Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10288

ICEDYAS

Dallas. TX,

RegGPT: a fine-tuned large language model for
generating requirements documents

Kata Amanda Schiller ©, Meno-Said Haddad © and Arthur Seibel ©:
Leuphana University Lineburg, Germany

X arthur.seibel@leuphana.de

ABSTRACT: Effective product development relies on creating a requirements document that defines the product’s
technical specifications, yet traditional methods are labor-intensive and depend heavily on expert input. Large
language models (LLMs) offer the potential for automation but struggle with limitations in prompt engineering and
contextual sensitivity. To overcome these challenges, we developed ReqGPT, a domain-specific LLM fine-tuned
on Mistral-7B-Instruct-v0.2 using 107 curated requirements lists. ReqGPT employs a standardized prompt to
generate high-quality documents and demonstrated superior performance over GPT-4 and Mistral in multiple
criteria based on ISO 29148. Our results underscore ReqGPT’s efficiency, accuracy, cost-effectiveness, and
alignment with industry standards, making it an ideal choice for localized use and safeguarding data privacy in
technical product development.

KEYWORDS: new product development, requirements, machine learning, large language models, fine-tuning

1. Introduction

Technical product development generally begins by clarifying the problem or task, often culminating in a
comprehensive requirements list (Pahl et al., 2007; VDI 2221-1, 2019; Schlattmann & Seibel, 2021).
This document, often presented in tabular format, details all the essential specifications, functions, and
constraints necessary for product development. It is continuously updated throughout the development
process and serves as a foundation for design, evaluation, and decision-making.

Compiling the relevant information to create a requirements list is a complex and time-consuming task,
involving substantial manual effort (Dabrowski et al., 2020), particularly for new product development.
This process is usually carried out by experts using methods such as market analysis (Palomares et al.,
2021), stakeholder surveys (Franch, 2021), product reviews (Lim et al., 2021), user feedback (Van Vliet
et al., 2020), and/or quality function deployment (Pokorni et al., 2022). In this context, large language
models (LLMs) have recently emerged as a promising tool to support and accelerate the requirements
engineering process (Ronanki et al., 2024) as they can understand and process natural language and are
able to effectively extract, structure, and refine information from large datasets.

Interacting with LLMs typically involves a process known as prompt engineering (Sahoo et al., 2024),
where users craft specific requests to elicit desired responses. However, producing high-quality outputs
through this method can be challenging, as it often requires providing extensive context for the request
and additional details about the desired result. Furthermore, LL.Ms are generally sensitive to the phrasing
of prompts, meaning that even slight variations in wording can result in significantly different outcomes
(Jiang et al., 2020).

To address these challenges and enhance the utility of LLMs for generating requirements lists, we have
developed a domain-specific GPT (generative pre-trained transformer) that enables product developers to
create high-quality requirements lists for technical products using a single standardized prompt, such as
“Create a requirements document for [product].” This document can be tailored to specific contexts and

ICED25 2741

https://doi.org/10.1017/pds.2025.10288
https://orcid.org/0009-0008-2477-4138
https://orcid.org/0009-0000-2080-088X
https://orcid.org/0000-0003-3989-9626
mailto:arthur.seibel@leuphana.de

company needs by incorporating elements such as stakeholder surveys, ISO standards, international and
regional regulations, or internal requirements from previous projects (Dehn et al., 2023).

2. Background
2.1. General LLMs

In the field of artificial intelligence, LLMs have become groundbreaking tools, revolutionizing human-
machine interactions. These models are distinguished by the massive datasets on which they are trained,
enabling them to process and respond to complex requests. Their extensive training allows not only for
the comprehension of natural language but also for the interpretation of linguistic relationships and the
generation of coherent, contextually appropriate responses.

In contrast to traditional natural language processing (NLP) models, which heavily depend on recurrent
or convolutional neural networks (Kombrink et al., 2011), modern transformer-based models—such as
GPT-4 from OpenAl—are built entirely on attention mechanisms, particularly self-attention (Vaswani
et al., 2017). This architecture facilitates parallel data processing, enabling these models to efficiently
extract meaningful information from vast amounts of text. However, while general LLMs are powerful
text creators, they may lack the precision and domain-specific knowledge required for specialized tasks.

2.2. Domain-specific LLMs

Domain-specific LLMs are tailored to support specialized tasks across various disciplines. In contrast to
general-purpose LLMs, which are designed to handle a wide variety of tasks, domain-specific LLMs are
explicitly trained to address the unique requirements and nuances of specific industrial segments. In these
specialized contexts, they can even surpass much larger general LLMs for previously unseen tasks
(Chung et al., 2024).

Examples of domain-specific LLMs already exist in fields such as finance (Wu et al., 2023; Yang et al.,
2023), law (Cui et al., 2023), natural sciences (Xie et al., 2023), biomedicine (Lee et al., 2020), and bio-
inspired design (Chen et al., 2024). The models are typically derived from general-purpose LLMs via a
process known as fine-tuning (Moradi et al., 2024). Fine-tuning involves retraining or adapting a model
using training datasets to improve its performance on targeted tasks.

Several methods exist for fine-tuning LLLMs for specific tasks, with full-parameter fine-tuning being the
most straightforward approach (Sun et al., 2023). The method involves adjusting all layers of the model
by training it on task-specific data, making it particularly effective for scenarios with large and distinct
datasets that differ significantly from the original pre-training data. While it allows the model to deeply
learn and adapt to new requirements, it has notable drawbacks, including substantial memory demands
and the need for high-performance hardware (Ding et al., 2023).

To reduce the computational and memory effort for fine-tuning, low-rank adaptation (LoRA) provides a
more efficient alternative (Hu et al., 2021). LoRA operates on the assumption that the weight changes
during model adaptation have a low “intrinsic rank.” Instead of retraining the entire model, the method
optimizes low-rank decomposition matrices that encapsulate these changes in the dense layers. Building
on this concept, quantized low-rank adaptation (QLoRA) further minimizes the memory requirements by
introducing advanced memory management techniques (Dettmers et al., 2024). QLoRA achieves this by
applying four-bit quantization to the LLM and enabling backpropagation of gradients through these
quantized, frozen layers, significantly improving efficiency without sacrificing performance.

2.3. LLMs for requirements lists

The creation of a requirements list is a text-based activity, making it highly suitable for the application of
NLP models. LLMs can assist in extracting relevant information from extensive pre-trained datasets
while addressing ambiguities and inconsistencies. This ensures that requirements are clear, structured,
and well-aligned with product development needs by converting project-specific language into formal
notations (Bertram et al., 2022) and machine-readable formats (Ray et al., 2023).

While prompt engineering serves as an alternative to fine-tuning for requirements elicitation, it is highly
dependent on precise wording. Research in LLM-based prompt engineering recommends incorporating
key elements such as intent, context, motivation, structure, output indicators, example implementations,
and additional consequences (Giray, 2023; White et al., 2024). Techniques like few-shot and chain-of-

2742 ICED25

thought prompting methods are particularly useful (Ronanki et al., 2024). However, prompt engineering
lacks domain specificity and often yields suboptimal output performance (Gu et al., 2023).

Recent advances propose various approaches to address engineering requirements tasks. For example,
LLMs’ inherent capability to detect semantic similarities between words and sentences can be applied to
summarize contextually identical requirements (Norheim et al., 2024). Multi-layered frameworks can
help address issues arising from conflicting or redundant requirements (Malik et al., 2023). By analysing
text data from interviews, online platforms, and other databases, LLMs can optimize formatting, length,
memory, and wording more effectively compared to humans (Singhal et al., 2023; Talebirad and Nadiri,
2023; Kapoor et al., 2024).

The MARE framework investigates requirements engineering in software development by using a multi-
agent system based on LLMs. This system collaborates to perform the entire requirements engineering
process, improving the accuracy and quality of requirements specifications (Jin et al., 2024).

To match user needs with their expectations, the Elicitron framework introduces a possibility to discover
linguistic intricacies based on the analysis of interviews with LLMs (Ataei et al., 2025). By categorizing
needs as either direct or latent, this method aims to identify subliminal expectations, thereby facilitating
information extraction from text—a crucial aspect of requirements engineering.

3. Method
3.1. ReqGPT workflow

Figure 1 illustrates the development process of ReqGPT. First, 120 requirements lists for products from
the consumer goods sector were automatically created employing few-shot prompting with GPT-4 using
a requirements list structure extracted from Hubka et al. (1988). Precisely 107 of these lists satisfied all
necessary criteria according to ISO 29148 (2018), providing a robust dataset for the subsequent training.
The training was performed on the base model of Mistral-7B-Instruct-v0.2 over nine epochs, ensuring
comprehensive data integration and processing efficiency. The training process resulted in a parameter-
efficient and domain-specific API designed for generating high-quality requirements lists for technical
product development.

®
manual instance selection addition of parameters

& deduplication Mistral-7B- during fine-tuning
120 RL > Instruct-v0.2 » ReqGPT
generated o A Q pre-trained LLM l—h| only asmall set
with U, &X01 based on 7 billion original weights of parameters
GPT-4 On oF O remain frozen is finetuned
13194 &6@5 parameters using QLoRA

2 L

Figure 1. Flowchart of the development process of ReqGPT

The goal of this project was to develop a fine-tuned LLM to enhance the creation of requirements lists for
technical product development. The model was not specifically designed to eliminate hallucinations but
rather to generate typical requirements for developmental purposes. By connecting the model with
external databases, such as standards and regulatory resources, through retrieval-augmented generation
(RAG), we expect that hallucinations can be reduced to an acceptable level (Su et al., 2024).

3.2. Data generation

To generate training data for ReqGPT, we synthesized a generalized structure for a requirements list by
abstracting from various specific examples within the field of mechanical design (Hubka et al., 1988).
The identified requirement types were systematically grouped into categories and further organized into
appropriate subcategories. Prompt engineering techniques using GPT-4 were then employed to generate
generalized requirements lists. To address the token context window limit of GPT-4 (as of now §,192),
the prompt was divided into two sections. The entire composite prompt is provided in Appendix A.

ICED25 2743

To optimize the prompt for generating consistent requirements lists, we performed several iterations of
refinement, including manual instance selection (Blachnik et al., 2020) as well as deduplication (Lee
et al., 2021). During this process, some subcategories were deemed inadequate as they produced
irrelevant, misleading, or inconsistent outputs. These outputs were manually refined until the desired
results were achieved. This refinement ensured that the input clearly defined individual requirements,
avoiding the generation of instruction manuals within the output.

For the dataset, we compiled a sample of 120 consumer products to generate requirements documents. Of
these, 13 products deviated strongly from the rest and were therefore excluded from further analysis. The
remaining 107 documents were curated and manually refined to ensure consistency and relevance.

3.3. Model selection

The selection criteria for the base model used for fine-tuning focused on open-source accessibility and
the ability to perform both training and inference on consumer-grade hardware. At the time of selection,
the best-performing model that fulfilled these criteria was Mistral-7B-Instruct v0.2. With just over seven
billion parameters, this model works seamlessly with next-generation lightweight notebooks, making it
ideal for deployment in typical business environments.

The instruction-tuned variant of Mistral-7B was selected as the base model, as fine-tuning small LLMs
with task-specific instructions has been shown to enhance performance on new, unrelated tasks in both
zero-shot and few-shot scenarios without increasing computational resources and costs (Ouyang et al.,
2022). Given the limited size of the dataset, specific commands were integrated into the model instead of
performing full-parameter fine-tuning. This method reduced training time while delivering improved
results with fewer input tokens.

3.4. Model training

As outlined in the previous section, Mistral-7B-Instruct-v(.2 serves as the base model for ReqGPT. The
fine-tuning process was conducted using an NVIDIA A10 GPU with 24 GB VRAM. The learning rate
was set to 3¢, and the AdamW optimizer was employed (Kingma & Ba, 2014). Later stages of training
incorporated QLoRA with four-bit quantization and an adapter rank of 16.

The fine-tuning process was carried out with 107 curated requirements lists, completed over nine epochs.
Training was marked by smooth transitions and incremental improvements, ensuring consistency in the
outputs. The model achieved a validation loss value of 0.4332, which was smoothed to 0.4419 after 350
steps. Notably, the threshold for an acceptable validation loss (< 1) was already reached after processing
75 lists, adhering to the characteristics of requirements according to ISO 29148 (2018).

Following training, ReqGPT exhibited a strong coherence and replicability, effectively generating high-
quality requirements lists for defined products. Additionally, significant prompt shortening (Patil et al.,
2023) augmented the efficiency of the model, enabling the generation of detailed requirements lists with
input prompts as concise as 15 tokens. Data for training, analysis, and output are accessible at GitHub.!

3.5. Evaluation

To evaluate the output quality of ReqGPT, the corresponding requirements lists were compared to those
produced by GPT-4 (the source of the training data) and the baseline Mistral model (prior to fine-tuning).
Since language quality is best assessed by human evaluators, we conducted a qualitative study involving
18 graduate-level master students specializing in product design. These participants represented diverse
technical disciplines, such as engineering, management, and business informatics.

Participants were tasked with acting as product developers improving a technical product by evaluating
multiple features of the requirements lists. The assessment included nine criteria according to ISO 29148
(2018): necessity, appropriateness, correctness, creativity, completeness, coherence, unambiguousness,
verifiability, and uniformity of requirements and sub-requirements.

The evaluation was conducted during a 60-minute session where the participants rated the lists on a five-
point Likert scale (1: strongly disagree, 2: disagree, 3: neutral, 4: agree, 5: strongly agree). Subsequently,
the authors analysed the responses to assess linguistic, semantic, and structural differences between the
outputs of the different LLMs. The evaluation results are summarized in Table 1.

! https://github.com/IPTS-PRODUCT-DESIGN/ReqGPT

2744 ICED25

https://github.com/IPTS-PRODUCT-DESIGN/ReqGPT

Table 1. Weighted mean scores for requirements lists generated by
Mistral, GPT-4, and ReqGPT

Evaluation criteria Weighted mean score of criteria for each list in %
Mistral GPT-4 ReqGPT
Necessity 22 74 86
Appropriateness 34 70 72
Correctness 29 68 80
Creativity 34 63 70
Completeness 31 67 77
Coherence 42 69 69
Unambiguousness 39 62 74
Verifiability 54 76 82
Uniformity 24 69 79
Average 34 69 77

The study’s results show that ReqGPT outperforms both the baseline LLM and GPT-4 in overall mean
score performance across the measured criteria. ReqGPT achieved the highest similarity score at 77%
with a moderate interquartile range (IQR) of 17% (69—86%), indicating a consistent evaluation across all
nine criteria. GPT-4 followed with a similarity score of 69% and a slightly narrower IQR of 13% (62—
75%), reflecting a slightly smaller variability in output quality compared to ReqGPT. In contrast, Mistral
recorded the lowest similarity score at 34% and exhibited the widest IQR of 32% (22-54%)), highlighting
significant inconsistencies and, comparatively, the poorest outputs. A representative output from
ReqGPT can be found in Appendix B.

Overall, ReqGPT outperformed GPT-4 and Mistral, providing more accurate and consistent results, as
reflected by its higher median and lower variability. Furthermore, the p-value for the evaluation criteria
across all lists was approximately < 1%, highlighting the statistical significance of ReqGPT’s superior
performance compared to the other LLMs. The p-value was determined using a two-sided test.

4. Challenges and limitations

4.1. Hallucinations

Current LLMs are generic tools that can generate texts, but this ability alone is insufficient for creating
adequate requirements documents. While text processing is a prerequisite for formulating requirements
lists, domain specificity is indispensable for a successful application in product development. ReqGPT,
however, is not able to mitigate hallucinations in its current form. This requires a detailed understanding
of the market situation, the company’s internal constraints, legal requirements, as well as relevant norms
and standards. To realise this, ReqGPT needs to be extended by relevant databases using RAG methods
(Su et al., 2024), which is intended for future research.

4.2. Training dataset

The initial dataset of 120 requirements lists for model retraining was considerably small and was further
reduced to 107 lists for few-shot data generation. This reduction was justified by the observation that an
acceptable validation loss was reached after training with just 75 lists, rendering the additional 32 lists
less necessary. A limited dataset was possible, as it was meticulously curated and deliberately selected
upfront, rather than relying on randomized data generation through the LLM. For future replications of
similar fine-tuning processes, careful monitoring of the validation loss is advised, as it serves as a key
indicator for effective learning while minimizing the risk of overfitting (Schubert et al., 2024).

4.3. Bias in human evaluation

The analysis of LLM outputs through human evaluation inherently involves a degree of subjectivity and
can lead to biased results (Tjuatja et al., 2024). To address this limitation, incorporating a more diverse
group of evaluators—beyond engineering master students—could provide a broader and more balanced
assessment. Expanding the cohort of evaluators would improve the clarity and precision of the analysis,
leading to more robust and significant outcomes.

ICED25 2745

4.4. LLMs for evaluation

An alternative evaluation approach involves using multiple-agent collaborations of LLMs as impartial
evaluators. Unlike human evaluation, which is both time-consuming and costly, LLM-based evaluation
addresses these challenges more efficiently (Dubois et al. 2024). Research has shown that humans often
focus less on output correctness and more on relatively marginal aspects, such as geometry, potentially
missing critical issues (Singhal et al., 2023). LLMs, by contrast, provide the possibility for more accurate
assessments with fewer errors, enhancing the reliability of evaluation outcomes (Chang et al. 2024).

5. Conclusion and future work

This study demonstrates that ReqGPT, even though it is based on the smaller Mistral-7B-Instruct-v0.2
model, can outperform the significantly larger, general-purpose GPT-4 in generating requirements lists
for technical product development. Despite the larger scale and broader data access of GPT-4, ReqGPT’s
targeted adaptations enable it to better address industry-specific demands.

The findings highlight several important advantages of smaller LLMs. First, they operate with increased
efficiency, requiring less computational power and functioning effectively on local hardware. Second,
local deployment of LLMs enhances data privacy and cybersecurity, which are essential for industries
handling sensitive or proprietary information. By minimizing reliance on external networks and servers,
local models reduce data exposure risks while also offering stability in environments with inconsistent
internet connectivity (Da Silva et al., 2022). Third, smaller LLMs are easier to customize and specialize
for specific tasks or industries. Models like Mistral-7B-Instruct-v(.2 can be fine-tuned with greater ease,
enabling improved performance in targeted applications and generating outputs that are highly relevant
and customized to the user’s operational context.

The results from this study pave the way for two critical avenues for future research. First, efforts should
focus on integrating LL.M-accelerated workflows into real-world product development processes. This
involves refining the models to improve their specificity and accuracy and embedding them in existing
product development workflows to evaluate their practical impact. Second, incorporating agent-based
retrieval systems offers significant potential to improve LLMs’ contextual understanding. These systems
would extract specific data from knowledge databases, thus enriching the models’ context with relevant,
up-to-date information, improving both the quality and relevance of the content produced.

Acknowledgement

We would like to thank the participants of the master course “Al-supported Product Development” from Leuphana
University Liineburg for taking part in the evaluation.

References

Ataei, M., Cheong, H., Grandi, D., Wang, Y., Morris, N., & Tessier, A. (2025). Elicitron: a large language model
agent-based simulation framework for design requirements elicitation. Journal of Computing and Information
Science in Engineering, 25(2), 021012.

Bertram, V., Bof}, M., Kusmenko, E., Nachmann, I. H., Rumpe, B., Trotta, D., & Wachtmeister, L. (2022). Neural
language models and few-shot learning for systematic requirements processing in MDSE. In Proceedings of
the 15th ACM SIGPLAN International Conference on Software Language Engineering (SLE) (pp. 260-265).
https://doi.org/10.1145/3567512.3567534

Blachnik, M., & Kordos, M. (2020). Comparison of instance selection and construction methods with various
classifiers. Applied Sciences, 10(11), 3933. https://doi.org/10.3390/app10113933

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., ... & Xie, X. (2024). A survey on evaluation of large
language models. ACM Transactions on Intelligent Systems and Technology, 15(3), 1-45. https://doi.org/10.
1145/3641289

Chen, L., Cai, Z., Jiang, Z., Luo, J., Sun, L., Childs, P., & Zuo, H. (2024). AskNatureNet: a divergent thinking tool
based on bio-inspired design knowledge. Advanced Engineering Informatics, 62, 102593.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., ... & Wei, J. (2024). Scaling instruction-
finetuned language models. Journal of Machine Learning Research, 25(70), 1-53. http://jmlr.org/papers/v25/
23-0870.html

Cui, J., Li, Z., Yan, Y., Chen, B., & Yuan, L. (2023). ChatLaw: open-source legal large language model with
integrated external knowledge bases. https://doi.org/10.48550/arXiv.2306.16092

2746 ICED25

https://doi.org/10.1145/3567512.3567534
https://doi.org/10.3390/app10113933
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
http://jmlr.org/papers/v25/23-0870.html
http://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.48550/arXiv.2306.16092

Da Silva, P. H., Benitti, F., & Wangham, M. (2022). Framework for the development of computational solutions for
the support of requirements engineering with a focus on data protection. In Proceedings of the XXXVI Brazilian
Symposium on Software Engineering (pp. 419-424). https://doi.org/10.1145/3555228.3555262

Dabrowski, J., Letier, E., Perini, A., & Susi, A. (2020). Mining user opinions to support requirement engineering:
an empirical study. In International Conference on Advanced Information Systems Engineering (pp. 401-416).
Springer. https://doi.org/10.1007/978-3-030-49435-3_25

Dehn, S., Jacobs, G., Zerwas, T., Berroth, J., Hotter, M., Korten, M., ... & Fleischer, D. (2023). On identifying
possible artificial intelligence applications in requirements engineering processes. Forschung im
Ingenieurwesen, 87(1), 497-506. https://doi.org/10.1007/s10010-023-00657-8

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2024). QLoRA: efficient finetuning of quantized
LLMs. Advances in Neural Information Processing Systems, 36. https://doi.org/10.48550/arXiv.2305.14314

Ding, T., Chen, T., Zhu, H., Jiang, J., Zhong, Y., Zhou, J., ... & Liang, L. (2023). The efficiency spectrum of large
language models: an algorithmic survey. https://doi.org/10.48550/arXiv.2312.00678

Dubois, Y., Liang, P., & Hashimoto, T. (2024). Length-controlled AlpacaEval: a simple debiasing of automatic
evaluators. In First Conference on Language Modeling. https://openreview.net/pdf?id=CybBmzWBXO0

Franch, X., Henriksson, A., Ralyté, J., & Zdravkovic, J. (2021). Data-driven agile requirements elicitation through
the lenses of situational method engineering. In 2021 IEEE 29th International Requirements Engineering
Conference (RE) (pp. 402—407). IEEE. https://doi.org/10.1109/RE51729.2021.00045

Giray, L. (2023). Prompt engineering with ChatGPT: a guide for academic writers. Annals of Biomedical
Engineering, 51(12), 2629-2633. https://doi.org/10.1007/s10439-023-03272-4

Gu, J., Han, Z., Chen, S., Beirami, A., He, B., Zhang, G., ... & Torr, P. (2023). A systematic survey of prompt
engineering on vision-language foundation models. https://doi.org/10.48550/arXiv.2307.12980

Hu, E.J, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). LoRA: low-rank adaptation
of large language models. https://doi.org/10.48550/arXiv.2106.09685

Hubka, V., Andreasen, M. M., Eder, W. E., & Hills, P. J. (1988). Practical Studies in Systematic Design.
Butterworths.

ISO 29148. (2018). Systems and Software Engineering—Life Cycle Processes—Requirements Engineering. ISO.

Jiang, Z., Xu, F. F., Araki, J., & Neubig, G. (2020). How can we know what language models know? Transactions
of the Association for Computational Linguistics, 8, 423-438. https://doi.org/10.1162/tacl_a_00324

Jin, D., Jin, Z., Chen, X., & Wang, C. (2024). MARE: multi-agents collaboration framework for requirements
engineering. https://doi.org/10.48550/arXiv.2405.03256

Kapoor, S., Stroebl, B., Siegel, Z. S., Nadgir, N., & Narayanan, A. (2024). Al agents that matter. https://doi.org/10.
48550/arXiv.2407.01502.

Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. CoRR, abs/1412.6980. https://api.
semanticscholar.org/CorpusID:6628106

Kombrink, S., Mikolov, T., Karafiat, M., & Burget, L. (2011). Recurrent neural network based language modeling
in meeting recognition. In Interspeech. https://doi.org/10.21437/Interspeech.2011-720

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: a pre-trained biomedical
language representation model for biomedical text mining. Bioinformatics, 36(4), 1234—1240. https://doi.org/
10.1093/bioinformatics/btz682

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D., Callison-Burch, C., & Carlini, N. (2021). Deduplicating
training data makes language models better. https://doi.org/10.48550/arXiv.2107.06499

Lim, S., Henriksson, A., & Zdravkovic, J. (2021). Data-driven requirements elicitation: a systematic literature
review. SN Computer Science, 2(1), 16. https://doi.org/10.1007/s42979-020-00416-4

Malik, U. A., Bangash, Y. A., Igbal, W., Zhenisbekovna, S. M., & Hammad, M. (2023). Automated conflict
detection in software functional requirements using rule-based natural language processing. Preprint available
at Research Square. https://doi.org/10.21203/rs.3.rs-3442526/v1

Moradi, M., Yan, K., Colwell, D., Samwald, M., & Asgari, R. (2024). Exploring the landscape of large language
models: Foundations, techniques, and challenges. https://doi.org/10.48550/arXiv.2404.11973

Norheim, J. J., Rebentisch, E., Xiao, D., Draeger, L., Kerbrat, A., & de Weck, O. L. (2024). Challenges in applying
large language models to requirements engineering tasks. Design Science, 10, e16. https://doi.org/10.1017/ds;j.
2024.8

Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2007). Engineering Design. A Systematic Approach (3rd ed.).
Springer. https://doi.org/10.1007/978-1-84628-319-2

Palomares, C., Franch, X., Quer, C., Chatzipetrou, P., Lépez, L., & Gorschek, T. (2021). The state-of-practice in
requirements elicitation: an extended interview study at 12 companies. Requirements Engineering, 26, 273—
299. https://doi.org/10.1007/s00766-020-00345-x

Patil, S., Joshi, P., Ingle, A., Jayappa, A., & Ketkar, O. (2023). Text extraction and finetuning transformers for
abstractive summarisation. In 2023 7th International Conference on Computing, Communication, Control and
Automation (ICCUBEA) (pp. 1-5). IEEE. https://doi.org/10.1109/ICCUBEAS58933.2023.10392203

ICED25 2747

https://doi.org/10.1145/3555228.3555262
https://doi.org/10.1007/978-3-030-49435-3_25
https://doi.org/10.1007/s10010-023-00657-8
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2312.00678
https://openreview.net/pdf?id=CybBmzWBX0
https://doi.org/10.1109/RE51729.2021.00045
https://doi.org/10.1007/s10439-023-03272-4
https://doi.org/10.48550/arXiv.2307.12980
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.48550/arXiv.2405.03256
https://doi.org/10.48550/arXiv.2407.01502
https://doi.org/10.48550/arXiv.2407.01502
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.21437/Interspeech.2011-720
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.48550/arXiv.2107.06499
https://doi.org/10.1007/s42979-020-00416-4
https://doi.org/10.21203/rs.3.rs-3442526/v1
https://doi.org/10.48550/arXiv.2404.11973
https://doi.org/10.1017/dsj.2024.8
https://doi.org/10.1017/dsj.2024.8
https://doi.org/10.1007/978-1-84628-319-2
https://doi.org/10.1007/s00766-020-00345-x
https://doi.org/10.1109/ICCUBEA58933.2023.10392203

Pokorni, B., Popescu, D., & Constantinescu, C. (2022). Design of cognitive assistance systems in manual assembly
based on quality function deployment. Applied Sciences, 12(8), 3887. https://doi.org/10.3390/app12083887

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkn, P., ... & Lowe, R. (2022). Training language
models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35,
27730-27744. https://doi.org/10.48550/arXiv.2203.02155

Ray, A. T., Cole, B. F., Pinon Fischer, O. J., Bhat, A. P., White, R. T., & Mavris, D. N. (2023). Agile methodology
for the standardization of engineering requirements using large language models. Systems, 11(7), 352. https://
doi.org/10.3390/systems11070352

Ronanki, K., Cabrero-Daniel, B., Horkoff, J., & Berger, C. (2024). Requirements engineering using generative Al:
prompts and prompting patterns. In Generative Al for Effective Software Development (pp. 109-127).
Springer. https://doi.org/10.1007/978-3-031-55642-5_5

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., & Chadha, A. (2024). A systematic survey of prompt
engineering in large language models: techniques and applications. https://doi.org/10.48550/arXiv.2402.07927

Schlattmann, J., & Seibel, A. (2021). Structure and Organization of Product Development Projects. Springer.
https://doi.org/10.1007/978-3-030-81046-7

Schubert, M., Riedlinger, T., Kahl, K., Kroll, D., Schoenen, S., §egvié, S., & Rottmann, M. (2024). Identifying
label errors in object detection datasets by loss inspection. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV) (pp. 4582-4591). https://openaccess.thecvf.com/content/
WACV2024/papers/Schubert_Identifying_Label_Errors_in_Object_Detection_Datasets_by_
Loss_Inspection_WACV_2024_paper.pdf

Singhal, P., Goyal, T., Xu, J., & Durrett, G. (2023). A long way to go: investigating length correlations in RLHF.
https://doi.org/10.48550/arXiv.2310.03716

Su, W., Tang, Y., Ai, Q., Wang, C., Wu, Z., & Liu, Y. (2024). Mitigating entity-level hallucination in large
language models. https://doi.org/10.48550/arXiv.2407.09417

Sun, X., Ji, Y., Ma, B., & Li, X. (2023). A comparative study between full-parameter and LoRA-based fine-tuning
on Chinese instruction data for instruction following large language model. https://doi.org/10.48550/arXiv.
2304.08109.

Talebirad, Y., & Nadiri, A. (2023). Multi-agent collaboration: harnessing the power of intelligent LLM agents.
https://doi.org/10.48550/arXiv.2306.03314.

Tjuatja, L., Chen, V., Wu, T., Talwalkwar, A., & Neubig, G. (2024). Do LLMs exhibit human-like response biases?
A case study in survey design. Transactions of the Association for Computational Linguistics, 12, 1011-1026.
https://doi.org/10.1162/tacl_a_00685

Van Vliet, M., Groen, E. C., Dalpiaz, F., & Brinkkemper, S. (2020). Identifying and classifying user requirements
in online feedback via crowdsourcing. In Requirements Engineering: Foundation for Software Quality
(pp. 143-159). Springer. https://doi.org/10.1007/978-3-030-44429-7_11

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, 1. (2017).
Attention is all you need. Advances in Neural Information Processing Systems, 30. https://doi.org/10.48550/
arXiv.1706.03762

VDI 2221 Part 1. (2019). Design of Technical Products and Systems—~Model of Product Design. Beuth.

White, J., Hays, S., Fu, Q., Spencer-Smith, J., & Schmidt, D. C. (2024). ChatGPT prompt patterns for improving
code quality, refactoring, requirements elicitation, and software design. In Generative Al for Effective Software
Development (pp. 71-108). Springer. https://doi.org/10.1007/978-3-031-55642-5_4c

Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M., Gehrmann, S., ... & Mann, G. (2023). BloombergGPT: a
large language model for finance. https://doi.org/10.48550/arXiv.2303.17564

Xie, T., Wan, Y., Huang, W., Yin, Z., Liu, Y., Wang, S., ... & Hoex, B. (2023). DARWIN series: domain specific
large language models for natural science. https://doi.org/10.48550/arXiv.2308.13565

Yang, H., Liu, X. Y., & Wang, C. D. (2023). FinGPT: open-source financial large language models. https://doi.org/
10.48550/arXiv.2306.06031

Appendix A
Prompt details for GPT-4

No “‘markdown and’” at start and end. Create a detailed and structured requirements list that can be used
for product development for [product]. Use Markup to structure the text. Do not use explanations, just
provide the necessary information/facts about this list. Follow this structure:

Product design specifications document for [product]

2748 ICED25

https://doi.org/10.3390/app12083887
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.3390/systems11070352
https://doi.org/10.3390/systems11070352
https://doi.org/10.1007/978-3-031-55642-5_5
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.1007/978-3-030-81046-7
https://openaccess.thecvf.com/content/WACV2024/papers/Schubert_Identifying_Label_Errors_in_Object_Detection_Datasets_by_Loss_Inspection_WACV_2024_paper.pdf
https://openaccess.thecvf.com/content/WACV2024/papers/Schubert_Identifying_Label_Errors_in_Object_Detection_Datasets_by_Loss_Inspection_WACV_2024_paper.pdf
https://openaccess.thecvf.com/content/WACV2024/papers/Schubert_Identifying_Label_Errors_in_Object_Detection_Datasets_by_Loss_Inspection_WACV_2024_paper.pdf
https://doi.org/10.48550/arXiv.2310.03716
https://doi.org/10.48550/arXiv.2407.09417
https://doi.org/10.48550/arXiv.2304.08109
https://doi.org/10.48550/arXiv.2304.08109
https://doi.org/10.48550/arXiv.2306.03314
https://doi.org/10.1162/tacl_a_00685
https://doi.org/10.1007/978-3-030-44429-7_11
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1007/978-3-031-55642-5_4c
https://doi.org/10.48550/arXiv.2303.17564
https://doi.org/10.48550/arXiv.2308.13565
https://doi.org/10.48550/arXiv.2306.06031
https://doi.org/10.48550/arXiv.2306.06031

1. Main function
Description

Key features

Clearly define the primary purpose of the product. What is the product
designed to achieve or facilitate? Specify the main functional goal.

List the key features that enable the main function. These should include any
unique selling points or critical operational capabilities.

2. Functionally determined properties

Performance requirements
Functionality

3. Operational properties
Operating conditions

User interaction

Support systems

Specify the essential performance metrics that the product must meet, such as
power output, inputs, modes of action, speed, efficiency, and capacity.

List all required functionalities in detail, ensuring that each function aligns
with the main purpose of the product.

Detail the environmental and operational conditions under which the product
is expected to perform. Be creative.

Outline how users will interact with the product. Include user interface
requirements, mechanical controls, buttons, signals, and feedback systems.
Specify any additional systems or services needed for the product to operate
effectively, such as software, network requirements, or external devices.

4. Service life and maintainability

Expected lifespan

Common pitfalls and important
product parts

End-of-life handling

Service manuals

Standardized parts

5. Safety
Fail-safe mechanisms

Protective features

6. Ergonomic properties
User interface

Accessibility

Physical comfort

Visual and auditory feedback
Dimensions

7. Appearance and design
Aesthetic design

Finish and materials

ICED25

State the expected operational lifespan of the product under typical usage
conditions in years. Provide specific time frames or cycles of use. Outline the
maintenance or service intervals and the type of maintenance activities required
to maximize the product’s lifespan. Define the reliability requirements in
quantitative terms, such as expected mean time between failures.

Define the core product modules. Include any industry-specific testing
protocols. Describe the level of fault tolerance required in specific operational
usage time. Detail any redundancy or backup systems that must be in place.
Imagine an end-of-life plan for the product, including recycling, refurbishing,
or disposal procedures. Include considerations for environmental impact and
materials that could be recycled. Give specifications.

Provide comprehensive service manuals with detailed instructions on
maintenance procedures, including troubleshooting guides and schematic
diagrams. Give specifications.

Use standardized parts where possible to minimize the variety of spare parts
needed and simplify procurement. Give specifications.

Design the product with auto-shutoff features that prevent or minimize risk of
injury or damage in the event of a malfunction. Give specifications.

Include necessary guards, testing methods, and warnings to protect users from
potential hazards inherent in the product’s operation. Give specifications.

Design interfaces that are intuitive and easy to use, with controls within easy
reach and visibly labelled. Consider the use of touchscreens or voice-
activated controls for enhanced usability. Give specifications.

Design all components to be easily accessible for maintenance and repair.
Components like batteries or filters should be reachable without specialized
tools. Implement a modular design that allows individual components to be
replaced or upgraded independently, reducing downtime and maintenance
costs. Give specifications.

Ensure that any physical interaction with the product does not strain the user.
If the product requires manual interaction, adjust height and angles to
accommodate a wide range of users.

Incorporate clear visual or auditory signals to indicate active processes or
issues, enhancing user understanding and interaction. Give specifications.
Provide exact dimensions. Specify more space for ventilation or connections
(power, cables).

Design a product that is visually appealing to the target market and that aligns with
current design trends while remaining timeless. Consider the colour, shape, and
texture that reflect the product’s branding and intended market. Give specifications.
Use finishes that are durable, easy to clean, and attractive. The material
choices should also reflect the product’s positioning in the three price
categories. The user experience should ensure that the product is intuitive and
easy to use. Give specifications.

2749

Continued.

Branding

8. Law and standards
Regulatory compliance

Certifications

Relevant patents

9. Economics
Pricing strategy

Alternative revenue strategies

Incorporate branding elements such as logos, colour schemes and general
usage to enhance the overall design so it is easily recognizable. Make
specific design suggestions for user experience.

Identify and comply with all relevant local, national, and international regulations
affecting the product, such as safety, environmental, and import/export laws. List
the laws and what they mean for the product. Give specifications.

List required certifications (e.g., CE, FCC, ISO) that the product must obtain
to be sold in specific markets. Provide a plan for achieving these
certifications, including testing phases and responsible parties. What does the
standard do, and how does it influence product design?

Ensure that the product design respects existing patents. Name all patents that
have features similar to the new product. Which patents have solutions for
connected problems and what aspect of the product is affected? List them.

Develop a pricing strategy and give three price brackets: budget pricing,
middle of the market, and premium.

Give different approaches to make revenue with the product, like making the
product cheap and making money with consumables. Show different ways
other than selling the product with profit.

Appendix B

Output from ReqGPT for a smart electronic toothbrush (excerpt)

1. Main Function

Description

— The primary purpose of the smart electric toothbrush is to facilitate efficient and effective oral
hygiene through automated brushing.

— The product is designed to enhance user experience by integrating smart features such as app
connectivity, personalized brushing programs, and real-time feedback.

Key Features

— Automated Brushing: Oscillating, pulsating, or sonic brushing action to remove plaque effectively.

— App Connectivity: Bluetooth or WIFI integration for syncing brushing data with a companion app.

— Personalized Brushing Programs: Customizable brushing modes based on user needs (Sensitive
Teeth, Whitening, Gum Care).

— Real-time Feedback: Vibration or audio signals to guide the user for the correct brushing technique.

— Battery Management: Rechargeable battery with smart charging indicators.

— Water Resistance: IPX7 or higher rating for waterproofness.

— Replaceable Brush Heads: Compatibility with multiple types of replaceable brush heads.

— Smart Timer: Built-in timer to ensure the recommended brushing duration (e.g., 2 minutes).

— Pressure Sensor: Alerts user when brushing too hard to prevent enamel damage.

2. Functionally Determined Properties

Performance Requirements

— Battery Life: Minimum of 14 full brushing sessions on a single charge.

— Charging Time: Less than 4 hours to fully charge.

— Brushing Modes: At least 5 distinct brushing modes (e.g., Daily Clean, Sensitive, Whitening, Gum Care).
— Oscillations Per Minute (OPM): Minimum of 31,000 OPM for sonic models.

— Pulsations Per Minute (PPM): Adjustable pulsations from 5,000 to 31,000 PPM.

— App Compatibility: Compatible with iOS and Android devices.

— Bluetooth Range: Up to 10 meters for seamless connection.

— Data Storage: Ability to store brushing history for at least 6 months.

— Waterproof Depth: IPX7 rating to withstand immersion in up to 1 meter of water. [...]

2750

ICED25

	ReqGPT: a fine-tuned large language model for generating requirements documents
	1.. Introduction
	2.. Background
	2.1.. General LLMs
	2.2.. Domain-specific LLMs
	2.3.. LLMs for requirements lists

	3.. Method
	3.1.. ReqGPT workflow
	3.2.. Data generation
	3.3.. Model selection
	3.4.. Model training
	3.5.. Evaluation

	4.. Challenges and limitations
	4.1.. Hallucinations
	4.2.. Training dataset
	4.3.. Bias in human evaluation
	4.4.. LLMs for evaluation

	5.. Conclusion and future work
	5.. Conclusion and future work
	Prompt details for GPT-4
	Product design specifications document for [product]

	Product design specifications document for [product]
	Output from ReqGPT for a smart electronic toothbrush (excerpt)
	1.. Main Function
	Description
	Key Features

	2.. Functionally Determined Properties
	Performance Requirements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

