convection boundary layers, let alone vertical buoyancy layers, has not been investigated
thoroughly, with there still being several unanswered questions relating to the dynamics
of near-wall turbulence. Here, using DNSs, we systematically investigate the following
aspects of inner-layer turbulence of vertical buoyancy layers in both the classical and
ultimate regimes.

The first objective of the current study is to understand the fundamental processes
governing the inner-layer turbulence of vertical buoyancy layers at low, moderate and
high Reynolds numbers. Specifically, we examine whether the inner-layer turbulence is
self-sustaining and autonomous, and whether the bulk flow and LSMs are essential for
the inner-layer to become turbulent in the sense of Prandtl and von Karman. In vertical
convection, the TKE is produced due to both shear and buoyancy. Hence, intuitively, one
would expect the type of thermal boundary condition (prescribed temperature (Dirichlet
boundary condition) versus prescribed heat flux (Neumann boundary condition)) to be
significant in determining the dynamics of the inner-layer turbulence. This has not been
addressed thoroughly in the past and is the second objective of this study. Understanding
these aspects would aid in developing reduced-order and turbulence models for vertical
natural convection flows, which currently lag behind the turbulence models of canonical
wall turbulence.

The paper is organised as follows. The mathematical notation, governing equations and
computational methods are introduced in § 2. The inner-layer turbulence of the vertical
buoyancy layer at low and moderate Reynolds numbers is investigated in §§ 3.1 and 3.2,
where the key aspects relating to the conundrum of Reynolds shear stress and streamwise
turbulent heat flux in the inner layer are addressed. In §§ 3.3 and 3.4, it is demonstrated that
at moderate and high Re, the inner-layer turbulence can be sustained even if the LSMs that
populate the outer layer or bulk flow are not represented accurately. The effect of thermal
boundary conditions is also examined in §§ 3.2 and 3.4. A mechanistic model of turbulence
sustenance in the inner layer at moderate and high Reynolds numbers is presented in § 3.5.
The conclusions are given in § 4.

2. Governing equations and numerical methodology

Let us consider a linearly heated vertical wall placed in a stably stratified ambient medium
(having a positive vertical temperature gradient y;). The heated wall has a temperature
Ty, and the ambient medium has a temperature T,,. Both temperatures increase linearly
with height (in the positive x, direction as we define the wall-normal, streamwise and
spanwise using x1, x2 and x3, respectively) such that there is always a constant temperature

1021 A45-4


https://doi.org/10.1017/jfm.2025.10742

https://doi.org/10.1017/jfm.2025.10742 Published online by Cambridge University Press

Journal of Fluid Mechanics

difference between the heated wall and the ambient medium (AT = Ty, (x2) — Too(X2) =
B). In such cases, an equilibrium natural convection boundary layer with a constant
boundary layer thickness develops over the heated surface. This boundary layer is termed
the buoyancy layer (Prandtl 1952; Gill 1966), and we use it to model a natural convection
boundary layer immersed in a stably stratified medium.

The following non-dimensional Navier—Stokes equations with the Oberbeck—
Boussinesq approximation for buoyancy and the scalar transport equation are solved to
model the flow:

i _o, (2.1a)
0x;
ou; . i ap 1 3% 2 -
o, i = L N -~ 9 _198 ) .
T ax;  dx T Re ox? T Re O @15)

. v 1 9% 2
ot dx;  RePr asz RePr

u, (2.1¢)

where Re:UATrSI/v:(g,BAT(Sf)/Zv2 is the Reynolds number, and Pr=v/o is

the Prandtl number. Here, §; = (4\)()(/5,’,B)/S)l/4 and Uar = AT(g;Boc/vys)l/2 are
characteristic length and velocity scales, v is the kinematic viscosity, « is the thermal
diffusivity, B8 is the coefficient of thermal expansion and g is the acceleration due to
gravity. The Grashof number is twice the Reynolds number, and the Prandtl number is
0.71. The non-dimensionalisation is the same as in Gill & Davey (1969) and Maryada
et al. (2022).

The instantaneous non-dimensional velocity field is represented using i;, p is the
instantaneous pressure field and ¥ is the instantaneous non-dimensional temperature field,
also called the buoyancy field. The buoyancy field is defined as the temperature excess
over the ambient scaled by AT, defined as O =(T — Txo) /AT.

A geometric representation of the computational domain and coordinate system, and
a schematic of the vertical buoyancy layer in the relevant non-dimensional variables are
shown in figures 1(a) and 1(b). Near the edge of the boundary layer, there is a flow reversal
and a region of ¥ deficit, which are notably absent in temporally evolving vertical natural
convection boundary layers immersed in isothermal media (cf. figure 1 in Ke er al. 2020).
Nevertheless, the mean flow behaviour near the heated wall (within §;) is qualitatively
similar to unstratified vertical natural convection and is the region of interest in the current
study.

An in-house collocated finite volume code (Norris 2000; Armfield er al. 2003) that
is second-order accurate spatially and temporally was used to perform DNSs. The code
has been extensively verified and validated in the past on several natural convection
flows (Armfield et al. 2003; Maryada et al. 2022). A second-order centre difference
scheme was used for spatial discretisation. The diffusion and advection terms were
integrated in time using a second-order accurate Crank—Nicolson scheme and a second-
order Adams—Bashforth scheme, respectively. The Courant number was always less than
0.4. In non-staggered finite volume numerical solvers, simple linear interpolation of the
cell-centre velocities to get the cell-face velocities would lead to checkerboarding of the
pressure field (Patankar 1980). To alleviate this issue, the in-house code uses the Rhie—
Chow interpolation for velocity (Rhie & Chow 1983), as it is well known that Rhie—-Chow
interpolation or similar schemes retain the grid-scale ellipticity, thereby avoiding spurious
oscillations in the pressure field (Armfield 1991, 1994). The divergence of the velocity field
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Figure 1. A schematic of the flow configuration (not to scale). Panel () is a schematic of the computational
domain and the coordinate system, with the shaded red region representing the heated wall. Panel (b) shows
streamwise velocity and temperature fields in the relevant non-dimensional variables. Here, the black solid
curve is the streamwise velocity iip, and the blue dashed curve is the buoyancy field, the non-dimensional
temperature field &. The inner layer width is given by &;, and the boundary layer thickness is given by 8.

was also checked after every time step, and it was always below 5 x 107!°. The reader is
referred to Maryada et al. (2023) for further details on the numerical methods.

The mean streamwise velocity and buoyancy fields are represented using u, and
¥, respectively. The mean scalar and vector fields are calculated by averaging the
instantaneous fields in time and in the homogeneous spatial (streamwise and spanwise)
directions The fluctuations are represented using u; and ¥ such that u#; =u; + u; and
# =19 + 9. The ensemble-averaged (averaged in time and the homogeneous spatial
directions) one-point turbulence quantities are represented using (-). The variables with
the superscript + indicate that these are normalised using viscous units, i.e. friction
velocity (u; = +/7y/p), friction temperature (6; = ¢, /(pCpu-)) and kinematic viscosity.
Here, p is the density of the fluid, 7, is the wall shear stress, g, is the wall heat flux and
C, is the specific heat capacity of the fluid.

Fourteen DNSs with different parameter combinations (different domain sizes, Re and
thermal boundary conditions) were performed to examine the turbulence in the inner layer
of a vertical buoyancy layer. Due to the large parameter space, we introduce the following
notation to describe the different simulation cases concisely. Throughout this paper, each
case is represented using a combination of three letters that are followed by three/four
numbers, e.g. ‘ABCXXXX’. The first letter (letter ‘A’ in the example) represents the
size of the domain in the wall-normal direction, with F representing full/regular domain
size, R and R, representing reduced domain sizes. The second letter (letter ‘B’ in the
example) indicates the size of the domain in the streamwise (vertical) and spanwise
directions, with F representing the full/regular domain size, and S and L representing
reduced domain sizes in the streamwise (vertical) and spanwise directions. The third letter
(letter ‘C’ in the example) represents the thermal boundary condition, with D indicating
a constant temperature excess boundary condition (Dirichlet boundary condition) and N
representing a constant heat flux boundary condition (Neumann boundary condition). The
last three/four digits (‘XXXX’ in the example) indicate Re.

In the wall-normal direction, a domain is considered to be full if the wall-normal extent
of the domain is sufficiently large to not influence the boundary layer flow. A domain
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is termed reduced if the wall-normal extent of the computational domain significantly
affects the boundary layer flow. Regarding reduced wall-normal domains, cases with Ry
as the first letter have smaller wall-normal domain sizes than those with R as the first
letter. In the streamwise (vertical) and spanwise directions, a domain is termed full if the
two-point correlations of the most energetic structures decay to zero in the streamwise and
spanwise directions. The letters S and L are used to represent domains that do not satisfy
these criteria. Cases with S as the second letter have streamwise and spanwise domain
sizes smaller than those with L as the second letter. The relevant details of the simulations
are elaborated in the respective sections of the paper for continuity.

3. Results and discussion

As discussed in § 1, turbulent vertical natural convection boundary layers can be separated
into two regimes (Wells & Worster 2008; Ng er al. 2017; Ke et al. 2023). First is
the classical regime, which is relevant at low and moderate Reynolds numbers. Here,
most of the turbulence is observed in the outer layer, with the inner layer being weakly
turbulent. At sufficiently high Reynolds numbers, the natural convection boundary layer
transitions to the ultimate regime, where the inner layer exhibits signatures of canonical
wall turbulence. One of those signatures is the emergence of near-wall streaks, quantified
by an energetic peak at a wavelength of ﬂj{3 ~ 100 and a wall-normal distance of x;” ~ 15
in one-dimensional energy spectra of streamwise velocity fluctuations in the spanwise
direction.

Following Ng et al. (2017) and Ke et al. (2023), we differentiate between the classical
and ultimate regimes using the one-dimensional energy spectra of streamwise velocity
fluctuations in the spanwise direction. The presence of a spectral peak at /l; ~ 100 and

ler ~ 15 is considered as a signature of the ultimate regime, while its absence implies that
the vertical natural convection boundary layer is still in the classical regime.

3.1. Near-wall turbulence at low and moderate Reynolds numbers

First, we investigate the inner-layer turbulence (turbulence across §; in figure 15) at low and
moderate Re. To this end, we have performed numerical simulations at 200 < Re < 2800 in
large domains. The details of the domain and mesh are shown in table 1. Here, the domain
sizes in the streamwise/vertical (x3) and spanwise (x3) directions are comparable to the
domain sizes of Giometto et al. (2017). The domain sizes in the streamwise and spanwise
directions were also verified using two-point correlations and were found to be adequate
(Moin & Kim 1982). The domain sizes employed in the wall-normal (x1) direction are
greater than the ones often used in the numerical simulations of boundary layer flows
(Kozul, Chung & Monty 2016; Ke et al. 2020). Periodic boundary conditions were used in
the streamwise and spanwise directions, as the flow is homogeneous in those directions. In
the wall-normal direction, a no-slip velocity boundary condition (iz; = 0) for velocity was
used at the heated wall (the thermal boundary condition is discussed below). Akin to prior
studies on natural convection boundary layers (cf. Zhao, Lei & Patterson 2017; Maryada
et al. 2022, 2023), an open-type boundary condition with & = 0 was used at the boundary
opposite the heated wall. At the open-type boundary, the flow is allowed to enter and exit
the domain freely. It was verified that there was no artificial pile-up of TKE or temperature
variance at this boundary, and therefore, this boundary condition does not adversely affect
the flow dynamics investigated in the present study.

In table 1, all case names begin with FF, indicating that these are full/regular domains in
the wall-normal, streamwise (vertical) and spanwise directions. We classify a domain size
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Case Re A Re; Domainsize (x; X x2 X x3) Ny X Ny, X Ny, Axfrw Axﬁsm Ax; X Ax3+

FFD200 200 80 9.08p; x 12.08p; x 12.08p; 200 x 182 x 182 0.46 1.6 4.7 x4.7
FFD800 800 280 6.88p1 X 25.16p; x 9.48p; 350 x 1400 x 550 042 3.3 4.9 x49
FFD1400 1400 460 7.08p1 % 9.78p; % 9.08p; 355x906 x 816 042 6.3 4.8x4.8
FFD1800 1800 580 6.58p1 % 8.56p x 8.165 390 x 1028 x 978 0.40 74 4.8 x4.8
FFN2800 2800 510 6.86p1 % 9.08p; x 8.565 390 x 1028 x 978  0.37 6.6 4.5x4.5

Table 1. Simulation settings of DNS reported in this paper. Here, the domain size is normalised using the
boundary layer thickness, while the grid sizes are normalised using the viscous length scale. The wall-normal
cell size next to the heated wall is represented using Axfw while the wall-normal cell size at the edge of the

boundary layer is represented using Axlfsb,. See the text for the notation used for case names.

as full/regular if its dimensions are comparable to the dimensions outlined in table 1,
as these are sufficiently big to not adversely affect the statistical signature of LSMs.
Moreover, these act as our reference simulations in the subsequent sections. Note that
the FFD800 and FFD1800 DNS datasets were previously used in Maryada et al. (2023)
and Maryada et al. (2024), respectively.

The laminar vertical buoyancy layer (Pr =0.71) with a constant non-dimensional
temperature excess boundary condition bifurcates into a periodic state at Re = 102.17
(Maryada et al. 2022). At Re = 200, the flow transitions into a turbulent state, but low-Re
effects are significant. The case FFD200 is specifically used to investigate the inner-layer
turbulence at low Re;. Cases FFD800, FFD1400 and FFD1800 correspond to moderate
Reynolds numbers. In terms of mean quantities, FFD800, FFD1400 and FFD1800 are
largely similar with an Re,-dependence. Differences are only observed regarding mean
buoyant production/destruction of TKE between FFD1800 and the former two, which are
discussed in § 3.2. ~

For cases where the third letter is D, a constant non-dimensional temperature ¢ = 1 was
used as the thermal boundary condition at the heated wall, corresponding to a Dirichlet
thermal boundary condition. These are collectively called constant temperature excess
simulations.

Note that in the case of a laminar flow, the solution of Prandtl (1952) and Gill (1966)
is valid even if the linearly heated wall (Dirichlet thermal boundary condition) is replaced
with a uniform heat flux (Neumann thermal boundary condition) at the heated wall
(Shapiro & Fedorovich 2004). Despite the similarity of laminar flow, it is well known
that the type of thermal boundary condition affects the linear stability of buoyancy
layers. The laminar vertical buoyancy layer bifurcates into a periodic state at a lower
critical Reynolds number in the presence of a Neumann thermal boundary condition when
compared with a Dirichlet thermal boundary condition (McBain et al. 2007). Regarding
turbulence, it is usually argued that approximate statistical equivalence exists between the
Dirichlet and Neumann thermal boundary conditions in vertical convection (Parker et al.
2021). However, to the best of the authors’ knowledge, the influence of thermal boundary
conditions on the near-wall turbulence structure and dynamics of such flows is yet to be
scrutinised in detail. Therefore, a simulation was also performed with a constant wall-
normal temperature gradient boundary condition 39 /dx; =1 at the heated wall, which
is a Neumann boundary condition. This is represented using FFN2800 in table 1 and
referred to as a constant heat flux simulation from hereon. The friction Reynolds number
of FFN2800 is comparable to FFD1400 and FFD1800.

All the simulations were run for at least five buoyancy periods, Tsz = 7 Re</Pr (the time
period based on the Brunt—Viisila frequency in the current non-dimensional units (Gill &
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Figure 2. Profiles of (a) mean streamwise velocity ;T (b) mean streamwise velocity variance (upuz)™* and
(c) mean Reynolds shear stress (ujuz) ™" at different Reynolds numbers. The location of the velocity maximum
is represented using a solid black circle, which demarcates the inner layer from the outer layer. The symbols
and all the subsequent figures are used only to differentiate the different cases.

Davey 1969)), for the flow to develop, and the statistics were calculated by averaging for
the following three buoyancy periods. The time period used for the averaging process is
similar to the time period of Giometto et al. (2017).

In table 1, we include the friction Reynolds number Re;, which was calculated from
the DNS a posteriori. As noted by Ke et al. (2023), Re; does not include the effects
of buoyancy and may not always be appropriate to characterise turbulence in buoyancy-
driven vertical boundary layers. Nevertheless, we include it as a measure to understand
scale separation present in the flow as Re; can be considered as the ratio of the eddies
having scales O (8y;) to the eddies having scales O (v/u;).

As the ambient medium is stably stratified in the present case, it is vital to understand
the role of stable stratification in the flow dynamics. The gradient Richardson number
Rig =(Ts/Ts 5)* was calculated across the entire boundary layer thickness to determine
the effect of stable stratification on the turbulence dynamics. Here, Ts = |du3/0dx1]| is the
shear time period and Tsp is the buoyancy time period as defined above. A value less than
unity indicates that shear dominates over stratification, while a value greater than unity
implies that stratification is significant (Tennekes & Lumley 1972).

For comparison, in an unstratified natural convection boundary layer, Ri; =0 as Tsp =
00. In the case of the vertical buoyancy layer, at all the Re investigated, Rig << 1 in the
inner layer, suggesting weak ambient stable stratification, and it is not a leading-order
term. Therefore, we can safely ignore the effect of stable stratification on the turbulence
dynamics, at least in terms of first- and second-order statistics considered in this study.
Here, we emphasise that the shear observed in unstratified and stratified natural convection
boundary layers is only due to the buoyancy force arising from a temperature difference
between the heated wall and the ambient, not external forces. The current flow is not
related to forced or mixed convection.

The mean streamwise velocity, streamwise velocity variance and the Reynolds shear
stress are visualised in figure 2 to understand the general flow behaviour. The mean
streamwise velocity field and the streamwise velocity variance are qualitatively similar to
unstratified vertical natural convection boundary layers in the classical regime. The mean
velocity field (shown in figure 2a) is zero at the heated wall due to a no-slip velocity
boundary condition, increases and reaches a peak value before decreasing to zero as
one approaches the edge of the boundary layer. Note that we define the boundary layer
thickness dp; as the wall-normal location where the mean streamwise velocity changes sign
for the first time (Maryada et al. 2023). The location of the velocity maximum demarcates
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Figure 3. Profiles of (a) mean non-dimensional temperature field 5X, (b) mean buoyancy variance (#9)" and
(c) one-dimensional correlation coefficient R,y at different Reynolds numbers. In panel (a), the grey dashed

line represents 9 =P rx1+. Note that the horizontal scale in panel (c) is different from panels (@) and (). The
location of the velocity maximum is represented using a solid black circle, which demarcates the inner layer
from the outer layer.

the inner layer from the outer layer, and the inner-layer width §;, when normalised in
viscous units, is a function of Re;.

From the streamwise velocity variance in figure 2(b), it is apparent that the velocity
variance peaks in the outer layer at all the Reynolds numbers investigated. A plateau or
a peak is not observed in the inner layer, indicating that at these Reynolds numbers, the
vertical buoyancy layer is not turbulent in the sense of Prandtl and von Kédrmén (Ke et al.
2023), i.e. the flow is not in the ultimate regime. The peak is a function of the friction
Reynolds number and the thermal boundary condition.

The Reynolds shear stress is shown in figure 2(c), and as demonstrated in numerous prior
numerical and experimental investigations of vertical convection (e.g. Tsuji & Nagano
1988a, b; Parker et al. 2021; Ke et al. 2023; Maryada et al. 2023), it peaks in the outer
layer. However, significant differences are observed in the near-wall region. At Re = 200,
the Reynolds shear stress is marginally positive (almost equal to zero) in the inner layer;
however, at Re > 800, (ujuy)™ is negative in the inner layer irrespective of the thermal
boundary condition. Note that it is not negative throughout the inner layer but only in the
near-wall region. It is positive at the edge of the inner layer, which is due to the counter-
gradient motions (Giometto et al. 2017). Investigating the counter-gradient motions is
outside the scope of the current study.

The above implies a change in the turbulence production mechanism with an increasing
Reynolds number. Therefore, in vertical convection, the Reynolds shear stress can be
negative in the inner layer at moderate Re and need not always decay to zero as argued
by Tsuji & Nagano (1988b) and Hattori et al. (2006). The magnitude and sign of (ujuz)™
is a function of Re.

As the current flow is solely driven by buoyancy, i.e. the temperature field is an active
scalar, it is imperative to examine its statistical behaviour to understand turbulence better.
The mean buoyancy field is shown in figure 3(a). In the figure, the mean buoyancy field

is calculated as ¥« = (9 — U)/6;, where ¥, is the mean temperature at the heated wall
and 6; is the friction temperature (Ke et al. 2020). In this study, we are primarily interested
in the near-wall region. In this region, ¥ of the constant temperature excess and constant

heat flux simulations scale similarly, following 9 = PrxlJr scaling, indicating that the
mean temperature field is primarily governed by conduction (Ke et al. 2020).
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The wall-normal variation of the inner-normalised buoyancy variance ()" is shown
in figure 3(b). The buoyancy variance peaks at xfr < 20 irrespective of the thermal bound-
ary conditions. The buoyancy variance decays to zero at the wall for the constant temper-
ature excess simulations (cases with the prefix FFD). For the constant heat flux boundary
condition (FFN2800), the buoyancy variance is a non-zero value at the heated wall and
is comparable to the peak magnitude. The ‘less restrictive’ nature of the Neumann-type
flux boundary condition (McBain er al. 2007) ensures that the temperature fluctuations
penetrate deep into the inner layer and exhibit non-zero values at the heated wall.

A mismatch between the streamwise velocity and buoyancy variance is apparent when
comparing figures 2(b) and 3(b). The streamwise velocity variance peaks in the outer layer,
but the buoyancy variance is dominant in the inner layer. This suggests a weak correlation
between the streamwise velocity and buoyancy fluctuations in the near-wall region, i.e. the
eddies transport (usu,)* and (99) 7 differently. To verify this, we calculate the one-point
correlation coefficient between the buoyancy and streamwise velocity fluctuations Ry,
(which is the normalised streamwise turbulent heat flux), shown in figure 3(c). This is
calculated as

(ur) ™

. 3.1
V{uun) H/ (9 9)+ G-

Rugz? =

At Re =200, the correlation coefficient is weak in the inner layer. It is negative at x1+ <2
and positive at greater wall-normal distances. For FFD800 and FFD1400, the correlation
coefficient is weakly positive or close to zero. The absence of a strong correlation was also
observed in unstratified turbulent natural convection boundary layers (Tsuji & Nagano
1988b). However, for FFD1800, it is marginally negative, indicating the dominance of
coherent turbulent structures that promote negative correlation over those that promote
positive correlation. This is discussed in detail in § 3.2 in terms of turbulence production.

On the other hand, the correlation coefficient for the constant heat flux boundary
condition (FFN2800) exhibits a different trend than the constant temperature excess
boundary condition (cases with the prefix FFD). In this case, the correlation coefficient is
positive and around 0.45 throughout the inner layer, suggesting a good level of similarity
between streamwise velocity and buoyancy fluctuations.

Therefore, approximate statistical equivalence between vertical convection flows over
Dirichlet and Neumann thermal boundary conditions can be considered valid when one
is interested in mean streamwise and buoyancy fields, Reynolds shear stress and velocity
variances. However, the same cannot be said for buoyancy variance or the streamwise
turbulent heat flux, as these are distinctly different between the two thermal boundary
conditions, especially in the near-wall region.

3.2. Turbulence production in the inner layer at low and moderate Reynolds numbers

Before explicitly focusing on the turbulent production mechanisms in the inner layer,
we investigate the premultiplied one-dimensional energy spectra of streamwise velocity
fluctuations to understand the general distribution of the eddies in vertical buoyancy
layers. The premultiplied one-dimensional spectrum for an arbitrary zero-mean fluctuating
quantity ¢ is defined as

(o) = /O ki (ki)d(log ki) = /0 B (k)d(K), (3.2)
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Figure 4. One-dimensional premultiplied energy spectra of streamwise velocity fluctuations in the spanwise
direction at (a) Re =200 (red squares), Re = 800 (cyan stars) and Re = 1400 (blue circles), and (b) Re = 1800
(green diamonds) and Re =2800 (magenta triangles). Also shown is the one-dimensional premultiplied
energy spectrum of streamwise velocity fluctuations in a turbulent channel flow at Re; =~ 1000 (LM1000),
which is from Lee & Moser (2015). The contour lines are 0.25 and 0.75 times the common maximum
for the vertical buoyancy layer (1.06). The shaded contours correspond to 1, 2, 3 and 4 (light to dark) for
LM1000. Vertical dash—dot lines near the abscissa indicate the edge of the inner layer. Symbols and colours for
the vertical buoyancy layer are the same as in figure 2. The energy is normalised using viscous units.

where (@g) is the variance of ¢, k; is the wavenumber and ¢y, (k;) is the spectrum. The
term k; ¢y, (ki) is the one-dimensional premultiplied spectrum, such that the variance is
equal to the area under the curve when plotted in a logarithmic scale. Consequently, peaks
in the premultiplied spectrum indicate the dominant scales contributing to the variance
of ¢.

Throughout this paper, while visualising the contours of spectra, we have chosen
to include contour levels that cover a significant amount of spectral mass, similar
to the visualisation strategies employed by Lozano-Durdn & Bae (2019), Deshpande,
Monty & Marusic (2021) and Jiménez (2022). Changing the number of contour levels
for visualisation does not alter the conclusions of the current study (see Appendix A).

The premultiplied one-dimensional energy spectra in the spanwise direction (x3) are
shown in figure 4. We also show the one-dimensional premultiplied energy spectra of
streamwise velocity fluctuations of turbulent channel flow at Re; ~ 1000 to understand
the fundamental differences between the vertical buoyancy layers and canonical wall
turbulence. The channel flow data is from Lee & Moser (2015).

In the vertical buoyancy layer, the spectral peaks occur in the outer layer at length
scales of the order of the boundary layer thickness. An inner peak corresponding to near-
wall (buffer layer) streaks, synonymous with canonical wall turbulence, is not observed
at xfr ~ 15 and /l;g ~ 100. Qualitatively similar behaviour is observed for the constant
temperature excess and heat flux thermal boundary conditions. The energy in the inner
layer is mainly observed at large spanwise wavelengths, suggesting that the LSMs that are
dominant in the outer layer make non-zero contributions to the TKE in the inner layer.
A similar observation was also made by Maryada et al. (2023) while investigating the
two-point correlations in wall-normal and streamwise directions.

A lack of a spectral peak corresponding to the near-wall streaks does not necessarily
mean that turbulence production is absent in the inner layer at low and moderate Reynolds
numbers. The shear production and buoyancy flux shown in figure 5 illustrates that
turbulence is being produced in the inner layer. The shear production PS+ and buoyant

production (buoyancy flux) P;r are calculated as
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Figure 5. Profiles of (a) shear production and (b) buoyant production (buoyancy flux) at different Reynolds
numbers. The location of the velocity maximum is represented using a solid black circle, demarcating the inner
layer from the outer layer. Here Ps and Pp are normalised by ui‘ /v. Symbols and line colours are identical to
figure 2.

Pt = —(u+u+)% (3.3a)
S — 1%2 ’ .
8)61+
P =gt Bt uiv™). (3.3b)

Note that the streamwise turbulent heat flux and not the wall-normal turbulent heat flux
features in the TKE budget equation for vertical convection (Giometto et al. 2017; Ke et al.
2023), and any subsequent references to buoyancy flux imply this quantity.

At Re =200, the shear production is minimal and is only negative in the inner layer. At
Re > 800, the shear production is positive for x1+ < 10. Shear production is negative at the
edge of the inner layer, which is related to the counter-gradient flux motions at the edge
of the velocity maximum (Giometto et al. 2017; Maryada et al. 2023). Apart from an Re,
dependence, there are no noticeable differences regarding shear production between the
constant heat flux and the constant temperature excess boundary conditions at moderate
Reynolds numbers. We emphasise that the turbulence production by shear should not be
considered a signature of the ultimate regime as the inner layer is devoid of near-wall
streaks (see figure 4).

Unlike shear production, the buoyancy flux strongly depends on the thermal boundary
condition (figure 5b). For the constant temperature excess boundary condition, the
buoyancy flux is negligible (zero or marginally negative) at ler < 10, while it is positive
and of considerable magnitude for a constant heat flux boundary condition. At Re = 200,
the buoyancy flux peak occurs beyond the maximum velocity, with minimal buoyant
production in the inner layer. Negative shear production and marginal buoyancy flux at
Re =200 indicate that the near-wall turbulence is primarily due to turbulence transport
from the outer layer or LSMs. At Re > 800, the buoyancy flux peaks approximately at
maximum velocity. For the constant temperature excess boundary condition, at 800 <
Re < 1400, the buoyancy flux is positive and negligible in regions of positive shear
production. At Re =1800, the buoyancy flux is marginally negative in this region,
indicating that the buoyancy flux suppresses TKE at this Reynolds number. For the
FFN2800 case, the buoyancy flux is a non-zero positive value until )cl+ < 0.6.

Positive shear production and buoyancy flux at Re > 800 indicate that turbulence is
produced in the near-wall region even without near-wall streaks, irrespective of the thermal
boundary condition.

1021 A45-13


https://doi.org/10.1017/jfm.2025.10742

https://doi.org/10.1017/jfm.2025.10742 Published online by Cambridge University Press

K.R. Maryada, S.W. Armfield, M. MacDonald, P. Dhopade and S.E. Norris

(a) (b et .
g 9
103 13- 7 L A
£ L
itso 1
Mgl A
+ + PR
/lxz /le - \L
102 10% .
FFD200 -©- FFD1400
-~ FFD800
10! . 10! . i
10! 102 10! 102
xi x{
(© (@)
103 ( 10° b
+
.
/lxz /lx3
102 3 10% ¢
-<>- FFD1800 -7~ FFN2800 )
101 L | 101 L |
10! 102 10! 102
+ +
X1 X1

Figure 6. One-dimensional premultiplied cospectra of shear production Ps+ in the (a,c) streamwise and (b,d)
spanwise directions. Panels (@) and (b) correspond to FFD200, FFD800 and FFD 1400, while panels (c)and (d)
corresponds to FFD1800 and FEN2800. The contour lines are 0.15 times the minimum of FFD200 (1.1 x 1073
for the streamwise cospectra and —1.23 x 10~ for spanwise cospectra), and 0.15 and 0.45 times the maximum
of FFD200 (1.42 x 1072 for the streamwise cospectra and 2.28 x 1072 for the spanwise cospectra). The dashed
contour corresponds to the negative value, while the solid contours correspond to positive values. Vertical
dash—dot lines near the abscissa indicate the edge of the inner layer. Symbols and colours are the same as
figure 5.

The one-dimensional profiles in figure 5 are integral values, i.e. they represent a
summation of contributions made by eddies at all possible wavelengths, providing no
information on the different eddies responsible for shear and buoyant production. To better
understand the different eddies that are responsible for TKE production, the premultiplied
one-dimensional streamwise and spanwise cospectra of shear production and buoyant flux
are shown in figures 6 and 7, respectively. The spectral formulations are

— 8_+

Py =Re [—utuf 22— ), (3.4q)
8x2

Py =Re(g"prufot), (3.4b)

—

where ufru;“ and u;r 91 represent the cross-spectrum of Reynolds shear stress and

streamwise turbulent heat flux, respectively. Here, Re indicates that the real part of the
cross-spectrum is considered, which gives us the cospectrum.

At Re =200 (figures 6a and 6b), streamwise and spanwise shear production cospectra
are negative in the inner layer, indicating that no wavelengths are predominantly
responsible for producing TKE due to shear. For higher Reynolds numbers, regardless

1021 A45-14

—


https://doi.org/10.1017/jfm.2025.10742

https://doi.org/10.1017/jfm.2025.10742 Published online by Cambridge University Press

Journal of Fluid Mechanics
(b)

¥
A,

FFD200 -€- FFD1400

-+~ FFD800 ) ]
101 L | 101 L |
10! 102 10! 102
xj xj
(c) (d) ,
103+ o
2 R
N oA

pET > 2

a5, A
102k RNt J

-<{-- FFD1800
-Zx- FFN2800

10! . i 10! . i
10! 102 10! 102

x| x{

Figure 7. One-dimensional premultiplied cospectra of buoyant production P; in the (a,c) streamwise and
(b, d) spanwise directions. Panels (@) and (b) correspond to FFD200, FFD800 and FFD1400, while panels (c)
and (d) corresponds to FFD1800 and FFN2800. The contour lines are 0.15 times the minimum of FFD200
(1.13 x 1073 for the streamwise cospectra and 1.95 x 1073 for the spanwise cospectra), and 0.15 and 0.45
times the maximum of FFD200 (8.31 x 103 for the streamwise cospectra and 1.2 x 10~2 for the spanwise
cospectra). The dashed contour corresponds to the negative value, while the solid contours correspond to
positive values. Vertical dash—dot lines near the abscissa indicate the edge of the inner layer. Symbols and
colours are the same as figure 5.

of thermal boundary conditions, streamwise and spanwise cospectra (figure 6) reveal
specific wavelengths contributing to both positive and negative shear production within the
inner layer. Negative shear production is associated with both short and long streamwise
wavelengths, while it is only associated with long (/I}CL3 2 200) spanwise wavelengths. Note
that the magnitude of negative shear production (figure 7) is at least an order of magnitude
smaller than positive shear production, and these wavelengths contribute minimally to
integral negative shear production (figure 5a). The streamwise wavelength associated with
positive shear production in the inner layer varies with Re,, ranging from approximately
300-450 viscous units (figures 6a and 6¢). In contrast, the spanwise cospectra peak
consistently at /l;g ~ 100 viscous units (figures 6¢ and 6d) across all investigated Reynolds
numbers and show little dependence on Re or the thermal boundary condition.
Interestingly, the spanwise wavelength of the most energetic contours of positive shear
production is similar to canonical wall turbulence (Lee & Moser 2019). However, this
constancy is not observed for the streamwise wavelength as for canonical wall turbulence,
the most energetic contours of shear production are independent of Re; and are observed at
/l;rz ~ 600-700 (del A lamo ef al. 2004: Lee & Moser 2019; Jiménez 2022). This suggests

that the spanwise wavelength /lj3 ~ 100 for the near-wall shear production spectral peak
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is not limited to canonical wall turbulence. Its signatures are evident in turbulent vertical
natural convection at moderate Re,, which has been hitherto undetected (discussed further
in § 3.5).

In figure 7, for all cases, certain streamwise wavelengths exhibit positive buoyancy
flux while others exhibit negative buoyancy flux in the inner layer. Positive buoyancy
flux contributes to TKE production, while negative buoyancy flux contributes to its
suppression.

At Re =200, in terms of spanwise cospectra, the buoyancy flux is negligible. For
Re > 200, the dominant streamwise and spanwise wavelengths of negative buoyancy flux
are similar. The wavelengths of most energetic contours that contribute negatively to
the buoyancy flux are /l;rz ~250-450 and /l;g ~ 100, which are similar to the energetic
contours of positive shear production in the inner layer. A similar comparison cannot be
made at Re = 200 as positive shear production is not dominant in the inner layer.

The buoyancy flux is linearly proportional to the streamwise turbulent heat flux;
therefore, the one-dimensional cospectra in figure 7 also provide information on
the correlation between streamwise velocity and temperature fluctuations at different
wavelengths. The positive values in figure 7 imply that the streamwise velocity and
temperature fluctuations are positively correlated, while a negative value implies that these
are negatively correlated.

The positive correlation between the streamwise velocity and temperature fluctuations
suggests that high-speed eddies are generally composed of higher temperatures, while
low-speed eddies are generally of lower temperatures. A positive correlation is observed
at large streamwise and spanwise scales in the inner layer, suggesting that these are
synonymous with the LSMs observed in the outer layer (Maryada et al. 2023). At these
wavelengths, eddies with higher temperatures experience greater buoyancy and travel
faster than those with lower temperatures.

The negative correlation in the inner layer suggests that slow-moving eddies
are generally composed of high temperatures, while fast-moving eddies have low
temperatures. At first glance, this seems counterintuitive as it suggests buoyancy is actively
suppressing turbulence at these scales, particularly since the current flow is solely driven
by buoyancy. At these wavelengths, at Re > 200, the magnitude of shear production is
at least an order of magnitude greater than the buoyancy flux (see figures 4 and 7),
implying that these wavelengths are mostly controlled by shear. As the shear production
is positive, the Reynolds shear stress is mainly composed of Q2 (41 > 0, up <0, as we
define x| as wall-normal and x; as streamwise/vertical directions) and Q4 (11 <0, u > 0)
events (Wallace 2016). These events mix the low-speed fluid next to the wall and the
high-speed fluid slightly away from it. Due to a heated wall, the fluid next to it is at a
higher temperature than the fluid farther away. Hence, the low-speed fluid is associated
with higher temperatures, and the high-speed fluid is associated with lower temperatures,
mirroring forced convection heat transfer. This indicates that at small wavelengths, the u;
eddies in vertical natural convection boundary layers transport heat in the same fashion as
forced convection. We call this induced heat flux.

For a constant temperature excess boundary condition, at Re =200, shear production
is not dominant in the inner layer, resulting in negligible induced heat flux. However, as
Re increases beyond 200, a substantial positive shear production emerges, resulting in
an appreciable induced heat flux (as illustrated in figures 6 and 7). The one-dimensional
profile in figure 5 represents the integral of shear production and buoyancy flux across all
wavelengths. In the range of 800 < Re < 1400, this integral is positive or approximately
zero within the inner layer, indicating that the magnitude of the positive streamwise
turbulent heat flux is either larger than or comparable to the magnitude of the induced heat

1021 A45-16


https://doi.org/10.1017/jfm.2025.10742

https://doi.org/10.1017/jfm.2025.10742 Published online by Cambridge University Press

Journal of Fluid Mechanics

Case Domain size (xfr X x; X x;) Ny X Ny, X Ny, Axfrw Axﬁsm Ax; Ax;r
FSD1400 3235 x 986 x 493 355 x 200 x 100 0.43 5.99 4.93 4.93
RSD1400 166 x 1060 x 530 100 x 200 x 100 0.46 2.02 5.30 5.30
R,SD1400 337 x 982 x 491 200 x 200 x 100 0.43 2.16 4.91 4.91
RLD1400 166 x 3172 x 529 120 x 600 x 100 0.46 1.53 5.29 5.29

Table 2. Simulation settings for DNS of the minimal domain at Re = 1400. Here, the domain and grid sizes are
normalised using the viscous length scale. For RSD1400 and R,SD 1400, Axl‘;b[ corresponds to the cell size at

the edge of the domain; for FSD1400, Ax?:s;,, corresponds to the cell size at the edge of the boundary layer. See
the text for the notation used for case names.

flux. The magnitude of the induced heat flux in the inner layer grows relative to the positive
buoyancy flux with increasing Re. This dominance of the negative buoyancy flux causes
the integral (the one-dimensional profile) to become negative at Re = 1800. Consequently,
depending on the Reynolds number, the mean streamwise turbulent heat flux can exhibit
negative, near-zero or positive values, with its sign determined by the prevailing turbulent
processes.

These findings clarify the longstanding questions regarding the Re-dependence and the
underlying physical mechanisms responsible for negative streamwise turbulent heat flux
and Reynolds shear stress in the inner layer of vertical natural convection boundary layers
(To & Humphrey 1986; Abedin et al. 2009; Nakao, Hattori & Suto 2017).

Despite the buoyancy flux being positive for FFN2800, in figure 7, we see that
the buoyant production at /1;“3 <300 is similar for the constant heat flux and constant
temperature excess boundary conditions (dominated by negative values). This, combined
with similarity in shear production, indicates a universal turbulence production mechanism
in the near-wall region of buoyancy layers, which is examined in the following sections.

3.3. Self-sustaining nature of inner-layer turbulence at moderate Reynolds numbers

As evident from § 3.1, at low and moderate Re, turbulence is mainly observed in the outer
layer of vertical buoyancy layers. We know that the outer layer is composed of streamwise-
elongated LSMs, which carry a significant portion of the TKE and Reynolds shear stress.
Significant wall-normal coherence is also present, with the LSMs being strongly correlated
between the inner and the outer layers (Maryada et al. 2023). There is an appreciable
nonlinear wall-normal transport of turbulence from the outer to the inner layer in a vertical
natural convection boundary layer flow (Giometto et al. 2017; Ke et al. 2023). Moreover,
it is often argued that this wall-normal transport of turbulence is the predominant way in
which turbulence is maintained in the inner layer at moderate Reynolds numbers.

In spite of all these observations, in this section, based on the fact that turbulence is
produced locally in the near-wall region at moderate Reynolds numbers (see §3.2), it
is investigated whether the inner-layer turbulence is autonomous and self-sustaining, i.e.
whether it can sustain even if the LSMs and outer-layer flow are disturbed heavily. To this
end, motivated by the studies of Jiménez & Moin (1991), Jiménez & Pinelli (1999), Hwang
(2013) and Jiménez (2022), four different numerical simulations using minimal domains
were performed at Re = 1400, which is sufficient to observe the adequate turbulence
production in the inner layer (see figures 5, 6 and 7). The relative sizes of the minimal
(truncated) domains to FFD1400 are shown in figure 8, and the corresponding details are
given in table 2.

The four numerical simulations feature domains smaller than FFD1400 in the
streamwise and spanwise directions (figure 8). Decreasing the streamwise and spanwise
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Figure 8. The relative sizes of the minimal domains to the FFD1400 domain (large black box), which are shown
to scale. In panel (a), the red box represents FSD 1400, and the blue box represents RSD1400. The magenta and
green boxes in panel (b) represent RLD1400 and R>SD1400, respectively.

lengths restricts the largest streamwise and spanwise wavenumbers that can be captured
in the domain. The wall-normal domain size for FSD1400 is comparable to FFD1400
(figure 8a). Similar to FFD1400, an open-type boundary condition is used at the wall-
normal far-field boundary for the FSD1400 simulation. With this DNS dataset, we are
interested in investigating whether the LSMs need to be adequately resolved to replicate
the second-order statistics of motions smaller than LSMs.

To drastically modify the outer layer turbulence and bulk flow, in RSD1400, R,SD1400
and RLD1400, the wall-normal domain is truncated to severely inhibit the outer flow
(figure 8). In RSD1400 and RLD1400, the wall-normal domain is restricted to x;" ~ 170,
while in R,SD1400, it is restricted to x,” ~ 340, which are smaller than the boundary layer
thickness at Re = 1400 (boundary layer thickness as observed in the FFD1400 simulation).
In these minimal domains, at the wall-normal boundary (far-field boundary condition), a
free-slip wall (i1] = diip/dx1 = du3/dx; = 0) with a constant temperature 9=0 boundary
condition is applied, replacing the opening boundary condition used for FFD1400 and
FSD1400. This boundary condition was specifically chosen as it inhibits the wall-normal
motions (¢ fluctuations), thereby directly affecting (uou»), as (ujus) and (uousu,) feature
in turbulent production and transport. A free-slip wall affects turbulence differently than
a standard no-slip wall, as it enforces i) = dup/dx| = dii3/dx; = 0, compared with a no-
slip wall where u; = 0. Consequently, these minimal domains cannot be directly related to
internal natural convection or natural convection in enclosures.

Note that RSD1400 and RLDI1400 are similar in the wall-normal and spanwise
directions but only differ in the streamwise direction, with RLD1400 being almost three
times bigger than RSD1400. We use this simulation to understand the statistics of large
scales in the inner layer.

The outer-layer turbulence/bulk flow can be suppressed or modified using several
methods that are different from the one employed in the current study (e.g. the spectral
filtering approaches of Jiménez & Pinelli (1999), Hwang (2013) and Jiménez (2022) or
the damping approach of MacDonald et al. (2017) for turbulent channels). Here, we are
not interested in understanding how different methods suppress or modify the bulk flow.
We also emphasise that the aim of these numerical experiments is not to reproduce the
one-point statistics in minimal domains accurately, as is usually done in turbulent channels
(e.g. MacDonald et al. 2017; Yin, Huang & Xu 2018). Instead, we are only interested in
understanding how a modified bulk affects turbulence in the inner layer. If the spectral
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Figure 9. Mean flow and one-point statistics of the minimal and full domains at Re = 1400. Panel (a)
corresponds to mean streamwise velocity @, panel (b) corresponds to mean temperature field >, panel
(¢) corresponds to TKE and panel (d) corresponds to buoyancy variance ().

energy signature of the resolved turbulence in the minimal domains is similar to that of
FFD1400, then we can infer that the LSMs and outer flow only play a marginal role in
the near-wall turbulence dynamics. If it is the contrary, we can deduce that the inner-layer
turbulence significantly depends on the bulk flow.

For all the minimal domains, the simulations were initialised using the turbulent flow
field of the FFD1400 simulation. The FSD1400 and RLD1400 were run for over 7.5 x 10*
viscous time units before averaging, while the RSD1400 and R,SD1400 were run for over
10 x 10* viscous time units before averaging to ensure that turbulence did not decay for
large simulation times. The statistics reported are averaged over five buoyancy time periods
in all cases. The rest of this section is dedicated to examining the one-point and spectral
statistics.

The mean streamwise velocity fields of the minimal domains and FFD1400 are shown
in figure 9(a). The mean streamwise velocity fields of FSD1400 and R,SD1400 are very
similar to those of FFD1400 for most of the boundary layer. On the other hand, the mean
streamwise velocity fields of RSD1400 and RLD1400 with very minimal wall-normal
domain extents are different from FFD1400 but are identical to each other. The mean
temperature field is shown in figure 9(b), and no noticeable differences until xf’ <10
for all cases. This is expected as diffusion primarily governs the mean temperature field
in the near-wall region. At xl+ > 10, FSD1400 and R,SD1400 deviate marginally from
FFD1400 while RSD1400 and RLD1400 deviate significantly. Like the mean streamwise
velocity field, the mean temperature fields of RSD1400 and RLD1400 are identical to each
other.
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The TKE profiles are shown in figure 9(c). The TKE magnitude is lower in minimal
domains than in the full domain, implying that the LSMs make a non-negligible
contribution to velocity variances across almost the entire thickness of the boundary
layer. Regarding buoyancy variance (figure 9d), FSD1400 and R,SD1400 are in excellent
agreement with FFD1400 until x1+ < 10; however, a mild deviation is seen at larger wall-
normal distances. Cases RSD1400 and R,SD1400 are significantly different from the
reference case of FFD1400, exhibiting an increased magnitude of thermal fluctuations.
Like the mean flow, the TKE and buoyancy variances of RSD1400 and RLD1400 are
identical, indicating that the streamwise length of the domain does not influence these
statistics. Instead, it is the truncated wall-normal domain that affects it.

As the velocity and buoyancy variances represent the integral of different eddies at all
wavelengths, investigating the spectral properties would provide a better metric to quantify
the independence of inner-layer turbulence. To this end, we investigate the premultiplied
two-dimensional spectra of velocity fluctuations to investigate how the minimal domains
affect the different eddies (different Fourier components). Using two-dimensional spectra
mitigates the issue of aliasing in the homogeneous directions (Tennekes & Lumley 1972),
and following Jiménez et al. (2004), Chandran et al. (2017) and Hwang et al. (2020),
we plot the two-dimensional spectra in the logarithmic Cartesian space. It is shown in
figure 10, where the spectra are averaged across the entire thickness of the inner layer.

Figure 10 shows the premultiplied two-dimensional spectra of velocity and buoyancy
fluctuations. Although the FSD1400 case is too small to fully resolve LSMs in both
streamwise and spanwise directions, the resolved portion of its spectra in the minimal
domain closely matches the full domain’s spectra. This indicates that the minimal
domain can accurately capture the wavelengths of the resolved turbulent fluctuations,
even if LSMs are not properly resolved. Consequently, the discrepancy in velocity and
buoyancy variances between FSD1400 and FFD1400 (figure 9) primarily stems from
FSD1400 lacking energy from unresolved LSMs, rather than a fundamental alteration of
small-wavelength structures in the near-wall region between the two domains.

Now consider RLD 1400, RSD1400 and R,SD1400 where a limited wall-normal extent
and a free-slip boundary alter outer-layer turbulence. The energetic contours of R,SD1400
are in good agreement with those of FSD1400 (domain only truncated in the streamwise
and spanwise directions) and FFD1400 (the full domain, i.e. no truncation in any
direction), suggesting that beyond a specific wall-normal location, the bulk flow only
marginally affects the small scales in the inner layer. However, the same cannot be said
for RLD1400 and RSD 1400, which have an even more limited wall-normal domain extent.
The effect of the free-slip boundary condition in the outer layer is felt deep into the inner
layer. Substantial differences are observed in buoyancy and all three velocity components
compared with FFD1400. In spite of this, similar to the one-point statistics shown in
figure 9, the spectra of RLD 1400 and RSD 1400 are in excellent agreement with each other,
reaffirming that the wall-normal domain size has a more significant impact on turbulence
than streamwise domain truncation.

Despite all the differences in spectra, the long and narrow streamwise velocity modes
of RLD1400 and RSD1400 (1, > A, and A}, < 200) are in very good agreement with
FFD1400, suggesting that these scales survive even if the outer layer is drastically different.
This is only observed for streamwise velocity fluctuations, not other velocity and buoyancy
fluctuations. Therefore, the long and narrow structures of streamwise velocity fluctuations
in the inner layer must be primarily due to local flow processes and not solely due to LSMs.

Figure 11 shows the premultiplied two-dimensional cospectra of shear production and
buoyancy flux of the minimal domains and FFD1400. The spectral signature of shear
production and buoyancy flux of FSD1400 and R;SD1400 is similar to FFD1400, which
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Figure 10. Premultiplied two-dimensional energy spectra of velocity fluctuations averaged across the inner
layer. The panels correspond to fluctuations of (a) wall-normal velocity, (b) streamwise velocity, (¢) spanwise
velocity and (d) temperature. The contour lines are 0.15 and 0.45 times the maximum value of RSD1400 (6.8 x
1073, 1.11 x 1071, 9.01 x 1072 and 7.36 x 10~! for wall-normal velocity, streamwise velocity, spanwise
velocity and temperature energy spectra, respectively). Symbols and colours are the same as figure 9. The
energy is normalised using viscous units.

is our largest domain at Re = 1400, indicating that the shear production and buoyancy flux
(both positive and negative) at these scales in the inner layer do not depend on whether the
LSMs and the outer bulk flow are resolved correctly. Interestingly, even in RLD1400 and
RSD1400, the contours of positive shear production and negative buoyancy flux are in fair
agreement with FFD1400 except at small streamwise and spanwise wavelengths, despite
the energy spectra of streamwise, wall-normal and buoyancy fluctuations exhibiting
significant differences in figure 10. This strongly suggests that the turbulence production
in the inner layer is autonomous and depends only marginally on outer-layer dynamics.
The effect of domain size on the Nusselt number is discussed in Appendix B. However,
this is not examined in greater detail as the primary aim of the current study is to
understand the near-wall fluctuations and not the behaviour of mean wall quantities.
Moreover, for all cases, the turbulence does not decay even after long integration times,
indicating that the turbulence in the inner layer is self-sustaining and autonomous, at
least on a fundamental level. Such self-sustaining behaviour of near-wall and outer-layer
motions was previously observed in the buffer layer, logarithmic and the core region
of turbulent channels (Jiménez & Moin 1991; Jiménez & Pinelli 1999; Jiménez et al.
2004; Flores & Jiménez 2010; Cossu & Hwang 2017). These observations indicate that
the structural elements of canonical wall turbulence are present in vertical buoyancy-
driven boundary layers at moderate Re. However, their presence is not apparent in
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Figure 11. Two-dimensional premultiplied cospectra of (a) shear production Ps+ and (b) buoyant production

P; of full and minimal domains averaged in the inner layer. The contour lines are 0.15 times the minimum
(—1.42 x 10~ for shear production and —2.1 x 1074 for buoyancy flux) and maximum (—1.56 x 1073 for
shear production and 5.7 x 10~* for the buoyancy flux) values of RSD1400. Solid contours represent a positive
value, while the dashed contour corresponds to a negative value. The grey-shaded region represents positive
shear production and negative buoyancy flux (induced heat flux) of FFD1400. Symbols and colours are the
same as figure 9.

the premultiplied one-dimensional energy spectra of streamwise fluctuations (figure 4).
Instead, spectral signatures consistent with canonical wall turbulence are evident in
shear production. Therefore, the inner-layer turbulence of vertical convection in the
classical regime, so long as turbulence is produced locally, can be thought of as having
a combination of turbulence structures representative of canonical wall turbulence and
other motions specific to vertical convection. This similarity between the current flow
configuration and canonical wall turbulence is further discussed in §§ 3.4 and 3.5.

It should be noted that the present similarity is observed without the distance-from-
the-wall-scaled eddies (the spectra of u> in figure 4 does not scale linearly with respect
to wall-normal distance as in canonical wall turbulence (Hwang 2015; Lee & Moser
2019)), implying that the scale-based self-sustaining process observed here is not merely
a consequence of attached eddies.

This section has shown that small scales in the near-wall region are self-sustaining
and autonomous. Consequently, very large computational domains are not required
for numerical simulations; minimal domains can be effectively used to investigate the
low-order statistics of small-scale motions in the near-wall region of turbulent vertical
buoyancy layers (also see Appendix B regarding Nusselt number).

3.4. Near-wall turbulence in the ultimate regime

Based on the above observations regarding the autonomous nature of turbulence in the
inner layer (§ 3.3), we use minimal domains to investigate the vertical buoyancy layer at
a significantly higher Re to understand the inner layer turbulence in the ultimate regime.
The ultimate regime corresponds to Reynolds numbers where a well-developed peak is
observed at x;” ~ 15 and /l;; ~ 100 in the one-dimensional spanwise spectra of streamwise
velocity fluctuations (Ng et al. 2017; Ke et al. 2023). We report results at Re = 3500 as
it was found to be sufficiently high to observe a well-developed inner peak in the one-
dimensional spanwise spectra of streamwise velocity fluctuations.

We have performed five numerical simulations with different boundary conditions and
domain sizes, whose details are summarised in table 3. Like the classical regime (table 1),
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Case Domain size (xl+ X x; X x3+) Ny X Ny, X Ny, Axﬁu Axﬁgbl sz+ Ax;
FLD3500 4694 x 2380 x 873 360 x 500 x 184  0.33 14.08 4.76  4.76
FSD3500 5079 x 1226 x 450 350 x 250 x 92 0.34 1148 489 489
FSN3500 5137 x 1240 x 455 350 x 250 x 92 0.34 10.90 494 494
RSD3500 308 x 1302 x 478 100 x 250 x 92 0.36 5.37 5.19  5.19
RSN3500 308 x 1300 x 477 100 x 250 x 92 0.36 5.36 5.18 5.18

Table 3. Simulation settings for DNS of the minimal domain at Re =3500. Here, the domain and grid sizes
are normalised using the viscous length scale. For RSD3500 and RSN3500, Axlfsbl corresponds to the cell size
at the edge of the domain; for FLD3500, FSD3500 and FSN3500, it corresponds to the cell size at the edge of
the boundary layer. See the text for the notation used for case names.

both constant temperature excess and constant heat flux boundary conditions were
investigated to understand the effect of thermal boundary conditions. Following Moin &
Kim (1982), the two-point correlations of the velocity fluctuations were computed in the
streamwise and spanwise directions for all cases, and it was found that the streamwise
and spanwise lengths of all the domains were not sufficiently long to resolve the largest
scales of turbulence accurately. However, from § 3.3, we know that the scales smaller than
the largest scales of motion do not significantly depend on the latter. Therefore, based
on these observations, one can use minimal domains to understand small scales in the
near-wall region. .

At the heated wall, a constant temperature excess boundary condition (¥ = 1) was used
for FLD3500, FSD3500 and RSD3500, while a constant heat flux boundary condition
was used for FSN3500 and RSN3500. However, unlike FFN2800, the non-dimensional
temperature gradient imposed at the heated wall was not unity but was equal to the mean
temperature gradient observed in FSD3500. Using the mean temperature gradient of a
constant temperature excess boundary condition ensures that Re; is comparable for both
thermal boundary conditions. This was done to isolate the effect of the thermal boundary
condition.

The wall-normal domain is sufficiently large in FLD3500, FSD3500 and FSN3500 to
avoid any influence of the far-field boundary condition. In these simulations, an open-
type boundary condition was used at the wall-normal far-field boundary. In RSD3500
and RSN3500, the domain is restricted to only six units (units defined using the current
non-dimensionalisation described in §2, which is ~ 300 viscous units) in the wall-
normal direction. Similar to RSD1400 and RLD1400 outlined in § 3.3, for RSD3500
and RSN3500, the opening boundary condition was replaced with a free-slip wall (1] =
diin/dx = dii3/dx1 = 0) having a non-dimensional temperature & = 0. This wall-normal
domain size cannot accurately capture the boundary layer flow and would severely inhibit
the outer layer turbulence, allowing us to discern the autonomous nature of the inner layer
turbulence.

Similar to what is observed at Re = 1400, the mean flow and one-point statistics differ
across different domain sizes, shown in Appendix C. The statistical properties of the eddies
are of interest and, hence, are the subject of focus in this section.

In figure 12, we plot the one-dimensional energy spectra of streamwise velocity
fluctuations in the spanwise direction to determine whether the buoyancy layer has
transitioned into the ultimate regime. Note that the inner layer is deemed to be turbulent
in the sense of Prandtl and von Kérman if this spectrum exhibits a peak at x;” ~ 15 and
/l;g ~ 100 (Ke et al. 2023). Usually, the transition from the classical to the ultimate regime
in vertical convection is defined using the mean Nusselt number, with the classical and

1021 A45-23


https://doi.org/10.1017/jfm.2025.10742

https://doi.org/10.1017/jfm.2025.10742 Published online by Cambridge University Press

K.R. Maryada, S.W. Armfield, M. MacDonald, P. Dhopade and S.E. Norris
(@) (b)

103 L

10° 1

+ +
/lx3 102 L /lX3 102 L |
—B— FSD3500 —&— RSD3500
—6— FLD3500 . —#— FSN3500 —A— RSN3500
101 | [} 101 | |
10! 10? 10! 102
+ +
X1 X1

Figure 12. One-dimensional premultiplied energy spectra of streamwise velocity fluctuations in the spanwise
direction at Re = 3500. Panel (a) shows FSD3500 (black squares), FLD3500 (red circles) and RSD3500 (blue
diamonds), while panel (b) shows FSN3500 (green stars) and RSN3500 (magenta triangles). Vertical dash—dot
lines near the abscissa indicate the edge of the inner layer. Also shown in panels (a) and (b) is that of a turbulent
channel flow at Re; ~ 1000 (LM1000), which is from Lee & Moser (2015). The contour lines are 0.15 and 0.45
times the maximum value of RSD3500 (0.76). Similar to figure 4, the shaded contours correspond to 1, 2, 3
and 4 (light to dark) for LM1000. The energy is normalised using viscous units.

ultimate regimes exhibiting different power-law scalings (Wells & Worster 2008; Ng et al.
2015, 2017). However, it is clear from Appendix B that at constant Re, the domain size
affects the Nusselt number. Therefore, using a mean quantity such as the Nusselt number
would not accurately demarcate the transition from the classical to the ultimate regime,
especially when using minimal domains. Moreover, it is well known that the change in
the power-law scaling of the Nusselt number is gradual. Despite this, the formation of the
near-wall peak in the one-dimensional energy spectra of streamwise velocity fluctuations is
much more consistent (Ke et al. 2023). Hence, we rely on the near-wall peak to distinguish
the classical and ultimate regimes.

The differences between figures 12 and 4 are immediately evident. Unlike what is
observed at 200 < Re < 2800, irrespective of the thermal boundary condition, a well-
developed spectral peak is observed at /1;2 ~ 100 and x;" ~ 15 at Re =3500. The wall-
normal location and the spanwise wavelength of the spectral peak are similar to the inner
site of canonical wall turbulence, which corresponds to the near-wall streaks (Kline et al.
1967; Hutchins & Marusic 2007; Lee & Moser 2015; Hwang et al. 2020). Therefore, at
Re = 3500, the inner layer is turbulent in the sense of Prandtl and von Karman (Ng et al.
2017; Ke et al. 2023). The magnitude of the vertical buoyancy layer contours and channel
flow shown in figure 12 are not expected to match as both flows are driven differently
(Ke et al. 2023). However, the similarity in the shape of the contours indicates a direct
correspondence in terms of the spanwise wavelength, with the energy only being offset by
some amount, which is likely a function of Re.

Figure 13 shows the snapshots of streamwise velocity fluctuations at xl+ ~ 15 for cases
FFD1400 and FLD3500, which can be related to the spectra shown in figures 4 and 12.
The streamwise velocity fluctuations have a relatively ‘coarse’ structure in figure 13(a),
corresponding to FFD1400. A streamwise-elongated streaky structure of positive and
negative streamwise velocity fluctuations is absent. However, for FLD3500 (figure 13b),
the streamwise velocity fluctuations exhibit a ‘finer’ structure than that of FFD1400, with
the positive and negative streamwise velocity fluctuations now being organised into an
alternating streak-like pattern. The spanwise wavelength of these streaky structures is
approximately 100 viscous units, corresponding to the spectral peak in figure 12. The
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Figure 13. The streamwise—spanwise plane at x]” ~ 15, showing the contours of fluctuating streamwise
velocity at different Reynolds numbers. Panel (a) shows FFD1400 (Re = 1400, classical regime) while panel
(b) shows FLD3500 (Re = 3500, ultimate regime). Only a portion of the FFD1400 and FLD3500 domains is
shown.

change in the structure of the streamwise velocity fluctuations with increasing Re was also
observed in unstratified turbulent vertical natural convection boundary layers (Ng et al.
2017; Ke et al. 2023).

In shear-driven turbulence (e.g. canonical wall turbulence or homogeneous shear
turbulence), a streaky structure of streamwise velocity fluctuations emerges primarily due
to the high shear rates (Lee, Kim & Moin 1990). The emergence of such a streaky structure
in the present case indicates that an increase in the Reynolds number increases the shear
rate in the inner layer, irrespective of the domain size and thermal boundary condition.
The increase in the shear rate can either be due to local processes or due to the driving
force of the bulk flow.

The spectral similarity across the different domain sizes in figure 12 indicates LSMs
need not be fully resolved for accurate second-order statistics for small-scale motions in
the inner layer. Near-wall streaks are present regardless of the thermal boundary condition
(comparing FSD3500 and FSN3500) and even when the outer flow is severely modified
(comparing RSD3500, FSD3500 and FLD3500, as well as RSN3500 and FSN3500).
The turbulence is self-sustaining at these spanwise wavelengths, and the LSMs are not
fundamental features of turbulence in the inner layer of vertical convection. This strongly
suggests that local processes are sufficient to generate high shear rates and that the bulk
flow need not drive the flow for the inner layer to become turbulent.

The results presented so far in this section and § 3.3 demonstrate that the scale-based
self-sustaining turbulence is not limited to canonical wall turbulence but is also present in
buoyancy-driven flows such as the vertical buoyancy layer, which has not been reported
until now.

The two-dimensional premultiplied energy spectra of velocity and buoyancy fluctuations
are shown in figure 14. Like figure 10, the energy spectra are averaged across the
inner layer. The energetic contours of FSD3500 and FSN3500, as well as RSD3500
and RSN3500, are similar, suggesting that the thermal boundary does not significantly
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Figure 14. Premultiplied two-dimensional spectra of velocity and buoyancy fluctuations averaged across the
inner layer at Re = 3500. Here, panels correspond to fluctuations of (a) wall-normal velocity, (b) streamwise
velocity, (¢) spanwise velocity and () buoyancy. The contour lines are 0.15 and 0.45 times the maximum value
of RSD3500 (7.38 x 1073, 1.29 x 107!, 6.44 x 10~2 and 1.08 for wall-normal velocity, streamwise velocity,
spanwise velocity and temperature energy spectra, respectively). Symbols and colours are the same as figure 12.
The energy is normalised using viscous units.

influence the statistical eddy behaviour so long as the wall heat flux is comparable. The
resolved scales in FSD3500 are in excellent agreement with FLD3500 (FSD3500 and
FLD3500 have identical boundary conditions except that FLD3500 is twice as long and
twice as wide as FSD3500), indicating that the small scales do not strongly depend on
large scales.

For RSD3500 and RSN3500, the premultiplied two-dimensional spectra of wall-normal
and spanwise velocity fluctuations and buoyancy fluctuations deviate from FSD3500,
FLD3500 and FSN3500 at all the streamwise and spanwise wavelengths (figures 14a, 14¢
and 14d). However, the premultiplied two-dimensional spectrum of streamwise velocity
fluctuations of RSD3500 and RSN3500 exhibit similarities with FSD3500, FLD3500
and FSN3500 at A7, 5100 and Af > Af, (figure 14b), suggesting that long and narrow
streamwise velocity eddies are autonomous to the inner layer, similar to what is observed
at Re = 1400 (figure 10). Note that /1;; ~ 1000 and /L‘f3 ~ 100 correspond to streamwise and
spanwise wavelengths of the near-wall streaks (hence, the similarity observed in figure 12).

The premultiplied one-dimensional shear production cospectra are shown in figure 15.
In the inner-layer, the positive shear production peaks at /lj[z ~ 600-700 and /1;:3 ~ 100.
These wavelengths correspond to Q2 and Q4 events of Reynolds shear stress. The spanwise
cospectral peak is observed at /1j3 ~ 100, which is the same as what is observed at 800 <
Re < 2800 (figure 6). The constancy of the spanwise wavelength at 800 < Re < 3500
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Figure 15. One-dimensional premultiplied cospectra of shear production Ps+ in the streamwise (a) and
spanwise (b) directions at Re = 3500. The contour lines are 0.15 times the minimum of FSD3500 (1.27 x 1073)
and 0.15 and 0.45 times the maximum of FSD3500 (2.13 x 10~2). The dashed contour corresponds to the
negative value, while the solid contours correspond to positive values. Vertical dash—dot lines near the abscissa
indicate the edge of the inner layer. Symbols and colours are the same as figure 12.
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Figure 16. One-dimensional premultiplied cospectra of buoyancy flux P; in the streamwise (a) and spanwise
(b) directions at Re = 3500. The contour lines are 0.15 times the minimum of FSD3500 (1.48 x 1073) and 0.15
and 0.45 times the maximum of FSD3500 (1.4 x 10~2). The dashed contour corresponds to the negative value,
while the solid contours correspond to positive values. Vertical dash—dot lines near the abscissa indicate the
edge of the inner layer. Symbols and colours are the same as figure 12.

suggests that the spanwise wavelength of the Q2—Q4 events achieves a fully developed
state at moderate Reynolds numbers, unlike the Re-dependent streamwise wavelength.
The one-dimensional streamwise and spanwise cospectra of buoyancy flux are shown in
figure 16, where it is clear that the wavelengths of positive shear production do not con-
tribute to positive buoyancy flux and that these scales also contribute towards the destruc-
tion of TKE (negative buoyancy flux). Similar to what is observed at moderate Reynolds
numbers (figure 7), the streamwise and spanwise wavelengths corresponding to negative
buoyancy flux approximately coincide with the streamwise and spanwise wavelengths
contributing towards positive shear production (which is the induced heat flux discussed
in § 3.1). This reiterates that the eddies responsible for shear production in the near-wall
region also contribute significantly towards negative buoyancy flux (induced heat flux).
The similarity of the spectra and cospectra of the two different thermal boundary
conditions again indicates that there exists an approximate statistical equivalence in the
TKE production between the two thermal boundary conditions, similar to what is seen at
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Figure 17. Two-dimensional premultiplied cospectra of (@) shear production ;’? and (b) buoyant production

Pg averaged across the inner layer. The contour lines are 0.15 times the minimum (1.22 x 10~* for shear

production and 4.77 x 10~* for buoyant production) and maximum (2.89 x 10~3 for shear production and
1.24 x 10~* for buoyant production) values of RSD3500. Solid contours represent a positive value, while the
dashed contour corresponds to a negative value. The grey-shaded region represents positive shear production
and negative buoyancy flux of FLD3500. Symbols and colours are the same as figure 12.

moderate Re in § 3.1. Note that at Re = 3500, the Dirichlet and Neumann thermal boundary
condition simulations have similar Re; and Re in that these simulations differ only in terms
of thermal boundary conditions.

The shear production and buoyancy flux cospectra in figures 15 and 16 are only
marginally different across the different domains and thermal boundary conditions.
Figure 17 shows the premultiplied two-dimensional cospectra of shear production and
buoyancy flux Re =3500. The spectral signature of shear production and buoyancy flux
of FSD3500 and FSN3500 is similar to FLD3500 (also evident in figures 15 and 16).
The contours of positive shear production and negative buoyancy flux of RSD3500 and
RSN3500 are in fair agreement with FLD3500 except at A}, ~ A, akin to Re = 1400
(figure 10). The peaks of positive shear production and induced heat flux are in very good
agreement with each other despite differences observed at /1;2 ~ /l;;.

These findings suggest that despite the wall-normal velocity and buoyancy fluctuations
being different, the cross-correlation between u; and u», and u; and ¢ at the dominant
wavelengths of shear production is chiefly independent of the outer layer, LSMs and
thermal boundary conditions at moderate and high Re. It is worth pointing out that the
near-wall cycle of canonical wall turbulence also does not significantly depend on the
distribution of wall-normal velocity fluctuations (Chernyshenko & Baig 2005), akin to
what is observed in the present case. Therefore, fundamentally, the near-wall turbulence
production of a vertical buoyancy layer at moderate and high Reynolds numbers is similar
to the near-wall cycle of canonical wall turbulence. The inner—outer turbulence interaction
is not essential to sustaining turbulence but only has a secondary effect, at least in terms
of the statistics considered in this study.

We emphasise that the autonomous and self-sustaining nature of the near-wall
turbulence in a vertical buoyancy layer does not imply that inner-layer turbulence is entirely
independent of the LSMs and bulk flow. The interactions between the inner and outer
layers may be present but only marginally influence the low-order statistics such as the
spectra and cospectra.

This self-sustaining nature of near-wall turbulence in the absence of LSMs also suggests
that the nonlinear energy transfer between different scales in the inner layer of vertical
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buoyancy layers is a complex phenomenon much like wall turbulence, and is not merely a
transfer from large to small scales at different wall-normal locations and separation vectors
(e.g. see Cimarelli ez al. (2016) and Cho, Hwang & Choi (2018) regarding interscale energy
transport in turbulent channels). The detailed interactions between the inner and outer
layers and the interscale energy transport in the inner layer have not been investigated
further, and examining them is left for future study.

Here, it is worthwhile to mention that the observations presented in this paper are not
in agreement with the Grossmann—Lohse theory for vertical convection (Ng et al. 2015,
2017) regarding the idea that the ‘turbulent wind’ is significant in the sustenance of the
ultimate regime (see also Wells & Worster (2008) and Ke et al. (2023)). Despite this, our
findings, when taken in context with Ng et al. (2015, 2017) and Ke et al. (2021, 2023),
suggest that Grossmann—Lohse theory still provides a valid framework for predicting the
scaling of Nusselt number and other mean quantities, even if the ‘turbulent wind’ does not
play the expected role in driving the inner layer in vertical convection. Therefore, future
studies on vertical convection should focus on clarifying the exact physical mechanisms
responsible for the scaling of the Nusselt number and other bulk quantities.

3.5. A unified picture of near-wall turbulence production in vertical buoyancy layers and
canonical wall turbulence

In terms of mean flow and driving mechanisms, it is evident that there is little similarity
between vertical buoyancy layers and canonical wall-bounded turbulence. However, from
the previous sections, we see that akin to canonical wall-bounded turbulence, the near-
wall turbulence, at moderate and high Reynolds numbers, is self-sustaining and largely
independent of the outer-layer flow and LSMs.

At both moderate (800 < Re <2800) and high (Re=3500) Reynolds numbers,
irrespective of the thermal boundary condition, the shear production cospectrum exhibits a
peak at similar wavelengths (comparing figure 6 with figures 7, 15 and 16), implying that
analogous physical processes are responsible for turbulence production in the near-wall
region. The sustenance of the near-wall turbulence in buoyancy-driven boundary layer
flow, at moderate and high Re, is due to Q2—Q4 Reynolds shear stress events (responsible
for positive shear production; see §§ 3.3 and 3.4). Following Jiménez (2022), we term
these Q2-Q4 Reynolds shear stress events as ‘self-contained bursts’.

The spectral signatures of near-wall streaks are evident at Re = 3500, which are notably
absent at 800 < Re < 2800 (comparing figures 4 and 12; also see figure 13). This suggests
that inner-layer turbulence production and sustenance do not primarily depend on streaks.
As turbulence production in the inner layer occurs at similar wavelengths at both moderate
and high Re (without and with near-wall streaks, respectively), it likely implies that the
near-wall streaks at Re = 3500 are byproducts and not the essential features of turbulence
regeneration in vertical buoyancy layers. These become prominent at high-Re likely due to
increased scale separation and mean shear (as discussed in § 3.4).

The above idea of near-wall turbulence is comparable to the self-sustaining process
proposed recently by Jiménez (2022), where streaks do not actively contribute to wall
turbulence and are viewed as byproducts.

The spanwise wavelength of the self-contained burst attains an approximately constant
value of /l;g ~ 100 at moderate and high Reynolds numbers (comparing figures 4 and
12), which is consistent with the self-contained burst of canonical wall turbulence.
The streamwise wavelength is a function of the Reynolds number (which essentially
parametrises the mean shear in the inner layer), with it approaching the value associated
with canonical wall turbulence at Re = 3500.
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Figure 18. A schematic of the near-wall self-contained burst of vertical buoyancy layers at moderate and high
Reynolds numbers. Here, the red vertical line represents the heated wall, and g is the acceleration due to
gravity. The solid black horizontal arrows indicate ‘cause’, depicting a cause-and-effect relationship between
the variable in panel (@) and the variable in panel (b). The hollow horizontal arrow indicates that the near-wall
streaks are only byproducts at high Re. See text for details.

In §§ 3.3 and 3.4, we have observed that the shear production in the near-wall region
is primarily a local process, with its dynamics not significantly depending on the LSMs
and the bulk flow. The same is true for canonical wall turbulence, where too the near-
wall turbulence is largely independent of the outer-layer turbulence (Jiménez & Moin
1991; Jiménez & Pinelli 1999; Jiménez 2022). The similarity between the self-contained
burst of the present buoyancy-driven flow and canonical wall turbulence indicates that the
primary role of the buoyancy field is to accelerate the mean flow and not drastically alter
the inner layer’s turbulent generation mechanism. Therefore, if the terminology commonly
used for mixed convection flows is to be employed (e.g. You, Yoo & Choi 2003), at both
moderate and high Reynolds numbers, the buoyancy field in a vertical buoyancy layer
mainly affects turbulence externally (mean shear) and not structurally (eddy structure).
The statistical behaviour of turbulence is mainly governed by shear, which is induced by
the mean buoyancy field. If the contrary were true, i.e. buoyancy significantly affects the
eddy structure, we would not expect a similarity between the current flow and canonical
wall turbulence, which is clearly not the case in the present study.

In terms of causality analysis, one can presume that the mean buoyancy field ‘causes’
a mean shear, which in turn ‘causes’ a self-contained burst. This self-contained burst
is the fundamental unit of turbulence and is responsible for the inner-layer turbulence
sustenance at moderate and high Reynolds numbers. The near-wall streaks only become
statistically evident at high Reynolds numbers, which are presumably a byproduct of this
self-sustaining process. This process is graphically represented in figure 18.

Finally, we remark that similar conclusions regarding the external effect of the buoyancy
field also hold in the outer layer, as the relative scaling of longitudinal structure functions
of the vertical buoyancy layer in the outer layer scale similarly to canonical wall turbulence
(Maryada et al. 2024).

4. Conclusions

This study investigates the inner-layer turbulence of a vertical buoyancy layer (a model
for a vertical natural convection boundary layer) at Pr = 0.71 and 200 < Re < 3500 using
DNS.
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An approximate statistical equivalence exists between the vertical buoyancy layer flow
over constant heat flux and constant thermal excess boundary conditions in terms of mean
flow and velocity fluctuations. However, this cannot be extended to buoyancy variance
and streamwise turbulent heat flux. The mean Reynolds shear stress and the streamwise
turbulent heat flux can take either positive or negative values in the inner layer depending
on Re and thermal boundary conditions. Different physical processes dominate turbulence
dynamics as Re is varied.

Irrespective of the thermal boundary condition, the inner layer is weakly turbulent
at 200 < Re < 2800. It does not exhibit a spectral peak at a spanwise wavelength of
100 viscous units at a wall-normal distance of around 15 viscous units, something that
is synonymous with the near-wall (buffer layer) streaks of canonical wall turbulence
(canonical wall turbulence). Most of the turbulence is observed in the outer layer in the
form of LSMs.

At Re =200, there is no significant shear production in the near-wall region, with the
only production occurring at the edge of the inner layer due to buoyancy. At 800 < Re <
2800, the shear production is positive and turbulence in the inner layer is produced by both
shear and buoyancy. Shear production is dominant in the near-wall region, and its spectrum
peaks at a spanwise wavelength of 100 viscous units. The thermal boundary condition of
the heated wall does not significantly influence the spanwise wavelengths responsible for
shear production in the inner layer.

As turbulence is being produced by shear in the inner layer at moderate Reynolds
numbers (800 < Re < 2800), the effect of the outer-layer turbulence and LSMs on inner-
layer turbulence is investigated using domains truncated in the streamwise, spanwise
and wall-normal directions. We demonstrate that the near-wall turbulence is mainly
autonomous and self-sustaining, and the eddies responsible for shear production in the
inner layer only marginally depend on the outer-layer turbulence, LSMs and thermal
boundary conditions. The interactions between the inner layer turbulence and the LSMs in
the outer layer may be present but only marginally influence the low-order statistics, such
as the spectra and cospectra.

Based on the observations that the near-wall shear production is autonomous, using
minimal domains, the inner-layer turbulence is investigated at a higher Reynolds number
to understand the behaviour of the ultimate regime, i.e. a regime where the inner-layer is
turbulent in the sense of Prandtl and von Kdrmén and exhibiting signatures of canonical
wall turbulence. For the present case, the critical Reynolds number for transition to
the ultimate regime lies in the range 2800 < Re. < 3500. At Re = 3500, irrespective of
the thermal boundary condition, the buoyancy layer is in the ultimate regime, with the
premultiplied energy spectra of streamwise velocity fluctuations exhibiting a distinct peak
at a wall-normal location of x;” & 15 and a spanwise wavelength of A, ~ 100. The shear
production in the near-wall region peaks at a spanwise wavelength of 100 viscous units,
akin to what is observed at 800 < Re < 2800.

The inner-layer turbulence production in vertical buoyancy layers is similar at moderate
and high Reynolds numbers. It is self-sustaining and primarily autonomous of the outer
bulk flow, LSMs and thermal boundary conditions. Near-wall streaks are not essential for
this autonomous process. Instead, like canonical wall turbulence (Jiménez 2022), the self-
contained burst of Q2—-Q4 Reynolds shear stress events is a fundamental unit of turbulence
at both moderate and high Reynolds numbers.

On a fundamental level, the near-wall turbulence production of vertical buoyancy layers
is predominantly a local process that depends on the mean buoyancy field and not on
the bulk flow. The mean buoyancy field primarily sets the level of mean shear, and the
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Figure 19. The effect of contour levels on the spectra and cospectra. Panel (a) shows the regions of positive
shear production, while panel (b) shows the regions of negative buoyancy flux for FFD1800 (shaded green
contours) and FFN2800 (magenta lines) cases. Panel (c) shows the premultiplied energy spectra of streamwise
velocity fluctuations in the spanwise direction for FLD3500 (shaded red contours), FSD3500 (solid black lines)
and RSD3500 (dashed blue lines). In panel (a), the contours are eight equally spaced levels between 0.1
and 0.8 times the maximum of FFD1800, while in panel (b), these are eight equally spaced levels between
0.1 and 0.8 times the minimum of FFD1800. In panel (c¢), the contours are eight equally spaced levels between
0.1 and 0.8 times the maximum of RSD3500.

turbulence in the near-wall region is primarily dictated by shear induced by the mean
buoyancy field.
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Appendix A. Choice of contour levels in the visualisation of spectra and cospectra

Figure 19 shows the premultiplied one-dimensional energy spectra of positive shear
production and induced heat flux of FFD1800 and FFN2800, and the premultiplied one-
dimensional energy spectra of streamwise velocity fluctuations of FLD3500, FSD3500
and RSD3500. The data is identical to what is seen in figures 6(d), 7(d) and 12(a), but
plotted with a higher number of contour levels. At moderate Re, irrespective of the thermal
boundary condition, we see positive shear production and negative buoyancy flux in the
inner layer at A4 + ~ 100. At Re =3500, we see the emergence of a near-wall spectral

peak, indicating that the vertical buoyancy layer has transitioned into the ultimate regime.
These observations are consistent with the discussion made in § 3, indicating that the same
conclusions hold even if different contour levels are used for visualisation. Therefore,
changing the number of contour levels does not affect the major conclusions of the current
study.

Appendix B. Effect of domain size on Nusselt number

Table 4 shows the effect of domain size on the Nusselt number at Re = 1400. The Nusselt
number Nu is defined as (Ke et al. 2021, 2023)

5
Nu = —dwobl (B1)

pCpa P ’
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Case Nu

FFD1400 36.83
FSD1400 31.81
RSD1400 10.05
R,SD1400 21.16
RLD1400 10.09

Table 4. The variation of Nusselt number with respect to the domain size at Re = 1400.

where ¥, is the buoyancy field at the heated wall. For FFD1400 and FSD1400, 8 is
defined as the wall-normal location where the mean streamwise velocity changes sign
for the first time. For RSD1400, R,SD1400 and RSD3500, it is defined as the length of
the domain in the wall-normal direction. This is done as, in these cases, the wall-normal
domain extent is smaller than 3.

Despite the near-wall turbulence production being largely autonomous (§3.3), we
observe that the Nusselt number varies with changing domain size. This indicates that
the LSMs and outer layer motions influence the mean Nusselt number and that the wall
quantities do not solely depend on the near-wall small scales. This, combined with the
results presented in § 3.3 and § 3.4, shows that if one is interested in the turbulence of
small scales, minimal domains are sufficient; however, minimal domains are insufficient
to understand mean wall quantities such as the Nusselt number.

Appendix C. Mean flow, TKE and buoyancy variance in different domains at
Re=3500

The one-dimensional wall-normal profiles of the mean flow, TKE and buoyancy variance
are shown in figure 20 to highlight the differences and similarities in the integral statistics.
The mean streamwise velocity and buoyancy fields are shown in figures 20(a) and 20(b),
and until xf < 10, there is no noticeable difference between all the cases.

The TKE and buoyancy variance profiles are plotted in figures 20(c) and 20(d). The
effects of the domain size and the far-field boundary condition are evident in these
figures. Comparing FLD3500 and FSD3500, it is apparent that LSMs make non-negligible
contributions to the TKE and buoyancy variance, and hence, changing the domain
size changes their magnitude. Due to wall-normal truncation, despite having the same
streamwise and spanwise domain sizes, the one-dimensional profiles of RSD3500 and
RSN3500 are different from FSD3500 and FSN3500, suggesting that the wall-normal
truncation also affects the integral values in both the inner and outer layers. The behaviour
of the mean flow and the integral statistics is similar to what is observed at Re = 1400 (see
figure 9).

For FSD3500 and FSN3500, and RSD3500 and RSN3500, the mean streamwise
velocity and buoyancy fields, and TKE are almost identical, indicating that the exact
nature of the thermal boundary condition at the heated wall has very little influence on
these quantities. A difference is only observed in the mean temperature variance profiles.
This behaviour at high Re in minimal domains is in agreement with what is observed at
moderate Re (see § 3.1).

Note that we have matched the Re; and Re between the two thermal boundary conditions
in the ultimate regime; therefore, this set of simulations is a much more stringent test to
understand the effect of thermal boundary conditions. We observe the same behaviour as
in § 3.1, where there is only an approximate similarity in terms of Re. Therefore, this again
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Figure 20. Mean flow and one-point statistics at Re = 3500. Panel (a) corresponds to mean streamwise velocity
u>+, panel (b) corresponds to mean temperature field ¢, panel (c¢) corresponds to TKE and panel (d)
corresponds to buoyancy variance (%)%,

confirms that approximate statistical equivalence between vertical convection flows over
Dirichlet and Neumann thermal boundary conditions can be considered valid regarding
the mean streamwise velocity, buoyancy field and velocity variances, but not in terms of
the mean temperature variance.
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