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The motion of a thin drop on an elastic sheet
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We investigate the motion of a thin liquid drop on a pre-stretched, highly bendable elastic
sheet. Under the lubrication approximation, we derive a system of fourth-order partial
differential equations, along with appropriate boundary and contact line conditions, to
describe the evolution of the fluid interface and the elastic sheet. Extending the classical
analysis of Cox and Voinov, we perform a four-region matched asymptotic analysis of the
model in the limit of small slip length. The central result is an asymptotic relation for the
contact line speed in terms of the apparent contact angles. We validate the relation through
numerical simulations. A key implication of this result is that a soft substrate retards drop
spreading but enhances receding, compared to the dynamics on a rigid substrate. The
relation remains valid across a wide range of bending modulus, despite the distinguished
limit assumed in the analysis.
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1. Introduction

Wetting phenomena are ubiquitous in nature and play a crucial role in numerous industrial
applications, including oil recovery (Tangparitkul et al. 2018), inkjet printing (Park &
Moon 2006), microfluidics manipulation (Stone, Stroock & Ajdari 2004) and coating
processes (Kajiya et al. 2014). A fundamental problem in wetting dynamics is the
motion of the contact line, where the interface between two immiscible fluids meets a
solid substrate, and one fluid displaces the other (De Gennes 1985; Bonn et al. 2009).
A well-known paradox arises in hydrodynamic models: imposing the conventional no-
slip condition at the solid surface leads to an unphysical, non-integrable singularity in the
viscous dissipation at the moving contact line (Huh & Scriven 1971; Snoeijer & Andreotti
2013). To resolve this issue, various models have been proposed over the past decades,
including molecular kinetic models, molecular dynamic models, phase field models, and
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hydrodynamic models with modified boundary conditions; see the literature reviews in
Ren & E (2007) and Ren, Trinh & E (2015). Among these models, a particularly simple
and widely used approach is the Navier slip model, which introduces a small region of
length A9 where slip of the fluids occurs. This regularises the singularity and allows for a
consistent description of contact line motion.

In their theoretical studies, Cox (1986) and Voinov (1977) conducted a three-region
matched asymptotic analysis in the limit of small slip length 4 = 1y/L < 1, where Ay is
the physical slip length, and L is a characteristic length scale of the flow. For simplicity,
we will hereafter refer to the dimensionless parameter A as the slip length. The three
regions are as follows. (i) The outer region, located at a distance of O(1) from the contact
line, where fluid slip is negligible and the apparent contact angle 6, is defined. (ii) The
inner region, located at a distance O(A1) from the contact line, where slip occurs and the
microscopic contact angle 6,, is defined; the microscopic contact angle typically differs
from the apparent one at a moving contact line. (iii) The intermediate region, which spans
distances between O(Ad) and O(e) from the contact line. This transition zone connects
the inner and outer regions, and captures the bending of the fluid interface. Here, the
intermediate length scale

1
€ =
[log 4]

satisfies 4 < € « 1 and tends to zero as 4 — 0. We refer to Sibley, Nold & Kalliadasis
(2015) for a review of the Cox—Voinov theory and its underlying asymptotic structure. The
main result of the asymptotic analysis is a relation between the contact line speed and
the apparent contact angle. This relation has been successfully applied to many wetting
problems (Hocking 1977; Hocking & Rivers 1982; Cox 1986). For thin liquid drops,
the lubrication approximation has been used to derive simplified models (Hocking 1983;
Savva & Kalliadasis 2009; Ren et al. 2015).

The Cox—Voinov theory has been widely used to describe contact line motion. Its
application requires proper identification of the relevant length scales. The slip length is
not determined within the theory itself; rather, it must be prescribed, for example, through
calibration against experimental measurements or molecular-scale models. In addition,
the apparent contact angle defined in the outer region can be problem-dependent. For
spreading drops, for instance, it is commonly defined by fitting a circular arc to the fluid
interface, then calculating the angle that it makes with the substrate.

In contrast to the asymptotic matching between different scales employed by Voinov
(1977) and Cox (1986), Snoeijer (2006) and Chan et al. (2020) adopted an alternative
approach in which the free surface is treated as a perturbation around a straight
wedge. Based on the wedge flow solution (Huh & Scriven 1971), they derived the
‘generalised lubrication’ equation, which provides a description of the interface profile
at small capillary numbers. This method avoids the need to distinguish between different
asymptotic regions, and the resulting generalised lubrication equation remains valid even
for large interface slopes.

In recent years, the field of elastocapillarity — the interplay between elasticity and
capillarity — has attracted much research attention. Wetting problems in this context, often
referred to as soft wetting, have been considered in a large body of works; see Bico,
Reyssat & Roman (2018) and Andreotti & Snoeijer (2020). Soft wetting differs from
classical wetting due to the deformability of the substrate. In this setting, the substrate
can deform in response to fluid pressure, viscous stress, and capillary forces exerted at
the contact line. Notably, a wetting ridge forms at the contact line on a (visco)elastic
solid (Jerison et al. 2011; Style & Dufresne 2012; Pandey et al. 2020), and is associated
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with interesting phenomena such as viscoelastic braking (Shanahan 1988) and stick-slip
motion of the contact line (Kajiya et al. 2013; Karpitschka et al. 2015). More recently, the
dynamics of thin liquid films on (visco)elastic substrates has been studied (Charitatos &
Kumar 2020; Henkel, Snoeijer & Thiele 2021; Tamim & Bostwick 2021, 2023). These
works typically employ the lubrication approximation to derive reduced models, and use
either a sharp interface or a precursor film approach to model the moving contact line.
Various factors affecting the spreading dynamics have been investigated, including fluid
evaporation, Marangoni effects and substrate properties.

Among soft wetting problems, the wetting of thin elastic sheets has been an active
subject of research. For example, a drop deposited on an ultrathin sheet can induce
wrinkling, a phenomenon first reported by Huang ez al. (2007). The equilibrium properties
of this drop—sheet system, including the wrinkle extent and wavelength, have been studied
in detail (Davidovitch et al. 2011; King et al. 2012; Schroll et al. 2013; Davidovitch &
Vella 2018). Following the work of Py et al. (2007) on capillary folding, subsequent studies
have been carried out to establish the criteria for the reopening of an elastic sheet upon
drop evaporation (Péraud & Lauga 2014; Brubaker & Lega 2015; Li & Ren 2024a,b).
Static interface profiles for contact lines on elastic membranes were studied in Zhang, Yao
& Ren (2020). In addition, Bradley investigated the spontaneous transport of drops on
elastic sheets through a mechanism called ‘bendotaxis’ (Bradley et al. 2019). Onsager’s
variational principle (Zhang & Qian 2022) or non-equilibrium thermodynamics (Yao,
Zhang & Ren 2023) has been used to develop models to further investigate the mechanisms
underlying this spontaneous transport.

Despite the extensive literature on soft wetting, a theoretical analysis of contact line
motion on elastic sheets remains lacking. In this work, we consider the motion of a thin
drop on an elastic sheet. The sheet is thin, stretched, highly bendable, and simply supported
in the far field. The liquid height and the sheet deformation are assumed to be small, allow-
ing us to apply the lubrication approximation; see e.g. Hocking (1983), Ehrhard & Davis
(1991) and Oron, Davis & Bankoff (1997). Our main objective is to derive a relation —
analogous to the Cox—Voinov relation — between the contact line speed and measurable
quantities such as the drop radius and the apparent contact angles. Compared with classical
wetting, our problem is complicated by the substrate deformability and its coupling with
the fluid. The elastic sheet bends moderately beneath the drop but exhibits sharp bending
near the contact line. This localised bending occurs on the dimensionless length scale

1=yColy/L <1, (1.2)

where Cp, is the bending modulus, and y is the sheet tension. This scale arises from the
balance between the bending resistance force and the tension force. We expect that the
sheet bending on this scale influences the contact line dynamics. As a consequence of
the sharp bending, we introduce two apparent contact angles: the angle cy), that the fluid
interface makes with the horizontal plane, and the angle B, that the sheet makes with
the horizontal plane, both measured at a distance O(1) from the contact line; see figure 1.
We expect that both angles, rather than 6,,, = aapp — Bapp, the angle between the interface
and the sheet alone, contribute to determining the contact line dynamics.

We extend the classical Cox—Voinov analysis to account for the sheet bending. We
consider the distinguished limit in which the capillary number is Ca = O(e) and the
bending length is [ = O(e), where € is defined in (1.1). A bending region of size O(¢)
is introduced where the sheet deformation plays a dominant role. We systematically solve
the interface profile and the sheet deformation in the outer, bending and inner regions,
and use the intermediate region to connect the solutions in the bending and inner regions.
Through this matched asymptotic analysis, we derive a relation that expresses the contact

1022 A4-3


https://doi.org/10.1017/jfm.2025.10779

https://doi.org/10.1017/jfm.2025.10779 Published online by Cambridge University Press

Z. Li and W. Ren

z=h(x, 1)

z=g(x, 1)

Figure 1. Spreading of a thin liquid drop on an elastic sheet. The fluid interface is represented by z = h(x, t),
the sheet by z = g(x, 1), and the contact line position by x = a(¢). The apparent contact angles &, and Bypp
are defined relative to the horizontal plane for the fluid interface and the sheet, respectively. In the configuration
shown, a4y, > 0 and By, < 0.

line speed in terms of the apparent contact angles oy, and Bg):

3

1, V1

3Cae 1a~<a -~ ) — 63, (1.3)
o ﬁ+mﬁ”pp

where a is the contact line speed, Oy is the equilibrium contact angle, and y1, y» are the
effective tensions in the wet and dry parts of the sheet, respectively. This relation reveals
that the contact line dynamics is significantly influenced by the substrate rigidity: softer
or less stretched sheets lead to retarded spreading and enhanced receding, as confirmed by
numerical simulations. Furthermore, despite the assumption / = O(€) in the analysis, the
relation (1.3) is independent of the bending modulus. Our numerical simulations further
confirm that the contact line dynamics is insensitive to the bending length, and that the
relation holds even for extremely bendable sheets with [ as small as 0O(e?).

The rest of this paper is organised as follows. In § 2, we derive a system of fourth-order
equations, together with appropriate boundary and contact line conditions, that govern
the evolution of the fluid interface and the elastic sheet. In § 3, we perform a four-region
matched asymptotic analysis of the model, and derive a relation describing the contact line
motion on an elastic sheet. In § 4, we validate the theoretical results through numerical
simulations, and examine retarded spreading, enhanced receding and long-time dynamics.
Finally, we conclude the paper in § 5.

2. A thin-film model

We begin with a hydrodynamics model for the drop—sheet system. Consider a two-
dimensional liquid drop surrounded by air and sitting on a one-dimensional elastic
sheet; see figure 1. The interfacial tension coefficient for the liquid—air interface is y3.
For simplicity, we assume that the drop is symmetric with respect to x =0, and that
the contact line is located at x = +a(¢). We represent the liquid—air interface by the
height function z = h(x, ), —a(¢) < x < a(t), and the sheet profile by the height function
7z=g(x,t), —00 < x < 00o. The liquid is assumed to be incompressible and Newtonian,
with dynamical viscosity 7. Its dynamics is modelled by the stationary Stokes equations.
The viscosity of the surrounding air is assumed to be negligible, and its influence on
the liquid is neglected. The elastic sheet is modelled using the Willmore bending energy
with bending modulus Cp. Motivated by the experimental set-ups in Huang et al. (2007)
and King et al. (2012), we assume that the sheet has a very large stretching modulus, is
nearly inextensible, and is uniformly stretched with a pre-stress oy > 0. We then define
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the effective tensions as
Yi =Viot 0pre, 1=1,2, 2.1)

where y;,, i =1, 2 are the interfacial tension coefficients of the liquid—sheet and air—
sheet interfaces, respectively. We refer to Yao et al. (2023) for a complete description and
the derivation of the hydrodynamics model.

In the following, we consider a thin liquid film that is symmetric about x = 0, and restrict
our attention to the half-domain x > 0. Let L denote the characteristic film radius, and
U the characteristic contact line velocity. We assume that the film height is of order §L,
where § < 1 is a small parameter. Furthermore, we assume that the slope of the film height
is 0h/dx = O(5). Similarly, we assume g = O(§L) and dg/dx = O(5). We introduce the
rescalings

(X’A):(x,a)’ (Z,H,G)=(Z’h’g) T:L’
L L L/U

with the dimensionless variables marked by uppercase letters. We also introduce the
dimensionless parameters

(2.2)

El

U . oy L G

Ca=10 52X g = 00
T T T auLe

Following the standard procedure (see e.g. Oron et al. 1997), we derive from the

hydrodynamics model the evolution equations for the interface height Z = H(X, T) and
the sheet profile Z = G(X, T):

(2.3)

ar(H—G)+dxF=0, 0<X<A(T), (2.4a)
1
F = C—(H—G)2 (H—G+2) d5H, (2.4b)
a
3 71 0xxG + Ca Y axxH, 0<X <A(T),
&, 8§(G: )jl XX XX (1) (2.40)
2 0xxG, A(T) < X.

The boundary conditions are as follows. At the origin, symmetry conditions are
imposed:

at X =0. (2.5)

At the far field, we assume simply supported conditions:
G=0xxG=0 atX=+o00. (2.6)

Additionally, the kinematic compatibility condition requires that the liquid—air interface
and the elastic sheet meet at the moving contact line:

H(A(T), T)=G(A(T), T). 2.7
We note that (2.4) has the same form as the usual thin-film equation with slip, except that

the liquid height is now given by H — G. Meanwhile, (2.4c) is a fourth-order linear beam
equation with an additional second-order tension term.

2.1. Thermodynamics and contact line conditions

Based on (2.4)-(2.7), we now derive appropriate contact line conditions following the
principles of non-equilibrium thermodynamics (Ren, Hu & E 2010; Ren & E 2011).

1022 A4-5
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We start with the system total energy under the lubrication approximation:

E=&+&p,
1 A(t) 82 )
Eg=— 1+ —|0xH dXx
s Ca 0 ( + ) | X | )
_[A® 52 5 RS 82 5 (2.8)
+y1/ 1+ — |0xG| dX—{-yz/ 1+ —|9xG|” ) dX,
0 2 A1) 2
Cp [Xr
&==|  819xxGl?dX,
2 Jo

where & denotes the total interfacial energy, and & is the bending energy of the elastic
sheet. To avoid an infinite interfacial energy, here we apply the far-field condition (2.6)
at the fixed boundary X = X, (instead of X = 4-00) to suppress any energy dissipation at
this point. (It is more rigorous to deal with a finite energy, although the derivation in this
subsection remains valid, at least formally, with X, = 00.)

Next, we compute the energy dissipation rate. For the bending energy, we have

a6 _

2~ —_— . 3 .
=3 Cb( [9xxG1-9x7G + [83G] 8TG>

X=A(T)

C .
+ 8271’[[|8XXG|2]1 A(T) (2.9)

_ A(T) X,
+8%Cy / 9%G-0rG dX—i—/ 9%G-0rG dX ¢},
0 A(T)

where we have used the symmetry condition (2.5) at X =0, and the far-field condition
(2.6) at X = X,. The symbol [-] denotes the jump of a quantity across the contact line
from X =A(T) to X =A(T)™.

The dissipation rate of the interfacial energy can be decomposed into three
contributions:

dé&, . . .

d_TY: s, 1 +8s,2+gs,3»

. 1 5 -

Eq =82 {— dxH-9rH + (71 — 1) axG-aTG} ,
Ca X=A(T)

: , 1 82 ) L 82 )
Eo=AT)y — |1+ 5 0xH|" )+ (71 —72) | 1 + 5 |9x G ;

. 1AM
3= —82 —/ dxxH-0r H dX
Ca 0
A(T) X,
+ )71 / oxxG-orG dX + / oxxG-orG dX ;. (2.10)
0 A

(T
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We take the time derivative of the kinematic compatibility condition (2.7) and use the
resulting relation to simplify & ; and & ». After some manipulation, we obtain

. . 1 - -
E1+En=8 {(a IxH + (71 — 72) axG) aTG}

) X=AM 2.11)
+6—A(T){1@§—1|axH—axG|2} +0 (8%
Ca 2 2 XeA(T)

where @y is the rescaled Young’s angle defined via Young’s relation (Young 1805)

. 82
Ca(p—p1)=1- 3@%, 2.12)

the right-hand side being the small-angle expansion of the cosine function. To handle és, 3
we use the thin film (2.4), which leads to the identity

A(T)
/ oxxH-orH dX
0 (2.13)

A(T) AT) )
=/ BXXH-aTGdX+f — (H—-G)*(H—G+2) |ayH| dX,
0 0 Ca
where we have used integration by parts and the fact that F =0at X =0and X = A(T).

Finally, we combine (2.9), (2.10), (2.11) and (2.13), and apply the sheet (2.4¢) to obtain
the dissipation rate for the total energy:

ae Y (H—G)* (H—G+2)|ayH|’dX (2.14a)
e — — J14a
dT Ca2 0 X
. C .
—8°Co{9xxG1-0x7 Gl y_ 47 + 627” [oxxG*1 A(T) (2.14b)
1 L .
+ 82 {(— IxH + (1 —72) 9xG + Cp [[aic]]) 8TG} (2.14¢)
Ca X=A(T)
2 (1 , 1 ) ,
+— 1207 — -~ |9xH — 3xG| A(T) (2.14d)
Ca |2 2 Xmd(D)
+0 (5% (2.14¢)

This equation shows that the energy dissipation consists of dominant terms of O(8%)
and some higher-order contributions. Among the dominant terms, the term in (2.14a)
arises from the dynamics of the bulk fluid, while the remaining terms (2.140)—(2.14d) are
associated with the contact line dynamics. Under the physical constraint H — G > 0 for
0 < X < A(T), the term in (2.14a) is always non-positive, and the thin-film motion always
dissipates energy. To ensure that the total system energy decays, at least to leading order
in O(8?), we will derive and impose appropriate conditions at the moving contact line. For
this purpose, we have written the contact-line-related terms in the form of a product of a
generalised force and a generalised flux. Next, we examine these terms one by one.

In the first term of (2.14b), the generalised force is the jump in the curvature across the
contact line, while the generalised flux is the rate of sheet rotation about the contact line.
We assume that the sheet rotation here does not induce any energy change, so we set the
generalised force to zero, and obtain a continuity condition for the curvature:

[0xxGl=0 atX=A(T). (2.15)
1022 A4-7
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The second term of (2.14b) vanishes given the continuity of the sheet curvature
established above. Therefore, this term does not contribute to the energy dissipation.

In (2.14¢), the generalised force is the resultant vertical force acting at the contact line,
while the generalised flux is the vertical velocity of the sheet at the contact line. (Note that
this is not a material velocity, however.) We assume that the sheet motion at the contact
line alone does not induce any energy change. This yields the following balance condition
at the contact line:

1 N ~
Ca oxH + (y1 —y) axG=—-Cy |[8,3(G]] at X = A(T). (2.16)

In (2.14d), the generalised force is an approximation of the unbalanced Young stress in
the horizontal direction, while the generalised flux is the contact line speed. Assuming a
linear constitutive relation between the two, we obtain

1 1 o
EIBXH—BXGIZ—E@,%=CaMA A(T). (2.17)

Here, (i 4 > 0 is a dimensionless friction coefficient, representing the resistance to contact
line motion. It is a physical parameter whose value in general depends on fluid properties,
substrate roughness and microscopic characteristics.

To conclude this section, we have derived a model for the motion of a thin film on an
elastic sheet based on the lubrication approximation. The primary unknowns of this model
are the liquid—air interface profile z =h(x, t) and the elastic sheet profile z = g(x, 1),
with the contact line located at x =a(¢). The dimensionless governing equations are
summarised below. For better readability, we revert to lowercase variables and omit
overhead tildes:

o (h—g)+Ca™ o (=2 (h—g+ D 0}n) =0, O<x<a®), (I3
Cpdtg —y10ug=Ca ' dh, 0<x<a(), (2.18b)
Cpdig —120ig =0, a(r)<x. (2.18¢)
The boundary conditions are
dh=092rh=0 atx=0, (2.19a)
3,g=0g=0 atx=0, (2.19b)
g=0,xg=0 atx=+o0. (2.19¢)
The contact line conditions at x = a(t) are
[g]=M0xgll =[3:xxgl =0, (2.20a)
Ca™' 8ch+ (v1 — y2) dxg = —Cy [[37¢], (2.200)
1 I .
5 |0xh — 0xgl” — §9y =Cappal(r), (2.20¢)
h(a(r), 1) = g(a(?), 1). (2.20d)

In this model, the total energy of the system changes as
de 82 9

2 .
P (h—g)* (h—g+ M) [03h| dx — 8%ua la()]* +0 (%), (221
0

1022 A4-8
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where the first and second terms on the right-hand side represent the dissipation rates due
to the thin-film motion and the contact line motion, respectively.

3. Asymptotic analysis

The classical Cox—Voinov theory describes the spreading (or receding) rate of a liquid
film on a rigid substrate in the limit of small slip length 4 < 1, and capillary number
Ca = O(e€), where € is defined in (1.1). The central result can be stated as

3Cae " a(t) ~6,,, — 05, @3.1)

where 6, is the apparent contact angle that the interface makes with the substrate when
viewed at a distance of O(1) from the contact line. This relation has been verified through
previous experimental and theoretical works; see e.g. Hocking & Rivers (1982), Cox
(1986) and Ngan & Dussan (1989). The small capillary number assumption Ca = O(¢)
is essential for the applicability of the Cox—Voinov theory. In this regime, the interface
is only weakly curved near the contact line, and the flow can be treated as a perturbation
around the wedge solution (Huh & Scriven 1971), which forms the basis of the Cox—
Voinov analysis and its extensions. When Ca ~ 1, however, the interface may develop a
cusp-like structure near the contact line (Kamal et al. 2019). In such cases, the wedge
flow approximation is no longer valid, and a more detailed description of the interface is
required.

We now set up the formulation to extend the Cox—Voinov analysis to the case where the
substrate is an elastic sheet. The governing equations for the dynamics of the fluid interface
and the sheet are given in (2.18)—(2.20). We consider the limit of small slip length 4 < 1,
with the scaling Ca = Ca* €, where Ca* is an O(1) constant. Since the effective tensions
¥i (i=1,2) are of the same order as y3, we write y; = y;" /€, where the y* are O(1)
constants. Additionally, we consider a highly bendable sheet with bending modulus C, =
Cye, where Cy is an O(1) constant. In this regime, the corresponding (dimensionless)
bending length [; = ,/C}/y;" € is consistent with typical experimental parameters (e.g.
Huang et al. 2007) and is therefore of practical interest. (For illustration, consider a slip
length on the molecular scale of 1 nm and drop radius 1 mm, giving 1= 10" and € ~
0.072. For a polystyrene sheet with Young’s modulus 3.4 GPa, thickness 200 nm, Poisson
ratio 1/3, and interfacial tension 30 nN m~! , the resulting dimensionless bending length
is 1 ~0.0093 <e.)

We note that the O(1) parameter Ca* has no fundamental influence on the contact line
dynamics, nor is it essential for the mathematical analysis. To keep the exposition simple,
we will restrict to the specific case Ca* = 1 in the rest of this section. The general case can
be recovered from this specific one by straightforward rescaling. Below, we summarise the
rescaled governing equations, with all asterisks dropped for notational simplicity:

€0 (h—g)+ 0 ((h - g)2 (h—g+ 2 th) =0, O<x<a(), (3.2a)
Cpe? 0%g —y1 0ixg = dih, 0<x <al(r), (3.2b)
Cbe2 afg — 2 0xx2=0, a(t) <x. (3.2¢0)
The conditions at the moving contact line x = a(t) are
[g]=00:xg1 =M0xxgl =0, (3.3a)
dch + (1 — y2) 9xg = —Cpe” [[33¢]], (3.3b)
1022 A4-9
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(b) (o)

Figure 2. (a) Bending region, viewed at a distance O(¢) from the contact line, with coordinates (¥, z); in this
region, B denotes the slope of the sheet at the contact line. (b) Intermediate region, with coordinates (s, z),
where 0 <s =€logy+ 1 <e€loge + 1. (¢) Inner region, viewed at a distance O(A) from the contact line, with
coordinates (y, 7); here, 6, is the microscopic contact angle.

! ah — 0, g 192— ; 3.3
Elx — 0xg| 3 y =€naalt), (3.30)
h(a(t), 1) = g(a(?), 1). (3.3d)

The symmetry and far-field boundary conditions remain the same as in (2.19).

The outline of our analysis is illustrated in figures 1 and 2. We perform the analysis
in four regions: the outer region (figure 1), the bending region (figure 2a), the inner
region (figure 2¢) and the intermediate region (figure 2b). These analyses are carried out in
§§3.1-3.4. In § 3.5, we match the solutions in the different regions, and derive an effective
model for the contact line speed, analogous to the Cox—Voinov relation (3.1).

3.1. Outer region

We expand the contact line speed in powers of €:
a(t)y=ao(t)+ear(t)+---, (3.4)
where € is o(1) for the expansion to be well ordered. Similarly, we expand the profiles
h(x,t) =ho(x,t) +ehi(x,t)+---,
gtx, )y =golx, 1) +egi(x, ) +---.

Substituting these expansions into the governing equation (3.2), we obtain the leading-
order equations for i¢ and go:

3.5)

3, ((ho — 20’ aﬁho) =0, 0<x<al), (3.6a)
—¥1 0xx 80 = OxxNg, O <x <a(?), (3.6b)
0xx80=0, a(t) <x. (3.6¢)

The leading-order boundary conditions are given by

dcho=02ho=0 atx=0,
dxg0=0 atx =0, 3.7
g0o=0 atx=+4o0,
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and the leading-order contact line conditions are

[goll =0,
ho(a (1), 1) = go(a(t), 1).

To solve this system, we first deduce from (3.6¢) and the far-field condition that g = 0 when
a(t) < x. We then solve (3.6a) and (3.6b) with the boundary and contact line conditions.
To fully determine the solution, we need to impose the conservation of the liquid
volume V. The leading-order solution is then given by

(3.8)

ho(x, 1) = %(a2 —xz), 0<x<a®),

2o (x2 — az), 0<x<a), (3.9)
go(x,1)=12n
0, a(t) < x,

where we have introduced the pressure pg for notational convenience:
3v
Po= . 1N
a3(1+y")

We note that this solution automatically satisfies the higher-order boundary conditions
8; go=0atx =0, and 8%g0 =0 at x = 4-o00. For later use, we compute the leading-order
film thickness:

(3.10)

ho—gozm(a —x7). (3.11)
The next-order equations from (3.2) are
3 (ho — g0) + 0x ((ho — g0)*0h1) =0, 0 <x <a(), (3.12a)
—¥1 0xx81 = Oxxh1, 0<x <al(r), (3.12b)
0xx81 =0, a(t)<x. (3.12¢)

The boundary conditions and contact line conditions take the same form as in (3.7) and
(3.8), with hg, go replaced by hj, g1, respectively. As before, we have g; =0 when
a(t) < x. To solve for k1, we note that the dependence of the leading-order profiles A
and go on time is only through a (). We integrate (3.12a) once with respect to x to obtain

3
.3V 2 9 3 Wi a2 2

ag—x(x“—a”)+ 0 h | —(a” —x = const. 3.13
S R AT 613
We set the integration constant to zero, as it will yield a solution that matches the
solutions in the other regions and is consistent with the numerical results. We proceed
by further integrations. Using the boundary and contact line conditions as well as volume
conservation, we can determine the next-order solutions:

4
3
hy =d09a—v (a—l—x)log(a—l—x)—l—(a—x)log(a—x)—2a10g2a—|—2—(a2—x2)},
a
(3.14a)
1
——h1, 0<x<a(),
gi=1 n (3.14b)
0, a(t) < x.
1022 A4-11
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Before moving on, we introduce a moving coordinate system centred at the contact line.
Let x =a(t) — y, where y < a(¢). In this coordinate system, the contact line is located at
y =0, and the governing equation for & = h(y, t) becomes

el (h—g)+ady (h—9)]+0, (=9 (h—g+1)93h) =0. (3.15)

The governing equations for g = g(y, t) remain the same as in (3.2b)-(3.2c), but with
0y replaced by 0y. The symmetry conditions are now imposed at y = a(t), the far-field
conditions at y = —oo, and the contact line conditions at y =0. Their forms remain
unchanged except for 9, being replaced by d,. Near the contact line as y — 0T, the outer
solutions in terms of y are

Qapp 2
ho ~lappy — 2 Yy,
o (3.16)
hi~——{ylogy+(2—log2a)y+---},
Oapp
and
B
80 '\',Bappy - zazp y2,
| (3.17)
g1~— —hy.
Y1

Here, agpp, Bapp and 8, are the apparent contact angles for the interface, for the sheet,
and between them, respectively. They are defined as

9ho(0, ) 1%
o = = s
app ay az(l + yl—l)
By =8g0(0, 2) _ b 3V . 3.18)
dy ia?(1+y; ")
3V
Oapp =Capp — Bapp = 2

Next, we analyse the problem in the bending region.

3.2. Bending region

We rescale the variables in the bending region as y =€y, h=e€h and g =€g. The
governing equations, written in terms of these variables, are

€2 d,(h —g) +eads(h—g) +05((h—2)*(h — g+ 1)d2h] =0, 0<3. (3.19)
Cp a;%g— v1 558 = d55h, 0<7, (3.19b)
Cp 338 — 29558 =0, §<0. (3.19¢)

To determine the appropriate boundary conditions as y — oo, we rewrite the outer
solutions (3.16) and (3.17) in terms of y, and arrange terms according to powers of €.
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Accordingly, we impose the far-field behaviour

ayﬁfvaap,,—e“jlﬂwe D (log §+3+loge —log2a+---), (3.204)
app
- - a -
ayg~ﬁa,,p—eﬂ“p”y—e 02 (log 7 +3+loge —log2a+---), (3.200)
a Y104,

as y — 4o00. In addition, from the outer solutions we have
g=0;8=0558=0 (3.21)
as y — —oo. At the contact line, we impose
[g1= 109581 =195381=0,
h(0, )=, ).

We omit the contact line conditions (3.35) and (3.3¢) at this stage, as they are only relevant
in the immediate vicinity of the contact line, i.e. the inner region.
We expand & and g in powers of €:

h(3, 1) ~ho(3, 1) + €h (3, 1) + - -,

(3.22)

o e o (3.23)
g(y, 1) ~go(y, 1) +€g1(y, 1)+ - .
The leading-order equations for ho and g are
~ - 3 ~ -
35[ (7o — &) 03h0] =0, 0<3, (3.24a)
Cp a;‘go — 1 5580 = d55h0, 0 <7, (3.24b)
Cp 9320 — 205580 =0, §<0. (3.24¢)

To solve these equations, we first consider (3.24a) for hg. We integrate the equation
once, set the constant of integration to zero, then integrate further and match the far-field
condition in (3.20a), to obtain

3570 = Aapp- (3.25)
To solve (3.24b) and (3.24c¢), it is convenient to introduce
li=vCplyi, i=1,2,
y=y/lh, y=0, (3.26)
y=y/L, ¥<0.
The general solutions to the fourth-order (3.245) and (3.24c¢) are given by
go=Cl e +C7 e+ Bj+ 4, i=1,2, (3.27)

where i = 1, 2 corresponds to the solution when y > 0 and y < 0, respectively. The eight
constants are to be determined using the far-field conditions (3.205) and (3.21), and the
contact line conditions in (3.22). From the far-field conditions, we find that C1+ =0,C, =
0, A, = By =0 and By = B,,. We then apply the continuity conditions in (3.22) to obtain

(3.28)

on — Cfejyl+ﬁappy+Al: §>0,
8= ¢t e, 5 <0,
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where
— beZ + bel + —
(Wm0 T it yn) 2
(3.29)

For future reference, we compute the leading-order slope of the sheet at the contact line:

5 0800,
B= 5 s+ fﬁapp. (3.30)

This slope is independent of Cp,.
We then consider the next-order problem:

. ~ ~ ~ - 3 ~ B
ao d5(ho — &) + 95[(ho — 20) 03] =0, 0<7, (3.31a)
Cp 9381 — 1 95581 = d55h1, 0 <3, (3.31h)
Cp 9381 — 1295581 =0, 5 <0. (3.31¢)
We integrate (3.31a) for i1 once, and set the constant of integration to zero, to obtain
== “ . (3.32)

RY - _ N}
(ho — &o) (appy + €1 = Cy e7)

This equation does not admit a closed-form solution; however, it is possible to find
approximate solutions in the far field as y — +00, and the near field as y — 0. To find the
far-field behaviour, we neglect the exponentially small term on the right-hand side, and
consider the far-field approximation /{° satisfying
30 = %

1 BN
g 02,, (3 +8)°

(3.33)

where the constant is ¢ = C| /0,,, < 0. We integrate this equation and use the far-field
condition (3.20a) to determine the constant of integration. We obtain

- o B
39h°°:—%y+—{log(y+c)+E1} (3.34)
where E1 =3 + log(e/2a).
Similarly, we consider the far-field approximation g7° for g1, satisfying

a 1 _ Oapp

3.35
szy—l—c a (3-35)

Cp 3§§?0 — 1 055870 = d55h° =

To solve this equation, we integrate it twice and use the far-field condition (3.20b) to
determine the constant of integration. We obtain

~ -3 IBapp 1 (:10 §—|—E
0558 =Dy et — FP o (). (3.36)
yyel a  JyiCp 62, I

where D is a constant to be determined, and ¢ is a specific solution to a related second-
order ordinary differential equation; see (B3) in Appendix B. We integrate once more to
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obtain

ssare =i e = P05y Sy (TES) g o -m | G
a Y1 eapp ll
where the constant of integration is determined by matching to the far-field condition
(3.20b). We leave the constant D undetermined, as it does not contribute to the far-field
behaviour. _

So far, we have obtained the far-field behaviour of /1 and g;. We next turn to their near-
field behaviour as y — 0. To solve (3.32) for i1 in the near field, we first notice from the
leading-order solutions (3.25)—(3.28) that ho — go is analytic in a neighbourhood of y = 0.
Using a power series to represent the right-hand side of (3.32), we have

- ; 1
831 :—a—°~2~+0(7), 5— 0", (3.38)
(app — B)" 57 Y
where the remainder is a power series consisting of terms ¢ (k > —1). We perform a
term-by-term integration to obtain the near-field approximation
ao A - .. -

—————(Flog 7+ C15) + 0 (3% log 3. §°). §— 07, (3.39)
(tapp — B)

where C; is a constant of integration, and the remainder series consists of the terms 7* and
7*log 7 (k > 2). We follow a similar procedure and get the equation for g; near y = 0:

70
h]:

- - ag 1 B _
Cp 3§g1 — V195581 = —=+0(logy), y—07. (3.40)
(capp — B)"Y
We perform a term-by-term integration to obtain the near-field approximation
~ ao _ . A ~ }
fl=————=5 logi+0 (5" 5'log5), - 0%, (3.41)
Ch(@app — B)

where the remainder series consists of terms 7% (k > 3) and 7% log 7 (k > 4). In deriving
this solution, we have imposed the continuity conditions at the contact line (see the next
paragraph) and required matching with the intermediate solution in (3.59) (see § 3.4).
Comparing (3.39) and (3.41), we see that fz? exhibits a stronger singularity than g?.

For y <0, the next-order sheet solution is simply g; =0, by noting the far-field
condition (3.21) and the continuity conditions (3.22) up to the second derivative at the
contact line. To summarise, we have obtained the interface and the sheet solutions up to
O(e) in the bending region. The leading-order solutions are given in (3.25) and (3.28).
The far-field behaviour of the next-order solutions is given in (3.34) and (3.37), while the
near-field behaviour is given in (3.39) and (3.41).

3.3. Inner region

We now consider the inner region by introducing the rescaled variables y = y/A, h =
h/A and g =g/A. We rewrite the governing equation (3.2) in terms of these inner
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variables:
Aey (- g)+eady (h—g)+ o5 [(h— ) (h— g +1)83h] =0, 0<3, (42
Cpe? 03z — 1A% 0538 = A% d55h. 0 <3, (3.42b)
Cpe? 058 —124° 9558 =0, §<0. (3.42¢)
At the contact line y =0, both the compatibility condition (3.3d) and the continuity

conditions in (3.3a) apply. In addition, we impose the contact line conditions (3.3b) and
(3.3¢). They now become

O5h+ (11 — y2) 358 =—CpA2€* [332]), (3.434)

1
> — 202 = epqa. (3.43b)

Lo
5 losh —d53|" = 2

We note that since A is exponentially small compared to €, the equations for g reduce to
8; g =0, and the contact line condition (3.43a) reduces to [[8;, gl =0. For the purpose
of matching, we require the sheet curvature to vanish at infinity, and we obtain the
solution

958 = Bm = const, (3.44)

which is accurate up to all orders of €.
We only need to expand the interface profile

h(y,0)=ho(y, 1) +€hi (3. 0)+---. (3.45)
From (3.42a), we see that the leading-order equation for / is
= _N\2 s - _
05 | (ho = 20)” (o — 2o + 1) 93| =0 for0 <3, (3.46)
and from (3.43b), the leading-order contact line condition is
dgho — d5g =0y aty=0. (3.47)
We further require the interface curvature to vanish at infinity, and hence obtain
d5ho =t =0y + B, 0<3. (3.48)
For the next-order problem, the governing equation is
. = = _\2 s ~ _
o ds (o — go) + 5 | (ho — 20)” (o — o + 1) 83 | =0, 0<7, (3.49)
and the contact line condition is
d5h1 = “g‘ao at 5 =0. (3.50)
Y
We integrate (3.49) and set the constant of integration to zero to obtain
Bhy= (3.51)

Oyy Oyy+1)
We integrate further, require the curvature to vanish at infinity, and impose the contact line
condition to obtain
- ap |1 _ _ 1
Oyh1=— (—log@yy+1)+ylog| 1+ —)+puag. (3.52)
Oy | Oy Oyy
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From here, we integrate one more time to obtain

_ ap 1). 1 _ 1 _ _
hi=— - — + —log(Byy+ 1)+ —ylog(@yy +1
1 Qy{<ﬂA 29y>y 262 g@yy+1) ny g@ry+1)
1_ _ )
+ §y2 [log 6y + 1) —log (¥ y)]} (3.53)

a [ 1 _ B log Oy
~—1—yl
OY{ny 0gy+(MA+ oy

We note that the inner solutions derived here are valid in an O(1) neighbourhood of the
contact line, or when y = O(1).

)i—k---} as y — +00.

3.4. Intermediate region

We proceed to the intermediate region that bridges the inner and bending regions. We
apply the transformation
-1
y(s) =exp <S—> O0<s<l1+e€loge, (3.54)
€

such that y(0) = A corresponds to the inner region, and y(1 + € log €) = € corresponds to
the bending region. Following the usual practice, we also set

h(y(s), ) =H(s, 1)y, g(y(s), 1) =G(s,1) y. (3.55)

These intermediate variables are related to the inner variables via y = e*/¢, h = H(s, ) ¥
and g =G(s, 1) y.

To derive the equation for H, we drop the exponentially small term in (3.42a), integrate
once, and set the constant of integration to zero. We then rewrite the equation in terms of
the intermediate variables to obtain

€+ (H—G)(H-G+e /) (—edH+e d)H)=0. (3.56)
To derive the equation for G, we rewrite (3.42b) in terms of the intermediate variables:
Cpe? 21 79/€(2e 3,G — €? 3,,G — 267 3]G + € 3] G) — y1(€ 3,G + € 3,5 G)
=€ d;H + €% b H. (3.57)
2 ,2(1—s)/e

Here we note that when 0 <s <1+ ¢€loge, the term ¢
exponentially large. Therefore, the above equation reduces to

20,G — € dy G —26233G + € 92G =0, (3.58)

is positive and

with some exponentially small corrections. This equation is linear, independent of H,
and can be solved exactly. We obtain G = const by discarding solutions that lead to an
exponentially large curvature. By matching to the inner solution (3.44) and the bending
solutions (3.28)—(3.30), we find

G=B,=58, (3.59)

which is accurate to all orders of €.
We then turn to solve (3.56). We drop the exponentially small term e */€. Since ;G = 0,
we can rewrite the equation in terms of H — G:

ao+ear — (H — G 9, (H — G) =0 (€2, € loge). (3.60)
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From here we solve for H — G:
(H — G)* = (3aos + co) + € Bars +c1) + O (%, e* log ), (3.61)

where cp and ¢ are the integration constants to be determined. Further manipulation gives
the two-term expansion

3a1s + ¢y

T a0 ((cloge)). (36

H— G = Baps + o)/ +

3.5. Matching

The outer and bending solutions have been matched to each other. We now consider
the matching between the intermediate and inner solutions. To this end, we rewrite
the intermediate solutions (3.62) in terms of the inner variables and expand them in
powers of €:

3eaylogy + ¢y _
3 (3edg log ¥ + ¢9)*/? Y (3.63)

13  Slog s 4 SLn
CO y+ 2/3 aOy Ogy—i_?y +

~ (B3eap log y +co)1/3 y+e

This expansion is then matched to the inner solution

1 _ _ log 6y \ _
—ylogy+<;LA+ S Y)y}+---. (3.64)

- _ €qp
h—5~0 ==
g~ byy+ {9Y oy

Oy
Matching the two expansions term by term, we obtain
co=05, c1=>3a (uaby +logby). (3.65)

To match the intermediate solutions to the bending ones, we rewrite the intermediate
solutions (3.62) in terms of the bending variables and re-expand the expression to get

h—g=(H-G)y
13 3a; (1+elogey)+c1
te— - 237
3 (Bag (1 4+ €logey) + co)

€ .o~ ~ . . C1\ -~
(CO+3(10)1/3 m{aoylogy—i-(aologé—l—al—l—?l)y}—I—
0 0
(3.66)

~ (3ap (1 + € logey) + co)

This is matched to the near-field bending solution (cf. (3.25)—(3.28), (3.39)-(3.41)):
- ~ €do
h—gN(aapp—ﬁ)y-F—(ylogy+C1Y)+ (3.67)
(aapp )
By matching the corresponding terms, we obtain
21 . 3 . 3
dologe +ai Jg/g‘/ L —T (3.68)
(co + 3ao) (aapp - /3)2

co+3ap = (aapp - 3)3,
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Combining (3.65) and (3.68), we deduce

: ST )3 3
3do = (a — Y B ) — 65, (3.69)
Dt Y
ay = (Cy — pably —log By —log €)do, (3.69b)

where we have used (3.30) for the angle B . Equation (3.69a) provides an estimate for the
leading-order contact line speed in terms of the apparent contact angles agpp and Bgpp.
We note that this equation was derived under the assumption Ca = €; the general case,
which can be obtained by a straightforward rescaling of the governing equations, is given
in (1.3). Equation (3.69)) gives an estimate for the next-order correction to the contact line
speed; however, this correction is of limited practical use, as the constant C (cf. (3.39))
remains undetermined. Nevertheless, C; can, in principle, be determined by solving the
full next-order problem in the bending region either analytically or numerically, which we
will not consider in this study.

Before concluding this section, we make three remarks concerning (3.69a). First, the
relation can be viewed as a generalisation of the classical Cox—Voinov relation. Taking the
limit y; — +o00, we find that B,,, — 0 (cf. (3.18)), and we formally recover the classical
result

3a9 =0,,, — ;- (3.70)

This limiting case corresponds to an infinitely pre-stretched sheet, which excludes any
vertical displacement and behaves effectively as a rigid substrate. Second, as long as the
friction coefficient u 4 is an O(1) parameter, it does not appear in the leading-order relation
(3.69a), but only affects the next-order relation (3.69b) through the moving contact line
condition applied in the inner region. Finally, (3.69a) is independent of the bending
modulus Cj. This is because the slope of the sheet in the bending region near the contact
line, B (cf. (3.30)), does not depend on Cj,. This observation is further supported by the
numerical results presented in the next section.

4. Numerical results and discussion

We compare the asymptotic results obtained in the previous section with numerical
solutions of the thin-film model. In §4.1, we show that the interface and sheet
profiles, along with their slopes, in the numerical solutions agree well with the
asymptotic predictions. In § 4.2, we verify the asymptotic relation (3.69a), and examine
the long-time behaviour of the moving contact line in spreading and receding
films.

We solve the governing equations (2.18)—(2.20) using a finite difference method with a
moving mesh. The numerical method and its validation are detailed in Appendix A. In the
simulations, we choose the friction coefficient 4 = 1, the equilibrium angle 6y = 1, the
slip length 1= 10~*, which corresponds to € ~0.109, and the capillary number Ca = €.
We vary the parameters y;, y2 and Cj.

4.1. Interface and sheet profiles
We perform the simulations for the spreading and receding dynamics of a liquid film. The

parameters in (2.18)—(2.20) are chosen as y; =2/¢, y» =2.95/¢ and Cp, = €. The initial
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(a) (D)
0.8 t=0.5 t=0.5
ey t=2.0 t=4.0
061 =1 t=8.0 t=12.0
04| =320 t=24.0
Z 02 z
01
-0.2
: -0.2
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X X

Figure 3. Numerical solutions of the thin-film model (2.18)—(2.20), showing the interface and sheet profiles at
different time instants during (@) spreading and (b) receding dynamics. Blue and orange solid lines denote the
interface and sheet, respectively.

interface and sheet profiles are given by

2w x x )2
h(.x,O):CV (1+02C05m> {1— (m) }, g(x,O):O, (41)

where the constant cy is chosen so that the liquid volume is V =1. We use the initial
condition a(0) = 1.0 for a spreading film, and a(0) = 2.0 for a receding film. In figure 3,
we present the simulation results of the interface and sheet profiles at several time instants.

In the spreading case, the contact line advances to the right, the apex heights of both the
interface and the sheet decrease, and the liquid film becomes flatter. By ¢ = 32, the system
has almost reached equilibrium, with the contact line speed dropping below 3 x 1073,
In the receding case, the contact line retreats to the left, and the liquid becomes more
concentrated. By ¢t = 24, the system has almost reached equilibrium, with the contact line
speed falling below 5 x 1073,

Next, we compare the computed interface and sheet profiles at t =1 and t =4 with
the asymptotic solutions derived in § 3. The asymptotic solutions invlove the parameters
v; i=1,2), Ca, Cp, Oy, 14, 4, €, and the liquid volume V, together with the apparent
contact angles app and By, the contact line position a (), and its velocity components
ao and aj. All physical parameters (y;, Ca, Cp, Oy, ua, A, €, V) are prescribed in
the simulations. The contact line position a(¢) at t =1, 4 is obtained directly from the
numerical solutions. Given a(t), the apparent contact angles o, and By, are computed
using (3.18). The leading-order prediction of the contact line speed ag follows from
(3.69a). The next-order contact line speed a; cannot be determined directly from (3.69b)
due to the undetermined constant Cj, so we estimate it via @; = (dnum — do) /€, where
anum 1s the numerically obtained contact line speed. We note that no parameters or
variables are adjusted by fitting in these comparisons.

We first focus on the spreading dynamics discussed above. In figure 4(a), the two-
term outer solutions Ay + €h1 and go + €g1 from (3.9) and (3.14) are compared with the
numerical solutions from the thin-film model at t =1.0 and r =4.0. We observe good
overall agreement between the asymptotic and numerical solutions, except that the outer
solutions do not capture the smooth bending of the sheet near the contact line. We then
examine the bending region. In figure 4(b), the leading-order bending solutions kg and
go, given by (3.25) and (3.28), respectively, are compared with the numerical results.

1022 A4-20


https://doi.org/10.1017/jfm.2025.10779

https://doi.org/10.1017/jfm.2025.10779 Published online by Cambridge University Press

Journal of Fluid Mechanics

(@) (b)
0.8 t=1.0 t=1.0
1=4.0 0.151 1=4.0
0.6 . P .
—— Asymptotics 0.10 4 —— Asymptotics

0.4

0.05 |
z 02 z

01 01
02 -0.05 |
04 -0.10 |

0 0.5 1.0 1.5 20 25 12 1.3 1.4 1.5

X X

Figure 4. Interface and sheet profiles for a spreading film at # = 1.0 and ¢ = 4.0, shown in (a) the outer region
and (b) the bending region. Circles denote numerical solutions of the thin-film model (2.18)—(2.20), while solid
lines show the asymptotic approximations: the two-term outer solutions from (3.9) and (3.14) in (a), and the
leading-order bending solutions from (3.25) and (3.28) in (b).
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Figure 5. (a) Interface slope dyh and (b) sheet slope dyg in a spreading film at = 1.0 and # =4.0. Circles
denote numerical solutions of the thin-film model (2.18)—(2.20), while lines indicate asymptotic solutions (see
text for details). In (a), both far-field and near-field bending solutions are shown as black dashed lines, while in
(b), only the bending region asymptotic solutions are displayed.

These asymptotic solutions agree well with the numerical solutions near the contact line,
even though only the leading-order terms are used.

We also compare the numerical and asymptotic solutions in all four regions; in
particular, we check the agreement of their slopes. For the same spreading dynamics
discussed above, we plot the interface and sheet slopes, dyh and 0yg, against the
intermediate variable s = € log y + 1 in figures 5(a) and 5(b), respectively. In figure 5(a),
we show the interface slopes in their respective regions of validity: (i) the near-field outer
solution dyhg + € dyh; from (3.16); (ii) the far-field bending solution 8;50 +€ Byﬁi’o from
(3.25) and (3.34); (iii) the near-field bending solution 89% +€ 8;]3(1) from (3.25) and
(3.39); (iv) the intermediate solution H + € H'(s) from (3.59) and (3.62); and (v) the
inner solution 95h¢ + € d5h from (3.48) and (3.53). For the intermediate solution, the
next-order contact line speed @; cannot be directly obtained from (3.690), so we estimate
it using the numerical contact line speed @,y via a1 = (@num — do)/€. The two-term
bending solution /g + efzcl’o is a rearrangement of the outer solution in the bending region
(with some higher-order corrections). This explains the smooth connection observed
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Figure 6. (a) Interface slope d,/ and (b) sheet slope 9y, g for a receding film at t = 4.0. Circles denote numerical
solutions of the thin-film model (2.18)—(2.20), while lines indicate asymptotic solutions (see text for details).
In (a), both far-field and near-field bending solutions are shown as black dashed lines, while in (b), only the
bending region asymptotic solutions are displayed.

between the outer and bending solutions. Overall, we observe good agreement between
the numerical and asymptotic solutions at both t =1.0 and t =4.0. In figure 5(b), we
overlay the far-field solutlon 0580 + € 9587° (with Dy =0; cf. (3.37)) and the near-field
solution 9580 + € 958 g1 from (3.28) and (3.41). These asymptotic solutions agree well with
the numerical ones in their respective regions of validity. In particular, this validates our
prediction of the sheet slope B in the bending region, as given in (3.30). The discrepancy
towards the inner region is possibly due to the fact that the bending length is not sufficiently
small, which limits the accuracy of the asymptotic solution. We also note that the far-field
and near-field solutions generally do not match each other near y = O(1), since this lies
outside their region of validity.

A similar comparison for the receding film is shown in figures 6(a) and 6(b). The slope
profiles are visually similar at all time instants, so we only present the case t = 4.0. Again,
we observe good agreement between the numerical results and the asymptotic predictions.
We conclude that the asymptotic solutions in all four regions accurately capture the
interface and sheet behaviours.

It is interesting to note that the interface does not exhibit a clear bending region. In
the numerical solutions, although the bending effect dominates the change in the sheet
slope over the interval s € (0.5, 0.8), the interface slope remains relatively unchanged in
the same interval. This indicates that the interface is largely insensitive to small-scale
variations in the substrate. We expect similar behaviour in liquid films spreading over
substrates with variable height.

4.2. Contact line motion

We now compare the contact line speed predicted by the asymptotic relation (3.69a) with
that obtained from numerical solutions of the thin-film model (2.18)—(2.20). The initial
conditions and parameters are the same as in the previous subsection, except that we now
vary the tension: y; = 1/¢, 2/€, 4/¢, 8/¢ and y» = y; 4+ 0.95/¢. Results for the spreading
film and the receding film are shown in figures 7(a) and 7(b), respectively. Overall, the
theoretical predictions agree well with the numerical results, especially for more rigid
sheets, i.e. when y; is large. The classical Cox—Voinov relation (3.70) is also shown in the
same figures. As y increases, the results approach the classical one.
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Figure 7. Contact line speed a versus film radius a(7) for (a) a spreading film and (b) a receding film.
Markers denote numerical solutions of the thin-film model (2.18)—(2.20). Solid lines show predictions from
the asymptotic relation (3.69a), while dashed lines are predictions using the classical Cox—Voinov relation
(3.70) for rigid substrates.

Another important observation from these figures is that the spreading process becomes
slower, and the receding process becomes faster, as the sheet becomes softer. The reason
behind this behaviour can be understood from the dependence of the contact angle in the
bending region, agpp — ,3 on the sheet tension. Using (3.18) and (3.30), we can rewrite
this angle as

Aapp — B =01, ¥2) Oupp, (4.2a)
vy =—— (14 ! 4.2)
py1,yz—1+yl_1 AN EN A .

where 6, depends only on the volume V' and the film radius a (7).
Recall that oy, is the stretching tension applied to the sheet (cf. (2.1)). When the
stretching tension is large, we have

p=1-— Jro(i2 : (4.3)

ZGPV € Gpre

In the limit of a rigid substrate, i.e. as oy — +00, we have p — 1, and recover the
classical Cox—Voinov relation. For large but finite o,,., however, p <1 and it increases
monotonically with o;,,.. This reduction in the effective contact angle on softer substrates
explains the observed phenomena of retarded spreading and enhanced receding in figures
figures 7(a) and 7(b). It is worth noting that the retarded spreading of drops has also been
observed on viscoelastic solids (Carré et al. 1996; Tamim & Bostwick 2023), where it is
mainly attributed to viscous dissipation within the substrate. This mechanism, however, is
not relevant here, since purely elastic solids do not exhibit such dissipation.

Next, we examine the effect of the bending modulus Cp, on contact line motion. In
figure 8, we show numerical results from the thin-film model (2.18)—(2.20) for the contact
line speed of a spreading film with y; =1/¢,2/¢,4/¢, 8/ and Cp =0.01¢, 0.1¢, €. We
observe that the speed is barely affected by variations in Cp. Similar behaviour is observed
for the receding case (not shown). These results are consistent with the predictions from
(3.69a), where the contact line speed is independent of Cj, to leading order. We expect the
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Figure 8. Numerical results from the thin-film model (2.18)—(2.20) for the contact line speed a versus the
film radius a(#) in a spreading film. Circle, triangle and square markers correspond to C; = 0.01¢, 0.1€ and €,
respectively. Colours indicate sheet tension: blue for y; = 1/¢€; orange for y; =2/¢; green for y; =4/¢; and
red for y; = 8/e€.
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Figure 9. Film radius a(t) for (a) a spreading film with a(0) = 1, and () a receding film with a(0) = 2, with
bending modulus Cp = €. Markers denote numerical solutions of the thin-film model, while solid lines show
the leading-order predictions by solving the generalised Cox—Voinov relation (3.69a).

relation to remain valid over a wide range of bending moduli, provided that the bending
length satisfies 1 <[] <e.

Finally, we plot the film radius against time in figure 9, with Cj, = €, varying tensions,
and other parameters as prescribed at the beginning of the subsection. In this figure, the
markers represent the numerical simulations of the thin-film model, while the solid lines
correspond to the predictions from the asymptotic relation (3.69a). Here, to get the radius
a(t), we solve (3.69a) as an ordinary differential equation for a, with its right-hand side
rewritten in terms of a using (3.18). Overall, the thin-film dynamics is well captured by
the asymptotic relation, particularly for large tensions y;. The discrepancies are caused
by the facts that the relation (3.69a) is only a leading-order approximation, and that the
bending length /1 = /Cp/y1 is not sufficiently small for low values of ;. Additionally, the
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assumption @ ~ O(1) is slightly violated during the initial transient dynamics. The errors
accumulated in the transient stage carry over to the later stage of the evolution.

For a liquid film spreading on a rigid substrate, the film radius grows algebraically
(Tanner’s law) and then approaches its equilibrium value exponentially (Thampi et al.
2016). A similar quantitative description can be obtained for the present problem. Let aso
denote the equilibrium film radius predicted by (3.69a). By substituting (3.18) and (4.2)
into (3.69a), we obtain

ao=9 (o1, ¥2) V) (a5°® — ad). (4.4)

At early times when ay is far below an, (4.4) can be approximated by

a0 ~90°V3ay® = ag~(63p°V3i+a(0)". (4.5)

This describes the algebraic regime characterised by the 7'/7 scaling. The exponent 1/7

is the same as that in the case of a rigid substrate. At later times, when Aa = ap — a 1S
small, (4.4) can be approximated by

d
G Aa~ =547 Via] Aa = ap(t) — ase~ (@(0) — aso) exp (= 54p°V3arJr).
(4.6)

This is the exponential regime. Both regimes are quantitatively similar to the spreading on
arigid substrate, and differ in some constants only.

5. Conclusion

We studied the motion of a liquid film on an elastic sheet. We first introduced a thin-film
model consisting of fourth-order partial differential equations that couple the dynamics of
the fluid interface with the deformation of the elastic sheet, and derived the appropriate
contact line conditions following the principles of non-equilibrium thermodynamics.

We then carried out a four-region matched asymptotic analysis on this model in the
distinguished limit of small slip length 4 <« 1, capillary number Ca = O(¢), and bending
length [ = O(e), where € is given in (1.1). The four regions are: (a) the outer region
located at a distance of O(1) from the contact line, where the apparent contact angles are
measured; (b) the bending region of size O(/) near the contact line where significant sheet
bending occurs; (c¢) the inner region of distance O(A1) from the contact line where fluid slip
occurs; and (d) the intermediate region which connects the bending and inner regions. By
matching the two-term asymptotic expansions across these regions, we obtained the central
result of this study, namely, the generalised Cox—Voinov relation (1.3), which relates the
contact line speed to the apparent contact angles. Predictions from this relation show good
agreement with numerical solutions of the full thin-film model.

Notable differences in the film motion on an elastic sheet, compared to a rigid substrate,
include retarded spreading and enhanced receding. These behaviours are well explained by
the generalised Cox—Voinov relation. The increase of the sheet tension (or rigidity) leads to
a decrease in the effective contact angle, which alters the contact line dynamics. However,
the long-time spreading and receding behaviours, such as those described by Tanner’s law,
remain quantitatively unchanged. Another interesting aspect of the generalised relation is
its independence from the bending length. This suggests that the relation applies to a wide
range of bending lengths, which is supported by numerical simulations.

The generalised Cox—Voinov relation (1.3) provides an effective model for the contact
line motion in terms of measurable physical quantities, such as the apparent contact angles.
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This circumvents the need to resolve microscopic-scale dynamics, as required in the full
model. The relation may serve as a useful tool in applications such as coating (Kajiya
et al. 2014) and inkjet printing (Park & Moon 2006), where control of contact line motion
is essential.

Our present analysis is based on the lubrication approximation and is therefore restricted
to thin drops with small interfacial slopes. In addition, we have assumed negligible
viscosity of the surrounding air and thus ignored its influence on the liquid dynamics.
The generalised lubrication formulation (Snoeijer 2006; Chan et al. 2020) provides an
appealing framework to relax these assumptions. By replacing the classical lubrication
equation with this generalised formulation, one should be able to extend the analysis to
moving contact lines with large contact angles.

We also expect that the insights and methodology developed in this work can be
extended to other soft wetting problems, such as those involving viscoelastic substrates
(Kajiya et al. 2013, 2014; Karpitschka et al. 2015; Kansal et al. 2024). To incorporate
viscoelastic effects, one must resolve the wetting ridge deformation on the substrate
(Jerison et al. 2011; Karpitschka et al. 2015). This requires identifying the relevant length
scale on which the ridge arises, and determining the appropriate distinguished limit. We
leave these extensions to future work.
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Appendix A. Numerical method

We use a moving mesh to handle the moving contact line, and below formulate (2.18) on a
moving mesh. Let £ be the coordinate of a time-independent mesh, and let x (&, ) = a(t) &
be the physical coordinate so that the mesh point & =1 is always mapped to the contact
line. We denote by 4 and g the pull-back of & and g onto the time-independent mesh (here,
h and g should not be confused with the inner variables in § 3.3):

hE D =hxE 0,0, &EN=gxE 1,0 (Al)

We rewrite the governing equation (2.18) on the time-independent mesh as follows:

_ _ a _ 1 _ 2 - B _
at(h—g)—§;35h+a4caag<(h—g) (h—g—l—/l)agggh)zo, 0<f<l,

(A2a)

_ 1 _
K:;aggg, 0<é, (A2b)
b ik — i deeh, O0<f<l1 (A2¢)
— Oggk — Y1k = , <&<l1, c

a2 %8 Vi a2Ca %%

Cp . _ _

Eaggx—yyc:o, 1<é, (A2d)

where we have introduced the curvature ¥ = d,, g and accordingly the pull-back k£ as new
unknowns. We note that « is continuous across & = 1, while 0z« has a jump at & = 1.

For spatial discretisation, we use a bounded domain [0, &.], and discretise [0, 1]
into ny cells, and [1,§] into n—ny cells. We use integer subscripts, e.g.
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&, ..., §nf, §nf+1, ..., &n, to denote the cell centres, and the half subscripts, e.g. §(1/2) =
0,...,&4+01/2 =&, to denote the cell boundaries. They are related by & = (&§;_(1,2) +
§i+1/2))/2 for 1 <i < n. For temporal discretisation, we use =0, ¢!, ... to denote the

time instants. The function values at the cell centres are
Rl =h(&, "),

) (A3)
gh=g(&. ™),

We use D and D? to denote the first- and second-order finite difference operators at the
cell centres:

hiv1 —hi—1 D2, =2 <hi+1 —hi  hi—hi
§iv1—& & —&-1

Dh; =

B ’ i1 —&-1). (A4
i1 —&im1 >/(5+1 &-1). (A4)

We use D? to denote the third-order finite difference operator at the cell boundaries,

D?h;1 — D?h;
Dh,, 4 =3 =L (AS)
2 Eiva—&i1
In addition, we use A to denote the forward time difference:
hm+1 _pm
m __
AR = (46)

Suppose that we have obtained the numerical solutions 2™, g™, a™ at the time step m.
To advance in time, we first update the contact line position according to (2.20c¢):

1 1
Ca i Aam=§|am—ﬁm|2—§9%, (A7)
where
m h?f+1 - thf g$f+1 - ngf

a™ = B =

; A8
a™ (5n,«+1 - snf) (A9

a™ (é‘_nf-l—l - Snf) ’

are the explicit estimates of (the tangents of) the dynamic contact angles. We then apply a
semi-implicit discretisation on (A2a) to obtain

Aa™ 1 .mj:l - F.mJT]
AN el 61 gy (D! —DaP) + G = g =0 1<i<ny
(A9)
where
R 2, D3h;”+il
=) (e ) e 4o
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is a semi-implicit discretisation of the flux, and h +1 is the linear interpolation of #; and
hiy1 at & (1,2). For (A2b)—(A2d), we use a fully 1mp1101t discretisation:

DZ m+1

K{n—o—l_—, 1<i<n,
1 (am+1)2 X ~X
C Dth-f—l
b . (szc;"“ _ nm+1 D%{”“) _ lelgn+1 _ —,2 I<i<ns, (AlD)
(am—i-l) (am-i-l) Ca
C
( bl)z (DZKl_m+l ] Dzvl’."H) ™ 0, np4l<i<n,
am+

where "1 = —[Ca™ ' o™t + (y1 — y2) B 111/ C} discretises the jump [0« ], and
v = max {a" ! (& — 1), 0} (A12)

]

is a correction function for incorporating the jump condition (2.20b) into the finite
difference discretisation.
We implement the boundary conditions (2.19) with the help of ghost cells:

m __ypm m __
0 =" F% =0,

g6n = g’]n’ /{6’1 :K{n, (A13)
& T 81 =0, K+ =0.
At the contact line, we impose
F;’;% =0,y +hy =g e (A14)

To validate the numerical method, we perform a series of numerical simulations with
successively refined spatial and temporal step sizes. For spatial discretisation, we find
& =2 to be a good cut-off distance for the contact line dynamics to be unaffected. We
use a uniform spatial mesh, with n y = 128, n =2n y =256 and step size A§ =1/n . For
temporal discretisation, we use t” =m At with At = 1/512. The errors for the temporal
and spatial refinement are measured by

m, At 2m,At/2
h;; JAE hi,As

Eng ar[h] = max
léténf

’

(A15)

EZS,At[h] = max

pAr 1 (hzm,m/z 2m,At/2)
I<i<ny

A8 T 5 2i—1,A$/2+h2i,A§/2

with m =t/ At, and the final time ¢ to be specified later. The numerical errors for the other
unknowns are defined similarly. The parameters used in the refinement tests are 1 = 1072,
Ca=¢,y1=2/€e,y»=29/¢,Cp =€ and u 4 = 1. We confirm the first-order convergence
in both time and space, as shown in tables 1 and 2.

For the numerical results presented in §4, where A was taken to be 1074, we
use a mesh locally refined at the contact line. Specifically, we take mesh size A& =
271/32 in the interval [1 —27¢=D 1 —-27] for i=1,2,...,9, and A&y =271 in
the interval [1 — 277, 1]. Meanwhile, we use adaptive time stepping by starting from
At =271 and adjusting it every 128 time steps subject to the CFL-like condition
At < min {A&yi, /8 Aa™, 4 A&pin}.
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t=0.5

Eng2,n12 Rate Enty2,a1/4 Rate Eng,a1/8

E[h] 4.70 x10* 1.15 2.11 x10* 1.17 9.37 x10°

Elg] 2.33 x10* 115 1.05 x10* 1.17 4.64 x10°

E[k] 3.83 x103 115 1.73 x10° 1.17 7.70 x10*

Ela] 5.89 x10* 115 2.65 x10% 1.17 1.17 x10*
=20

Engp2,n12 Rate Engj2,a1/4 Rate Enej2,at/8

E[h] 7.93 x10° 117 3.53 x10° 1.19 1.55 x10°

Elg] 3.94 x10° 1.17 1.75 x10° 1.19 7.70 x 106

E[x] 4.84 x10* 1.16 2.16 x10* 1.18 9.54 x10°

Ela] 1.38 x10* 1.16 6.17 x10° 1.19 2.71 x10°

Table 1. Errors and convergence rates in the time-refinement tests.

t=0.5
ERe ar Rate Exe i Rate EXea an/a
E*[h] 1.03 x10% 0.74 6.18 x103 0.88 3.36 x103
E*[g] 5.12 %10 0.74 3.07 x10° 0.88 1.67 x10°
E*[k] 1.31 x 10! 0.74 7.87 x10? 0.86 4.33 x10?
E*[a] 1.43 x10% 0.76 8.43 x103 0.87 4.62 x10°
+=2.0
Exe ar Rate Exe i Rate ENg 4, a1/
E*[h] 7.07 x103 0.73 425 x10° 0.89 2.29 x10°
E*[g] 3.51 x10° 0.73 211 x103 0.89 1.14 x10°
E*[x] 6.86 x 102 0.77 4.03 x10? 0.88 2.19 x10?
E*[a) 1.34 x10% 0.75 7.99 x103 0.85 4.42 x10°

Table 2. Errors and convergence rates in the space-refinement tests.

Appendix B. Solution to a second-order ordinary differential equation
Consider the non-homogeneous second-order ordinary differential equation

1
y/' —y=— (—00<x <+00). (B1)
X
The solution is
y=Cre*+C_e "+ o), (B2)

where C and C_ are constants of integration depending on initial or boundary conditions.
The specific solution is

px) = % [¢" Ei (—x) —e ™" Ei (x)], (B3)
where
X et
Ei(x) = / —di (B4)
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is the exponential integral. The derivatives of the specific solution satisfy
1
¢' == [¢" Ei(—x) + ¢ Ei(x)],
2 (BS)
/! 1 X . —X . 1 1
¢ == [e Ei(—x) —e El(x)] +-—=¢p+—.
2 X X
There are two asymptotic series for the exponential integral (O’Malley 2014),

1

Ei(x) ~ log |x| + yE + ¢*/? (x - sz-l— - ) x—0,

e* k! (B6)

Bl ~— (D <+ ], Ixl—oo,
X X
k=0

for small x and large x, respectively. Here, yg ~ 0.57722 is Euler’s constant. From these
series, we have the following asymptotic expansions for the specific solution:

p~xlog|x|+(ye—Dx, ¢ ~yg+loglx| asx—0,

1 , 1 B7)
p~——, ¢~ aslx|]—>o0.
X X
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