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Abstract
We compare the marked length spectra of some pairs of proper and cocompact cubical actions of a nonvirtually
cyclic group on CAT(0) cube complexes. The cubulations are required to be virtually co-special, have the same
sets of convex-cocompact subgroups, and admit a contracting element. There are many groups for which these
conditions are always fulfilled for any pair of cubulations, including nonelementary cubulable hyperbolic groups,
many cubulable relatively hyperbolic groups, and many right-angled Artin and Coxeter groups.

For these pairs of cubulations, we study the Manhattan curve associated to their combinatorial metrics. We
prove that this curve is analytic and convex, and a straight line if and only if the marked length spectra are
homothetic. The same result holds if we consider invariant combinatorial metrics in which the lengths of the edges
are not necessarily one. In addition, for their standard combinatorial metrics, we prove a large deviations theorem
with shrinking intervals for their marked length spectra. We deduce the same result for pairs of word metrics on
hyperbolic groups.

The main tool is the construction of a finite-state automaton that simultaneously encodes the marked length
spectra of both cubulations in a coherent way, in analogy with results about (bi)combable functions on hyperbolic
groups by Calegari-Fujiwara [14]. The existence of this automaton allows us to apply the machinery of thermody-
namic formalism for suspension flows over subshifts of finite type, from which we deduce our results.

1. Introduction

In this work we study rigidity phenomena and the statistical properties of group actions on CAT(0) cube
complexes and the methods we use exploit the interplay between geometric group theory and dynamics.
Group actions on CAT(0) cube complexes are nowadays a central object of study. Since the influential
work of Sageev [75], we have known that many groups admit proper and cubical actions on CAT(0) cube
complexes (if in addition the actions are cocompact, in the sequel they are referred to as cubulations).
The list includes small cancellation groups [60, 85], many 3-manifold groups [3, 43, 69, 70, 84], Coxeter
groups [62], many Artin groups [21, 40], random groups at low density [63, 64], 1-relator groups with
torsion [57, 83, 86], hyperbolic free-by-cyclic groups [44, 45], and so on. In particular, the fundamental
groups of (compact) special cube complexes introduced by Haglund and Wise [47] form a very rich
class of convex-cocompact subgroups of right-angled Artin groups, and they played a key role in the
resolution of the Virtual Haken and Virtual Fibering Conjectures [1, 86].

In general, when nonempty, the space of geometric actions of a given group on CAT(0) cube
complexes is quite large. For example, each filling multicurve on a closed hyperbolic surface is dual

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/fms.2025.10094 Published online by Cambridge University Press

doi:10.1017/fms.2025.10094
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/fms.2025.10094


2 S. Cantrell and E. Reyes

to a cubulation of its fundamental group [75]. Similarly, cubulations for fundamental groups of cusped
hyperbolic 3-manifolds can be obtained from their vast sets of (relatively) quasiconvex surface subgroups
[3, 24, 52]. Moreover, cubulations can be used to define deformation spaces, such as the classical Culler-
Vogtmann outer space [25] that encodes geometric actions of free groups on trees. This perspective
has been extended to right-angled Artin groups, for which outer spaces have been constructed using
cubulations with some particular special cube complexes as quotients [8, 22].

Under some reasonable irreducibility assumptions, actions on CAT(0) cube complexes are marked
length-spectrum rigid [4, 5]. More precisely, let X be a cubulation of a group Γ and let conj = conj(Γ)
denote the set of conjugacy classes of Γ. The (stable) translation length of this action is the function
ℓX : conj → R given by

ℓX [𝑔] = lim
𝑛→∞

𝑑X (𝑔𝑛𝑥, 𝑥)
𝑛

,

where 𝑑X denotes the combinatorial metric on the 1-skeleton of X and the limit above is independent
of the representative 𝑔 ∈ [𝑔] and the vertex 𝑥 ∈ X .

For two cubulationsX ,X∗ of Γ, marked length-spectrum rigidity states that the equality of translation
length functions ℓX = ℓX∗ implies the existence of a Γ-equivariant cubical isometry from X onto X∗.
Since in general the translation length functions ℓX and ℓX∗ will not coincide, it is natural to ask about
the behavior of ℓX∗ [𝑔] when ℓX [𝑔] is large. The goal of this paper is to address this question for
“compatible” pairs of virtually co-special cubulations, that is, those having quotients with a special cube
complex as a finite cover. Such compatibility is described in Definition 5.1, and is guaranteed for any
group in the following class.
Definition 1.1. Let 𝔊 be the class of nonvirtually cyclic groups Γ satisfying the following:
(1) Γ admits a proper, cocompact and virtually co-special action on a CAT(0) cube complex.
(2) The class of convex-cocompact subgroups of Γ is the same with respect to any proper and cocompact

action on a CAT(0) cube complex. That is, given any two proper, cocompact actions of Γ on CAT(0)
cube complexes X ,X∗ then the restricted action of a subgroup 𝐻 < Γ on X is convex-cocompact
if and only if the restricted action of H on X∗ is convex-cocompact.

(3) Some (equivalently, any) proper and cocompact action of Γ on a CAT(0) cube complex has a
contracting element.

By [39, Lemma 4.6], contracting elements for proper and cocompact actions on CAT(0) cube
complexes are those having invariant geodesics that satisfy the conclusion of the Morse lemma. In
particular, the notion of being a contracting element is independent of the cubulation of Γ.

By Agol’s theorem [1, Theorem 1.1] and the characterization of convex-cocompact subgroups in
terms of quasiconvexity [47, Proposition 7.2], we see that every cubulable nonelementary hyperbolic
group belongs to 𝔊. Moreover, the class 𝔊 is closed under relative hyperbolicity, in the sense that a
cubulable relatively hyperbolic group belongs to 𝔊 as long as its peripheral subgroups belong to 𝔊.
In particular, any 𝐶 ′(1/6) small cancellation quotient of the free product of finitely many groups
in 𝔊 belongs to 𝔊 [60]. However, this class is much larger since it contains some infinite families
of right-angled Artin and Coxeter groups, most of them not being relatively hyperbolic with respect
to any collection of proper subgroups. For instance, any right-angled Artin group with finite outer
automorphism group belongs to 𝔊. See Proposition 5.2 for the precise statement.

1.1. Manhattan curves

Let X ,X∗ be two cubulations of the group Γ. We endow these cubulations with Γ-invariant orthotope
structures 𝔴,𝔴∗ respectively, consisting of (non-necessarily integer) positive lengths assigned to the
hyperplanes which are invariant under the action of Γ. This induces isometric actions of Γ on the cuboid
complexes X𝔴 = (X ,𝔴) and X𝔴∗

∗ = (X∗,𝔴∗), see Subsection 2.2 for further details. The Manhattan
curve for the pair (X𝔴,X𝔴∗

∗ ) is the boundary of the convex set

https://doi.org/10.1017/fms.2025.10094 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10094


Forum of Mathematics, Sigma 3

CX𝔴∗
∗ /X𝔴 :=

⎧⎪⎪⎨⎪⎪⎩(𝑎, 𝑏) ∈ R2 :
∑

[𝑔] ∈conj(Γ)
𝑒−𝑎ℓ

𝔴∗
X∗ [𝑔]−𝑏ℓ

𝔴
X [𝑔] < ∞

⎫⎪⎪⎬⎪⎪⎭,
where ℓ𝔴X and ℓ𝔴∗

X∗
are the respective translation length functions of the actions of Γ on the 1-skeleta of

X𝔴 and X𝔴∗
∗ . We can parameterize this curve as 𝑠 ↦→ 𝜃X𝔴∗

∗ /X𝔴 (𝑠), where for 𝑠 ∈ R, 𝜃X𝔴∗
∗ /X𝔴 (𝑠) is the

abscissa of convergence of the series

𝑡 ↦→
∑

[𝑔] ∈conj(Γ)
𝑒−𝑡ℓ

𝔴
X [𝑔]−𝑠ℓ𝔴∗

X∗ [𝑔] .

By abuse of notation, we also call the parametrization 𝜃X𝔴∗
∗ /X𝔴 the Manhattan curve of (X𝔴,X𝔴∗

∗ ).
Manhattan curves are useful tools for studying pairs of actions and are related to rigidity results,

as well as recovering asymptotic invariants. They were introduced by Burger [12] for pairs of convex-
cocompact representations of a group on rank 1 symmetric spaces, and later Sharp [81] proved that they
are analytic for pairs of cocompact Fuchsian representations. Sharp also extended these results for pairs
of points in the outer space of a free group [79, 80]. Recently, Manhattan curves have been studied for
pairs of cusped Fuchsian representations [54, 55], pairs of cusped quasi-Fuchsian representations [6],
comparing quasi-Fuchsian representations with negatively curved metrics on surfaces [53], pairs of
cusped Hitchin representations [7], and pairs of geometric actions on hyperbolic groups [18, 19].

In some sense, the Manhattan curve can be seen as a function that ‘interpolates’ between its pair of
defining isometric actions. In particular, the regularity (i.e., differentiability) properties of the Manhattan
curve somehow measure the “compatibility” of such actions. Moreover, when Manhattan curves are
known to be analytic, then (as they are convex) they are either straight lines or strictly convex everywhere.
This convexity characterization leads to length spectrum rigidity and other rigidity results for pairs of
actions. See [19, Theorem 1] for some examples of such results. In addition, when Manhattan curves are
known to be analytic, we immediately obtain precise large deviations principles comparing isometric
actions. We consider such results in this work. Lastly, the 𝐶2-regularity of Manhattan curves can be use
to construct pressure metrics, which recover the Weil-Petersson metric on Teichmüller space [61] and
generalize it to other geometric settings [2, 6, 9, 55, 67].

Our first main theorem fits into the aforementioned results, and to the authors’ knowledge, is the
first to address the analyticity of Manhattan curves outside the scope of relatively hyperbolic groups or
representation theory.

Theorem 1.2. Let Γ be a group in the class 𝔊 and let it act properly and cocompactly on the cuboid
complexes X𝔴 = (X ,𝔴) and X𝔴∗

∗ = (X∗,𝔴∗). Then the Manhattan curve 𝜃X𝔴∗
∗ /X𝔴 : R→ R is convex,

decreasing, and analytic. In addition, the following limit exists and equals −𝜃 ′X𝔴∗
∗ /X𝔴 (0):

𝜏(X𝔴∗
∗ /X𝔴) := lim

𝑇→∞

1
#{[𝑔] ∈ conj : ℓ𝔴X [𝑔] < 𝑇}

∑
ℓ𝔴X [𝑔]<𝑇

ℓ𝔴∗
X∗

[𝑔]
𝑇

.

Moreover, we always have

𝜏(X𝔴∗
∗ /X𝔴) ≥ 𝑣X𝔴/𝑣X𝔴∗

∗
,

for 𝑣X𝔴 , 𝑣X𝔴∗
∗

the corresponding exponential growth rates, and the following are equivalent:

(1) 𝜃X𝔴∗
∗ /X𝔴 is a straight line;

(2) there exists Λ > 0 such that ℓ𝔴X [𝑔] = Λℓ𝔴∗
X∗

[𝑔] for all [𝑔] ∈ conj(Γ); and
(3) 𝜏(X𝔴∗

∗ /X𝔴) = 𝑣X𝔴/𝑣X𝔴∗
∗

.
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Remark 1.3. In the result above, the group Γ does not have to belong to 𝔊 as long as the triplet
(Γ,X ,X∗) belongs to the class 𝔛 in Definition 5.1. In particular, the action on X∗ does not have to be
proper. See Theorem 6.1 for the more general statement.

1.2. An automaton for pairs of cubulations

The main tool in the proof of Theorems 1.2 and 6.1 is the construction of a finite-state automaton that
simultaneously encodes translation lengths for the actions on both X and X∗. Roughly speaking, an
automaton is a finite directed graph G that encodes a group Γ equipped with a finite generating set S. The
edges ofG are labeled by elements of S, so that finite paths inG correspond to group elements whose word
length (with respect to S) equals the length of the corresponding path. Well-known examples include the
Bowen-Series coding for Fuchsian groups [13], Cannon’s automatic structure for hyperbolic groups with
arbitrary generating set [15] (see Example 2.4) and Hermiller-Meier’s automatic structures for right-
angled Artin and Coxeter groups with the standard generating sets [49]. Recently, the combinatorial
structure of automata has been key to deduce strong counting results for some groups acting isometrically
on 𝛿-hyperbolic spaces. Examples include genericity of loxodromic elements [37, 38] and central limit
theorems [36].

In principle, an automatic structure encodes a single length function associated to a group. However,
for a hyperbolic group Γ with two input generating sets 𝑆, 𝑆∗, it is possible to enhance the automaton
associated to S and equipping it with an extra (non-negative) integer-valued edge labeling. With respect
to the new label, paths in the refined automaton record the word length with respect to 𝑆∗ of the group
element associated to the path. This was achieved by Calegari and Fujiwara in [14], and having access to
an automatic structure and labeling such as this means that one can apply powerful tools and techniques
from thermodynamic formalism and symbolic dynamics to study pairs word metrics on hyperbolic
groups. For example, this construction was used by Cantrell and Tanaka [18] to show that Manhattan
curves for pairs of word metrics on hyperbolic groups are analytic. Calegari-Fujiwara’s construction
was the main inspiration for the construction of the automaton for pairs of actions on CAT(0) cube
complexes, which we now proceed to describe.

In our setting, we start with a group Γ in the class𝔊 acting properly and cocompactly on the CAT(0)
cube complexes X and X∗. The main result is Theorem 5.11, which is stated using the formalism
of automatic structures (see Subsection 2.3). As the statement of this theorem is rather technical, we
provide a simplified version that also incorporates Lemma 6.7, Lemma 6.11, and Lemma 6.12.

Theorem 1.4. Let Γ be a group in the class 𝔊 and let it act properly and cocompactly on the CAT(0)
cube complexes X and X∗. To the triplet (Γ,X ,X∗) we associate the following data:

i) A finite index subgroup Γ < Γ such that the quotient X = Γ\X is a special cube complex.
ii) A finite directed graph G = G (Γ,X ,X∗) equipped with a labeling map 𝜋 that assigns to each edge

of G an oriented hyperplane of X .
iii) An integer-valued functional 𝜓 on the edges of G.

From this data, any closed loop 𝜔 in G is assigned to a closed (combinatorial) geodesic 𝛾𝜔 in X , and
hence to a conjugacy class [𝑔𝜔] ∈ conj(Γ), in such a way that:

(1) If 𝜔 is determined by the sequence of edges 𝑒1, . . . , 𝑒𝑛 in G, then the loop 𝛾𝜔 consists of edges that
are dual to the hyperplanes 𝜋(𝑒1), . . . , 𝜋(𝑒𝑛). In particular, the length of 𝜔 equals ℓX [𝑔𝜔].

(2) If 𝜔 is as in (1), then 𝜓(𝑒1) + · · · + 𝜓(𝑒𝑛) = ℓX∗ [𝑔𝜔].
(3) The assignment 𝜔 ↦→ [𝑔𝜔] from the set of closed loops of G into conj(Γ) is

◦ polynomial (in length)-to-one; and
◦ has image with positive lower density with respect to the action of Γ on X .

We briefly sketch how Theorem 1.4 implies Theorem 1.2 in the case that X𝔴 = X and X𝔴∗
∗ = X∗.

From the adjacency matrix of G we define a subshift of finite-type (Σ, 𝜎), whose periodic orbits
correspond to loops in G and hence induce conjugacy classes in conj(Γ). The periods of these periodic
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orbits correspond to ℓX -translation lengths. The functional 𝜓 induces a potential Φ : Σ → Z that is
constant on 2-cylinders, and whose Birkhoff sums correspond to ℓX∗-translation lengths. Item (3) then
allows us to describe the Manhattan curve 𝜃X∗/X in terms of pressure functions associated with Φ (see
Proposition 6.8), and the theorems then follow by standard results in thermodynamic formalism.

1.3. Large deviations

For a pair X ,X∗ of cubulations of a group Γ ∈ 𝔊, we also study large deviations for their translation
lengths.

That is, we estimate the number of conjugacy classes [𝑔] for which



ℓX∗ [𝑔]
ℓX [𝑔] − 𝜂





 < 𝜖 for some 𝜂 ∈ R and a small 𝜖 > 0. (1.1)

We also study the set of conjugacy classes [𝑔] such that

|ℓX∗ [𝑔] − 𝜂ℓX [𝑔] | < 𝜖 for some 𝜂 ∈ R and a small 𝜖 > 0. (1.2)

This latter comparison is more delicate than the corresponding quotient comparison in (1.1) above, as
(when ℓX [𝑔] is bounded away from 0) (1.2) implies (1.1) but not vice versa.

Both of these equations, (1.1) and (1.2), represent the conjugacy classes [𝑔] for which ℓX∗ [𝑔] is
approximately 𝜂ℓX [𝑔]. Therefore, understanding the growth rate/number of conjugacy classes satisfying
these inequalities allows us to form a natural comparison between the actions of Γ on X and X∗. These
growth rates are also related to rigidity phenomena. See, for example, [17, Theorem 1.4] that classifies
word metrics on hyperbolic groups in terms of growth rates coming from such large deviations estimates.
In fact, this current work was motivated by [17, Theorem 4.1] and [17, Remark 4.3] as we now explain.
The result [17, Theorem 4.1] shows that there is a precise large deviations theorem that compares
certain ‘compatible’ word metrics on hyperbolic groups. Here ‘compatible’ is a condition regarding the
exponential growth rates of the word metrics. In [17, Remark 4.3] the authors asked if this compatibility
condition was necessary. In this work we show that it is not and that we can deduce precise large
deviations results for all pairs of word metrics on hyperbolic groups. We present and discuss these
results below in Subsection 1.4.

Despite the fact that estimating the number of conjugacy classes satisfying (1.2) is significantly harder
than studying the analogous question for (1.1), there are previous works that tackle this problem in other
settings. For example, let Σ be a closed surface with negative Euler characteristic and fundamental
group Γ, and suppose that 𝔤 and 𝔤∗ are two hyperbolic metrics on Σ. These metrics induce isometric
actions of Γ on Σ̃ with translation length functions ℓ𝔤 and ℓ𝔤∗ . A result of Schwartz and Sharp [78] states
that there is an interval (𝛼, 𝛽) ⊂ R and constants 𝐶, 𝜆 > 0 such that any 𝜂 ∈ (𝛼, 𝛽) satisfies

#
{
[𝑔] ∈ conj(Γ) : ℓ𝔤 [𝑔] < 𝑇 : |ℓ𝔤∗ [𝑔] − 𝜂ℓ𝔤 [𝑔] | < 𝜖

}
∼ 𝐶𝑒𝜆𝑇

𝑇3/2

as 𝑇 → ∞ for any fixed 𝜖 > 0 (here ‘∼’ represents that the quotients of the two quantities converge to 1
as 𝑇 → ∞). Similar results are known to hold for surfaces of variable negative curvature by Dal’bo [28],
for Hitchin representations by Dai and Martone [27], for Green metrics by Cantrell [16] and for some
pairs of points in outer space by Sharp [79]. These asymptotics are often referred to as correlation
results, and to prove them thermodynamic formalism is usually employed. To apply thermodynamic
formalism one needs to know that the length spectra of the two considered metrics are not rationally
related. That is, if ℓ1, ℓ2 are the length spectra that we want to compare then we would need to know
that there do not exist nonzero 𝑎, 𝑏 ∈ R with 𝑎ℓ1 [𝑔] + 𝑏ℓ2 [𝑔] ∈ Z for all [𝑔] ∈ conj(Γ). This property
is vital as it implies bounds on the operator norm of families of transfer operators, which are then used
in the proof of the correlation asymptotic.
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On the other hand, the length spectra of a pair of cubical actions on CAT(0) cube complexes are
always rationally related. Indeed, after possibly performing one cubical barycentric subdivision, every
cubical isometry of a CAT(0) cube complex either fixes a vertex or preserves a bi-infinite geodesic
on which the isometry acts by nontrivial translations [46]. In particular, the translation length function
associated to any of these actions has image belonging to 1

2Z.
However, by means of the automaton from Theorem 5.11 (Theorem 1.4), we are still able to estimate

the number of conjugacy classes satisfying (1.2). As a consequence of Theorem 3.2 in the setting of
subshifts of finite type, we can prove the following result that can be seen as large deviations with
shrinking intervals.

Theorem 1.5. Let Γ be a group in the class 𝔊 and let it act properly and cocompactly on the CAT(0)
cube complexes X and X∗. Let conj′ ⊂ conj be the set of nontorsion conjugacy classes and consider
the dilations

Dil(X∗,X ) = sup
[𝑔] ∈conj′

ℓX∗ [𝑔]
ℓX [𝑔] and Dil(X ,X∗)−1 = inf

[𝑔] ∈conj′
ℓX∗ [𝑔]
ℓX [𝑔] .

Then there exists an analytic function

I : [Dil(X ,X∗)−1,Dil(X∗,X )] → R

and 𝐶 > 0 such that for any 𝜂 ∈ (Dil(X ,X∗)−1,Dil(X∗,X )) we have

0 < lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓX [𝑔] < 𝑇, |ℓX∗ [𝑔] − 𝜂ℓX [𝑔] | < 𝐶

𝑇

})
= I (𝜂) ≤ 𝑣X . (1.3)

Furthermore, we have equality in the above inequality if and only if 𝜂 = 𝜏(X∗/X ).

We have referred to this result as large deviations with shrinking intervals because it estimates the
growth of the number of group elements satisfying (1.2) opposed to (1.1). It is desirable to prove this
refinement, as it provides a much more precise comparison between the actions of Γ on X and X∗.

Intuitively, the function I can be seen as measuring how similar the geometries actions on X and X∗
are. That is, the closer I is to the constant function with value 𝑣X , the more similar the length functions
𝑣X ℓX and 𝑣X∗ℓX∗ are. We also note that the real analyticity of I is a useful property. Indeed, as shown
in [17], when I is analytic, it is possible to obtain rigidity results that compare metrics through the
values taken by I.

Remark 1.6. As in Theorem 1.2, the conclusion above still holds for triplets (Γ,X ,X∗) in the class 𝔛;
see Theorem 6.2. However, for our arguments (particularly Theorem 3.2) it is crucial that the translation
length functions belong to a lattice in R. We still expect Theorem 6.2 to hold for arbitrary cuboid
complexes X𝔴 and X𝔴∗

∗ , but we will not pursue this in this work.

As an application of Theorem 1.5 we deduce large deviations with shrinking intervals for the
intersection of curves on hyperbolic surfaces. Let Σ be a closed orientable surface of negative Euler
characteristic and fundamental group Γ. If 𝛼, 𝛽 are immersed closed oriented curves in Σ, then the
(geometric) intersection number is the minimal number 𝑖Σ (𝛼, 𝛽) of intersections of closed curves in
the free homotopy classes of 𝛼 and 𝛽. The function 𝑖Σ can be extended by bilinearity to weighted
multicurves, which are finite sums of the form

∑
𝑗 𝜆 𝑗𝛼 𝑗 with 𝛼 𝑗 immersed oriented closed curves in

Σ and a set (𝜆 𝑗 ≥ 0) 𝑗 of weights. Any nontrivial element in conj(Γ) is represented by a unique free
homotopy class of immersed oriented closed curves, so we can talk of the intersection number between
a weighted multicurve in Σ and a conjugacy class in conj(Γ). For more details about the intersection
number, see [33].
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A generating set S for Γ is simple if there exists a point 𝑝 ∈ Σ such that elements of 𝑆 ⊂ Γ = 𝜋1 (Σ, 𝑝)
can be represented by simple loops that are pairwise nonhomotopic and disjoint except at the base
point p. For example, the generating set for the standard presentation

Γ =
〈
𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 : [𝑎1, 𝑏1] · · · [𝑎𝑔, 𝑏𝑔]

〉
is simple. In [31, Theorem 1.2], Erlandsson proved that the translation length function ℓ𝑆 of the word
metric of a simple generating set S can be recovered by pairing in the intersection number against a
carefully chosen weighted multicurve 𝛼𝑆 with weights in 1

2Z. Up to scaling, this translation length
function can also be recovered by looking at the CAT(0) cube complex dual to the multicurve 𝛼𝑆 .
Therefore, Theorem 6.2 applies and we obtain the following.

Corollary 1.7. Let Γ be the fundamental group of the closed orientable hyperbolic surface Σ and
consider a simple generating set S of exponential growth rate 𝑣𝑆 . Let 𝛼 be a nontrivial weighted
multicurve on Σ with integer weights, and define

𝑎inf := inf
[𝑔] ∈conj′

𝑖Σ (𝛼, [𝑔])
ℓ𝑆 [𝑔]

and 𝑎sup := sup
[𝑔] ∈conj′

𝑖Σ (𝛼, [𝑔])
ℓ𝑆 [𝑔]

.

Then there exists an analytic convex function I : [𝑎inf , 𝑎sup] → R and 𝐶 > 0 such that for any
𝜂 ∈ (𝑎inf , 𝑎sup) we have

0 < lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇, |𝑖Σ (𝛼, [𝑔]) − 𝜂ℓ𝑆 [𝑔] | <

𝐶

𝑇

})
= I (𝜂) ≤ 𝑣𝑆 .

As discussed above, we can see this corollary as providing a precise comparison between the
intersection number (with 𝛼) and word length of closed geodesics. In some sense, I is encoding how
well the intersection number can be approximated by the simple word metric for S.

1.4. Word metrics on hyperbolic groups

Since the proof of Theorem 1.5 relies on Theorem 3.2 (a purely dynamical statement), the existence of an
automaton encoding both actions on X and X∗, and the arithmeticity of the translation length functions,
we can deduce large deviations with shrinking intervals for any pair of group actions fulfilling similar
conditions. That is the case of word metrics on hyperbolic groups, and in fact, this was the author’s main
motivation at the beginning of this project.

Let Γ be a nonelementary hyperbolic group and let 𝑆, 𝑆∗ ⊂ Γ be finite generating sets with cor-
responding word metrics 𝑑𝑆 , 𝑑𝑆∗ . By Cannon’s theorem [15], for a total order on S, the language of
lexicographically first geodesics in Γ is regular, so it is parametrized by a finite-state automaton. As a
consequence of [14, Lemma 3.8], Calegari and Fujiwara are able to modify this automaton (without
modifying the parameterized language), and find an integer functional on the edges of the graph of the
automaton so that its sum over paths recovers the 𝑆∗-word length for the corresponding element in Γ
(this was our main motivation to construct the automaton in Theorem 5.11).

By studying the subshift of finite type associated to this automaton, Cantrell and Tanaka [19, 18]
deduced analyticity of the Manhattan curve for 𝑆, 𝑆∗ as well as a large deviations principle. More
precisely, let ℓ𝑆 , ℓ𝑆∗ be the corresponding translation length functions and consider the dilations

Dil(𝑆∗, 𝑆) = sup
[𝑔] ∈conj′

ℓ𝑆∗ [𝑔]
ℓ𝑆 [𝑔]

and Dil(𝑆, 𝑆∗)−1 = inf
[𝑔] ∈conj′

ℓ𝑆∗ [𝑔]
ℓ𝑆 [𝑔] .

Then there exists a real analytic, concave function I : [Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)] → R>0 such that for
𝜂 ∈ (Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)) we have
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lim
𝜖→0+

lim sup
𝑛→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj(Γ) : ℓ𝑆 [𝑔] < 𝑇,





ℓ𝑆∗ [𝑔]ℓ𝑆 [𝑔]
− 𝜂





 < 𝜖}) = I (𝜂). (1.4)

The rate function I is a Legendre transform constructed from the Manhattan curve for 𝑆, 𝑆∗, see [19,
Theorem 4.23]. By applying Theorem 3.2 to this subshift, we can improve this result and obtain a large
deviations theorem with shrinking intervals.

Theorem 1.8. Let Γ be a nonelementary hyperbolic group and consider two finite generating sets 𝑆, 𝑆∗
for Γ with exponential growth rates 𝑣𝑆 , 𝑣𝑆∗ , and I as above. Then there exists 𝐶 > 0 such that for any
𝜂 ∈ (Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)) we have

0 < lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇, |ℓ𝑆∗ [𝑔] − 𝜂ℓ𝑆 [𝑔] | <

𝐶

𝑇

})
= I (𝜂) ≤ 𝑣𝑆 .

Furthermore, we have equality in the above inequality if and only if

𝜂 = 𝜏(𝑆∗/𝑆) := lim
𝑇→∞

1
#{[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇}

∑
ℓ𝑆 [𝑔]<𝑇

ℓ𝑆∗ [𝑔]
𝑇

.

This result implies that, after scaling a pair of word metrics by their exponential growth rates, there is
always an exponentially growing set for which their translation lengths are close, that is, for any 𝜖 > 0

0 < lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇, |𝑣𝑆ℓ𝑆 [𝑔] − 𝑣𝑆∗ℓ𝑆∗ [𝑔] | < 𝜖

})
≤ 𝑣𝑆 . (1.5)

This extends the recent work [17, Theorem 4.1] where the authors proved a correlation result for pairs of
word metrics under an additional rationality assumption on the exponential growth rates. This result also
answers a question raised by the authors in [17, Remark 4.3]. We also deduce the following corollary.

Corollary 1.9. Let Γ be a nonelementary hyperbolic group, and let S and 𝑆∗ be two finite generating
sets on Γ. Then there exists𝐶 > 0 such that for any 𝜂 ∈ [Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)] we can find an infinite
sequence (𝑔𝑛)𝑛≥1 ⊂ Γ such that 



ℓ𝑆∗ [𝑔𝑛]ℓ𝑆 [𝑔𝑛]

− 𝜂




 ≤ 𝐶

|𝑔𝑛 |2𝑆
. (1.6)

If 𝜂 ∈ [Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)] is rational then there exists 𝑔 ∈ Γ such that

ℓ𝑆∗ [𝑔]
ℓ𝑆 [𝑔]

= 𝜂.

This result is concerned with understanding how well the values of the quotient of ℓ𝑆∗ with ℓ𝑆 can
approximate a given 𝜂 ∈ [Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)]. It shows that the approximation rate is optimal.
Indeed, it is well-known that the translation length function for word metrics takes values in a lattice
1
𝑁 Z for some 𝑁 ∈ N and therefore by Hurwitz’s Theorem [51] we cannot find a sequence 𝑔𝑛 for which
the convergence rate in (1.6) is faster.

In Subsection 4.2 we present an example for a pair of word metrics on a free group. In particular, we
compute the limit supremum in (1.5) for this pair of word metrics.

Organization

The organization of the paper is as follows. In Section 2 we cover preliminary material about Manhattan
curves, CAT(0) cube complexes and cubulable groups, finite-state automata, symbolic dynamics and
suspension flows.
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In Section 3 we prove Theorem 3.2, a large deviations result with shrinking intervals for lattice
potentials on mixing subshifts of finite type that are constant on 2-cylinders. We apply this theorem to
pairs of word metrics on hyperbolic groups in Section 4 and prove Theorem 1.8.

In Section 5 we prove Proposition 5.2 that describes large classes of groups included in𝔊. There we
also prove Theorem 5.11, in which we construct a finite-state automaton for pairs of compatible actions
on CAT(0) cube complexes. We use this automaton in Section 6 to prove Theorem 6.1 and Theorem 6.2,
from which we deduce Theorem 1.2 and Theorem 1.5. In this section we also prove Theorem 1.4.

Finally, in the appendix we prove a Proposition A.1, a criterion for convex-cocompactness of sub-
groups of cubulable relatively hyperbolic groups, which may be of independent interest.

2. Preliminaries

2.1. Isometric group actions

Let Γ be a finitely generated group acting by isometries on the metric space (𝑋, 𝑑𝑋 ) and let 𝑥 ∈ 𝑋 be an
arbitrary base point. The (stable) translation length of this action is the function ℓ𝑋 : conj → R given by

ℓ𝑋 [𝑔] = lim
𝑛→∞

𝑑𝑋 (𝑔𝑛𝑥, 𝑥)
𝑛

for 𝑔 ∈ [𝑔] in conj.

The exponential growth rate of this action is the quantity

𝑣𝑋 := lim sup
𝑇→∞

log(#{𝑔 ∈ Γ : 𝑑𝑋 (𝑔𝑥, 𝑥) < 𝑇})
𝑇

∈ [0, +∞] .

As for the translation lengths, the exponential growth rate is independent of the chosen base point x. If
X is geodesic (or more generally roughly geodesic) and the action of Γ on X is proper and cocompact,
then 𝑣𝑋 is finite. In some cases we can recover the exponential growth rate as the limit

lim sup
𝑇→∞

1
𝑇

log #ℭ𝑋 (𝑇),

where each 𝑇 > 0 we denote

ℭ𝑋 (𝑇) = {[𝑔] ∈ conj : ℓ𝑋 [𝑔] < 𝑇}.

This happens for example when Γ is hyperbolic and the action on X is proper and cocompact.
Given two isometric actions of Γ on the metric spaces X and 𝑋∗, the Manhattan curve for the pair

(𝑋, 𝑋∗) is the boundary of the convex set

C𝑋∗/𝑋 :=
⎧⎪⎪⎨⎪⎪⎩(𝑎, 𝑏) ∈ R2 :

∑
[𝑔] ∈conj

𝑒−𝑎ℓ𝑋∗ [𝑔]−𝑏ℓ𝑋 [𝑔] < ∞
⎫⎪⎪⎬⎪⎪⎭,

assuming it is nonempty. Equivalently, C𝑋∗/𝑋 is the set of points (𝑠, 𝜃𝑋∗/𝑋 (𝑠)) where 𝜃𝑋∗/𝑋 (𝑠) is the
abscissa of convergence of the series

𝑡 ↦→
∑

[𝑔] ∈conj
𝑒−𝑡ℓ𝑋 [𝑔]−𝑠ℓ𝑋∗ [𝑔] .

By abuse of notation, 𝜃𝑋∗/𝑋 is also called the Manhattan curve for (𝑋, 𝑋∗).

2.2. CAT(0) cube complexes

For bibliography about CAT(0) cube complexes and groups acting on them, we refer the reader to
[10, 74]. A nonpositively curved (NPC) cube complex is a metric polyhedral complex in which all
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polyhedra are unit-length Euclidean cubes, and satisfies Gromov’s link condition: the link of each
vertex is a flag complex. If this complex is simply connected we say that it is a CAT(0) cube complex.

Let X be an NPC cube complex. Consider the minimal equivalence relations on the set of edges
(resp. oriented edges) of X such that the edges 𝑒 = {𝑣, 𝑤} and 𝑒 = {𝑣′, 𝑤′} (resp. oriented edges 𝑣 𝑒−→ 𝑤

and 𝑣′ 𝑒′−→ 𝑤′) are in the same equivalence class if 𝑣, 𝑤, 𝑣′, 𝑤′ span a square in X (resp. 𝑣, 𝑤, 𝑣′𝑤′ span a
square in X with 𝑣, 𝑣′ adjacent and 𝑤, 𝑤′ adjacent). Equivalence classes of these equivalence relations
are called hyperplanes (resp. oriented hyperplanes), and we let H(X ) denote the set of hyperplanes of
X . If the equivalence class of an (oriented) edge e is the (oriented) hyperplane 𝔥, then we say that e
dual to 𝔥. A hyperplane is 2-sided if it corresponds to exactly two oriented hyperplanes; otherwise it is
1-sided.

Suppose now that X is a CAT(0) cube complex, in which case all hyperplanes are 2-sided. A
combinatorial path in X is a sequence 𝛾 = (𝛾0, . . . , 𝛾𝑛) of vertices in X such that 𝛾𝑖 is adjacent to
𝛾𝑖+1 for 𝑖 = 0, . . . , 𝑛 − 1. In that case, we say that 𝛾0 is the initial vertex of 𝛾 and 𝛾𝑛 is its final vertex.
The length of 𝛾 = (𝛾0, . . . , 𝛾𝑛) is defined as n. This path is often seen as a continuous path by also
considering the edges 𝑒𝑖+1 joining each 𝛾𝑖 with 𝛾𝑖+1. Such a path is geodesic if no two distinct edges 𝑒𝑖
are dual to the same hyperplane. The combinatorial metric on X is the graph metric 𝑑X on its 1-skeleton
X 1 so that each edge has length 1. It follows that a combinatorial path is geodesic if and only if it is
geodesic for the metric 𝑑X .

A hyperplane 𝔥 in the CAT(0) cube complex X separates two vertices of X if some (any) combinato-
rial path connecting these vertices has an edge dual to 𝔥. It follows that the combinatorial distance of any
two vertices in X equals the number of hyperplanes separating them. Also, a hyperplane 𝔥 determines
the equivalence relation of “not being separated by 𝔥” on the set of vertices of X . This equivalence
relation has exactly 2 equivalence classes {𝔥−, 𝔥+}, which are the halfspaces determined by 𝔥. A sub-
complex of X is convex if its vertex set is the intersection of halfspaces. Equivalently, 𝑍 ⊂ X is convex
if any combinatorial geodesic joining points in 𝑍0 is contained in 𝑍0.

An orthotope structure on the CAT(0) cube complex X is a function

𝔴 : H(X ) → R>0,

and the pair X𝔴 = (X ,𝔴) is called a cuboid complex. An orthotope structure induces a metric 𝑑𝔴X on
X 1 by declaring each edge e to have length 𝔴(𝔥) for 𝔥 the hyperplane dual to e. In this way, for any two
vertices 𝑥, 𝑦 ∈ X 0 we have

𝑑𝔴X (𝑥, 𝑦) =
∑

𝔥∈H(𝑥 |𝑦)
𝔴(𝔥),

where H(𝑥 |𝑦) ⊂ H(X ) is the collection of hyperplanes separating x and y. Note that if 𝔴 is the constant
function equal to 1, then 𝑑𝔴X is just the standard combinatorial metric 𝑑X .
Remark 2.1. It is clear that a geodesic in X with respect to 𝑑X is also geodesic with respect to 𝑑𝔴X for
any orthotope structure 𝔴.

Now let Γ be a group acting on the CAT(0) cube complex X . We always assume that the action
is cubical, meaning that it preserves the cube complex structure. Under this assumption, the action is
isometric on X 1 with the combinatorial metric 𝑑X . Similarly, ℓX always denotes the stable translation
length of Γ with respect to the action on (X 1, 𝑑X ). If the action of Γ is proper and cocompact, we say
that X is a cubulation of Γ.

The action of Γ on X induces a natural action on H(X ). If 𝔴 is a Γ-invariant orthotope structure on
X in the sense that 𝔴(𝔥) = 𝔴(𝑔𝔥) for all 𝑔 ∈ Γ and 𝔥 ∈ H(X ), then we say that Γ acts on the cuboid
complex (X ,𝔴). In that case the action of Γ on (X 1, 𝑑𝔴X ) is also by isometries. We let ℓ𝔴X denote the
stable translation length of Γ for its action on (X 1, 𝑑𝔴X ).

By a hyperplane stabilizer we mean a subgroup of Γ consisting of group elements g such that 𝑔𝔥 = 𝔥
for some fixed hyperplane 𝔥 ∈ H(X ). We denote the hyperplane stabilizer of 𝔥 by Γ𝔥. A hyperplane 𝔥 is

https://doi.org/10.1017/fms.2025.10094 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10094


Forum of Mathematics, Sigma 11

essential for the action of Γ if for any vertex x of X , the halfspaces 𝔥± contain elements in the Γ-orbit
of x arbitrarily far from 𝔥∓. The action of Γ on X is essential if every hyperplane is essential.

If X is a cubulation of Γ, a subgroup 𝐻 < Γ is called convex-cocompact with respect to X if there
exists a convex subcomplex 𝑍 ⊂ X that is H-invariant and so that the action of H on Z is cocompact.
Such a subcomplex Z is called a convex core for H. Note that the hyperplane stabilizer of any hyperplane
𝔥 is convex-cocompact since it acts cocompactly on the (convex subcomplex spanned by the) set of
vertices in edges dual to 𝔥 [47, Lemma 13.4].

If X is a CAT(0) cube complex and W ⊂ H(X ) is any collection of hyperplanes, in [20, Section
2.3] Caprace and Sageev introduced the restriction quotient, which is a CAT(0) cube complex X (W)
equipped with a surjective cellular map 𝜙 : X → X (W) satisfying the following: an edge in X is
collapsed to a single vertex under 𝜙 if and only if it is dual to a hyperplane not in W. The projection
𝜙 induces a natural bijection between W and H(X (W)), and hence any orthotope structure 𝔴 on X
induces an orthotope structure 𝜙∗(𝔴) on X (W).
Remark 2.2. Note that (pre)images of convex subcomplexes under restriction quotients remain convex.
In particular, images of geodesic paths remain geodesic, although some subpaths are allowed to collapse
to points. Also note that if Γ acts on X andW is Γ-invariant, then there is a natural action of Γ on X (W).

A cubulation X of Γ is co-special if the quotient X = Γ\X is a special cube complex in the sense
of Haglund-Wise [47]. Equivalently, X is co-special if Γ injects into a right-angled Artin group 𝐴𝐺
inducing a Γ-equivariant isometric embedding of X into 𝑅𝐺 as a convex subcomplex, where 𝑅𝐺 is the
universal cover of the Salvetti complex 𝑅𝐺 associated to the graph G. Among other properties of special
cube complexes, hyperplanes are 2-sided and embedded, and they do not self-osculate [47, Def. 3.2]. In
particular, different oriented edges with the same initial vertex are dual to different oriented hyperplanes.
The cubulation X of Γ is virtually co-special if there exists a finite-index subgroup Γ < Γ such that the
action of Γ on X is co-special.

Fundamental groups of compact special cube complexes are residually finite, and more generally,
their convex-cocompact subgroups are separable [47, Corollary 7.9]. For our purposes, co-special
cubulations will be used to construct finite-state automata parameterizing combinatorial geodesics, as
we explain in Example 2.5 in the next subsection.

2.3. Finite-state automata

For references on automatic structures and some of their connections with group theory, see [32]. For the
relation between automatic structures and special cube complexes, we refer the reader to [58, Section 5].
Let S be a finite set and let 𝑆∗ denote the set of finite words over the alphabet S. If 𝑤 = ℎ1 · · · ℎ𝑛 and
𝑤′ = ℎ′1 · · · ℎ

′
𝑚 are words in 𝑆∗, then its concatenation is the word 𝑤𝑤′ := ℎ1 · · · ℎ𝑛ℎ′1 · · · ℎ

′
𝑚. The length

of a word is the number of letters in S composing it. We let the empty set correspond to the unique word
of length 0 in 𝑆∗. A language over S is any subset of words in 𝑆∗.

A (finite-state) automaton over S is a tuple

A = (G, 𝜋, 𝐼, 𝐹),

where G = (𝑉, 𝐸) is a finite directed graph, 𝜋 : 𝐸 → 𝑆 is a labeling function and 𝐼, 𝐹 ⊂ 𝑉 are nonempty
sets of initial and final states.
Remark 2.3. This convention differs from the standard definition of automaton (e.g., [58, Definition
5.2]), where it is required for I to consist of a single vertex. This difference in convention does
not significantly change the discussion, but it will be useful in Theorem 5.11 when we construct an
automaton for which we have no control on the number of initial states.

By a path in G we mean a sequence 𝜔 of (always directed) edges 𝑒1, . . . , 𝑒𝑛 in E such that the final
vertex 𝑣𝑖 of 𝑒𝑖 is the initial vertex of 𝑒𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1. If 𝑣0 is the initial vertex of 𝑒1, we denote
this path 𝜔 either by 𝜔 = ( 𝑒1−→ · · · 𝑒𝑛−−→) or 𝜔 = (𝑣0

𝑒1−→ · · · 𝑒𝑛−−→ 𝑣𝑛) depending on the emphasis we
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want to give to the vertices. If there is no ambiguity on the edges, we can also denote this path by
(𝑣0 → · · · → 𝑣𝑛). The length of a path is the number of edges that determine it. Note that paths of
length 1 correspond to the edges in E. We also allow the degenerate case of paths of length 0, which are
the vertices in V.

If 𝜔, 𝜔′ are paths in G such that the final vertex of 𝜔 is the initial vertex of 𝜔′, then the concatenation
𝜔𝜔′ is the path in G defined in the expected way. Similarly we define the concatenation of any finite
number of paths.

A word w in 𝑆∗ is represented by the path 𝜔 = (𝑣0
𝑒1−→ 𝑣1 · · ·

𝑒𝑛−−→ 𝑣𝑛) in G if 𝑤 = 𝜋(𝜔) :=
𝜋(𝑒1) · · · 𝜋(𝑒𝑛). If in addition 𝑣0 ∈ 𝐼 and 𝑣𝑛 ∈ 𝐹, we say that w accepted by A and that 𝜔 is admissible.
It is clear that the word represented by a concatenation𝜔𝜔′ is the concatenation of the words represented
by 𝜔 and 𝜔′. Let 𝐿 = 𝐿A be the language consisting of the words accepted by A. In this case we say
that L is parametrized by A.

The automaton A is deterministic if any two distinct edges in G with the same initial vertex have
different labels. In that case, for any 𝑤 ∈ 𝐿A and any initial state 𝑣 ∈ 𝐼 there exists at most one path in
G representing w and starting at v. The automaton is pruned if any vertex in G is the final vertex of a
path starting at an initial state.

Example 2.4 (Automatic structures on hyperbolic groups). Let Γ be a hyperbolic group and consider
a finite set 𝑆 ⊂ Γ generating Γ as a semi-group and with word length | · |𝑆 . We consider S as our
alphabet, so that there is a natural evaluation map ev : 𝑆∗ → Γ. For a fixed total order on S we obtain
the lexicographic order ≺ on 𝑆∗. Let 𝐿 = 𝐿𝑆 be language of lexicographically first geodesics. That is,
for each 𝑔 ∈ Γ, a word 𝑤 ∈ 𝑆∗ with ev(𝑤) = 𝑔 is in L if and only if w has length |𝑔 |𝑆 and 𝑤 ≺ 𝑤′ for
all other 𝑤′ ∈ 𝑆∗ with ev(𝑤′) = 𝑔 and of length |𝑔 |𝑆 . Cannon [15] showed that the language L defined
above is regular, in the sense that 𝐿 = 𝐿A for A = (G = (𝑉, 𝐸), 𝜋, {∗}, 𝑉) a deterministic finite-state
automaton over S. In particular, the evaluation map gives us a length-preserving bijection from L onto Γ.

Consider now another finite generating subset 𝑆∗ ⊂ Γ. In [14, Lemma 3.8], Calegari and Fujiwara
constructed a new deterministic automaton A′ = (G ′ = (𝑉 ′, 𝐸 ′), 𝜋′, {∗′}, 𝑉 ′) over S parameterizing 𝐿𝑆
and an integer-valued function 𝜙 : 𝑉 ′ → Z such that for any word 𝑤 ∈ 𝐿𝑆 represented by the path
𝜔 = (∗′ 𝑒1−→ · · · 𝑒𝑛−−→ 𝑣𝑛) in G ′ we have

|ev(𝑤) |𝑆∗ =
𝑛∑
𝑖=1

𝜙(𝑣𝑖).

We note that it is equivalent to define the labeling 𝜙 on the directed edge set 𝐸 ′ instead.

We will see in the following subsection that the automatic structure discussed above gives rise to a
dynamical system (Σ, 𝜎) called a subshift of finite type. The labeling 𝜙 above corresponds to a real-
valued function on Σ which satisfies the Markovian property of being ‘constant on 2-cylinders’: see
Subsection 2.4.

Example 2.5 (Automatic structures on special cube complexes). For this example we follow Sections
5.2 and 5.3 in [58]. Let Z be a compact special cube complex with universal cover Z and fix a base
vertex 𝑜 ∈ Z . Let 𝑆Z be the set of the oriented hyperplanes of Z . In [58], Li and Wise constructed a
deterministic pruned finite-state automaton

AZ = (GZ = (𝑉, 𝐸), 𝜋, {∗}, 𝑉)

over 𝑆Z and parameterizing a language 𝐿Z . This language describes geodesics in Z based at o in the
following sense. Given any word 𝑤 ∈ 𝐿Z represented by the (necessarily unique) admissible path 𝜔
there exists a geodesic path 𝛾𝑤 in Z starting at o and ending at the vertex 𝜏Z (𝑤) such that:

◦ if 𝑤 = 𝔥1 · · · 𝔥𝑛 ∈ 𝐿Z and 𝜔 = (∗′ 𝑒1−→ · · · 𝑒𝑛−−→ 𝑣𝑛), then 𝛾𝑤 = (𝑜 = 𝑥0, . . . , 𝑥𝑛) is a geodesic of
length n;
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◦ for each 1 ≤ 𝑖 ≤ 𝑛 we have 𝜋(𝑒𝑖) = 𝔥𝑖 and the oriented hyperplane in Z dual to the oriented edge
from 𝑥𝑖−1 to 𝑥𝑖 maps to 𝔥𝑖 under the quotient Z → Z; and,

◦ the map 𝜏Z : 𝐿Z → Z0 is a bijection.

The automaton AZ being deterministic implies that the geodesic 𝛾𝑤 is uniquely determined by w.

Remark 2.6. The language constructed in [58] actually depends on an injection of Γ = 𝜋1 (Z) into a
right-angled Artin group 𝐴𝐺 inducing a Γ-equivariant isometric embedding of Z into 𝑅𝐺 as a convex
subcomplex, where 𝑅𝐺 is the universal cover of the Salvetti complex 𝑅𝐺 associated to G. In that case, the
language obtained is over the alphabet of oriented hyperplanes of 𝑅𝐺 . The language 𝐿Z described above
is a particular case of this construction, when we consider the local isometric immersion Z → 𝑅𝐺Z

for
𝐺Z being the crossing graph of Z . For this immersion there is a natural bijection between 𝑆Z and the
set of oriented hyperplanes in 𝑅𝐺Z

, see for instance [47, Lemma 4.1].

2.4. Symbolic dynamics

In this subsection we introduce the preliminary material we need from symbolic dynamics. See Chapter
1 of [66] for more information regarding the basic definitions we now present. Let A be a 𝑘 × 𝑘 matrix
with entries 0 or 1. This matrix is said to be aperiodic if there exists 𝑁 ≥ 1 such that all of the entries
of 𝐴𝑁 are strictly positive. We say that A is irreducible if for any 𝑖, 𝑗 ∈ {1, . . . , 𝑘} there exists 𝑛 ≥ 1
such that (𝐴𝑛)𝑖, 𝑗 (i.e., the (𝑖, 𝑗)th entry of 𝐴𝑛) is strictly positive.

The (one-sided) subshift of finite type Σ𝐴 associated to A is the set of infinite sequences

Σ𝐴 =
{
(𝑥𝑛)∞𝑛=0 : 𝑥𝑛 ∈ {1, . . . , 𝑘} and 𝐴𝑥𝑛 ,𝑥𝑛+1 = 1 for all 𝑛 ≥ 0

}
.

These infinite sequences can be seen as infinite paths in a directed graph G𝐴 with vertices labeled
1, . . . , 𝑘 and a directed edge from vertex i to j if and only if 𝐴𝑖, 𝑗 = 1. We will therefore refer to the
numbers 1, . . . , 𝑘 as the states of Σ𝐴. We equip Σ𝐴 with the shift map 𝜎 : Σ𝐴 → Σ𝐴 defined by

𝜎((𝑥𝑛)∞𝑛=0) = (𝑥𝑛+1)∞𝑛=0

to obtain a dynamical system (Σ𝐴, 𝜎).
Consider a finite ordered string 𝑥0, . . . , 𝑥𝑚−1 ∈ {1, . . . , 𝑘} where 𝐴𝑥 𝑗 ,𝑥 𝑗+1 = 1 for each 𝑗 = 0, . . . ,

𝑚 − 2. The cylinder set associated to this string is the subset of Σ𝐴 given by

[𝑥0, . . . , 𝑥𝑚−1] :=
{
(𝑦𝑛)∞𝑛=0 ∈ Σ𝐴 : 𝑦 𝑗 = 𝑥 𝑗 for 𝑗 = 0, . . . , 𝑚 − 1

}
.

We endow Σ𝐴 with a topology by declaring the set of all cylinder sets to be an open basis.
The system (Σ𝐴, 𝜎) is said to be mixing if for any two open sets𝑈,𝑉 ⊂ Σ𝐴 there is 𝑁 ≥ 1 such that

𝜎𝑛 (𝑈) ∩𝑉 ≠ ∅ for all 𝑛 ≥ 𝑁 . We say that (Σ𝐴, 𝜎) is transitive if for any two open sets𝑈,𝑉 ⊂ Σ𝐴 there
exists 𝑛 ≥ 1 such that 𝜎𝑛 (𝑈) ∩ 𝑉 ≠ ∅. We have that (Σ𝐴, 𝜎) is mixing if and only if A aperiodic and
(Σ𝐴, 𝜎) is transitive if and only if A is irreducible. We will often suppress the dependence of A in the
notation for a subshift and will write (Σ, 𝜎).

Example 2.7. Let Γ be a hyperbolic group equipped with finite generating set S. Consider a corre-
sponding automatic structure A = (G = (𝑉, 𝐸), 𝜋, {∗}, 𝑉) as discussed in Example 2.4. Suppose we
have labeled the vertices in V by 1 to k where k is the cardinality of V. Then the graph G is encoded by
a 𝑘 × 𝑘 transition matrix A where the (𝑖, 𝑗)th entry of A is 1 if there is a directed edge joining vertex i
to j and is 0 otherwise. This matrix gives a subshift (Σ𝐴, 𝜎) that encodes (Γ, 𝑆). A subshift obtained in
this way is never transitive (as ∗ only has outgoing edges) and it is not known whether, after removing
∗, it is always possible to find a connected graph G representing a given pair (Γ, 𝑆). In general it is
possible to decompose the graph G into connected components (i.e., maximal connected subgraphs). If
the the transition matrices for these subgraphs are C1, . . . , C𝑚 then the subshifts ΣC 𝑗 are each transitive.
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We call a connected component C maximal if the number of paths in C consisting of n edges grows like
𝜆𝑛, where 𝜆𝑛 is the growth rate of the n spheres in the Cayley graph Cay(Γ, 𝑆), that is, the growth rate
of the number of paths of length n in C is as large as possible.

Throughout the rest of the section (Σ, 𝜎) will be a mixing subshift of finite type, and consider a
function (which we will, at some points, refer to as a potential) 𝜓 : Σ → R. We say that 𝜓 is constant
on 2-cylinders if 𝜓 is constant on each set of the form [𝑥0, 𝑥1] where 𝑥0, 𝑥1 ∈ {1, . . . , 𝑘} and 𝐴𝑥0 ,𝑥1 = 1.
The assumption that 𝜓 is constant on 2-cylinders guarantees that 𝜓 has Markovian behaviour: the value
that 𝜓 takes at 𝑥 ∈ Σ depends only on the initial cylinder that x belongs to. That is, 𝜓(𝑥) does not depend
on the future cylinders that x visits under the iterates of 𝜎. Although this is a restrictive condition
for a general function on Σ, it is not restrictive for our purposes. This is because we are interested in
understanding the growth rate properties of functions that have lattice image: their image lies in 𝛼Z
for some 𝛼 ∈ R (as discussed in Subsection 1.3). Hölder continuous functions on Σ that have a lattice
image have the property that their image only depends on finitely many symbols of the input. Then
after relabeling the subshift Σ (i.e., moving to a topologically conjugate subshift) we can assume that
the function is in fact constant on 2-cylinders. See for example the proof of Proposition 5.1 in [66] for
an example of this argument. To summarize, functions that are constant on 2-cylinders naturally arise
when studying discrete geometries. Lastly, it is worth mentioning that such functions have particularly
nice properties: see for example Lemma 3.4 below.

For each 𝑛 ≥ 1, the nth Birkhoff sum of 𝜓 is the function

𝜓𝑛 : Σ → R such that 𝜓𝑛 (𝑥) := 𝜓(𝑥) + 𝜓(𝜎(𝑥)) + · · · + 𝜓(𝜎𝑛−1 (𝑥)).

A point 𝑥 ∈ Σ is said to be periodic if 𝜎𝑛 (𝑥) = 𝑥 for some 𝑛 ≥ 1. Such an n is called a period of x. Note
that a periodic point has infinitely many periods. Given a periodic point we will assume that it comes with
with a choice of period (which may not be its least period) which we will label |𝑥 | (so that 𝜎 |𝑥 | (𝑥) = 𝑥).

Example 2.8. Consider the automatonA′ = (G ′ = (𝑉 ′, 𝐸 ′), 𝜋′, {∗′}, 𝑉 ′) and the integer-valued function
𝜙 : 𝑉 ′ → Z introduced in Example 2.4. Then, as discussed in Example 2.7, A′ gives rise to a subshift
of finite type (Σ, 𝜎). Furthermore, the labeling 𝜙 defines a function 𝑓 : Σ → Z by

𝑓 (𝑥) = 𝜙(𝑣𝑥0 ),

where 𝑥 = (𝑥𝑛)∞𝑛=0 and 𝑣𝑥0 ∈ 𝑉 is the vertex corresponding to the symbol 𝑥0. The function f is constant
on 2-cylinders and furthermore if 𝑥 = (𝑥𝑛)∞𝑛=0 ∈ Σ then

𝑓 𝑛 (𝑥) = |𝑔𝑥,𝑛 |𝑆∗

where 𝑔𝑥,𝑛 ∈ Γ is the group element obtained from multiplying the first n labelings in the infinite
path corresponding to x, that is, if the first n edges in the path corresponding to x are 𝑒1, . . . , 𝑒𝑛 then
𝑓 𝑛 (𝑥) = |𝜋(𝑒1) · · · 𝜋(𝑒𝑛) |𝑆∗ . We note that, when 𝑥 ∈ Σ satisfies that 𝜎𝑛 (𝑥) = 𝑥 then

𝑚 𝑓 𝑛 (𝑥) = 𝑓 𝑚𝑛 (𝑥) = |𝑔𝑥,𝑚𝑛 |𝑆∗ = |𝑔𝑚𝑥,𝑛 |𝑆∗

and so

𝑓 𝑛 (𝑥) = lim
𝑚→∞

|𝑔𝑚𝑥,𝑛 |𝑆∗/𝑚 = ℓ𝑆∗ [𝑔𝑥,𝑛] .

Two functions 𝜓, 𝜑 : Σ → R, which we are assuming to be constant on 2-cylinders, are said to be
cohomologous if there exists a continuous function 𝑢 : Σ → R such that 𝜓(𝑥) = 𝜑(𝑥) + 𝑢(𝜎(𝑥)) − 𝑢(𝑥)
for all 𝑥 ∈ Σ. By Livsic’s Theorem [66, Proposition 3.7], 𝜓 and 𝜑 are cohomologous if and only if
𝜓𝑛 (𝑥) = 𝜑𝑛 (𝑥) whenever 𝜎𝑛 (𝑥) = 𝑥.
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The variational principle states that there is a unique 𝜎-invariant Borel probability measure on (Σ, 𝜎)
that achieves the supremum

P(𝜓) := sup
𝜇∈M𝜎

{
ℎ𝜇 (𝜎) +

∫
𝜓 𝑑𝜇

}
,

where M𝜎 is the collection of all 𝜎-invariant Borel probability measures on Σ and ℎ𝜇 (𝜎) denotes the
(metric) entropy of 𝜎 with respect to the measure 𝜇 [66, Theorem 3.5]. The quantity P(𝜓) is referred to
as the pressure of 𝜓 and the measure attaining the supremum is called the equilibrium state of 𝜓. When
𝜓 is a constant function, the measure achieving the supremum for the pressure of 𝜓 is the measure of
maximal entropy. Furthermore the topological entropy ℎ = ℎ(𝜎) of (Σ, 𝜎) is given by ℎ = P(0).

Consider the quantities

𝛼min := inf
𝜇∈M𝜎

∫
Σ
𝜓 𝑑𝜇 and 𝛼max := sup

𝜇∈M𝜎

∫
Σ
𝜓 𝑑𝜇.

The large deviations principle implies (since functions that are constant on 2-cylinders are Hölder) that
there exists a real analytic, concave function L(𝜓, ·) : R→ R>0 ∪ {∞} such that, for any nonempty sets
𝑈 ⊂ 𝑉 ⊂ R with U open and V closed we have

− inf
𝑠∈𝑈

L(𝜓, 𝑠) ≤ lim inf
𝑛→∞

1
𝑛

log 𝜇
(
𝑥 ∈ Σ :

𝜓𝑛 (𝑥)
𝑛

∈ 𝑈
)

≤ lim sup
𝑛→∞

1
𝑛

log 𝜇
(
𝑥 ∈ Σ :

𝜓𝑛 (𝑥)
𝑛

∈ 𝑉
)
≤ − inf

𝑠∈𝑉
L(𝜓, 𝑠). (2.1)

See [56, Theorem in Section 2.1] for this result. The same result holds, with the same rate function
L(𝜓, ·), when we replace the sets

𝜇

(
𝑥 ∈ Σ :





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝜖 )
with the sequence of (normalized) cardinalities

1
#{𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥}#

{
𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥 and





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝜖}.
This is a well-known result that follows from the same proof as that of [56, Theorem in Section 2.1].
The function L(𝜓, ·) is the Legendre transform of 𝑡 ↦→ P(𝑡𝜓) − ℎ. That is,

−L(𝜓, 𝑠) = inf
𝑡 ∈R

(P(𝑡𝜓) − ℎ − 𝑡𝑠). (2.2)

Furthermore, L(𝜓, ·) is finite on [𝛼min, 𝛼max] and is infinite otherwise. An alternative characterization
for L is the following:

−L(𝜓, 𝜂) = sup
{
ℎ𝜇 (𝜎) : 𝜇 ∈ M𝜎 and

∫
𝜓 𝑑𝜇 = 𝜂

}
− ℎ.

A function 𝜓 : Σ → R is lattice if there are 𝑎, 𝑏 ∈ R satisfying

{𝜓𝑛 (𝑥) + 𝑎𝑛 : 𝑥 ∈ Σ and 𝜎𝑛 (𝑥) = 𝑥 for some 𝑛 ≥ 1} ⊂ 𝑏Z.

If this is not the case then we say that 𝜓 is nonlattice.

https://doi.org/10.1017/fms.2025.10094 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10094


16 S. Cantrell and E. Reyes

Remark 2.9. Suppose that 𝜓 is lattice. Then 𝜓 is cohomologous to a function of the form 𝑎 + 𝑏𝜑 where
𝑎, 𝑏 ∈ R and 𝜑 : Σ → Z [66, Proposition 5.2]. When this is the case, the large deviations behaviour of
𝜓 and 𝜑 over periodic orbits is the same, since 𝜓𝑛 (𝑥) = 𝑎𝑛 + 𝑏𝜑𝑛 (𝑥) when 𝜎𝑛 (𝑥) = 𝑥.

2.5. Suspension flows

In this subsection we define suspension flows of subshifts of finite type. See Chapters 1 to 6 of [66] for
more details on the results stated in this subsection. Let Σ𝐴 be a transitive subshift of finite type and
𝑟 : Σ𝐴 → R>0 a function that is constant on 2-cylinders. We note that in [66, Chapter 6] suspension
flows are considered over mixing subshifts, however the same proofs (with some minor modifications)
work when the subshift is transitive. We define the suspension flow of Σ𝑟𝐴 to be the space

Σ𝑟𝐴 = {(𝑥, 𝑡) ∈ Σ𝐴 × R≥0 : 0 ≤ 𝑡 ≤ 𝑟 (𝑥)}/∼

where (𝑥, 𝑡) ∼ (𝑟 (𝑥), 0), equipped with the flow 𝜎𝑟 = (𝜎𝑟𝑡 )𝑡>0 so that 𝜎𝑟𝑡 sends (𝑥, 𝑠) to (𝑥, 𝑠 + 𝑡) for
𝑠 ∈ R. There is a natural metric on Σ𝑟𝐴 which can be constructed as in [66]. We will not present the
construction of this metric here as it is a little technical.

For a Hölder continuous function Φ : Σ𝑟𝐴 → R we can define its pressure as

P𝜎𝑟 (Φ) = sup
𝑚∈M𝜎𝑟

{
ℎ𝑚(𝜎𝑟 ) +

∫
Σ𝑟
𝐴

Φ 𝑑𝑚

}
,

where M𝜎𝑟 is the space of 𝜎𝑟𝑡 - invariant Borel probability measures on Σ𝑟𝐴 and ℎ𝑚 (𝜎𝑟 ) is the entropy
of the time-one map 𝜎𝑟1 for the measure m [66, Section 6].

Remark 2.10. For such Φ, the pressure function 𝑠 ↦→ P𝜎𝑟 (𝑠Φ) is real analytic. This is a well-known
result that follows from Proposition 6.1 in [66] and the implicit function theorem.

Let 𝛿𝑟 > 0 be the unique number such that P(−𝛿𝑟𝑟) = 0 and write 𝜇−𝛿𝑟𝑟 for the equilibrium state of
−𝛿𝑟𝑟 on Σ𝐴. The measure of maximal entropy for Σ𝑟𝐴 is (locally) given by

𝜇−𝛿𝑟𝑟 × Leb∫
𝑟 𝑑𝜇−𝛿𝑟𝑟

,

where Leb represents the Lebesgue measure along R≥0 ([66, Proposition 6.1]). That is, up to normal-
ization, the measure of maximal entropy is the measure that acts as Lebesgue along the fibers of the
suspension and as 𝜇−𝛿𝑟𝑟 on the base. If we write m for the measure of maximal entropy then we have that

𝑑

𝑑𝑠





𝑠=0P𝜎𝑟 (𝑠Φ) =
∫

Φ 𝑑𝑚

(see [66, Proposition 4.10]).
For 𝑇 > 0 we will write 𝑃(Σ𝑟𝐴, 𝑇) for the collection of periodic orbits of 𝜎𝑟 of length less than T.

Given 𝑅 > 0 we will write 𝑃(Σ𝑟𝐴, 𝑅, 𝑇) for the collection of periodic orbits of length between 𝑇 − 𝑅
and 𝑇 + 𝑅.

Given a Hölder continuous function Φ : Σ𝑟𝐴 → R it is a standard result that for any 𝑅 > 0 sufficiently
large

lim
𝑇→∞

1
𝑇

log���
∑

𝜏∈𝑃 (Σ𝑟
𝐴
,𝑅,𝑇 )

𝑒−𝑠
∫
𝜏
Φ�� = P𝜎𝑟 (−𝑠Φ)

for any 𝑠 ∈ R (see for example [66, Proposition 5.10]).
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Lastly we recall that two functions Φ,Ψ : Σ𝑟𝐴 → R are cohomologous if Φ − Ψ = 𝑢′ where
𝑢 : Σ𝑟𝐴 → R is continuously differentiable (along flow lines) and

𝑢′(𝑥) = lim
𝑡→0

𝑢(𝜎𝑟𝑡 (𝑥)) − 𝑢(𝑥)
𝑡

.

Further the function 𝑠 ↦→ P𝜎𝑟 (𝑠Φ) is a straight line if and only if Φ is cohomologous to a constant
function.

3. Large deviations

In this section we discuss large deviations with shrinking intervals for potentials on mixing subshifts of
finite type. The main result of the section is Theorem 3.2, and it will be used in the proof of Theorems 1.8
and 6.2 in subsequent sections.

Suppose that (Σ, 𝜎) is a mixing subshift of finite type with 𝑘 × 𝑘 transition matrix A, and let 𝜇 denote
its measure of maximal entropy. Also, let M be the least number such that 𝐴𝑀 has strictly positive
entries. The large deviations principle (2.1) from Subsection 2.4 implies that there is a real analytic,
concave function L(𝜓, ·) : [𝛼min, 𝛼max] → R>0 such that the following holds: for any 𝜂 ∈ (𝛼min, 𝛼max)

lim
𝜖→0−

lim sup
𝑛→∞

1
𝑛

log 𝜇
(
𝑥 ∈ Σ :





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝜖 ) = −L(𝜓, 𝜂). (3.1)

Instead of taking two limits as above, first with respect to n and then with respect to 𝜖 , it is natural to
ask the following.

Question 3.1. How quickly can a sequence 𝛿𝑛 decay to 0 as 𝑛→ ∞ so that we have

lim
𝑛→∞

1
𝑛

log 𝜇
(
𝑥 ∈ Σ :





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝛿𝑛) = −L(𝜓, 𝜂) (3.2)

for each 𝜂 ∈ (𝛼min, 𝛼max)?

We refer to this problem as large deviations with shrinking intervals. We can ask the same question
when the limit in (3.2) is replaced with the limit supremum.

Large deviations with shrinking intervals are best understood for functions 𝜓 : Σ → R that are
nonlattice. For example, when 𝜓 is nonlattice the local central limit theorem [42] implies that (3.2) holds
when 𝛿−1

𝑛 = 𝑂 (𝑛). In [68] Pollicott and Sharp improved this result under an additional assumption.
They showed that if 𝜓 satisfies a non-Diophantine condition then there exist 𝜅 > 0 such that (3.2) holds
when 𝛿−1

𝑛 = 𝑂 (𝑛1+𝜅 ).
When 𝜓 is lattice, large deviations with shrinking intervals are not as well-understood. The aim of

this section is to study (3.2) for functions 𝜓 that are constant on 2-cylinders and are lattice.
We now state our large deviations theorem with shrinking intervals. Write L(𝜓, ·) : [𝛼min, 𝛼max] →

R>0 be the function introduced above.

Theorem 3.2. Suppose that (Σ, 𝜎) is a mixing subshift of finite type and that 𝜓 : Σ → R is a function
that is constant on 2-cylinders. Then there exists 𝐶 > 0 such that for any 𝜂 ∈ (𝛼min, 𝛼max)

lim sup
𝑛→∞

1
𝑛

log
(
#
{
𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥 and





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝐶

𝑛2

})
= ℎ − L(𝜓, 𝜂) (3.3)

where h is the topological entropy of (Σ, 𝜎). Furthermore we can take

𝐶 =
4𝑀2 (1 + 𝑘2)2(𝛼max − 𝛼min)√

5
.
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In the case that 𝜓 takes values in Z then there exists 𝜂 ∈ (𝛼min, 𝛼max) and 𝜖 > 0 such that

lim sup
𝑛→∞

1
𝑛

log
(
#
{
𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥 and





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝜖

𝑛2

})
= 0.

Remark 3.3. i) This theorem also holds if we only assume that (Σ, 𝜎) is transitive (opposed to mixing).
Indeed, if (Σ, 𝜎) is transitive we can find an integer 𝑝 ≥ 1 such that (Σ, 𝜎𝑝) decomposes into p disjoint
𝜎𝑝-invariant sets. These 𝜎𝑝-invariant sets are mixing subshifts of finite type when equipped with 𝜎𝑝 .
We can then apply the mixing version of our theorem above to these subshifts to deduce the transitive
version. ii) Our result significantly improves the decay rate implied by the local limit theorem under the
nonlattice assumption [73, Theoreme 5]. Furthermore, the case that 𝜓 takes values in a lattice shows
that the decay rates obtained in the first part of Theorem 3.2 are optimal.

For the rest of the section we note the correspondence between periodic orbits of (Σ, 𝜎) and cycles
(i.e., closed paths) in the adjacency graph G𝐴. We say that a cycle is simple if it does not visit any state
more than once.

To prove the above result we start with the following observation.

Lemma 3.4. Suppose that (Σ, 𝜎) is a mixing subshift of finite type and that 𝜓 : Σ → R is a function
that is constant on 2-cylinders. Then

𝛼min = inf
𝜎𝑛 (𝑥)=𝑥

𝜓𝑛 (𝑥)
𝑛

and 𝛼max = sup
𝜎𝑛 (𝑥)=𝑥

𝜓𝑛 (𝑥)
𝑛

,

and furthermore there exist periodic orbits 𝑥, 𝑦 that achieve these values, that is, 𝜓 |𝑥 | (𝑥) =
|𝑥 |𝛼min, 𝜓

|𝑦 | (𝑦) = |𝑦 |𝛼max. Here the infimum and supremum are over all the periodic orbits.

Proof. The first statement follows from a result of Sigmund [82, Theorem 1] which states that the set of
probability measures supported on periodic orbits is dense in M𝜎 (equipped with the weak-∗ topology).
For the furthermore statement note that each periodic orbit can be written as a disjoint union of simple
cycles. It follows easily that the above infimum and supremum are attained by simple cycles (and powers
of them). �

We now want to use the orbits 𝑥, 𝑦 from the lemma above to construct periodic orbits along which
the average value of 𝜓 approximates a given 𝜂 ∈ (𝛼min, 𝛼max) (see Proposition 3.8). We begin with the
following observation.

Lemma 3.5. Take an interval (𝑠, 𝑡) ⊂ R and a number 𝜂 ∈ (𝑠, 𝑡). Then there are infinitely many 𝑛 ≥ 1
for which there exist integers 0 ≤ 𝑎, 𝑏 ≤ 𝑛 with 𝑎 + 𝑏 = 𝑛 and such that



𝑎𝑠 + 𝑏𝑡𝑛

− 𝜂




 ≤ 𝑡 − 𝑠

√
5 𝑛2

.

Proof. Note that it suffices to prove this result when 𝑠 = 0, 𝑡 = 1. The general result then follows
by shifting and rescaling the interval (0, 1) into (𝑠, 𝑡). When 𝑠 = 0, 𝑡 = 1 the result follows from the
well-known Hurwitz’s Theorem [51] from Diophantine approximation. �

We also need the following lemma. Suppose that the simple periodic orbit 𝑥 realizing 𝛼max has initial
state i and that the initial state for 𝑦 realizing 𝛼min is j (from Lemma 3.4). Further assume that we repeat
𝑥 and 𝑦 by each other’s periods so that they both have period l satisfying 1 < 𝑙 ≤ 𝑘2.

Lemma 3.6. Suppose that (Σ, 𝜎) is a mixing subshift of finite type and that 𝜓 : Σ → R is a function
that is constant on 2-cylinders such that 𝛼min < 𝛼max. Then we can find periodic orbits 𝑥, 𝑦 both
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with period at most 2𝑀 (1 + 𝑘2) such that the initial state for x is i, the initial state for y is j and we
have that

𝛼min <
𝜓 |𝑥 | (𝑥)
|𝑥 | <

𝜓 |𝑦 | (𝑦)
|𝑦 | < 𝛼max.

Proof. Consider the start state i and find a path p from i to j of length M and a path q from j to i of
length M. By composing the path p with r (to be chosen later) repeats of a single cycle of 𝑦 and q we
obtain a periodic orbit x of period 2𝑀 + 𝑙𝑟 . Further we have that

𝜓 |𝑥 | (𝑥)
|𝑥 | ≤ 2𝑀𝛼max + 𝑙𝑟𝛼min

2𝑀 + 𝑙𝑟

and x starts at i. Similarly we find y starting at j with |𝑦 | = 2𝑀 + 𝑙𝑟 and

𝜓 |𝑦 | (𝑦)
|𝑦 | ≥ 2𝑀𝛼min + 𝑙𝑟𝛼max

2𝑀 + 𝑙𝑟 .

Now, as long as r is chosen so that

2𝑀𝛼min + 𝑙𝑟𝛼max > 2𝑀𝛼max + 𝑙𝑟𝛼min

𝑥, 𝑦 will satisfy the final inequality in the lemma. Note that this inequality is satisfied for 𝑟 = 2𝑀 in
which case x and y have periods 2𝑀 + 2𝑀𝑙 ≤ 2𝑀 (1 + 𝑘2) as required. �

We also require the following.

Lemma 3.7. Suppose that (Σ, 𝜎) is a mixing subshift of finite type and that 𝜓 : Σ → R is a function
that is constant on 2-cylinders. Suppose that there exist periodic orbits 𝑥, 𝑦 both with period l and same
initial state such that 𝑙 𝐴 = 𝜓𝑙 (𝑥) < 𝜓𝑙 (𝑦) = 𝑙𝐵. Then there exists 𝐶 > 0 such that for any 𝜂 ∈ (𝐴, 𝐵)
we can find an infinite sequence of periodic orbits 𝑥𝑛 ∈ Σ such that



𝜓 |𝑥𝑛 | (𝑥𝑛)

|𝑥𝑛 |
− 𝜂





 ≤ 𝐶

|𝑥𝑛 |2
.

Furthermore we can take

𝐶 =
(𝛼max − 𝛼min)𝑙2√

5
.

Proof. By Lemma 3.5 there exist infinitely many 𝑛 ≥ 1 such that the following holds. There are integers
𝑛1, 𝑛2 ≥ 0 with 𝑛1 + 𝑛2 = 𝑛 and such that



𝑛1𝐴 + 𝑛2𝐵

𝑛1 + 𝑛2
− 𝜂





 ≤ 𝐵 − 𝐴
√

5𝑛2
≤ (𝛼max − 𝛼min)𝑙2√

5(𝑙𝑛)2
.

Since x and y have the same initial vertex, we can form a new periodic orbit by composing 𝑛1 copies of
x followed by 𝑛2 copies of y. This creates a periodic orbit z of orbit length 𝑛𝑙 with the property that

𝜓𝑛𝑙 (𝑧)
𝑛𝑙

=
𝑛1𝐴 + 𝑛2𝐵

𝑛1 + 𝑛2
and so





𝜓𝑛𝑙 (𝑧)𝑛𝑙
− 𝜂





 ≤ (𝛼max − 𝛼min)𝑙2√
5|𝑧 |2

.

Since we can run this construction for infinitely many n, the result follows. �

To obtain uniformity over 𝜂, that is, to show the existence of C in Theorem 3.2, we need to upgrade
Lemma 3.7 using Lemma 3.6.
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Proposition 3.8. Suppose that (Σ, 𝜎) is a mixing subshift of finite type and that 𝜓 : Σ → R is a function
that is constant on 2-cylinders. Then there exists 𝐶 > 0 such that for any 𝜂 ∈ (𝛼min, 𝛼max) there exists
an infinite sequence of periodic orbits 𝑥𝑛 ∈ Σ such that



𝜓 |𝑥𝑛 | (𝑥𝑛)

|𝑥𝑛 |
− 𝜂





 ≤ 𝐶

|𝑥𝑛 |2
.

Furthermore we can take

𝐶 =
4𝑀2 (1 + 𝑘2)2(𝛼max − 𝛼min)√

5
.

Proof. We can assume that 𝜓 is not cohomologous to a constant function (otherwise the conclusion is
clear), so that 𝛼min < 𝛼max.

We split the interval (𝛼min, 𝛼max) = 𝐼1 ∪ 𝐼2 into the two (nondisjoint) intervals

𝐼1 =

(
𝛼min,

𝜓 |𝑦 | (𝑦)
|𝑦 |

)
and 𝐼2 =

(
𝜓 |𝑥 | (𝑥)
|𝑥 | , 𝛼max

)
where 𝑥, 𝑦 are the orbits constructed in Lemma 3.6. In particular, both |𝑥 | and |𝑦 | are bounded above by
2𝑀 (1 + 𝑘2). We can now apply Lemma 3.7 to both of the intervals 𝐼1 and 𝐼2 to deduce the result. �

Definition 3.9. Let 𝜓, Σ be as above. Suppose 𝑤 ∈ (𝛼min, 𝛼max) is chosen so that there exists x with
𝜎𝑛 (𝑥) = 𝑥 and 𝜓𝑛 (𝑥) = 𝑛𝑤. We define 𝑑 (𝜓, 𝑤) to be the greatest common divisor of all numbers 𝑛 ≥ 1
such that

#{𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥, 𝜓𝑛 (𝑥) = 𝑤𝑛} > 0.

If #{𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥, 𝜓𝑛 (𝑥) = 𝑤𝑛} = 0 for all n then we set 𝑑 (𝜓, 𝑤) = 0.

Note that 𝑑 (𝜓, 𝑤) = 0 for all but countably many values of 𝑤. This is because the values for which
𝑑 (𝜓, 𝑤) > 0 are contained in the rational span of the values that the averaged Birkhoff sum of 𝜓
attains on simple cycles. We now state the key result of Marcus and Tuncel that we need to prove large
deviations with shrinking intervals. Recall that L represents the large deviations rate function introduced
in Subsection 2.4 (see (2.1)).

Theorem 3.10 (Theorem 14 [59]). For any 𝜉 > 0 and any closed subset 𝑊 ⊂ (𝛼min, 𝛼max) there exist
𝑟, 𝑁 ∈ Z≥0 and 𝛿 > 0 such that, for any 𝑛 ≥ 𝑁 with 𝑑 (𝜓, 𝑤) |𝑛,

#{𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥, 𝜓𝑛 (𝑥) = 𝑤𝑛} ≥ 𝛿𝑛−𝑟 𝑒𝑛(ℎ−(L(𝜓,𝑤))−𝜉 ) (3.4)

for each 𝑤 ∈ 𝑊 satisfying 𝑑 (𝜓, 𝑤) > 0.

To make use of this result we need to control the values of 𝑑 (𝜓, 𝑤) as w takes values in a shrinking
interval.

Lemma 3.11. There exists 𝐶 > 0 such that for any 𝜂 ∈ (𝛼min, 𝛼max) we can find a sequence 𝑤𝑛 ∈
(𝛼min, 𝛼max) and a sequence 𝑥𝑛 ∈ Σ of periodic orbits such that

𝑤𝑛 ∈
[
𝜂 − 𝐶

|𝑥𝑛 |2
, 𝜂 + 𝐶

|𝑥𝑛 |2

]
with

𝜓 |𝑥𝑛 | (𝑥𝑛)
|𝑥𝑛 |

= 𝑤𝑛

and 𝑑 (𝜓, 𝑤𝑛)


 |𝑥𝑛 |.
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Proof. By Proposition 3.8 there exist 𝐶 > 0, 𝑁 ≥ 1 depending only on 𝜓, Σ such that for any
𝜂 ∈ (𝛼min, 𝛼max) and 𝑛 ≥ 𝑁 there is a sequence of periodic orbits 𝑥𝑛 ∈ Σ with periods |𝑥𝑛 | (i.e.,
𝜎 |𝑥𝑛 | (𝑥𝑛) = 𝑥𝑛) such that 



𝜓 |𝑥𝑛 | (𝑥𝑛)

|𝑥𝑛 |
− 𝜂





 ≤ 𝐶

|𝑥𝑛 |2
.

We define 𝑤𝑛 = 𝜓𝑛 (𝑥𝑛)
𝑛 and note that 𝑑 (𝜓, 𝑤𝑛)



 |𝑥𝑛 | if and only if

#
{
𝑥 ∈ Σ : 𝜎 |𝑥𝑛 | (𝑥) = 𝑥, 𝜓

|𝑥𝑛 | (𝑥𝑛)
|𝑥𝑛 |

= 𝑤𝑛

}
> 0.

Hence we are done. �

For a sequence (𝛿𝑛)𝑛≥1 of positive numbers and 𝑛 ≥ 1 we define

𝐹𝑛 (𝜂, 𝛿𝑛) =
{
𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥,





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝛿𝑛}
for 𝜂 ∈ (𝛼min, 𝛼max). Intuitively, this set contains the periodic orbits of period n along which the average
value of 𝜓 approximates 𝜂 up to an error less than 𝛿𝑛. Theorem 3.2 is concerned with the exponential
growth rate of the cardinality of 𝐹𝑛 (𝜂, 𝐶𝑛−2) for some constant 𝐶 > 0 as 𝑛→ ∞. We therefore want to
obtain bounds on #𝐹𝑛 (𝜂, 𝐶𝑛−2) which we achieve in the following proposition.
Proposition 3.12. Suppose that (Σ, 𝜎) is a mixing subshift of finite type and that 𝜓 : Σ → R is a
function that is constant on 2-cylinders. Then there exists 𝐶 > 0 such that for any 𝜂 ∈ (𝛼min, 𝛼max) and
𝜉 > 0 there exist 𝛿, 𝑟, 𝑀 > 0 and a sequence of integers 𝑛𝑙 with 𝑛𝑙 → ∞ as 𝑙 → ∞ such that

#𝐹𝑛𝑙 (𝜂, 𝐶𝑛−2
𝑙 ) ≥ 𝛿𝑛−𝑟𝑙 𝑒

𝑛𝑙 ( (ℎ−L(𝜓,𝜂))−𝜉 )

for all 𝑙 ≥ 1.
Remark 3.13. For 𝜂 with 𝑑 (𝜓, 𝜂) > 0 this result follows immediately from estimates due to Marcus and
Tuncel [59]. The main strength of the above estimates are that they hold for all values of 𝜂 ∈ (𝛼min, 𝛼max).
Proof of Proposition 3.12. We use Proposition 3.8 to find a sequence of periodic orbits (𝑥𝑛)𝑛 such that

|𝑤𝑛 − 𝜂 | ≤
𝐶

|𝑥𝑛 |2
where 𝑤𝑛 =

𝜓 |𝑥𝑛 | (𝑥𝑛)
|𝑥𝑛 |

for each 𝑛 ≥ 1. By (3.4), for any 𝜉 > 0 and for all n sufficiently large we have that

#
{
𝑥 ∈ Σ : 𝜎 |𝑥𝑛 | (𝑥) = 𝑥 and





𝜓 |𝑥𝑛 | (𝑥𝑛)
|𝑥𝑛 |

− 𝜂




 < 𝐶

|𝑥𝑛 |2

}
≥ 𝛿 |𝑥𝑛 |−𝑟 𝑒 |𝑥𝑛 | ( (ℎ−L(𝜓,𝑤𝑛))−𝜉 ) (3.5)

for some 𝛿, 𝑟 > 0. Now, by analyticity of L, there is 𝐶 > 0 such that

|L(𝜓, 𝜂) − L(𝜓, 𝑤𝑛) | ≤ 𝐶 |𝜂 − 𝑤𝑛 | = 𝑂 (|𝑥𝑛 |−2)

(where the implied error constant is independent of n). Substituting this into the right hand side of (3.5)
provides the required bound concluding the proof. �

Proof of Theorem 3.2. Note that the large deviations principle where we count over periodic orbits (see
the discusion after (2.1)) implies that

lim sup
𝑛→∞

1
𝑛

log
(
#
{
𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥,





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝐶 ′

𝑛2

})
≤ ℎ − L(𝜓, 𝜂)
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for any𝐶 ′ > 0 and 𝜂 ∈ (𝛼min, 𝛼max). Proposition 3.12 also implies that for𝐶 > 0 (as in the proposition)

lim sup
𝑛→∞

1
𝑛

log
(
#
{
𝑥 ∈ ΣC : 𝜎𝑛 (𝑥) = 𝑥,





𝜓𝑛 (𝑥)𝑛
− 𝜂





 < 𝐶

𝑛2

})
≥ ℎ − L(𝜓, 𝜂) (3.6)

for any 𝜂 ∈ (𝛼min, 𝛼max). This proves the identity (3.3), and the estimate for C follows from Proposi-
tion 3.8.

We now finish by proving the final statement of the theorem which assumes that 𝜓 takes values in Z.
When this is the case, the set

{
𝜓𝑛 (𝑥)
𝑛 : 𝜎𝑛 (𝑥) = 𝑥

}
contains rational numbers all with denominator at

most n. By [51, Satz II] there is 𝜂 ∈ (𝛼min, 𝛼max) such that if 𝜖 > 0 is sufficiently small then for all but
finitely many values of n, 



𝜓𝑛 (𝑥)𝑛

− 𝜂




 > 𝜖

𝑛2 for all 𝑥 ∈ Σ with 𝜎𝑛 (𝑥) = 𝑥.

Hence 𝐹𝑛 (𝜂, 𝜖𝑛−2) is empty for all n sufficiently large. �

4. Large deviations for pairs of word metrics

In this section we prove Theorem 1.8.
Throughout the proof, we will follow the same terminology and notation that we established above.

Before presenting the proof, we restate the theorem for the reader’s convenience.

Theorem 4.1. Let Γ be a nonelementary hyperbolic group and consider two finite generating sets 𝑆, 𝑆∗
for Γ with exponential growth rates 𝑣𝑆 , 𝑣𝑆∗ . Then there exist𝐶 > 0 and a real analytic, concave function
I : [Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)] → R>0 such that for any 𝜂 ∈ (Dil(𝑆, 𝑆∗)−1,Dil(𝑆∗, 𝑆)) we have

0 < lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇, |ℓ𝑆∗ [𝑔] − 𝜂ℓ𝑆 [𝑔] | <

𝐶

𝑇

})
= I (𝜂) ≤ 𝑣𝑆 .

Furthermore, we have equality in the above inequality if and only if

𝜂 = 𝜏(𝑆∗/𝑆) := lim
𝑇→∞

1
#{[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇}

∑
ℓ𝑆 [𝑔]<𝑇

ℓ𝑆∗ [𝑔]
𝑇

.

Proof. Without loss of generality assume that 𝑑𝑆 , 𝑑𝑆∗ are not roughly similar (i.e., there does not
exist 𝜏, 𝐶 > 0 such that |𝑑𝑆 (𝑔, ℎ) − 𝜏𝑑𝑆∗ (𝑔, ℎ) | < 𝐶 for all 𝑔, ℎ ∈ Γ). As discussed in Example 2.8,
by Lemma 3.8 and Example 3.9 in [14] we can find a Cannon coding for (Γ, 𝑆) with corresponding
shift space (Σ, 𝜎) and a constant on 2-cylinders function 𝜓 : Σ → Z satisfying the following: if
𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑛−1, 𝑧0, . . .) ∈ Σ is a periodic orbit of period n, then the nth Birkhoff sum of 𝜓 on z
outputs the value ℓ𝑆∗ [𝑔], where 𝑔 ∈ Γ is the group element obtained by multiplying the labelings in the
finite path 𝑧0, 𝑧1, . . . , 𝑧𝑛−1.

Fix a maximal component ΣC in Σ (as in Example 2.7). We know that the function 𝜓 satisfies a large
deviations principle (as discussed at (3.1)) over the periodic orbits on ΣC , as discussed after (2.1). We
set I = ℎ − L, where h is the topological entropy of (Σ, 𝜎) and L = L(𝜓, ·) is the Legendre transform
(as defined in (2.2) above). By [16, Lemma 3.3] we know that I is also the Legendre transform of the
Manhattan curve for 𝑑𝑆 , 𝑑𝑆∗ . In particular,

𝛼min = inf
𝜎𝑛 (𝑥)=𝑥

𝜓𝑛 (𝑥)
𝑛

= Dil(𝑆, 𝑆∗)−1 and 𝛼max = sup
𝜎𝑛 (𝑥)=𝑥

𝜓𝑛 (𝑥)
𝑛

= Dil(𝑆∗, 𝑆)
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where the infimum/supremum is taken over all periodic orbits in ΣC . Now, by Theorem 3.2 we obtain
the same limits with shrinking intervals, that is, 𝜂 ∈ (𝛼min, 𝛼max)

lim sup
𝑛→∞

1
𝑛

log
(
#
{
𝑥 ∈ Σ : 𝜎𝑛 (𝑥) = 𝑥 and





𝜓𝑛 (𝑥)𝑛
− 𝜂





 ≤ 𝐶

𝑛2

})
= I (𝜂)

for some C independent of 𝜂. It is possible that the system (ΣC , 𝜎) is not mixing but is instead transitive.
This is no issue as explained in Remark 3.3. Now note that each periodic orbit has a corresponding
conjugacy class as described above: if 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑛−1, 𝑧0, . . .) ∈ Σ is a periodic orbit of period n
then we associate to it the conjugacy class [𝑔] with ℓ𝑆 [𝑔] = 𝑛 where g is the group element obtained
by multiplying the labelings along the path 𝑧0, 𝑧1, . . . , 𝑧𝑛−1. Furthermore [17, Lemma 4.2] says that the
periodic orbits of period n overcount the number of conjugacy classes by at most a linear factor in n.
Hence we must have

lim sup
𝑛→∞

1
𝑛

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆 [𝑔] = 𝑛, |ℓ𝑆∗ [𝑔] − 𝜂ℓ𝑆 [𝑔] | < 𝜖

})
= I (𝜂) ≤ 𝑣𝑆

for any 𝜖 > 0 and 𝜂 ∈ (𝛼min, 𝛼max) (note that ℎ = 𝑣𝑆). By [19, Theorem 1.1] we have that I is maximized
(and equals 𝑣𝑆) when

𝜂 = lim
𝑇→∞

1
#{[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇}

∑
ℓ𝑆 [𝑔]<𝑇

ℓ𝑆∗ [𝑔]
𝑇

.

This concludes the proof. �

As a consequence we deduce Corollary 1.9.

Proof of Corollary 1.9. The first part of the theorem, when 𝜂 is irrational, follows as a direct corollary
of Theorem 1.8. To deduce the final statement when 𝜂 is rational it suffices to show that, when (Σ, 𝜎)
is a mixing subshift of finite type and 𝜓 : Σ → Z is a function that is constant of 2-cylinders, then
the following holds: if 𝑝/𝑞 ∈ (𝛼min, 𝛼max) ∩ Q then there exists a periodic orbit 𝑥 ∈ Σ such that
𝜓 |𝑥 | (𝑥) = |𝑥 |𝑝/𝑞. It is an easy exercise to verify this and so we leave it to the reader. �

Example 4.2. In this example we show how to apply Theorem 1.8 to a pair of word metrics on a free
group. We calculate the exact value of I (evaluated at a natural value) and provide explicit constants
which determine how similar the length spectra of the two word metrics are.

Let 𝐹2 = 〈𝑎, 𝑏〉 be the free group on two generators and consider the generating sets

𝑆 = {𝑎, 𝑏, 𝑎−1, 𝑏−1} and 𝑆∗ = {𝑎, 𝑏, 𝑎𝑏, 𝑎−1, 𝑏−1, (𝑎𝑏)−1}.

The corresponding word metrics have exponential growth rates 𝑣𝑆∗ = log(4) and 𝑣𝑆 = log(3). The
Manhattan curve 𝜃𝑆/𝑆∗ was computed in [19] and is given by

𝜃𝑆/𝑆∗ (𝑡) = log
(

1
2
𝑒−𝑡

(
𝑒−𝑡 +

√
𝑒−𝑡 (𝑒−𝑡 + 8) + 4

))
.

From the definition we see that I (𝑣𝑆∗/𝑣𝑆) = log(4) − Λ/log(3) where Λ is the constant

Λ = sup
𝑡 ∈R

{
log(4) − log(4)

log(3) 𝑡 − 𝜃𝑆/𝑆∗ (𝑡)
}
.

This can be computed (using, say Wolfram Alpha) to be

log(16) log
(
log

(
4
3

))
+ log(9) log

����
log

(
3
2

)
log( 4

3 )
��� + log(4)

(
log(2) − log

(
log

(
3
2

)
log(2)

))
.
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Theorem 1.8 then implies that there is 𝐶 > 0 such that

lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆∗ [𝑔] < 𝑇, |𝑣𝑆ℓ𝑆 [𝑔] − 𝑣𝑆∗ℓ𝑆∗ [𝑔] | ≤

𝐶

𝑇

})
= log(4) − Λ

log(3)
≈ 1.3679878759

and similarly we also have

lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆 [𝑔] < 𝑇, |𝑣𝑆ℓ𝑆 [𝑔] − 𝑣𝑆∗ℓ𝑆∗ [𝑔] | ≤

𝐶

𝑇

})
= log(3) − Λ

log(4)
≈ 1.0841047424.

In this case we can set 𝑘 = 6, 𝑀 = 2, 𝛼max = 2, 𝛼min = 1 by [19]. Also, it was computed in [19] that
−𝜃 ′

𝑆/𝑆∗ (0) = 4/3. We therefore have that

4𝑀2 (1 + 𝑘2)2(𝛼max − 𝛼min)√
5

=
4(22) (1 + 62) (2 − 1)

√
5

=
592
√

5
≈ 264.7 ≤ 300

and

lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓ𝑆∗ [𝑔] < 𝑇, |3ℓ𝑆 [𝑔] − 4ℓ𝑆∗ [𝑔] | ≤

300
𝑇

})
= 𝑣𝑆∗ .

Therefore the length spectra of 3𝑑𝑆 and 4𝑑𝑆∗ are within distance 300 on a set of full exponential growth
rate for 𝑑𝑆∗ . In particular, for any 𝜂 ∈ (1, 2) we can find an infinite sequence of conjugacy classes
[𝑔𝑛] ∈ conj(Γ) such that 



 ℓ𝑆 [𝑔𝑛]ℓ𝑆∗ [𝑔𝑛]

− 𝜂




 ≤ 300

|𝑔𝑛 |2𝑆∗
.

5. Encoding cubulations via finite-state automata

In this section we study further the class𝔊 defined in the introduction. Recall that a group belongs to𝔊
if it is not virtually cyclic, it admits a virtually co-special cubulation with a contracting element, and its
set of convex-cocompact subgroups is independent of the cubulation. See Subsection 2.2 for the notions
of virtual co-specialness and convex-cocompact subgroups. We prove Proposition 5.2, which provides
plenty of examples of groups in this class. Then we construct a finite-state automaton that encodes a
pair of cubulations of a group in𝔊, our main result being Theorem 5.11, that implies most of the claims
in Theorem 1.4 from the introduction. This will be done in the greater generality of the class 𝔛 of pairs
of compatible cubulations. Theorem 5.11 is also key to prove our main results in Section 6.

5.1. The classes 𝔊 and 𝔛

Throughout this and the next section we will work with the following notion of compatibility of pairs
of group actions on CAT(0) cube complexes.
Definition 5.1. Let 𝔛 be the class of triplets (Γ,X ,X∗), where Γ is a nonvirtually cyclic group acting
cocompactly on the CAT(0) cube complexes X ,X∗ and satisfying:
(1) the action on X is proper and virtually co-special;
(2) every hyperplane stabilizer for the action on X∗ is convex-cocompact for the action on X ; and,
(3) the action of Γ on X has a contracting element.

Note that in the definition above we do not require the action on X∗ to be proper.
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Since hyperplane stabilizers are always convex-cocompact and being a contracting element does not
depend on the cubulation [39, Lemma 4.6], it follows that (Γ,X ,X∗) ∈ 𝔛 whenever Γ ∈ 𝔊 and X ,X∗
are cubulations of Γ.

If (Γ,X ,X∗) ∈ 𝔛, we should think of X and X∗ as “compatible” cubulations of Γ with well-behaved
counting properties. Compatibility is guaranteed by (2), by means of Proposition 5.7 that allows us
to combine X and X∗ into a new cubulation of Γ. Then (1) implies that the new cubulation is also
virtually co-special, allowing us to use the automaton from Example 2.5. This automaton is upgraded
in Theorem 5.11 to an automaton that “remembers” both X and X∗. Then (3) is used to relate counting
computations over this automaton to counting properties of the length functions ℓX , ℓX∗ over conjugacy
classes of Γ. This counting is done in Section 6.

The main result of this subsection is the following proposition, which tells us that the class𝔊 is much
bigger than the class of cubulable hyperbolic groups.
Proposition 5.2. The following classes of groups are contained in 𝔊.

i) Hyperbolic cubulable groups that are nonelementary.
ii) Right-angled Artin groups of the form Γ = 𝐴𝐺 , where G is a finite graph with more than one vertex,

that is not a join and such that st(𝑣) is not contained in st(𝑤) for every pair of distinct vertices 𝑣, 𝑤
of G.

iii) Right-angled Coxeter groups that are not virtually cyclic or direct products and are of the form
Γ = 𝑊𝐺 , where G is finite and does not have any loose squares.

Moreover, if Γ is cubulable and hyperbolic relative to groups belonging to 𝔊, then Γ belongs to 𝔊.
For Γ = 𝑊𝐺 a right-angled Coxeter group, a loose square is a full subgraph Δ ⊂ 𝐺 that is a square,

and such that for every maximal subgraph Λ ⊂ 𝐺 with 𝑊Λ virtually abelian, either Δ ⊂ Λ or Δ ∩ Λ
generates a finite subgroup of Γ.

Many nonrelatively hyperbolic right-angled Artin and Coxeter groups satisfy assumptions ii) and iii)
of Proposition 5.2. Indeed, a RAAG is nontrivially relatively hyperbolic if and only if it is a nontrivial
free product, and hence RAAGs with underlying graphs n-agons for 𝑛 ≥ 5 are not relatively hyperbolic
and belong to 𝔊.

For the proof of Proposition 5.2 we require two results, the first one being an observation about
virtual specialness.
Lemma 5.3. Let X ,X∗ be cubulations of the group Γ and assume that the action on X is virtually co-
special. If every hyperplane stabilizer for the action on X∗ is convex-cocompact with respect to X , then
the action of Γ on X∗ is virtually co-special.
Proof. If X and X∗ satisfy the assumptions of the lemma, then all the double cosets of the hyperplane
stabilizers for the action of Γ on X∗ are separable by [71, Theorem A.1]. Then the action of on X∗ is
virtually co-special by the double-cosets criterion [47, Theorem 9.19]. �

The second result we need is a criterion of convex-cocompactness for subgroups of cubulable
relatively hyperbolic groups, which may be of independent interest and whose proof is postponed to the
appendix.
Proposition 5.4. Let Γ be a relatively hyperbolic group acting properly and cocompactly on the CAT(0)
cube complex X . Then the following are equivalent for a subgroup 𝐻 < Γ.
(1) H is convex-cocompact for the action of Γ on X .
(2) H is relatively quasiconvex and 𝐻∩𝑃 is convex-cocompact for the action of Γ on X for any maximal

parabolic subgroup 𝑃 < Γ.
Proof of Proposition 5.2. By Agol’s Theorem [1, Theorem 1.1] every cubulation of a hyperbolic group
is virtually co-special. Moreover, the class of convex-cocompact subgroups for any such cubulation
coincides with the class of quasiconvex subgroups [47, Proposition 7.2]. Since any loxodromic element
in a hyperbolic group is contracting, this solves the proposition for groups in class i).
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Now, let Γ be a group belonging to the class ii) (respectively iii)). In [35, Theorem A] (resp. [35,
Corollary C]) it was proven that Γ has a unique cubical coarse median structure. By [35, Theorem 2.15]
this uniqueness result is equivalent to the class of convex-cocompact subgroups being independent of
the cubulation. Since finitely generated right-angled Artin (resp. Coxeter) groups are virtually special, Γ
satisfies Items (1) and (2) of Definition 1.1. The existence of a contracting element for Γ for a geometric
group action on a CAT(0) cube complex follows from [88, Section 5.2] and the references therein.

To prove the moreover statement, let Γ be a group that is hyperbolic relative to groups belonging to𝔊
and let X ,X∗ be two cubulations of Γ. If 𝑃 < Γ is a maximal parabolic subgroup, then by [76, Theorem
1.1] it has convex cores 𝑍𝑃 ⊂ X and (𝑍𝑃)∗ ⊂ X∗. Also, since P belongs to𝔊, by Lemma 5.3 the action
of P on 𝑍𝑃 is virtually co-special. As this holds for every maximal parabolic subgroup, the action of Γ
on X is virtually co-special either by [41, Theorem A] or [71, Theorem 1.2].

Consider a group 𝐻 < Γ that is convex-cocompact for the action of Γ on X . By Proposition 5.4, H is
relatively quasiconvex and 𝐻 ∩ 𝑃 is a convex-cocompact subgroup for any maximal parabolic subgroup
𝑃 < Γ. This implies that 𝐻 ∩ 𝑃 < 𝑃 is convex-cocompact for the action of P on 𝑍𝑃 , see, for example,
Lemmas 2.14 and 2.15 in [71]. But each such P belongs to 𝔊, so 𝐻 ∩ 𝑃 is also convex-cocompact
for the action of P on (𝑍𝑃)∗, implying that 𝐻 ∩ 𝑃 is convex-cocompact for the action of Γ on X∗. By
Proposition 5.4 we deduce that H is convex-cocompact for the action of Γ on X∗, so that the actions
on X and X∗ have the same sets of convex-cocompact subgroups. Since any contracting element in a
maximal parabolic subgroup is contracting for Γ, we have proven that Γ belongs to 𝔊. �

Example 5.5. Let M be a cusped hyperbolic 3-manifold with cusps 𝑉1, . . . , 𝑉𝑟 ⊂ 𝑀 . We affirm that
Γ = 𝜋1 (𝑀) does not belong to 𝔊. For each 𝑖 = 1, . . . , 𝑟 choose distinct slopes 𝛼𝑖 , 𝛽𝑖 for the cusp 𝑉𝑖 .
Equivalently, each pair 𝛼𝑖 , 𝛽𝑖 represents a pair of cyclic subgroups (up to commensurability) such that
their union generates a finite-index subgroup of 𝜋1 (𝑉𝑖). By [24, Corollary 1.3], there exists a cubulation
X of Γ such that each 𝛼𝑖 and 𝛽𝑖 represents a convex-cocompact subgroup. Since any cubulation of Z2

has a subgroup that is not convex-cocompact (this follows for instance from [87, Theorem 3.6]), for Γ
as above we can produce two cubulations X ,X∗ not satisfying (2) in Definition 1.1.

However, the data of the slopes that are convex-cocompact in cubulations of Γ are the only obstruction
for them determining triplets in 𝔛. That is, if X ,X∗ are two cubulations of Γ, then (Γ,X ,X∗) ∈ 𝔛 if
and only if they have the same pairs of convex-cocompact slopes for each cusp subgroup. The proof of
this follows the same lines as the proof of Proposition 5.2.
Example 5.6. There exist groups Γ not necessarily belonging to𝔊 for which we still can find essentially
distinct cubulations X ,X∗ such that (Γ,X ,X∗) ∈ 𝔛.

As an example, let Γ be a finite graph product of finite groups and letX be the graph-product complex
with the standard action by Γ. If 𝜙 ∈ Aut(Γ) is any automorphism, then we let X∗ be the cubulation
obtained by precomposing by 𝜙 the action of Γ on X . Then, as long as Γ has a contracting element,
(Γ,X ,X∗) ∈ 𝔛 by combining Theorem D (1) and Theorem 2.15 in [35]. We note that there are many
right-angled Coxeter groups with large outer automorphism groups [77].

If instead we apply [35, Theorem D (2)], the same conclusion holds for Γ any Coxeter group with a
contracting element, with X being its Niblo-Reeves cubulation, and X∗ obtained from X after twisting
by an automorphism of Γ.

5.2. Constructing the appropriate automaton

In this subsection we construct a finite-state automaton for a triplet (Γ,X ,X∗) in 𝔛, our main result
being Theorem 5.11. This is the automaton we will use to prove our main results for the length functions
ℓ𝔴X , ℓ

𝔴∗
X∗

in Section 6, and it implies most of Theorem 1.4. This automaton can be thought of as a cubical
analog of the automaton for pairs of word metrics on hyperbolic groups constructed by Calegari-Fujiwara
in [14, Lemma 3.8] and explained in Example 2.4.

Our starting point in the construction is the automaton for special cube complexes highlighted
in Example 2.5. To use this automaton, our first step is the construction of a (virtually co-special)
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cubulation for Γ that simultaneously encodes the actions on X and X∗. This is the content of the next
proposition.

Proposition 5.7. Given (Γ,X ,X∗) ∈ 𝔛 there exists a proper, cocompact, and essential action of Γ on a
CAT(0) cube complex Z , Γ-invariant subsetsW,W∗ ⊂ H(Z) such thatW ∪W∗ = H(Z), and a finite
index subgroup Γ < Γ satisfying the following.

◦ Let X̂ = Z (W) and X̂∗ = Z (W∗). Then X̂ and X̂∗ embed Γ-equivariantly as convex subcomplexes of
X and X∗ respectively. In particular, the triplet (Γ, X̂ , X̂∗) belongs to 𝔛 and we have the equalities
ℓX = ℓX̂ and ℓX∗ = ℓX̂∗

.
◦ The action of Γ on both Z and X̂ is co-special.

Remark 5.8. As we will see in the proof, the first conclusion of the proposition above only uses Item
(2) in Definition 5.1. Item (1) is only used to find the finite index subgroup Γ satisfying the second
conclusion.

The proof of Proposition 5.7 uses the formalism of median algebras, from which refer the reader
to [34, Subsection 2.1.5]. We require the following lemma, which is a slight generalization of the
implication (3) ⇒ (1) in [34, Proposition 7.9].

Lemma 5.9. Let Γ act on the CAT(0) cube complexes X ,X∗ so that action on X is proper and
cocompact, and the action on X∗ is essential and has only finitely many orbits of hyperplanes. If every
hyperplane stabilizer for the action of Γ on X∗ is convex-cocompact for the action on X , then for any
finite subset 𝐹 ⊂ X 0 × X 0

∗ the median algebra generated by the Γ-translates of F is Γ-cofinite.

If Γ acts on a CAT(0) cube complex and 𝔥 is a hyperplane, recall that Γ𝔥 denotes the hyperplane
stabilizer of 𝔥.

Proof. Without loss of generality, suppose that 𝐹 = 𝑃 × 𝑃∗ for 𝑃, 𝑃∗ some finite sets of vertices. The
main idea in the proof of (3) ⇒ (1) in [34, Proposition 7.9] is the construction, for each hyperplane
𝔥 ∈ H(X∗) with halfspaces 𝔥+ and 𝔥−, of a partition 𝐶 (𝔥−) � 𝐶 (𝔥) � 𝐶 (𝔥+) of X such that:

◦ 𝐶 (𝔥) is a Γ𝔥-invariant convex subcomplex of X and the action of Γ𝔥 on 𝐶 (𝔥) is cocompact;
◦ 𝐶 (𝔥+) and 𝐶 (𝔥−) are Γ𝔥-invariant unions of connected components of X \𝐶 (𝔥);
◦ if 𝑔 ∈ Γ, 𝑦 ∈ 𝑃∗ and 𝑔𝑦 ∈ 𝔥+, then 𝑔𝑥 ∈ 𝐶 (𝔥+) ∪ 𝐶 (𝔥) for all 𝑥 ∈ 𝑃;
◦ if 𝑔 ∈ Γ, 𝑦 ∈ 𝑃∗ and 𝑔𝑦 ∈ 𝔥−, then 𝑔𝑥 ∈ 𝐶 (𝔥−) ∪ 𝐶 (𝔥) for all 𝑥 ∈ 𝑃; and,
◦ for any 𝑔 ∈ Γ we have 𝐶 (𝑔𝔥) = 𝑔𝐶 (𝔥) and 𝐶 (𝑔𝔥+) = 𝑔𝐶 (𝔥+).

Let 𝑀 ⊂ X 0 × X 0
∗ be the median algebra generated by F, so that any wall of M is induced by a

hyperplane in X or X∗. Consider two transverse walls 𝔳,𝔴 of M with 𝔳 induced by 𝔥 ∈ H(X∗) and 𝔴
induced by 𝔩 ∈ H(X ) �H(X∗). As in the proof of (3) ⇒ (1) in [34, Proposition 7.9], we can verify that
𝔩 ∈ H(X ) implies 𝐶 (𝔥) ∩ 𝔩 ≠ ∅, and 𝔩 ∈ H(X∗) implies 𝐶 (𝔥) ∩ 𝐶 (𝔩) ≠ ∅. Then we can argue as in the
proof of [34, Proposition 7.9] to conclude that M is the 0-skeleton of a CAT(0) cube complex on which
the induced action of Γ is cocompact, implying that M is Γ-cofinite.

On the other hand, the construction of the partitions𝐶 (𝔥−)�𝐶 (𝔥)�𝐶 (𝔥+) is possible by the following
slight generalization of [34, Lemma 7.11]: if 𝐻 < Γ is convex-cocompact for the action on X and 𝐴 ⊂ Γ
is an H-almost invariant set (see [34, Lemma 7.11]), then there exists a partition X = 𝐶− � 𝐶0 � 𝐶+
such that:

◦ 𝐶0 is an H-invariant convex subcomplex and the action of H on 𝐶0 is cocompact;
◦ 𝐶− and 𝐶+ are H-invariant unions of connected components of 𝑋\𝐶0; and,
◦ 𝐴 · 𝑃 ⊂ 𝐶0 ∪ 𝐶+ and (Γ\𝐴) · 𝑃 ⊂ 𝐶0 ∪ 𝐶−.

The proof of this generalization follows from the expected modifications of the proof of [34, Lemma 7.11]
and is left to the reader. From this, for a halfspace 𝔥+ of X∗ with bounding hyperplane 𝔥 in a complete
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set of representatives of Γ-orbits of hyperplanes, we consider (𝐶 (𝔥+), 𝐶 (𝔥), 𝐶 (𝔥−)) = (𝐶+, 𝐶0, 𝐶−) for
𝐴 = {𝑔 ∈ Γ : 𝑔𝑦 ∈ 𝔥+ for some 𝑦 ∈ 𝑃∗}. We note that A is a Γ𝔥-almost invariant set by [34, Remark
7.12]. The proof of the lemma concludes after extending this construction Γ-equivariantly. �

Proof of Proposition 5.7. By [20, Proposition 3.5], let X̂ and X̂∗ be the Γ-essential cores of X and X∗
respectively, which Γ-equivariantly embed in X and X∗ as convex subcomplexes.

We claim that there exists a cubulation Z ′ of Γ and Γ-invariant subsetsW,W∗ ⊂ H(Z ′) so that X̂
and X̂∗ are Γ-equivariantly isometric to Z ′(W) and Z ′(W∗). Under the additional assumption that the
action on X∗ is proper, this is the content of the implication (3) ⇒ (4) in [35, Theorem 2.17], so we
now explain how to use Lemma 5.9 the prove the general case.

Let 𝑃 ⊂ X̂ 0 and 𝑃∗ ⊂ X̂ 0
∗ be the vertex sets of compact connected subcomplexes 𝐾, 𝐾∗ such that

Γ · 𝐾 = X̂ 0 and Γ · 𝐾∗ = X̂ 0
∗ . By Lemma 5.9, the median algebra 𝑀 ⊂ X̂ 0 × X̂ 0

∗ generated by the
Γ-translates of 𝑃×𝑃∗ is Γ-cofinite. By Chepoi–Roller duality [23, 72], M is the 0-skeleton of a CAT(0)
cube complex Z ′ equipped with a proper and cocompact cubical action of Γ. The restriction to M of the
natural projection X̂ 0 × X̂ 0

∗ → X̂ 0 then induces a Γ-equivariant cubical map Z ′ → X̂ that is surjective
because M contains 𝐾 × 𝐾∗. This map is also a median morphism on the 0-skeleton, hence a restriction
quotient by the discussion preceding the proof of Theorem 2.17 in [35]. The same argument gives us a
restriction quotient Z ′ → X̂∗.

To finish the proof of the first assertion, note that the action of Γ on Z ′ may not be essential, so
instead we consider the projection quotient Z = Z ′(W ∪W∗), which is essential and cocompact since
the action of Γ on both X̂ and X̂∗ is essential and the action on Z ′ is cocompact. The complex Z still
Γ-equivariantly projects onto X̂ and X̂∗, so the action of Γ on Z is proper because the action of Γ on X̂
is proper.

To prove the second assertion, note that by [35, Theorem 2.17] the actions of Γ on X̂ and Z have the
same sets of convex-cocompact subgroups, so any hyperplane stabilizer for the action of Γ on Z will
be convex-cocompact with respect to X̂ . But the action of Γ on X̂ is virtually co-special (it is a convex
core for Γ acting on X ), so Z is virtually co-special by Lemma 5.3. Finally, co-specialness is preserved
under taking finite-index subgroups, so we can choose Γ so that both quotients Γ\Z and Γ\X̂ are
special. �

By virtue of the proposition above, throughout the rest of the section we will work under the following
convention.

Convention 5.10. Γ is a nonvirtually cyclic group acting properly, cocompactly and essentially on the
CAT(0) cube complex Z , andW ⊂ H(Z) is a Γ-invariant subset such that the action of Γ onX = Z (W)
is proper, cocompact and essential. Let 𝜙 : Z → X be the restriction quotient.

Also, let Γ < Γ be a finite index subgroup such that the quotients Z = Γ\Z and X = Γ\X are special
cube complexes. We fix a base vertex 𝑜 ∈ Z and set 𝑜 = 𝜙(𝑜) ∈ X .

Let 𝑆Z and 𝑆X be the set of oriented hyperplanes in Z and X respectively. By specialness all the
hyperplanes in Z and X are 2-sided, so there exist two orientations for each hyperplane. Since each
hyperplane in 𝑆X corresponds to a Γ-orbit of oriented hyperplanes in W ⊂ H(Z), there is a natural
injection of 𝑆X into 𝑆Z , so often we will consider 𝑆X as a subset of 𝑆Z . The label of an oriented
hyperplane in Z (resp. X ) is its projection in Z (resp. X ).

We say that a word 𝑤 = 𝔥1 · · · 𝔥𝑛 in (𝑆Z )
∗ is represented by a (combinatorial) path 𝛾 = (𝛾0, . . . , 𝛾𝑛)

in Z if for each i the oriented hyperplane 𝔥𝑖 is the image in Z of the oriented hyperplane dual to the edge
from 𝛾𝑖−1 to 𝛾𝑖 . Similarly, we define when a word in (𝑆X )∗ is represented by a path in X . A consequence
of specialness is that if a word is represented by two paths with the same initial vertex, then the paths
must coincide.

The next theorem gives us a finite-state automaton over 𝑆X that keeps track of the action of Γ on
both X and Z .
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Theorem 5.11. Let Γ,Z andX satisfy Convention 5.10. Then there exists a language 𝐿 = 𝐿Γ,𝜙 ⊂ (𝑆X )∗
parametrized by the pruned finite-state automaton

AΓ,𝜙 = (G𝜙 = (𝑉𝜙 , 𝐸𝜙), 𝜋𝜙 , 𝐼𝜙 , 𝑉𝜙)

satisfying the following.

(1) There exists 𝐶 ≥ 1 depending only on Γ and 𝜙 : Z → X such that any 𝑤 ∈ 𝐿Γ,𝜙 is represented by
at most C paths in G𝜙 starting at an initial state.

(2) Every 𝑤 ∈ 𝐿Γ,𝜙 is represented by a unique combinatorial geodesic 𝛾𝑤 ⊂ X starting at the vertex o.
We let 𝜏X (𝑤) denote the final vertex of 𝛾𝑤 .

(3) The map 𝜏X : 𝐿Γ,𝜙 → X 0 is a bijection.

Moreover, there exist maps Ψ : 𝑉𝜙 → (𝑆Z\𝑆X )∗ and Ξ : 𝑉𝜙 → X 0
satisfying the following.

(4) If 𝑤 ∈ 𝐿Γ,𝜙 is represented by the path 𝜔 = (𝑣0
𝑒1−→ 𝑣1 · · ·

𝑒𝑛−−→ 𝑣𝑛) in G𝜙 starting at an initial state,
then the concatenation

𝛼(𝜔) := Ψ(𝑣0)𝜋𝜙 (𝑒1)Ψ(𝑣1) · · · 𝜋𝜙 (𝑒𝑛) ∈ (𝑆Z )
∗ (5.1)

can be represented by a unique geodesic path 𝛾̃𝛼(𝜔) in Z with initial vertex 𝑜 and final vertex
𝜏Z (𝛼(𝜔)), so that 𝜙(𝜏Z (𝛼(𝜔))) = 𝜏X (𝑤).

(5) If 𝑤 ∈ 𝐿Γ,𝜙 is represented by the path 𝜔 = (𝑣0 → · · · → 𝑣𝑛) in G𝜙 starting at an initial state, then
the path 𝛾𝑤 = (𝛾0, . . . , 𝛾𝑛) in X projects to (Ξ(𝑣0), . . . ,Ξ(𝑣𝑛)) in X .

Recall from Subsection 2.3 that an automaton with underlying graph G is deterministic if any two
edges of G with the same initial vertex have different labels, and that the automaton is pruned if any
vertex in G is the final vertex of an admissible path.

Remark 5.12. i) The notation 𝐿Γ,𝜙 and AΓ,𝜙 in the theorem above is chosen to emphasize the de-
pendence on Γ,X and Z , but also on the restriction quotient map 𝜙 : Z → X . We have suppressed
some notation for simplicity, but this is also the case for the data involved in the definition of AΓ,𝜙 , as
well as for 𝜏X , 𝜏Z ,Ψ,Ξ and 𝛼. For simplicity, often we will use the simplified notation 𝐿𝜙 = 𝐿Γ,𝜙 and
A𝜙 = AΓ,𝜙 . ii) The specialness of X and Z is used at several steps in the construction of the automaton
AΓ,𝜙 . Crucially, specialness of Z allows us to use the automaton constructed by Li and Wise in [58] (see
Example 2.5). This automaton does not remember the quotient Γ\Z covered by Z , and in particular, the
automaton AΓ,𝜙 does not remember Γ. iii). We note that Convention 5.10, and hence the construction
of AΓ,𝜙 does not assume that Γ has a contracting element. The full strength of Item (3) in Definition 5.1
is used in Section 6 when we prove our counting theorems (compare with Convention 6.3). For these
counting results, passing to the finite index subgroup Γ is not an issue, as it suffices for the automaton
to see a subset of Γ having positive lower density, see Lemma 6.11.

We start the construction of AΓ,𝜙 by considering a regular language 𝐿Z ⊂ (𝑆Z )
∗ parameterized by

the (pruned and deterministic) automaton

AZ = (GZ = (𝑉Z , 𝐸Z ), 𝜋Z , {∗Z }, 𝑉Z )

over 𝑆Z , constructed by Li and Wise in [58] and discussed in Example 2.5. This automaton satisfies:

◦ every 𝑤 ∈ 𝐿Z is represented by a unique geodesic path 𝛾̃𝑤 in Z starting at 𝑜 and ending at the vertex
𝜏Z (𝑤); and,

◦ the map 𝜏Z : 𝐿Z → Z0 is a bijection.
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We use the automaton AZ to produce a language 𝐿𝜙 = 𝐿Γ,𝜙 over the alphabet 𝑆X . We do this by
first constructing an automaton

Â𝜙 = (Ĝ𝜙 = (𝑉̂𝜙, 𝐸̂𝜙), 𝜋̂𝜙 , 𝐼𝜙, 𝑉̂𝜙)

as follows.

Definition 5.13. Let 𝑉̂𝜙 be the set of finite directed paths (possibly of length 0) in GZ of the form
𝜔 = (𝑣0

𝑒1−→ · · · 𝑒𝑛−−→ 𝑣𝑛) and satisfying:

◦ 𝜋Z (𝑒𝑖) ∈ 𝑆Z\𝑆X for every 1 ≤ 𝑖 ≤ 𝑛;
◦ either 𝑣0 = ∗Z or there exists an edge in 𝐸Z with label in 𝑆X and final vertex 𝑣0; and,
◦ either there exists an edge in 𝐸Z with label in 𝑆X and initial vertex 𝑣𝑛 or there are no edges in 𝐸Z

with initial vertex 𝑣𝑛.

We consider an edge 𝑒 from the vertex 𝜔 to the vertex 𝜔′ in 𝑉̂𝜙 if there exists an edge 𝑒 ∈ 𝐸Z with
𝜋Z (𝑒) ∈ 𝑆X and such that the concatenation 𝜔𝑒𝜔′ is a path in GZ . We define 𝜋̂𝜙 (𝑒) := 𝜋Z (𝑒) and let
𝐸̂𝜙 be the set of all of the edges defined in this way. Finally, a vertex of 𝑉̂𝜙 is an initial state if its initial
vertex (as a path in GZ ) is ∗Z . We let 𝐼𝜙 be the set of all the initial states.

Lemma 5.14. The set 𝑉̂𝜙 is finite and nonempty. Therefore, Â𝜙 defines a pruned finite-state automaton
over 𝑆X .

Proof. The set 𝑆X is nonempty because Γ is nonelementary and X is essential, and since AZ is pruned
we can find a vertex in 𝐼𝜙 , so that 𝑉̂𝜙 is nonempty.

To show finiteness, let M be the maximum cardinality of a preimage 𝜙−1(𝑥) ∩ Z0 among 𝑥 ∈ X 0,
which is finite since 𝜙 is Γ-invariant and the action of Γ on Z is cocompact. If 𝜔 = (𝑣0

𝑒1−→ · · · 𝑒𝑛−−→ 𝑣𝑛)
is a vertex in 𝑉̂𝜙, the fact that AZ is pruned implies the existence of a geodesic path 𝛾̃ in Z representing
the word 𝜋Z (𝑒1) · · · 𝜋Z (𝑒𝑛) ∈ (𝑆Z\𝑆X )∗. Since 𝜙 collapses the hyperplanes not belonging to W, the
image 𝜙(𝛾̃) consists of a single point, implying that 𝑛 + 1 ≤ 𝑀 . We conclude that every vertex in 𝑉̂𝜙
has uniformly bounded length as a path in GZ , so 𝑉̂𝜙 is finite because GZ is.

Finally, AZ being pruned implies that Â𝜙 is pruned, and by construction this automaton is over the
alphabet 𝑆X . �

Definition 5.15. We let 𝐿𝜙 = 𝐿Γ,𝜙 ⊂ (𝑆X )∗ be the language parametrized by Â𝜙.

If 𝜔̂ = (𝜔0
𝑒̂1−→ · · · 𝑒̂𝑛−−→ 𝜔𝑛) is a path in Ĝ𝜙 , then the concatenation

𝑐(𝜔̂) := 𝜔0𝑒1 · · ·𝜔𝑛−1𝑒𝑛 (5.2)

is a path in GZ . Let 𝛼̂(𝜔̂) ∈ (𝑆Z )
∗ be the word represented by 𝑐(𝜔̂).

Lemma 5.16.
(1) If 𝜔̂, 𝜔̂′ are paths in Ĝ𝜙 starting at an initial state and representing the same word 𝑤 ∈ 𝐿𝜙 , then

𝜙(𝜏Z (𝛼̂(𝜔̂))) = 𝜙(𝜏Z (𝛼̂(𝜔̂′))) ∈ X 0. We denote this vertex by 𝜏X (𝑤).
(2) Any w in 𝐿𝜙 is represented by a unique geodesic path 𝛾𝑤 in X starting at o and ending at 𝜏X (𝑤).
(3) The map 𝜏X : 𝐿𝜙 → X 0 is a bijection.

Proof. By induction on the length of w we will prove simultaneously assertion (1) and that 𝑑X (𝑜, 𝜏X (𝑤))
equals the length of w. Suppose that w has length n and is represented by the paths

𝜔̂ = (𝜔0
𝑒̂1−→ · · · 𝑒̂𝑛−−→ 𝜔𝑛) and 𝜔̂′ = (𝜔′

0
𝑒̂′1−→ · · ·

𝑒̂′𝑛−−→ 𝜔′
𝑛)

in Ĝ𝜙 . If 𝑛 = 0 then 𝛼̂(𝜔̂) = 𝜔0 has no letters in 𝑆X , and hence the projection of 𝛾̃𝛼̂( 𝜔̂) under 𝜙 consists
of a single vertex, which must be o. As the same happens for 𝜔′, this solves the base case.
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If 𝑛 ≥ 1 we consider 𝜉 = (𝜔0
𝑒̂1−→ · · · 𝑒̂𝑛−1−−−→ 𝜔𝑛−1) and 𝜉 ′ = (𝜔′

0
𝑒̂′1−→ · · ·

𝑒̂′𝑛−1−−−→ 𝜔′
𝑛−1). Our inductive

assumption implies that 𝜙(𝜏Z (𝛼̂(𝜉))) = 𝜙(𝜏Z (𝛼̂(𝜉 ′))) =: 𝑥, so that no hyperplane with label in 𝑆X
separates 𝜏Z (𝛼̂(𝜉)) and 𝜏Z (𝛼̂(𝜉 ′)). Since X is special there exists at most one edge in X with initial
vertex x and dual to a hyperplane with label 𝔥 = 𝜋̂𝜙 (𝑒𝑛) = 𝜋̂𝜙 (𝑒′𝑛) ∈ 𝑆X . But 𝜙 is injective on W, so
that the hyperplane labeled 𝔥 that separates 𝜏Z (𝛼̂(𝜉)) and 𝜏Z (𝛼̂(𝜔̂)) in Z is the same as the hyperplane
labeled 𝔥 that separates 𝜏Z (𝛼̂(𝜉 ′)) and 𝜏Z (𝛼̂(𝜔̂′)). Since this is the only hyperplane with a label in 𝑆X
that separates these pairs, we conclude that every hyperplane separating 𝜏Z (𝛼̂(𝜔̂)) and 𝜏Z (𝛼̂(𝜔̂′)) has
a label in 𝑆Z\𝑆X , which gives us 𝜙(𝜏Z (𝛼̂(𝜔̂))) = 𝜙(𝜏Z (𝛼̂(𝜔̂′))). Moreover, if 𝑤′ ∈ 𝐿𝜙 is the word
represented by 𝜉, then by induction we have 𝑑X (𝑜, 𝜏X (𝑤′)) = 𝑛 − 1 and 𝑑X (𝜏X (𝑤′), 𝜏X (𝜉)) = 1. But
all these points belong to the projection under 𝜙 of the geodesic 𝛾̃𝛼̂( 𝜔̂) , so Remark 2.2 implies that
𝑑X (𝑜, 𝜏X (𝑤)) = 𝑛 and concludes the proof by induction, proving (1).

It is not hard to see that if 𝑤 = 𝔥1 · · · 𝔥𝑛 ∈ 𝐿𝜙 then

𝛾𝑤 := (𝑜, 𝜏X (𝔥1), 𝜏X (𝔥1𝔥2), . . . , 𝜏X (𝔥1 · · · 𝔥𝑛))

is the unique geodesic representing w in X and starting at o, which settles (2).
To prove (3), injectivity can be deduced by induction on the length of words in 𝐿𝜙 combined with

the fact that no two distinct edges with the same initial vertex in X are dual to hyperplanes with the
same label in 𝑆X . This last statement is true by specialness of X .

To prove surjectivity, let 𝑥 ∈ X 0 and consider 𝑤 ∈ 𝐿Z such that 𝜙(𝜏Z (𝑤)) = 𝑥. Such an 𝑤 exists
because both 𝜏Z and 𝜙 are surjective. We write 𝑤 = 𝑤0𝑒1 · · · 𝑒𝑛𝑤𝑛, where each 𝑒𝑖 is a letter in 𝑆X and
each 𝑤𝑖 is a (possibly empty) word in (𝑆Z\𝑆X )∗. Then 𝑤′ := 𝑤0𝑒1 · · ·𝑤𝑛−1𝑒𝑛 equals 𝛼̂(𝜔̂) for some
path 𝜔̂ in Ĝ𝜙 representing the word 𝑤 ∈ 𝐿𝜙 , for which 𝜏X (𝑤) = 𝜙(𝜏Z (𝑤′)) = 𝜙(𝜏Z (𝑤)) = 𝑥. �

Lemma 5.17. There exists 𝐶 ≥ 1 such that every 𝑤 ∈ 𝐿𝜙 is represented by at most C paths in Ĝ𝜙
starting at an initial vertex.

Proof. Since 𝜏Z is injective and 𝜙 is uniformly finite-to-one when restricted to vertices, it is enough
to prove that the assignment 𝜔̂ ↦→ 𝛼̂(𝜔̂) from the paths in Ĝ𝜙 starting at an initial vertex into 𝐿Z is
uniformly finite-to one. To show this, note that such 𝜔̂ is completely determined by its concatenation
𝑐(𝜔̂) in GZ (defined in (5.2)) and its final vertex in 𝑉̂𝜙 , and that 𝑐(𝜔̂) is completely determined by 𝛼̂(𝜔̂)
since AZ is deterministic. The lemma then follows from Lemma 5.14. �

Proof of Theorem 5.11. First we note that X 1
can be seen as the finite-state automaton

X 1
= ((X 0

, 𝐸 (X )), prX , {𝑜},X
0)

over 𝑆X , where 𝐸 (X ) is the set of oriented edges of X , prX labels each directed edge of X with its
corresponding dual oriented hyperplane, and 𝑜 is the image of o under the quotient X → X . This
automaton is deterministic since X is special.

Let A𝜙 = AΓ,𝜙 = (G𝜙 = (𝑉𝜙 , 𝐸𝜙), 𝜋𝜙 , 𝐼𝜙, 𝑉𝜙) be the fiber product of Â𝜙 and X 1
. That is, in

𝑉̂𝜙 × X 0
consider a directed edge from (𝜔̂, 𝑥) to (𝜔̂′, 𝑥 ′) if there exists an edge 𝑒 from 𝜔 to 𝜔′ in Ĝ𝜙

such that 𝜋̂𝜙 (𝑒) is the oriented hyperplane dual to an edge from 𝑥 to 𝑥 ′ in X (so that 𝑥, 𝑥 ′ must be
adjacent). By abuse of notation we will call this edge e and define 𝜋𝜙 (𝑒) := 𝜋̂𝜙 (𝑒). Let 𝐼𝜙 = 𝐼𝜙 × {𝑜}
be the set of initial states of G𝜙 and let 𝑉𝜙 ⊂ 𝑉̂𝜙 ×X 0

be the set of all the vertices in some directed path
in 𝑉̂𝜙 ×X 0

starting at an initial state. Let 𝐸𝜙 be the set of all the directed edges between vertices in 𝑉𝜙
as defined above. Clearly A𝜙 is pruned and finite.

There exists a label-preserving map 𝔭 from the set of paths in G𝜙 starting at an initial state into the
set of paths in Ĝ𝜙 starting at an initial state, which sends the path ((𝜔0, 𝑥0)

𝑒1−→ · · · 𝑒𝑛−−→ (𝜔𝑛, 𝑥𝑛)) to the
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path 𝜔̂ = (𝜔0
𝑒̂1−→ · · · 𝑒̂𝑛−−→ 𝜔𝑛). The map 𝔭 is a bijection since the sequence 𝑥0, . . . , 𝑥𝑛 is the image of

𝛾𝑤 under X → X , where w is the word represented by 𝜔̂. In particular, the language parametrized by
A𝜙 is precisely 𝐿𝜙 , so Lemma 5.17 implies Item (1). Also, Items (2) and (3) follow from Lemma 5.16.

For Item (4) we consider the map Ψ : 𝑉𝜙 → (𝑆Z\𝑆X )∗ that sends the vertex (𝜔, 𝑥) to the word
represented by 𝜔, seen as a path in GZ . From the definition of Ĝ𝜙 it is clear that for the path 𝜔 = (𝑣0

𝑒1−→
· · · 𝑒𝑛−−→ 𝑣𝑛) in G𝜙 starting at an initial state, the concatenation

𝛼(𝜔) := 𝛼̂(𝔭(𝜔)) = Ψ(𝑣0)𝜋𝜙 (𝑒1)Ψ(𝑣1) · · · 𝜋𝜙 (𝑒𝑛)

belongs to 𝐿Z , so it is represented by the geodesic path 𝛾̃𝛼(𝜔) in Z starting at 𝑜. The word w represented
by 𝜔 is also represented by 𝔭(𝜔), so Lemma 5.16 implies that 𝜏X (𝑤) = 𝜙(𝜏Z (𝛼(𝜔))). AZ being
deterministic implies that 𝛾̃𝛼(𝜔) is the unique geodesic in Z starting at 𝑜 and representing w.

Finally, we define Ξ : 𝑉𝜙 → X 0
as the coordinate projection Ξ(𝜔, 𝑥) = 𝑥, and the same argument

for the proof that 𝔭 is a bijection implies Item (5). �

6. Proof of the main theorems

In this section we prove our main results about pairs of actions on CAT(0) cube complexes from
the introduction. Theorem 1.2 and Theorem 1.5 are consequences of more general statements, given
by Theorems 6.1 and 6.2 respectively. The strategy is to use the automaton from Theorem 5.11 to
define an appropriate suspension flow, and then use Proposition 6.8 to relate the Manhattan curves with
pressure functions for potentials on this suspension (at this point we have enough formalism to deduce
Theorem 1.4). This relation will allow us to use the tools from symbolic dynamics and thermodynamic
formalism discussed in Section 3 to deduce our main results.

The following are the main theorems of the section, and they are proven in Subsection 6.2. For their
statements, we interpret the quantities Dil(X ,X∗)−1 and 𝑣X𝔴/𝑣X𝔴∗

∗
as zero if the action of Γ on X∗ is

not proper.

Theorem 6.1. Let (Γ,X ,X∗) ∈ 𝔛 and let 𝔴,𝔴∗ be Γ-invariant orthotope structures on X and X∗
respectively. Then the Manhattan curve 𝜃X𝔴∗

∗ /X𝔴 : R → R is convex, decreasing, and analytic. In
addition, the following limit exists and equals −𝜃 ′X𝔴∗

∗ /X𝔴 (0):

𝜏(X𝔴∗
∗ /X𝔴) := lim

𝑇→∞

1
#ℭX𝔴 (𝑇)

∑
[𝑔] ∈ℭX𝔴 (𝑇 )

ℓ𝔴∗
X∗

[𝑔]
ℓ𝔴X [𝑔] .

Moreover, we always have

𝜏(X𝔴∗
∗ /X𝔴) ≥ 𝑣X𝔴/𝑣X𝔴∗

∗
.

If the action of Γ on X∗ is proper then the following are equivalent:

(1) 𝜃X𝔴∗
∗ /X𝔴 is a straight line;

(2) there exists Λ > 0 such that ℓ𝔴X [𝑔] = Λℓ𝔴∗
X∗

[𝑔] for all [𝑔] ∈ conj(Γ); and,
(3) 𝜏(X𝔴∗

∗ /X𝔴) = 𝑣X𝔴/𝑣X𝔴∗
∗

.

Theorem 6.2. Let (Γ,X ,X∗) ∈ 𝔛. Then there exists an analytic function

I : [Dil(X ,X∗)−1,Dil(X∗,X )] → R
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and 𝐶 > 0 such that for any 𝜂 ∈ (Dil(X ,X∗)−1,Dil(X∗,X )) we have

0 < lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ ℭX (𝑇) : |ℓX∗ [𝑔] − 𝜂ℓX [𝑔] | < 𝐶

𝑇

})
= I (𝜂) ≤ 𝑣X . (6.1)

Furthermore, we have equality in the above inequality if and only if 𝜂 = 𝜏(X∗/X ).

As we noted in the previous section, (Γ,X ,X∗) ∈ 𝔛 whenever Γ ∈ 𝔊 and X ,X∗ are cubulations
of Γ. From this we see that Theorems 6.1 and 6.2 imply Theorems 1.2 and 1.5 from the introduction.

The outline to prove these theorems is as follows. Given (Γ,X ,X∗) ∈ 𝔛 and corresponding orthotope
structures 𝔴,𝔴∗, our goal is to relate the Manhattan curve of (X𝔴,X𝔴∗

∗ ) to a pressure function for a
potential on a suspension flow (Proposition 6.8), which is done in Subsection 6.1. The suspension
flow and the potential are constructed using the automaton AΓ,𝜙 from Theorem 5.11, and the proof of
Proposition 6.8 relies on showing that any closed orbit in the suspension flow has associated a conjugacy
class in Γ in an “almost bijective” way (Lemma 6.12 and Lemma 6.13). These two lemmas are the last
pieces we need to prove Theorem 1.4. Then in Subsection 6.2, and with Proposition 6.8 at our disposal,
we can deduce a standard large deviations principle for the pair (X𝔴,X𝔴∗

∗ ) (Corollary 6.16). Combining
this with tools from thermodynamic formalism, we prove Theorem 6.1. Finally, we apply Theorem 3.2
to deduce a large deviations theorem with shrinking intervals for (X ,X∗), which is Theorem 6.2.

6.1. Manhattan curves for pairs of cubulations

In this subsection we use the finite-state automaton given by Theorem 5.11 to describe the Manhattan
geodesics for a pair of cubulations in terms of pressure functions. The main result is Proposition 6.8,
which will allow us to use thermodynamic formalism to prove our main results in the next subsection.
For this section we keep the notation from the previous section and assume the following.

Convention 6.3. Let (Γ,X ,Z) be a triplet satisfying Convention 5.10. Consider a nonempty Γ-invariant
subset W∗ ⊂ H(Z) such that W ∪W∗ = H(Z) and set X∗ = Z (W∗). Then the action of Γ on X∗ is
cocompact, but not necessarily proper, and we further assume that this action is essential. Let 𝔴 and
𝔴∗ be Γ-invariant orthotope structures on X and X∗ respectively. We also require the action of Γ on X
to have a contracting element, so that (Γ,X ,X∗) ∈ 𝔛.

Let 𝑆X ∗
⊂ 𝑆Z be the set of all the oriented hyperplanes in Z whose lifts to Z correspond to

hyperplanes inW∗, and let 𝜙∗ : Z → X∗ be the projection quotient with 𝑜∗ = 𝜙∗(𝑜).

Since the structures 𝔴,𝔴∗ are Γ-invariant, there exist natural weighting maps 𝔴,𝔴∗ : 𝑆Z → R

defined according to:

𝔴(𝔥) :=

{
𝔴(𝔥̃) if 𝔥 ∈ 𝑆X and 𝔥̃ ∈ H(X ) is oriented and projects to 𝔥 under X → X ,
0 if 𝔥 ∈ 𝑆Z\𝑆X ,

and

𝔴∗(𝔥) :=

{
𝔴∗(𝔥̃) if 𝔥 ∈ 𝑆X ∗

and 𝔥̃ ∈ H(X ) is oriented and projects to 𝔥 under Z → Z ,
0 if 𝔥 ∈ 𝑆Z\𝑆X ∗

.

By abuse of notation we extend these weightings to 𝔴,𝔴∗ : (𝑆Z )
∗ → R by declaring the empty word

to have weights 0 and assigning

𝔴(𝔥1 · · · 𝔥𝑛) = 𝔴(𝔥1) + · · · +𝔴(𝔥𝑛) and 𝔴∗(𝔥1 · · · 𝔥𝑛) = 𝔴∗(𝔥1) + · · · +𝔴∗(𝔥𝑛)

for a word 𝔥1 · · · 𝔥𝑛 ∈ (𝑆Z )
∗ of positive length.
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We consider the automaton AΓ,𝜙 given by Theorem 5.11, and we let Σ× be the set of all the finite
directed paths in the underlying graph G𝜙 of AΓ,𝜙 . We can see Σ× as a set of finite sequences of edges
in 𝐸𝜙 . Similarly, let Σ ⊂ (𝐸𝜙)N be the set of infinite sequences (𝑒𝑖)𝑖≥1 such that (𝑒𝑖)1≤𝑖≤𝑘 ∈ Σ× for all k.
We also let 𝜎 : Σ → Σ denote the shift map 𝜎((𝑒𝑖)𝑖≥1) = (𝑒𝑖+1)𝑖≥1. For each n we let 𝑃𝑛 (Σ×) ⊂ Σ× be
the subset of all the closed paths of length n, and set 𝑃≤𝑛 (Σ×) =

⋃
𝑗≤𝑛 𝑃 𝑗 (Σ×) and 𝑃(Σ×) =

⋃
𝑗 𝑃 𝑗 (Σ×).

We will often identify the set Fix𝑛 (Σ) of sequences 𝜔 ∈ Σ satisfying 𝜎𝑛 (𝜔) = 𝜔 with 𝑃𝑛 (Σ×) via the
truncation 𝜔 = (𝑒1, . . . , 𝑒𝑛, 𝑒1, . . . ) ↦→ 𝑡𝑛 (𝜔) := (𝑒1, . . . , 𝑒𝑛).

The next definition will be useful for the rest of the section.

Definition 6.4. A combinatorial path 𝛾 in X is a good representative of 𝜔 ∈ Σ× if there exists a path
𝜔0 ∈ Σ× starting at an initial state and ending at the initial vertex of 𝜔 and satisfying the following. If
𝑤0, 𝑤0𝑤 ∈ 𝐿𝜙 are the words corresponding to 𝜔0 and 𝜔0𝜔 respectively, then 𝛾 is the portion of the
path 𝛾𝑤0𝑤 representing 𝑤0𝑤 from 𝛾− = 𝜏X (𝑤0) to 𝛾+ = 𝜏X (𝑤0𝑤).

Note that good representatives are geodesic. Also, by Theorem 5.11 (5), any two good representatives
of the same path in Σ× differ by a translation by an element in Γ. In consequence, if𝜔 ∈ 𝑃(Σ×) then there
exists a well-defined conjugacy class 𝛽(𝜔) ∈ conj(Γ) represented by any 𝑔 ∈ Γ such that 𝛾+ = 𝑔𝛾− for
𝛾 a good representative of 𝜔. Clearly 𝜔 ∈ 𝑃𝑛 (Σ×) implies ℓX [𝛽(𝜔)] = 𝑛.

We also consider lifts of paths in Σ× to Z . First, we extend the equation (5.1) to define a map
𝛼 : Σ× → (𝑆Z )

∗. If 𝛾 is a good representative of 𝜔 ∈ Σ× defined using the path 𝜔0 as above, then 𝛾̃ is
the portion of 𝛾̃𝛼(𝜔0𝜔) starting at 𝛾̃+

𝛼(𝜔0) and ending at 𝛾̃+
𝛼(𝜔0𝜔) , where 𝛾̃𝛼(𝜔0) and 𝛾̃𝛼(𝜔0𝜔) are given

by Theorem 5.11 (4). In this way the path 𝛾̃ represents the word 𝛼(𝜔). Different choices of 𝜔0, 𝜔
′
0 may

give different lifts 𝛾̃, 𝛾̃′ even if 𝜏X (𝑤0) = 𝜏X (𝑤′
0), but under this assumption we have 𝜙(𝛾̃) = 𝜙(𝛾̃′) = 𝛾.

A key feature of the automaton AΓ,𝜙 is that it keeps track of translation lengths for the actions of Γ
on the cuboid complexes X𝔴 and X𝔴∗

∗ , via the potential on (Σ, 𝜎) defined below.

Definition 6.5. Let 𝑟 = 𝑟𝔴X , 𝜓 = 𝜓𝔴∗
X∗

: 𝐸𝜙 → R be the functions such that

𝑟 (𝑒) = 𝔴(𝜋𝜙 (𝑒)) and 𝜓(𝑒) = 𝜓(𝑣0
𝑒−→ 𝑣1) = 𝔴∗(Ψ(𝑣0)) +𝔴∗(𝜋𝜙 (𝑒)), (6.2)

where Ψ is the function from Theorem 5.11 (4).

Remark 6.6. In the definition of 𝜓 above, we note that 𝔴∗(𝜋𝜙 (𝑒)) is not necessarily zero since 𝑆X and
𝑆X ∗

are not necessarily disjoint. Also, our assumption thatW∪W∗ = H(Z) implies that 𝑆X ∪𝑆X ∗
= 𝑆Z ,

so that Ψ(𝑣0) always belongs to (𝑆X ∗
)∗.

By abuse of notation we extend these functions to potentials 𝑟, 𝜓 : Σ → R via

𝑟 (𝑒1, 𝑒2, . . . ) = 𝑟 (𝑒1) and 𝜓(𝑒1, 𝑒2, . . . ) = 𝜓(𝑒1).

Clearly r and 𝜓 are constant on 2-cylinders, and r is positive. The next lemma can be seen as a weak
analog of [14, Lemma 3.8] for pairs of word metrics on hyperbolic groups.

Lemma 6.7. Let 𝑟, 𝜓 : Σ → R be the potentials defined above. If 𝑛 ≥ 1 and 𝜔 ∈ Fix𝑛 (Σ) has truncation
𝑡𝑛 (𝜔) ∈ 𝑃𝑛 (Σ×), then ℓX [𝛽(𝑡𝑛 (𝜔))] = 𝑛 and the nth Birkhoff sums at 𝜔 satisfy

𝑟𝑛 (𝜔) = 𝑟 (𝜔) + 𝑟 (𝜎(𝜔)) + · · · + 𝑟 (𝜎𝑛−1 (𝜔)) = ℓ𝔴X [𝛽(𝑡𝑛 (𝜔))] (6.3)

and

𝜓𝑛 (𝜔) = 𝜓(𝜔) + 𝜓(𝜎(𝜔)) + · · · + 𝜓(𝜎𝑛−1 (𝜔)) = ℓ𝔴∗
X∗

[𝛽(𝑡𝑛 (𝜔))] . (6.4)

Proof of Lemma 6.7. Let𝜔 ∈ Fix𝑛 (Σ) be as in the statement of the lemma and let𝜔𝑛 = 𝑡𝑛 (𝜔) = (𝑣0
𝑒1−→

· · · 𝑒𝑛−−→ 𝑣𝑛) ∈ 𝑃𝑛 (Σ×). As we noted previously we have ℓX [𝛽(𝜔𝑛)] = 𝑛, so the main content of the
lemma are the identities (6.3) and (6.4), which we now prove.
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For any 𝑘 ≥ 1, let 𝜔 (𝑘)
𝑛 ∈ 𝑃(Σ×) be the concatenation of k copies of 𝜔𝑛 and let

(𝛾 (𝑘) )𝑘 = (𝛾(𝜔𝑛
(𝑘) ) )𝑘 ⊂X be a sequence of good representatives of 𝜔 (𝑘)

𝑛 with a common starting vertex
𝛾− = (𝛾 (𝑘) )−. Let 𝑞 ∈ Γ satisfy (𝛾 (1) )+ = 𝑞𝛾−, so that [𝑞] = 𝛽(𝜔𝑛) and (𝛾 (𝑘) )+ = 𝑞𝑘𝛾− for each k.
Also, since 𝜔 is a closed path, we have that 𝛾 (1) is a fundamental domain for a q-invariant geodesic in
X𝔴, and hence

𝑟𝑛 (𝜔) = 𝔴(𝜋𝜙 (𝑒1)) + · · · +𝔴(𝜋𝜙 (𝑒𝑛))
= 𝑑𝔴X ((𝛾 (1) )−, (𝛾 (1) )+) = 𝑑𝔴X (𝛾−, 𝑞𝛾−) = ℓ𝔴X [𝑞] = ℓ𝔴X [𝛽(𝑡𝑛 (𝜔))] .

This proves (6.3).
To prove (6.4), let L be such that 𝜙∗ : Z → X𝔴∗

∗ is L-Lipschitz and consider the lifts 𝛾̃ (𝑘) ⊂ Z of the
geodesic 𝛾 (𝑘) with a common starting vertex 𝛾̃− = (𝛾̃ (𝑘) )−. We project these paths to X∗ by defining
𝛾−∗ := 𝜙∗(𝛾̃−) and (𝛾 (𝑘)∗ )+ := 𝜙∗((𝛾̃ (𝑘) )+), and for all k we get

|𝑑𝔴∗
X∗
(𝛾−∗ , (𝛾

(𝑘)
∗ )+) − 𝑑𝔴∗

X∗
(𝛾−∗ , 𝑞𝑘𝛾−∗ ) | ≤ 𝑑𝔴∗

X∗
((𝛾 (𝑘)∗ )+, 𝑞𝑘𝛾−∗ ) ≤ 𝐿𝑑Z ((𝛾̃ (𝑘) )+, 𝑞𝑘 𝛾̃−). (6.5)

The last term in the inequality above is bounded by a number independent of k. Indeed, since 𝜙((𝛾̃ (𝑘) )+) =
𝜙(𝑞𝑘 𝛾̃−) = 𝑞𝑘𝛾−, we have that both (𝛾̃ (𝑘) )+ and 𝑞𝑘 𝛾̃− belong to the preimage of 𝑞𝑘𝛾− under 𝜙, so their
distance is bounded by a number independent of k because 𝜙 : Z → X is a quasi-isometry.

Also, we note that 𝑑𝔴∗
X∗
(𝛾−∗ , (𝛾

(𝑘)
∗ )+) = 𝔴∗(𝛼(𝜔 (𝑘)

𝑛 )), which equals 𝑘 · 𝔴∗(𝛼(𝜔𝑛)) since 𝛼(𝜔 (𝑘)
𝑛 ) is

the concatenation of k copies of 𝛼(𝜔𝑛). By Theorem 5.11 (4), it follows that

𝑑𝔴∗
X∗
(𝛾−∗ , (𝛾

(𝑘)
∗ )+) = 𝑘 ·𝔴∗(𝛼(𝜔𝑛))

= 𝑘 · (𝔴∗(Ψ(𝑣0)𝜋𝜙 (𝑒1)) +𝔴∗(Ψ(𝑣1)𝜋𝜙 (𝑒2)) + · · · +𝔴∗(Ψ(𝑣𝑛−1)𝜋𝜙 (𝑒𝑛)))

= 𝑘 · (𝜓(𝑣0
𝑒1−→ 𝑣1) + 𝜓(𝑣1

𝑒2−→ 𝑣2) + · · · + 𝜓(𝑣𝑛−1
𝑒𝑛−−→ 𝑣𝑛))

= 𝑘 · (𝜓(𝜔) + 𝜓(𝜎(𝜔)) + · · · + 𝜓(𝜎𝑛−1 (𝜔))) = 𝑘𝜓𝑛 (𝜔).

Therefore, combining this with (6.5) and after dividing by k and letting k tend to infinity we obtain
ℓ𝔴∗
X∗

[𝛽(𝑡𝑛 (𝜔))] = ℓ𝔴∗
X∗

[𝑞] = 𝜓𝑛 (𝜔), as desired. �

To apply the results from Section 3 we require a mixing (or at least transitive) dynamical system.
To obtain such a system we consider a maximal recurrent component C of the graph G𝜙 . As before we
let Σ×

C ⊂ Σ× and ΣC ⊂ Σ be the subsets corresponding to paths in C, and note that ΣC is 𝜎-invariant.
Similarly we define 𝑃(Σ×

C ), 𝑃𝑛 (Σ
×
C ) and 𝑃≤𝑛 (Σ×

C ), and we identify 𝑃𝑛 (Σ×
C ) with Fix𝑛 (ΣC).

Let 𝑟𝔴X : ΣC → R>0 be the (constant on 2-cylinders) restriction to ΣC of the potential introduced in
Definition 6.5 and consider the suspension flow:

Σ
𝑟𝔴X
C := {(𝜔, 𝑡) ∈ ΣC × R : 0 ≤ 𝑡 ≤ 𝑟𝔴X (𝜔)}/∼,

where each (𝜔, 𝑟𝔴X (𝜔)) is identified with (𝜎(𝜔), 0) and the flow 𝜎𝑟
𝔴
X = (𝜎𝑟

𝔴
X
𝑠 )𝑠∈R>0 acts as 𝜎𝑟

𝔴
X
𝑠 (𝜔, 𝑡) =

(𝜔, 𝑡 + 𝑠).
Note that any closed 𝜎𝑟𝔴X -orbit 𝜏 in Σ

𝑟𝔴X
C corresponds to a closed 𝜎-orbit in ΣC . More precisely, such

an orbit 𝜏 must be of the form 𝜏 = {(𝜔, 𝑡) : 0 ≤ 𝑡 ≤ (𝑟𝔴X )𝑛 (𝜔)} for some 𝜔 ∈ ΣC such that 𝜎𝑛 (𝜔) = 𝜔.
In this case the period of 𝜏 equals 𝑙𝜏 = (𝑟𝔴X )𝑛 (𝜔).

We fix a smooth function Δ : [0, 1] → R≥0 such that Δ (0) = Δ (1) = 1 and
∫ 1

0 Δ (𝑡) 𝑑𝑡 = 1 and
define Φ : Σ𝑟

𝔴
X
C → R≥0 according to
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Φ(𝜔, 𝑡) = Δ

(
𝑡

𝑟𝔴X (𝜔)

) 𝜓𝔴∗
X∗
(𝜔)

𝑟𝔴X (𝜔) for each (𝜔, 𝑡) ∈ Σ
𝑟𝔴X
C with 0 ≤ 𝑡 ≤ 𝑟𝔴X (𝜔). (6.6)

This function has the property that, for any closed𝜎𝑟𝔴X -orbit 𝜏 inΣ𝑟
𝔴
X
C with period 𝑙𝜏 and corresponding

periodic 𝜎-orbit 𝜔, 𝜎(𝜔), . . . , 𝜎𝑛 (𝜔) = 𝜔 in ΣC we have∫
𝜏
Φ :=

∫ 𝑙𝜏

0
Φ(𝜎𝑟

𝔴
X
𝑡 (𝜔, 0)) 𝑑𝑡 = ℓ𝔴∗

X∗
[𝛽(𝑡𝑛 (𝜔))],

where we have used Lemma 6.7. For 𝜏, 𝜔, and n as above we adopt the notation

𝛽(𝜏) = 𝛽(𝑡𝑛 (𝜔)),

which defines a map 𝛽 : 𝑃(Σ𝑟
𝔴
X
C ) → conj(Γ) from the set 𝑃(Σ𝑟

𝔴
X
C ) of periodic orbits of Σ𝑟

𝔴
X
C into conj(Γ).

By Lemma 6.7, the period of any 𝜏 ∈ 𝑃(Σ𝑟
𝔴
X
C ) equals ℓ𝔴X [𝛽(𝜏)].

For such a suspension flow (Σ𝑟
𝔴
X
C , 𝜎𝑟

𝔴
X ), the Manhattan curve for (X𝔴,X𝔴∗

∗ ) can be described in
terms of the pressures related to Φ, as stated in the next proposition.

Proposition 6.8. Let Γ,X ,X∗,Z ,𝔴,𝔴∗ satisfy Convention 6.3 and let AΓ,𝜙 and 𝑟𝔴X , 𝜓
𝔴∗
X∗

: Σ → R be
given by Theorem 5.11 and Definition 6.5 respectively. If C is a maximal recurrent component of G𝜙
and Φ : Σ𝑟

𝔴
X
C → R is given by (6.6), then for any 𝑠 ∈ R we have

𝜃X𝔴∗
∗ /X𝔴 (𝑠) = PC (−𝑠Φ),

where PC (−𝑠Φ) is the pressure of the potential −𝑠Φ on the suspension (Σ𝑟
𝔴
X
C , 𝜎𝑟

𝔴
X ).

In particular, this result implies that the pressure 𝑠 ↦→ PC (−𝑠Φ) is independent of the choice of
maximal recurrent component C.

Remark 6.9. As it will be clear from the proof of Proposition 6.8, if C is any maximal recurrent
component of G𝜙 then for any 𝑠 ∈ R we also have

𝜃X∗/X (𝑠) = PC (−𝑠𝜓),

where 𝜓 = 𝜓𝔴∗
X∗

for 𝔴∗ ≡ 1 the constant orthotope structure and PC (−𝑠𝜓) is the pressure of the potential
−𝑠𝜓 on (ΣC , 𝜎).

The rest of this subsection is devoted to proving this proposition, and using the formalism necessary
in its proof to deduce Theorem 1.4. For the sequel we fix a compact set 𝐾 ⊂ X such that X = Γ𝐾
and assume that 𝑜 ∈ 𝐾 . Since G𝜙 is finite and pruned we also fix 𝑁 > 0 such that any 𝜔 ∈ Σ× has
a good representative 𝛾 satisfying 𝑑X (𝛾−, 𝑜) ≤ 𝑁 . Otherwise explicit, for any 𝜔 ∈ Σ× we fix a good
representative 𝛾 = 𝛾𝜔 that minimizes 𝑑X (𝛾−, 𝑜) and define

ΓC := {𝑔 ∈ Γ : there exists 𝜔 ∈ Σ×
C such that 𝛾+𝜔 ∈ 𝑔𝐾}.

We also write 𝐵𝑛 = {𝑔 ∈ Γ : 𝑑X (𝑔𝑜, 𝑜) ≤ 𝑛} for each 𝑛 ≥ 0.

Lemma 6.10. Let C be the constant from Theorem 5.11 (1). Then

sup
𝑥∈X 0

#{𝜔 ∈ Σ× : 𝛾+𝜔 = 𝑥} ≤ 𝐶 (𝑁 + 1).

Proof. Let 𝑥 ∈ X 0 and 𝜔 ∈ Σ× be such that 𝛾+𝜔 = 𝑥, so that 𝛾𝜔 is constructed from a path 𝜔0 ∈ Σ×

such that 𝜔′ = 𝜔0𝜔 also belongs to Σ×. Then 𝜔0 is a prefix of 𝜔′ of length at most N and 𝜔′ represents
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the unique word 𝑤 ∈ 𝐿𝜙 satisfying 𝜏X (𝑤) = 𝑥. From this we deduce

#{𝜔 ∈ Σ× : 𝛾+𝜔 = 𝑥} ≤ (𝑁 + 1) · #{𝜔′ ∈ Σ× : 𝜔′ starts at an initial state and 𝛾+𝜔′ = 𝑥}
≤ (𝑁 + 1) · #{𝜔′ ∈ Σ× : 𝜔′ represents 𝑤 and starts at an initial state},

and the lemma follows from Theorem 5.11 (1). �

Lemma 6.11. The set ΓC has positive lower density for the action on X . That is

lim inf
𝑛→∞

#(ΓC ∩ 𝐵𝑛)
#𝐵𝑛

> 0.

Proof. For each n we let (Σ×
C )≤𝑛 denote the set of paths in C of length at most n. First we claim that

there exist 𝐵 > 1 and 0 ≤ 𝜆 < 𝑒𝑣X (depending only on the adjacency matrix of C) such that

#(Σ×
C )≤𝑛 ≥ 𝐵−1𝑒𝑛𝑣X − 𝐵𝜆𝑛 (6.7)

for all n large enough. To show this, let A be the adjacency matrix of C, which is irreducible since C
is recurrent. Moreover, C being maximal implies that the spectral radius of A equals 𝑒𝑣X . Suppose that
A has 𝑝 ≥ 1 eigenvalues of absolute value 𝑒𝑣X and let 0 ≤ 𝜆 < 𝑒𝑣X be any number greater than the
absolute value of all the other eigenvalues of A. By [26, Theorem 3.1], for each 𝑘 ≥ 1 the matrix 𝐴𝑘 𝑝
has 𝑒𝑘 𝑝𝑣X as eigenvalue of multiplicity p and all its other eigenvalues have absolute value less than 𝜆𝑘 𝑝.
In particular, its trace satisfies

tr(𝐴𝑘 𝑝) ≥ 𝑝𝑒𝑘 𝑝𝑣X − (dim 𝐴 − 𝑝)𝜆𝑘 𝑝 .

But tr(𝐴𝑘 𝑝) equals the number of closed paths of length 𝑘 𝑝 in C, so if 𝑛 = 𝑘 𝑝 + 𝑟 with 0 ≤ 𝑟 < 𝑝 an
integer and 𝑘 ≥ 1, then

#(Σ×
C )≤𝑛 ≥ #(Σ×

C )≤𝑘 𝑝 ≥ tr(𝐴𝑘 𝑝) ≥ 𝑝𝑒𝑘 𝑝𝑣X − (dim 𝐴 − 𝑝)𝜆𝑘 𝑝

≥ (𝑝𝑒−𝑝𝑣X )𝑒𝑛𝑣X − (dim 𝐴 − 𝑝)𝜆𝑛.

This concludes the proof of the claim. Now consider n large enough and 𝜔 ∈ (Σ×
C )≤𝑛. Since the

Γ-translates of K cover X we have 𝛾+𝜔 ∈ 𝑔𝐾 for some 𝑔 ∈ Γ, so that 𝑑X (𝛾+𝜔 , 𝑔𝑜) ≤ 𝐷 with D being the
diameter of K. In addition, by definition we have 𝑑X (𝛾−𝜔 , 𝑜) ≤ 𝑁 and hence 𝑑X (𝑜, 𝑔𝑜) ≤ 𝑛 + 𝐷 + 𝑁 .
By Lemma 6.10 this implies that

#(Σ×
C )≤𝑛 ≤ #(ΓC ∩ 𝐵𝑛+𝐷+𝑁 ) · sup

𝑔∈Γ
#{𝜔 ∈ Σ×

C : 𝛾+𝜔 ∈ 𝑔𝐾} ≤ (𝑁 + 1)𝐶 · #𝐾 · #(ΓC ∩ 𝐵𝑛+𝐷+𝑁 ),

where C is the constant from Theorem 5.11 (1).
Combining this with (6.7) we get

#(ΓC ∩ 𝐵𝑛) ≥ ((𝑁 + 1)𝐶#𝐾)−1𝐵−1𝑒 (𝑛−𝐷−𝑁 )𝑣X − ((𝑁 + 1)𝐶#𝐾)−1𝐵𝜆𝑛−𝐷−𝑁

= [((𝑁 + 1) (𝐶#𝐾)𝐵)−1𝑒−(𝐷+𝑁 )𝑣X ]𝑒𝑛𝑣X − [((𝑁 + 1)𝐶#𝐾)−1𝐵𝜆−𝐷−𝑁 ]𝜆𝑛.

Finally, the since the action on X has a contracting element, [88, Theorem 1.8 (2)] implies that there
exists 𝐶 ′ > 0 such that #𝐵𝑛 ≤ 𝐶 ′𝑒𝑛𝑣X for all n large enough, and the conclusion follows. �

The next two results are used to give a uniform comparison of the number of conjugacy classes in
Γ with a bound on their translation lengths (with respect to X𝔴) and the number of periodic orbits in
the suspension (Σ𝑟

𝔴
X
C , 𝜎𝑟

𝔴
X ) with bounded period. The assumption of having a contracting element is
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essential in the proof of the Lemma 6.13. For 𝑇 ≥ 𝑅 ≥ 0, recall that 𝑃(Σ𝑟
𝔴
X
C , 𝑅, 𝑇) denotes the set of

periodic orbits in (Σ𝑟
𝔴
X
C , 𝜎𝑟

𝔴
X ) with period on the interval [𝑇 − 𝑅,𝑇 + 𝑅].

Lemma 6.12. For any 𝑅 > 0 there exists a polynomial Q (depending on R) that is nondecreasing on
R>0 and such that for any [𝑔] ∈ conj(Γ) we have

#{𝜏 ∈ 𝑃(Σ𝑟
𝔴
X
C , 𝑅, 𝑇) : 𝛽(𝜏) = [𝑔]} ≤ 𝑄(𝑇). (6.8)

Proof. To solve the lemma it is enough to show that there exists a polynomial 𝑄 that is increasing on
R>0 and such that for any [𝑔] ∈ conj(Γ) we have

#{𝜔 ∈ 𝑃(Σ×) : 𝛽(𝜔) = [𝑔]} ≤ 𝑄(ℓX [𝑔]). (6.9)

Indeed, since𝔴 is nonvanishing, the identity map Id : X → X𝔴 is a quasi-isometry and ℓX [𝑔] ≤ 𝐿ℓ𝔴X [𝑔]
for any [𝑔] ∈ conj(Γ), for 𝐿 = (min{𝔴(𝔥) : 𝔥 ∈ H(X )})−1. Also, if 𝜏 ∈ 𝑃(Σ𝑟

𝔴
X
C , 𝑅, 𝑇) satisfies

𝛽(𝜏) = [𝑔], then 𝑙𝜏 = ℓ𝔴X [𝑔] ∈ [𝑇 − 𝑅,𝑇 + 𝑅]. Since any periodic orbit in 𝑃(Σ𝑟
𝔴
X
C ) corresponds to an

(orbit determined by an) element in 𝑃(Σ×
C ) ⊂ 𝑃(Σ×), for any [𝑔] such that the left-hand side in (6.8) is

nonzero we have

#{𝜏 ∈ 𝑃(Σ𝑟
𝔴
X
C , 𝑅, 𝑇) : 𝛽(𝜏) = [𝑔]} ≤ #{𝜔 ∈ 𝑃(Σ×) : 𝛽(𝜔) = [𝑔]}

≤ 𝑄(ℓX [𝑔]) ≤ 𝑄(𝐿𝑇 + 𝐿𝑅) =: 𝑄(𝑇).

To prove (6.9) we claim that for any group Γ acting properly, cocompactly and co-specially on a
CAT(0) cube complex X and for any 𝑥 ∈ X 0 and 𝑅 ≥ 0 there exists a polynomial 𝑄̂ that is increasing
on R>0 and such that

#{𝑔 ∈ [𝑔] : 𝑑X (𝑔𝑥, 𝑥) ≤ ℓX [𝑔] + 𝑅} ≤ 𝑄̂(ℓX [𝑔]) (6.10)

for any [𝑔] ∈ conj(Γ).
To see how this claim proves the lemma, fix [𝑔] ∈ conj(Γ) and let 𝜔 ∈ 𝑃(Σ×) be such that

𝛽(𝜔) = [𝑔]. If 𝛾 = 𝛾𝜔 is a good representative such that 𝑑X (𝛾−, 𝑜) ≤ 𝑁 , we let 𝑞 ∈ [𝑔] be such that
𝛾+ = 𝑞𝛾−. Then 𝑑X (𝑞𝑜, 𝛾+) = 𝑑X (𝑜, 𝛾−) ≤ 𝑁 and we have

|𝑑X (𝑜, 𝑞𝑜) − ℓX [𝑔] | = |𝑑X (𝑜, 𝑞𝑜) − 𝑑X (𝛾−, 𝛾+) | ≤ 2𝑁.

In addition, there exists a constant 𝐶̂ > 0 such that for any [𝑔] ∈ conj(Γ) and any 𝑞 ∈ [𝑔] satisfying
|𝑑X (𝑜, 𝑞𝑜) − ℓX [𝑔] | ≤ 2𝑁 , the set

{𝜔 ∈ 𝑃(Σ×) : 𝛽(𝜔) = [𝑔] and 𝑑X (𝛾+𝜔 , 𝑞𝑜) ≤ 𝑁}

has cardinality at most 𝐶̂. Indeed, if B is the set of vertices at distance at most N from o, then this
cardinality is bounded above by∑

𝑥∈𝐵
#{𝜔 ∈ 𝑃(Σ×) : 𝛾+𝜔 = 𝑞𝑥} ≤ #𝐵 · sup

𝑥∈X 0
#{𝜔 ∈ 𝑃(Σ×) : 𝛾+𝜔 = 𝑥} ≤ #𝐵 · 𝐶 (𝑁 + 1) =: 𝐶̂,

where for the last inequality we used Lemma 6.10.
Applying this to our case of interest, we deduce

#{𝜔 ∈ 𝑃(Σ×) : 𝛽(𝜔) = [𝑔]} ≤ 𝐶̂ · #{𝑞 ∈ [𝑔] : |𝑑X (𝑞𝑜, 𝑜) − ℓX [𝑔] | ≤ 2𝑁} ≤ 𝐶̂ · 𝑄̂(ℓX [𝑔]),

where 𝑄̂ is the polynomial given by the claim for 𝑥 = 𝑜 and 𝑅 = 2𝑁 .
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To prove the claim (6.10), by equivariantly embedding X as a convex subcomplex of the universal
cover of a Salvetti complex we can assume that Γ is a right-angled Artin group with standard (symmetric)
generating set S and X is the universal cover of its Salvetti complex. Then X 1 is the Cayley graph for
Γ with respect to S, and since the expected conclusion is independent of the base point we can assume
that 𝑥 = 𝑜 is the identity element of Γ, so that 𝑑X (𝑔𝑥, 𝑥) = |𝑔 |𝑆 is the word length of g for any 𝑔 ∈ Γ.

Now we fix [𝑔] ∈ conj(Γ), set ℓ = ℓX [𝑔] = ℓ𝑆 [𝑔] and consider the sets 𝐸𝑛 [𝑔] = {𝑔 ∈ [𝑔] : |𝑔 |𝑆 ≤
ℓ + 𝑛}. Note that #𝐸0 [𝑔] ≤ ℓ since any two conjugate elements that minimize the word length are
actually cyclically conjugated with respect to some minimal word representations. Also, if 𝑔 ∈ 𝐸𝑛 [𝑔],
and 𝑛 > 0, then indeed 𝑛 ≥ 2 and g is represented by a word of the form 𝑥1𝑎

±𝑥2𝑎
∓𝑥3, where 𝑎 ∈ 𝑆

is a standard generator and all the letters in the words 𝑥1 and 𝑥3 commute with a. Then the element 𝑔′
represented by the word 𝑥1𝑥2𝑥3 belongs to 𝐸𝑛−2 [𝑔], and there are at most #𝑆 · (ℓ + 𝑛) (ℓ + 𝑛− 1)/2 ways
to reconstruct g from 𝑔′. Therefore, we have

#𝐸𝑛 [𝑔] ≤ #𝑆 · (ℓ + 𝑛) (ℓ + 𝑛 − 1)/2 · #𝐸𝑛−2 [𝑔]

for each n, and hence #{𝑔 ∈ [𝑔] : |𝑔 |𝑆 ≤ ℓ + 𝑅} ≤ #𝐸2𝑅 [𝑔] ≤ 𝑄̂(ℓ) for

𝑄̂(𝑡) = (#𝑆)𝑅 · (𝑡 + 2𝑅) (𝑡 + 2𝑅 − 1) · · · (𝑡 + 1)𝑡/2𝑅 .

This concludes the proof of the claim and the lemma. �

Lemma 6.13. There exists 𝐶 ′ > 0 such that for any nontorsion conjugacy class [𝑔] ∈ conj(Γ) we can
find a representative 𝑔̂ ∈ [𝑔] and a closed path 𝜔 [𝑔] ∈ 𝑃(Σ×

C ) satisfying

min{𝑑X (𝑔̂𝑜, 𝛾+𝜔[𝑔] ), 𝑑X (𝑔̂−1𝑜, 𝛾+𝜔[𝑔] )} ≤ 𝐶
′,

and additionally

max{|ℓ𝔴X [𝑔] − ℓ𝔴X [𝛽(𝜔 [𝑔] )] |, |ℓ𝔴∗
X∗

[𝑔] − ℓ𝔴∗
X∗

[𝛽(𝜔 [𝑔] )] |} ≤ 𝐶 ′.

Remark 6.14. As we will see in the proof, the constant 𝐶 ′ above depends on the initial data from
Convention 6.3 and the maximal component C. The constant also depends on the existence of a
contracting element in Γ, as we rely on the work of Yang [88, Theorem C].

We will need the next lemma, which follows immediately from Remarks 2.1 and 2.2.

Lemma 6.15. Let 𝛾 be a g-invariant geodesic in Z for some 𝑔 ∈ Γ. Then the image of 𝛾 under 𝜙
(resp. 𝜙∗) in X (resp. X∗) is a (possibly nonparametrized) g-invariant geodesic. For X∗ we allow the
degenerate case that 𝜙∗(𝛾) is a point (which happens if and only if ℓX∗ [𝑔] = 0).

Proof of Lemma 6.13. Before starting with the proof we provide a brief sketch. Given the conjugacy
class [𝑔], we first find an appropriate representative 𝑔 ∈ [𝑔] such that 𝑑Z (𝑜, 𝑔𝑜) is uniformly comparable
to ℓZ [𝑔], with similar versions for ℓ𝔴X and ℓ𝔴∗

X∗
. Then, we use Lemma 6.11 and the existence of a

contracting element to find an element 𝑠 ∈ Γ and a path 𝜔′ ∈ Σ∗
C such that both 𝑠𝑜 and 𝑠𝑔𝑜 are

within uniformly bounded distance from the good representative path 𝛾𝜔′ . Using the recurrence of C,
we construct the close path 𝜔 [𝑔] as the concatenation of an appropriate subpath of 𝜔′ and a path in
Σ∗
C of uniformly bounded length. For the path representative 𝛾 = 𝛾𝜔[𝑔] we then find 𝑠′ ∈ Γ such that
𝑑X (𝑠′𝑠𝑜, 𝛾−) and 𝑑X (𝑠′𝑠𝑔𝑜, 𝛾+) are uniformly bounded. The rest of the proof consists of verifying that
𝑔̂ = 𝑠′𝑠𝑔(𝑠′𝑠)−1 satisfies all the desired inequalities for the appropriate constant 𝐶 ′.

Now we start with the proof of the lemma, for which we consider the following constants. Let 𝑀1 be
such that any two vertices in C can be joined by a path in C of length at most 𝑀1 (in both directions).
This number exists since C is recurrent. Also, the projection 𝜙 : Z → X is a quasi-isometry since
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it is Γ-equivariant and the action of Γ on both Z and X is proper and cocompact, so let 𝑀2 > 0 be
such that

𝑑Z (𝑥, 𝑦) ≤ 𝑀2𝑑X (𝜙(𝑥), 𝜙(𝑦)) + 𝑀2

for all 𝑥, 𝑦 ∈ Z . In addition, let 𝑀3 be the diameter of 𝜙−1(𝐾) ⊂ Z and fix a constant 𝑀4 larger than
N and the diameter of K. Finally, let L be the maximum of all the weights 𝔴(𝔥) or 𝔴∗(𝔥∗) among
hyperplanes 𝔥 ∈ H(X ) and 𝔥∗ ∈ H(X∗), so that the four functions

𝜙 : Z → X𝔴, 𝜙∗ : Z → X𝔴∗
∗ , Id : X → X𝔴, Id : X∗ → X𝔴∗

∗

are L-Lipschitz.
We now start the proof, so we let 𝑔 ∈ Γ represent the nontorsion conjugacy class [𝑔] ∈ conj(Γ). Then

g fixes a bi-infinite combinatorial axis 𝜆 in the cubical barycentric subdivision �Z [46, Theorem 1.4].
After conjugating by an element of Γ we can assume that 𝑑Z (𝑜, 𝜆) ≤ 𝑀3, so in particular we have
|𝑑Z (𝑜, 𝑔𝑜) − ℓZ [𝑔] | ≤ 2𝑀3.

By Lemma 6.15 and the fact that 𝜙, 𝜙∗ are Lipschitz, the images 𝜆 = 𝜙(𝜆) and 𝜆∗ = 𝜙∗(𝜆) are also
g-invariant (unparametrized) geodesics satisfying 𝑑𝔴X (𝑜, 𝜆) ≤ 𝐿𝑀3 and 𝑑𝔴∗

X∗
(𝑜∗, 𝜆∗) ≤ 𝐿𝑀3, which

gives us

|𝑑𝔴X (𝑜, 𝑔𝑜) − ℓ𝔴X [𝑔] | ≤ 2𝐿𝑀3 and |𝑑𝔴∗
X∗
(𝑜∗, 𝑔𝑜∗) − ℓ𝔴∗

X∗
[𝑔] | ≤ 2𝐿𝑀3. (6.11)

The action of Γ on X is proper, cocompact and has a contracting element, and hence by [88, Theorem
C] there exists a constant 𝜖 > 0 satisfying the following for any ℎ ∈ Γ. Let Vℎ denote the set of all
the group elements 𝑘 ∈ Γ such that if 𝛾 ⊂ X is a combinatorial geodesic path with endpoints 𝛾±
verifying 𝑑X (𝛾−, 𝑜) ≤ 𝑀4 and 𝑑X (𝛾+, 𝑘𝑜) ≤ 𝑀4, then there exists no 𝑠 ∈ Γ such that 𝑑X (𝑠𝑜, 𝛾) ≤ 𝜖
and 𝑑X (𝑠ℎ𝑜, 𝛾) ≤ 𝜖 . Then

lim
𝑛→∞

#(Vℎ ∩ 𝐵𝑛)
#𝐵𝑛

= 0

(the freedom in our choice for 𝑀4 comes from the Remark after Theorem C in [88]). In virtue of
Lemma 6.11 we conclude that the set ΓC\Vℎ is nonempty for every ℎ ∈ Γ. Applying this to ℎ = 𝑔 we
deduce the existence of a path 𝜔′ ∈ Σ×

C and 𝑠 ∈ Γ such that 𝑑X (𝑠𝑜, 𝛾𝜔′ ) ≤ 𝜖 and 𝑑X (𝑠𝑔𝑜, 𝛾𝜔′ ) ≤ 𝜖 .
Let 𝑢, 𝑣 ∈ 𝛾𝜔′ be such that 𝑑X (𝑠𝑜, 𝑢) ≤ 𝜖 and 𝑑X (𝑠𝑔𝑜, 𝑣) ≤ 𝜖 , and without loss of generality assume

that u belongs to the portion of 𝛾𝜔′ from 𝛾−𝜔′ to v. Let 𝜔 = 𝜔 [𝑔] ∈ Σ×
C be a closed path composed by

the concatenation of the subpath 𝜔′ of 𝜔′ that determines the portion of 𝛾𝜔′ from u to v and a path in
Σ×
C of length at most 𝑀1 from the final vertex of 𝜔′ to its initial vertex. Let 𝛾 = 𝛾𝜔 ⊂ X be the good

representative of 𝜔 with

𝐿−1𝑑𝔴X (𝛾−, 𝑜) ≤ 𝑑X (𝛾−, 𝑜) ≤ 𝑁, (6.12)

and let 𝑠′ ∈ Γ be such that 𝛾− = 𝑠′𝑢. This implies

𝐿−1𝑑𝔴X (𝑠′𝑠𝑜, 𝛾−) ≤ 𝑑X (𝑠′𝑠𝑜, 𝛾−) ≤ 𝜖 and 𝐿−1𝑑𝔴X (𝑠′𝑠𝑔𝑜, 𝛾+) ≤ 𝑑X (𝑠′𝑠𝑔𝑜, 𝛾+) ≤ 𝜖 + 𝑀1. (6.13)

Since 𝜔 is a loop we have 𝛾+ = 𝑞𝛾− for [𝑞] = 𝛽(𝜔) ∈ conj(Γ), and in particular from (6.11) we get

|ℓ𝔴X [𝑔] − ℓ𝔴X [𝛽(𝜔)] | ≤ 𝐿(2𝜖 + 𝑀1 + 2𝑀3).

Also, for 𝑘 ≥ 1 let 𝜔 (𝑘) ∈ Σ×
C be the concatenation of k copies of 𝜔, and let 𝛾 (𝑘) ⊂ X be a good

representative of 𝜔 (𝑘) so that (𝛾 (𝑘) )− = 𝛾− and (𝛾 (𝑘) )+ = 𝑞𝑘𝛾−. Note that 𝛾 (𝑘) is always a subpath of
𝛾 (𝑘+1) .
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Now we lift each 𝛾 (𝑘) to Z to get a sequence 𝛾̃ (𝑘) of geodesic paths in Z . Then 𝜙(𝛾̃ (𝑘) ) = 𝛾 (𝑘)

(up to parametrization), so that (𝛾 (𝑘) )± = 𝜙((𝛾̃ (𝑘) )±) for all k. We denote 𝛾̃± = (𝛾̃ (1) )± and we assume
(𝛾̃ (𝑘) )− = 𝛾̃− for all k. By Γ-equivariance of 𝜙 we have 𝜙((𝛾̃ (𝑘) )+) = (𝛾 (𝑘) )+ = 𝑞𝑘𝛾− = 𝜙(𝑞𝑘 𝛾̃−), and
hence

𝑑Z ((𝛾̃ (𝑘) )+, 𝑞𝑘 𝛾̃−) ≤ 𝑀3 (6.14)

for all k. Also, the inequalities (6.13) imply

𝑑Z (𝑠′𝑠𝑜, 𝛾̃−) ≤ 𝑀2𝜖 + 𝑀2 and 𝑑Z (𝑠′𝑠𝑔𝑜, 𝛾̃+) ≤ 𝑀2 (𝜖 + 𝑀1) + 𝑀2. (6.15)

We project the geodesics 𝛾̃ (𝑘) to X𝔴∗
∗ via 𝜙∗, so we consider 𝛾 (𝑘)∗ := 𝜙∗(𝛾̃ (𝑘) ), which are

(unparametrized) geodesics by Lemma 6.15, and as before we denote 𝛾±∗ = 𝜙∗(𝛾±∗ ).
The length of 𝛾 (𝑘)∗ in X𝔴∗

∗ equals 𝔴∗(𝛼(𝜔 (𝑘) )), and since the word 𝛼(𝜔 (𝑘) ) is the concatenation of
k copies of 𝛼(𝜔) we have

𝑑𝔴∗
X∗
(𝛾−∗ , (𝛾

(𝑘)
∗ )+) = 𝑘𝑑𝔴∗

X∗
(𝛾−∗ , 𝛾+∗ ) (6.16)

for all k. In addition, by (6.14) and (6.15) we obtain

𝑑𝔴∗
X∗
((𝛾 (𝑘)∗ )+, 𝑞𝑘𝛾−∗ ) ≤ 𝐿𝑀3, (6.17)

and

𝑑𝔴∗
X∗
(𝑠′𝑠𝑜∗, 𝛾−∗ ) ≤ 𝐿𝑀2 (𝜖 + 1) and 𝑑𝔴∗

X∗
(𝑠′𝑠𝑔𝑜∗, 𝛾+∗ ) ≤ 𝐿𝑀2 (𝜖 + 𝑀1 + 1). (6.18)

From these inequalities and (6.11) we get

ℓ𝔴∗
X∗

[𝑞] ≤ 𝑑𝔴∗
X∗
(𝛾−∗ , 𝑞𝛾−∗ ) ≤ 𝑑𝔴∗

X∗
(𝛾−∗ , 𝛾+∗ ) + 𝐿𝑀3

≤ 𝑑𝔴∗
X∗
(𝑜∗, 𝑔𝑜∗) + 𝐿(𝑀3 + 𝑀2 (2𝜖 + 𝑀1 + 2))

≤ ℓ𝔴∗
X∗

[𝑔] + 𝐿(3𝑀3 + 𝑀2 (2𝜖 + 𝑀1 + 2)).

On the other hand, (6.16) and (6.17) imply

𝑘𝑑𝔴∗
X∗
(𝛾−∗ , 𝛾+∗ ) = 𝑑

𝔴∗
X∗
(𝛾−∗ , (𝛾

(𝑘)
∗ )+) ≤ 𝑑𝔴∗

X∗
(𝛾−∗ , 𝑞𝑘𝛾−∗ ) + 𝐿𝑀3,

and after dividing by k and letting k tend to infinity we get

𝑑𝔴∗
X∗
(𝛾−∗ , 𝛾+∗ ) ≤ ℓ

𝔴∗
X∗

[𝑞] .

Combining this inequality with (6.11) and (6.18) gives us

ℓ𝔴∗
X∗

[𝑔] ≤ 𝑑𝔴∗
X∗
(𝑠′𝑠𝑜∗, 𝑠′𝑠𝑔𝑜∗) + 2𝐿𝑀3

≤ 𝑑𝔴∗
X∗
(𝛾−∗ , 𝛾+∗ ) + 𝐿(2𝑀3 + 𝑀2 (2𝜖 + 𝑀1 + 2))

≤ ℓ𝔴∗
X∗

[𝑞] + 𝐿(2𝑀3 + 𝑀2 (2𝜖 + 𝑀1 + 2)),

and we deduce

|ℓ𝔴∗
X∗

[𝑔] − ℓ𝔴∗
X∗

[𝛽(𝜔)] | = |ℓ𝔴∗
X∗

[𝑔] − ℓ𝔴∗
X∗

[𝑞] | ≤ 𝐿(3𝑀3 + 𝑀2 (2𝜖 + 𝑀1 + 2)).
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Finally, if we define 𝑔̂ = 𝑠′𝑠𝑔(𝑠′𝑠)−1 ∈ [𝑔], then by (6.12) and (6.13) we get

𝑑X (𝑔̂𝑜, 𝛾+) ≤ 𝑑X (𝑔̂𝑜, 𝑠′𝑠𝑔𝑜) + 𝜖 + 𝑀1 ≤ 𝑑X ((𝑠′𝑠)−1𝑜, 𝑜) + 𝜖 + 𝑀1 ≤ 2𝜖 + 𝑀1 + 𝑁.

In conclusion, the lemma follows with 𝐶 ′ = (𝐿 + 1) (𝑁 + 3𝑀3 + 𝑀2 (2𝜖 + 𝑀1 + 2)). �

Now we prove Theorem 1.4.

Proof of Theorem 1.4. Given Γ ∈ 𝔊 and cubulations X and X∗ of Γ, we know that (Γ,X ,X∗) ∈ 𝔛.
Applying Proposition 5.7 we obtain a finite index subgroup Γ < Γ and a cubulation Z of Γ, so that
the Γ-essential cores X̂ , X̂∗ of X ,X∗, respectively, are restriction quotients of Z . Taking a further finite
index subgroup if necessary, and by applying Lemma 5.3, we can assume that X = Γ\X is special, and
we choose this group Γ as data for part i).

The graph G for part ii) is the underlying graph for the automatonAΓ,𝜙 from Theorem 5.11, applied to
the triplet Γ, X̂ ,Z which by construction satisfies Convention 5.10. We note that the labeling 𝜋 = 𝜋𝜙 still
has image in 𝑆X since Γ\X̂ → X is a convex isometric embedding (so the set of oriented hyperplanes
in Γ\X̂ injects into 𝑆X ).

The triplet (Γ, X̂ ,Z) also satisfies Convention 6.3 with X̂∗ = Z (W∗) (here 𝔴 ≡ 𝔴∗ ≡ 1 are the
trivial orthotope structures), and the function 𝜓 = 𝜓𝔴∗

X̂∗
is given as in Definition 6.5. This completes the

data in part iii), and for a path 𝜔 in G, the associated loop 𝛾𝜔 in X is the image under X → Γ\X̂ ⊂ X
of any good representative 𝛾 = 𝛾𝜔 as in Definition 6.4.

We are left to prove the claims (1)-(3) from the statement. Item (1) follows from Theorem 5.11 (2),
and Item (2) follows from Lemma 6.7. Finally, Item (3) follows from Lemma 6.12 and Lemma 6.11. �

To end the subsection we prove Proposition 6.8.

Proof of Proposition 6.8. For each 𝑠 ∈ R and 𝑅 > 0 we consider the sums

P (𝑅,𝑇, 𝑠) =
∑

|ℓ𝔴X [𝑔]−𝑇 | ≤𝑅
𝑒−𝑠ℓ

𝔴∗
X∗ [𝑔] and PC (𝑅,𝑇, 𝑠) =

∑
𝜏∈𝑃 (Σ

𝑟𝔴X
C ,𝑅,𝑇 )

𝑒−𝑠
∫
𝜏
Φ.

Since 𝑙𝜏 = ℓ𝔴X [𝛽(𝜏)] for any closed orbit 𝜏, by Lemmas 6.7 and 6.12 there exists a polynomial Q
depending only on R such that PC (𝑅,𝑇, 𝑠) ≤ 𝑄(𝑇)P (𝑅,𝑇, 𝑠) for each 𝑠 ∈ R and 𝑇 > 0.

For an inequality in the other direction, for any [𝑔] we use Lemma 6.13 to find a path 𝜔 [𝑔] ∈ 𝑃(Σ×
C )

and a representative 𝑔̂ of [𝑔] satisfying

min{𝑑X (𝑔̂𝑜, 𝛾+𝜔[𝑔] ), 𝑑X (𝑔̂−1𝑜, 𝛾+𝜔[𝑔] )} ≤ 𝐶
′ (6.19)

and

max{|ℓ𝔴X [𝑔] − ℓ𝔴X [𝛽(𝜔 [𝑔] )] |, |ℓ𝔴∗
X∗

[𝑔] − ℓ𝔴∗
X∗

[𝛽(𝜔 [𝑔] )] |} ≤ 𝐶 ′. (6.20)

From (6.19) we get that the association [𝑔] ↦→ 𝜔 [𝑔] is uniformly finite-to-1. We extend this association
to [𝑔] ↦→ 𝜔 [𝑔] ↦→ 𝜏[𝑔] , where 𝜏[𝑔] ∈ 𝑃(Σ𝑟

𝔴
X
C ) is the periodic orbit corresponding to the path 𝜔 [𝑔] .

Since changing the initial vertex of a closed path in 𝑃(Σ×
C ) does not change the periodic orbit in

𝑃(Σ𝑟
𝔴
X
C ), the association 𝜔 [𝑔] ↦→ 𝜏[𝑔] is at most (linear in ℓX [𝑔])-to-1. But ℓX [𝑔] is comparable to

ℓ𝔴X [𝑔] = ℓ𝔴X [𝛽(𝜏[𝑔] )] = 𝑙𝜏[𝑔] (recall that X and X𝔴 are quasi-isometric), and so from (6.20) we deduce
that for each 𝑠 ∈ R there is 𝐶𝑠 > 0 such that P (𝑅,𝑇, 𝑠) ≤ 𝐶 ′

𝑠𝐹 (𝑇)PC (𝑅 + 𝐶 ′, 𝑇, 𝑠) for each 𝑇 > 0,
where F is a degree 1 polynomial depending only on R.
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It follows that for any fixed R sufficiently large and for any 𝑠 ∈ R

lim
𝑇→∞

1
𝑇

logP (𝑅,𝑇, 𝑠) = lim
𝑇→∞

1
𝑇

log
�����

∑
𝜏∈𝑃 (Σ

𝑟𝔴X
C ,𝑅,𝑇 )

𝑒−𝑠
∫
𝜏
Φ
���� = PC (−𝑠Φ), (6.21)

where PC (−𝑠Φ) is the pressure of the potential −𝑠Φ on the suspension (Σ𝑟
𝔴
X
C , 𝜎𝑟

𝔴
X ).

Also, note that ∑
[𝑔] ∈conj(Γ)

𝑒
−𝑡ℓ𝔴X [𝑔]−𝑠ℓX𝔴∗∗

[𝑔] ≤ 𝑒𝑅 |𝑡 |
∞∑
𝑇 =1

P (𝑅,𝑇, 𝑠)𝑒−𝑡𝑇

assuming the right-hand side of the above converges. Similarly we have

∞∑
𝑇 =1

P (𝑅,𝑇, 𝑠)𝑒−𝑡𝑇 ≤ 2𝑅𝑒𝑅 |𝑡 |
∑

[𝑔] ∈conj(Γ)
𝑒−𝑡ℓ

𝔴
X [𝑔]−𝑠ℓ𝔴∗

X∗ [𝑔]

when the right-hand side converges. We deduce that for each 𝑠 ∈ R the series

∞∑
𝑇 =1

P (𝑅,𝑇, 𝑠)𝑒−𝑡𝑇 and
∑

[𝑔] ∈conj(Γ)
𝑒−𝑡ℓ

𝔴
X [𝑔]−𝑠ℓ𝔴∗

X∗ [𝑔]

have the same abscissa of convergence as t varies. Hence by (6.21) we deduce

𝜃X𝔴∗
∗ /X𝔴 (𝑠) = PC (−𝑠Φ),

as desired. �

6.2. Analyticity and Large deviations for pairs of cubulations

In this subsection we prove Theorems 6.1 and 6.2. For a triplet (Γ,X ,X∗) ∈ 𝔛 we always assume that it
satisfies Convention 6.3, which is possible by Proposition 5.7. In particular, all the results and notations
from this and the previous section are valid for this triplet. We first prove a large deviations principle
that follows from Proposition 6.8.
Corollary 6.16. Let (Γ,X ,X∗) ∈ 𝔛 and 𝔴,𝔴∗ be Γ-invariant orthotope structures on X ,X∗, and
let L : [Dil(X𝔴,X𝔴∗

∗ )−1,Dil(X𝔴∗
∗ ,X𝔴)] → R be the Legendre transform of 𝜃X𝔴∗

∗ /X𝔴 . Then for any
nonempty open set𝑈 ⊂ R and closed set 𝑉 ⊂ R with𝑈 ⊂ 𝑉 we have that

− inf
𝑠∈𝑈

L(𝑠) ≤ lim inf
𝑇→∞

1
𝑇

log

(
1

#ℭX𝔴 (𝑇) #

{
[𝑔] ∈ ℭX𝔴 (𝑇) :

ℓ𝔴∗
X∗

[𝑔]
ℓ𝔴X [𝑔] ∈ 𝑈

})
≤ lim sup

𝑇→∞

1
𝑇

log

(
1

#ℭX𝔴 (𝑇) #

{
[𝑔] ∈ ℭX𝔴 (𝑇) :

ℓ𝔴∗
X∗

[𝑔]
ℓ𝔴X [𝑔] ∈ 𝑉

})
≤ − inf

𝑠∈𝑉
L(𝑠).

In consequence, the limit

𝜏(X𝔴∗
∗ /X𝔴) := lim

𝑇→∞

1
#ℭX𝔴 (𝑇)

∑
[𝑔] ∈ℭX𝔴 (𝑇 )

ℓ𝔴∗
X∗

[𝑔]
ℓ𝔴X [𝑔]

exists and equals −𝜃 ′X𝔴∗
∗ /X𝔴 (0).
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Proof. Recall that for 𝑇 > 𝑅 > 0 and 𝑠 ∈ R we defined

P (𝑅,𝑇, 𝑠) =
∑

|ℓ𝔴X [𝑔]−𝑇 | ≤𝑅
𝑒−𝑠ℓ

𝔴∗
X∗ [𝑔]

in the proof of Proposition 6.8 above. We saw during that proof that

lim
𝑇→∞

1
𝑇

logP (𝑅,𝑇, 𝑠) = 𝜃X𝔴∗
∗ /X𝔴 (𝑠).

It follows from the Gärtner-Ellis Theorem [29, Theorem 2.3.6] that the large deviations principle stated
in this corollary holds but with ℭX𝔴 (𝑇) replaced by

ℭX𝔴 (𝑇, 𝑅) = {[𝑔] ∈ conj : |ℓ𝔴X [𝑔] − 𝑇 | < 𝑅}

for any fixed 𝑅 > 0 sufficiently large. It is then easy to check that this large deviations principle implies
the one stated in the corollary.

By this large deviations principle we know that for any 𝜖 > 0 the cardinality of the set

𝐸𝜖 (𝑇) :=

{
[𝑔] ∈ ℭX𝔴 (𝑇) :






ℓ𝔴∗
X∗

[𝑔]
ℓ𝔴X [𝑔] + 𝜃 ′X𝔴∗

∗ /X𝔴 (0)






 > 𝜖
}

grows strictly exponentially slower than #ℭX𝔴 (𝑇) as 𝑇 → ∞, that is, the quotient #𝐸𝜖 (𝑇)/#ℭX𝔴 (𝑇)
decays to 0 exponentially as 𝑇 → ∞. It is then standard to deduce that

𝜏(X𝔴∗
∗ /X𝔴) := lim

𝑇→∞

1
#ℭX𝔴 (𝑇)

∑
[𝑔] ∈ℭX𝔴 (𝑇 )

ℓ𝔴∗
X∗

[𝑔]
ℓ𝔴X [𝑔]

exists and is equal to −𝜃 ′X𝔴∗
∗ /X𝔴 (0) as required. �

Proof of Theorem 6.1. We showed in Proposition 6.8 that 𝜃X𝔴∗
∗ /X𝔴 (𝑠) is equal to the pressure PC (−𝑠Φ)

for any s. It follows that 𝜃X𝔴∗
∗ /X𝔴 is analytic, convex and decreasing (see also Rmark 2.10). Also, by

Corollary 6.16 we know that the limit labeled 𝜏(X𝔴∗
∗ /X𝔴) in the theorem exists. Further by comparing

the exponential growth rates of both sides of the inequality

#

{
[𝑔] ∈ ℭX𝔴 (𝑇) :






ℓ𝔴∗
X∗

[𝑔]
ℓ𝔴X [𝑔] − 𝜏(X𝔴∗

∗ /X𝔴)






 ≤ 𝜖
}
≤ #

{
[𝑔] ∈ ℭX𝔴 (𝑇) : ℓ𝔴∗

X∗
[𝑔] ≤ (𝜏(X𝔴∗

∗ /X𝔴) + 𝜖)𝑇
}

we see that

𝜏(X𝔴∗
∗ /X𝔴) ≥ 𝑣X𝔴

𝑣X𝔴∗
∗

.

Therefore to conclude the proof we need to check the equivalence of the statements (1), (2) and (3)
when the action of Γ on X∗ (and hence on X𝔴∗

∗ ) is proper. When this is the case we have 0 < 𝑣X𝔴∗
∗
< ∞

and the Manhattan curve 𝜃X𝔴∗
∗ /X𝔴 (𝑠) is 0 at 𝑠 = 𝑣X𝔴∗

∗
.

We will prove the implications (1) ⇒ (3) ⇒ (2) ⇒ (1). Note that the implication (1) ⇒ (3)
follows easily from the facts that 𝜏(X𝔴∗

∗ /X𝔴) = −𝜃 ′X𝔴∗
∗ /X𝔴 (0), 𝜃X𝔴∗

∗ /X𝔴 (0) = 𝑣X𝔴 , 𝜃X𝔴∗
∗ /X𝔴 (𝑣X𝔴∗

∗
) = 0

and 𝜃X𝔴∗
∗ /X𝔴 is convex so has nonincreasing derivative. Also, the implication (2) ⇒ (1) follows from

the definition of the Manhattan curve. Hence we just need to prove the implication (3) ⇒ (2).
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To do so we note that

𝜏(X𝔴∗
∗ /X𝔴) =

∫
Σ
𝑟𝔴X
C

Φ 𝑑𝑚

where m is the measure of maximal entropy for (Σ𝑟
𝔴
X
C , 𝜎𝑟

𝔴
X ). However we saw in Subsection 2.5 that∫

Σ
𝑟𝔴X
C

Φ 𝑑𝑚 =

∫
ΣC
𝜓𝔴∗
X∗
𝑑𝜇1∫

ΣC
𝑟𝔴X 𝑑𝜇1

where 𝜇1 is the equilibrium state of −𝛿𝑟𝔴X 𝑟
𝔴
X on ΣC . To simplify notation going forward we will also

write 𝑟 = 𝑟𝔴X , 𝜓 = 𝜓𝔴∗
X∗

and 𝜇2 for the equilibrium state of −𝛿𝜓𝔴∗
X∗
𝜓𝔴∗
X∗

on ΣC . We now note that by
Proposition 6.8 we have that

PC (−𝑣X𝔴𝑟𝔴X ) = PC (−𝑣X𝔴∗
∗
𝜓𝔴∗
X∗
) = 0.

Here the pressures are the pressures of the potentials over the subshift (not suspension). Hence the
inequality 𝜏(X𝔴∗

∗ /X𝔴) ≥ 𝑣X𝔴/𝑣X𝔴∗
∗

can be rewritten as

ℎ𝜇2 (𝜎)∫
ΣC
𝜓 𝑑𝜇2

≥
ℎ𝜇1 (𝜎)∫
ΣC
𝜓 𝑑𝜇1

where ℎ𝜇1 (𝜎), ℎ𝜇2 (𝜎) are the entropies of 𝜇1, 𝜇2 over the component C. This inequality is true by the
variational principle. Furthermore this inequality is a strict equality unless r and 𝜓 are cohomologous.
This implies by Lemmas 6.7 and 6.13 that there exist Λ, 𝐶 > 0 such that

|ℓ𝔴X𝔴 [𝑔] − Λℓ𝔴∗
X𝔴∗

∗
[𝑔] | < 𝐶

for all [𝑔] ∈ conj(Γ). This can only happen if (2) holds. �

Proof of Theorem 6.2. Let 𝜓 = 𝜓𝔴∗
X∗

: Σ → Z be the potential associated to the constant orthotope
structure 𝔴∗ ≡ 1. Let L : [Dil(X ,X∗)−1,Dil(X∗,X )] → R be the Legendre transform of 𝜃X∗/X , which
by Remark 6.9 equals the Legendre transform of 𝑠 ↦→ PC (−𝑠𝜓) for C any maximal recurrent component
of G𝜙 . Hence L is analytic.

From our large devation principle in Corollary 6.16 we have that

lim sup
𝑇→∞

1
𝑇

log
(
#
{
[𝑔] ∈ conj : ℓX [𝑔] < 𝑇, |ℓX∗ [𝑔] − 𝜂ℓX [𝑔] | < 𝐶

𝑇

})
≤ 𝑣X − L(𝜂)

for all 𝜂 ∈ (Dil(X ,X∗)−1,Dil(X∗,X )).
We now prove the lower bound. Fix a maximal component C. By Lemma 6.7 and Lemma 6.12 there

exists a polynomial Q such that for any 𝐶 > 0 and 𝜂 ∈ (Dil(X ,X∗)−1,Dil(X∗,X ))

#
{
𝜔 ∈ 𝑃𝑛 (Σ×

C ) :




𝜓𝑛 (𝜔)𝑛

− 𝜂




 < 𝐶

𝑛

}
≤ 𝑄(𝑛) · #

{
[𝑔] ∈ conj : ℓX [𝑔] ≤ 𝑛,





ℓX∗ [𝑔]
ℓX [𝑔] − 𝜂





 < 𝐶

𝑛

}
where 𝜓 is the potential from Definition 6.5. However, by Theorem 3.2 (and Remark 3.3 as C may only
be transitive) we have that

lim sup
𝑛→∞

1
𝑛

log
(
#
{
𝜔 ∈ 𝑃𝑛 (Σ×

C ) :




𝜓𝑛 (𝜔)𝑛

− 𝜂




 < 𝐶

𝑛

})
= ℎ − I (𝜂)

https://doi.org/10.1017/fms.2025.10094 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10094


46 S. Cantrell and E. Reyes

where I is the Legendre transform of the map 𝑠 ↦→ PC (−𝑠𝜓) and h is the topological entropy of the
subshift (ΣC , 𝜎). However, as we saw above, I is precisely L and further by Lemma 6.11 we have
ℎ = 𝑣X . Hence we deduce that

lim sup
𝑇→∞

1
𝑇

log #
{
[𝑔] ∈ conj : ℓX [𝑔] < 𝑇, |ℓX∗ [𝑔] − 𝜂ℓX [𝑔] | < 𝐶

𝑇

}
≥ 𝑣X − L(𝜂)

for each 𝜂 ∈ (Dil(X ,X∗)−1,Dil(X∗,X )). We have shown that the limit supremum in the statement of
the theorem is equal to 𝑣X − L as required.

To conclude the proof we need to explain the additional conditions mentioned in the theorem. In
particular we need to show that

0 < 𝑣X − L(𝜂) ≤ 𝑣X for all 𝜂 ∈ (Dil(X ,X∗)−1,Dil(X∗,X ))

and that the upper bound inequality is an equality if and only if 𝜂 = 𝜏(X∗/X ). All of these properties
follow from the definition of L and the fact that 𝑠 ↦→ PC (−𝑠𝜓) is strictly convex. �

Appendix A. Convex-cocompact subgroups of cubulable relatively hyperbolic groups

In this appendix we prove Proposition 5.4. First, we recall the statement.

Proposition A.1. Let Γ be a relatively hyperbolic group acting properly and cocompactly on the CAT(0)
cube complex X . Then the following are equivalent for a subgroup 𝐻 < Γ.

(1) H is convex-cocompact for the action on X .
(2) H is relatively quasiconvex and 𝐻∩𝑃 is convex-cocompact for the action of Γ on X for any maximal

parabolic subgroup 𝑃 < Γ.

Proof. Under these assumptions Γ is finitely generated, so fix 𝑆 ⊂ Γ a finite symmetric generating set
and a Γ-equivariant quasi-isometry 𝜙 : X → Cay(Γ, 𝑆). We also fix a vertex 𝑥0 ∈ X such that 𝜙(𝑥0) = 𝑜
is the identity element in Γ. Let P be a complete collection of representatives of conjugacy classes of
maximal parabolic subgroups in Γ, and let P = (

⋃
P)\{𝑜}. We let 𝑑𝑆 denote the (graph) word metric

on Cay(Γ, 𝑆) and let 𝐻 < Γ be any subgroup.
If H is convex-cocompact, then it is undistorted, hence finitely generated and relatively quasicon-

vex by [50, Theorem 1.5]. Also, any maximal parabolic subgroup 𝑃 < Γ is convex-cocompact by
[76, Theorem 1.1], and hence 𝐻 ∩ 𝑃 is also convex-cocompact by [71, Lemma 2.14 & Lemma 2.15].
This proves the implication (1) ⇒ (2).

The implication (2) ⇒ (1) is more involved, and for its proof we adopt the following convention. If
𝛾′ is a parameterized curve and 𝑥 = 𝛾′𝑡− , 𝑦 = 𝛾′𝑡+ belong to 𝛾′ with 𝑡− ≤ 𝑡+, then 𝛾′ |[𝑥,𝑦 ] = 𝛾′ |[𝑦,𝑥 ] is a set
of points of form 𝛾′𝑡 , with 𝑡− ≤ 𝑡 ≤ 𝑡+ (if there is more than one option for 𝑡±, we consider any of them).

By [39, Lemma 4.3] it is enough to prove the following: there exists 𝐾 > 0 such that if 𝛾 ⊂ X is a
(continuous) combinatorial geodesic with endpoints in 𝐻𝑥0, then 𝛾 ⊂ 𝑁𝐾 (𝐻𝑥0).

To find such K, consider constants 𝐿, 𝐶 such that the image under 𝜙 of any combinatorial geodesic 𝛾
inX is at Hausdorff distance at most L from an L-Lipschitz (𝐿, 𝐶)-quasigeodesic 𝛾 : [0, ℓ] → Cay(Γ, 𝑆)
with same endpoints as 𝜙(𝛾) (see e.g., [11, Proposition 8.3.4]).

Let 𝛾 ⊂ X be a geodesic with endpoints in 𝐻𝑥0 and let 𝛾 = 𝛾([0, ℓ]) ⊂ Cay(Γ, 𝑆) be as above, so
that the endpoints of 𝛾 belong to H. Also, let 𝑐 be a geodesic in Cay(Γ, 𝑆 ∪ P) with same endpoints as
𝛾 and let 𝑐0, . . . , 𝑐𝑛 be the (ordered) vertex set of 𝑐. We define 𝐼 = { 𝑗0 < 𝑗𝑖 < · · · < 𝑗𝑘 } to be the set of
all 0 ≤ 𝑖 ≤ 𝑛 − 1 such that 𝑐−1

𝑖+1𝑐𝑖 ∈ P .
By quasiconvexity of H, there exists 𝜅 (independent of 𝛾) and ℎ𝑖 ∈ 𝐻 such that 𝑑𝑆 (𝑐𝑖 , ℎ𝑖) ≤ 𝜅 for all

0 ≤ 𝑖 ≤ 𝑛, see e.g., [50, Def. 6.10]. Also, by [50, Lemma 8.8] there exists 𝐴0 depending only on 𝐿, 𝐶
such that for any 0 ≤ 𝑖 ≤ 𝑛 there exists 𝑐𝑖 = 𝛾𝑡𝑖 ∈ 𝛾 satisfying 𝑑𝑆 (𝑐𝑖 , 𝑐𝑖) ≤ 𝐴0, for which we assume
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𝑐0 = 𝑐0 and 𝑐𝑛 = 𝑐𝑛. Up to increasing 𝐴0 (only in terms of 𝐿, 𝐶), we can always assume that 𝑐𝑖 is a
group element.

Since Γ is finitely generated, by [50, Proposition 9.4] there exists 𝐵0 depending only on 𝐴0 and 𝜅 (so
only on 𝐿, 𝐶) such that if 𝑔1, 𝑔2 ∈ Γ satisfy |𝑔1 |𝑆 , |𝑔2 |𝑆 ≤ 𝐴0 + 𝜅, then

𝑁𝐴0+𝜅 (𝑔1𝐻) ∩ 𝑁𝐴0+𝜅 (𝑔2𝑃) ⊂ 𝑁𝐵0 (𝑔1𝐻𝑔
−1
1 ∩ 𝑔2𝑃𝑔

−1
2 ) (A.1)

for any 𝑃 ∈ P, where the neighborhoods are considered in Cay(Γ, 𝑆).
Let 𝑝 be a geodesic lift of 𝑐 to Cay(Γ, 𝑆). That is, 𝑝 is obtained from 𝑐 by replacing each edge

corresponding to an element of P by a geodesic in Cay(Γ, 𝑆) with the same endpoints. For a point 𝑥 ∈ 𝛾
we distinguish two cases.

Case 1: 𝑥 ∈ 𝛾 |[𝑐 𝑗𝑖+1 ,𝑐 𝑗𝑖+1 ] for some 𝑗𝑖 ∈ 𝐼 (with the convention that 𝑗−1 = −1 and 𝑗𝑘+1 = 𝑛). Consider
geodesic paths [𝑐 𝑗𝑖+1, 𝑐 𝑗𝑖+1] and [𝑐 𝑗𝑖+1 , 𝑐 𝑗𝑖+1 ] in Cay(Γ, 𝑆), and the quasigeodesic triangle with sides

ℓ1 = [𝑐 𝑗𝑖+1, 𝑐 𝑗𝑖+1] ∪ 𝛾 |[𝑐 𝑗𝑖+1 ,𝑥 ] , ℓ2 = 𝛾 |[𝑥,𝑐 𝑗𝑖+1 ] ∪ [𝑐 𝑗𝑖+1 , 𝑐 𝑗𝑖+1 ], ℓ3 = 𝑝 |[𝑐 𝑗𝑖+1 ,𝑐 𝑗𝑖+1 ] .

We also set

ℓ−1 = 𝑐 𝑗𝑖+1, ℓ
+
1 = 𝑥, ℓ−2 = 𝑥, ℓ+2 = 𝑐 𝑗𝑖+1 , and ℓ−3 = 𝑐 𝑗𝑖+1 , ℓ

+
3 = 𝑐 𝑗𝑖+1.

Note that ℓ1, ℓ2, ℓ3 are Lipschitz quasigeodesics with constants depending only on 𝐿, 𝐶 and 𝐴0 (hence
only on 𝐿, 𝐶). Then by [30, Lemma 8.19] there exists R depending on 𝐿, 𝐶 such that either:

◦ there exists 𝑧 ∈ Cay(Γ, 𝑆) with 𝑑𝑆 (𝑧, ℓ𝑖) ≤ 𝑅 for 𝑖 = 1, 2, 3; or,
◦ there exist 𝑔 ∈ Γ and 𝑃 ∈ P such that 𝑑𝑆 (𝑔𝑃, ℓ𝑖) ≤ 𝑅 for 𝑖 = 1, 2, 3.

In the first subcase, let 𝑢𝑖 ∈ ℓ𝑖 be such that 𝑑𝑆 (𝑧, 𝑢𝑖) ≤ 𝑅. Then 𝑑𝑆 (𝑢𝑎, 𝑢𝑏) ≤ 2𝑅 for all 1 ≤ 𝑎, 𝑏 ≤ 3,
and since 𝛾 is (𝐿, 𝐶)-quasigeodesic and 𝑥 ∈ 𝛾 |[𝑢1 ,𝑢2 ] , we have that 𝑑𝑆 (𝑥, ℓ3) ≤ 𝑑𝑆 (𝑥, 𝑢3) ≤ 𝑑𝑆 (𝑥, 𝑢1) +
𝑑𝑆 (𝑢1, 𝑢3) is bounded above in terms of 𝐿, 𝐶 and R (thus only in terms of 𝐿, 𝐶).

In the second subcase, by [30, Lemma 8.15] we can find M and 𝔡 depending only on 𝐿, 𝐶 and R (so
only on 𝐿, 𝐶) and points 𝑢−𝑖 , 𝑢

+
𝑖 ∈ ℓ𝑖 for 𝑖 = 1, 2, 3 that satisfy:

◦ 𝑑𝑆 (𝑢±𝑖 , 𝑔𝑃) ≤ 𝑀; and,
◦ diam(ℓ𝑖 |[ℓ±𝑖 ,𝑢±𝑖 ] ∩ 𝑁𝑀 (𝑔𝑃)) ≤ 𝔡.

Take 𝑣±𝑖 ∈ 𝑔𝑃 such that 𝑑𝑆 (𝑢±𝑖 , 𝑣±𝑖 ) ≤ 𝑀 . Then by the definition of I and after considering vertices in 𝑐
that are closest to 𝑢±3 in Cay(Γ, 𝑆) we get

𝑑𝑆 (𝑢+3 , 𝑢
−
3 ) ≤ 𝑑𝑆∪P (𝑣−3 , 𝑣

+
3) + 2(1 + 𝑀) + 2 ≤ 5 + 2𝑀.

Also, [30, Lemma 8.14] implies the existence of 𝐷1 depending only on 𝐿, 𝐶, 𝑀 and 𝔡 (so only on 𝐿, 𝐶)
with 𝑑𝑆 (𝑢+𝑖 , 𝑢−𝑖+1) ≤ 𝐷1 (mod 3) for all i. In particular,

𝑑𝑆 (𝑢−1 , 𝑢
+
2) ≤ 𝑑𝑆 (𝑢−1 , 𝑢

+
3) + 𝑑𝑆 (𝑢

+
3 , 𝑢

−
3 ) + 𝑑𝑆 (𝑢

−
3 , 𝑢

+
2),

and as in the first subcase we conclude that x belongs to a neighborhood of ℓ3 depending only on L and C.
In both subcases, we deduce that 𝑑𝑆 (𝑥, ℓ3) is bounded in terms of 𝐿, 𝐶, and since ℓ3 is contained in

a neighborhood of H depending only on 𝜅, we have that

𝑑𝑆 (𝑥, 𝐻) ≤ 𝐾0 (A.2)

for some 𝐾0 depending only on 𝐿, 𝐶 and 𝜅 (hence only in terms of 𝐿, 𝐶).
Case 2: 𝑥 ∈ 𝛾 |[𝑐 𝑗 ,𝑐 𝑗+1 ] for some 𝑗 ∈ 𝐼. Suppose 𝑐−1

𝑗 𝑐 𝑗+1 = 𝑝 ∈ 𝑃 for 𝑃 ∈ P. Then

𝑑𝑆 (𝑐−1
𝑗 𝑐 𝑗+1, (𝑐−1

𝑗 ℎ 𝑗 )𝐻) ≤ 𝑑𝑆 (𝑐−1
𝑗 𝑐 𝑗+1, 𝑐

−1
𝑗 ℎ 𝑗+1) = 𝑑𝑆 (𝑐 𝑗+1, ℎ 𝑗+1) ≤ 𝐴0 + 𝜅,

https://doi.org/10.1017/fms.2025.10094 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10094


48 S. Cantrell and E. Reyes

and

𝑑𝑆 (𝑐−1
𝑗 𝑐 𝑗+1, (𝑐−1

𝑗 𝑐 𝑗 )𝑃) ≤ 𝑑𝑆 (𝑐−1
𝑗 𝑐 𝑗+1, 𝑐

−1
𝑗 𝑐 𝑗 𝑝) = 𝑑𝑆 (𝑐 𝑗+1, 𝑐 𝑗+1) ≤ 𝐴0.

Since max{|𝑐−1
𝑗 ℎ 𝑗 |𝑆 , |𝑐−1

𝑗 𝑐
−1
𝑗 |𝑆} ≤ 𝐴0 + 𝜅, by (A.1) we conclude

𝑑𝑆 (𝑐−1
𝑗 𝑐 𝑗+1, (𝑐−1

𝑗 ℎ 𝑗 )𝐻 (𝑐−1
𝑗 ℎ 𝑗 )−1 ∩ (𝑐−1

𝑗 𝑐 𝑗 )𝑃(𝑐−1
𝑗 𝑐 𝑗 )−1) ≤ 𝐵0. (A.3)

Note that any point 𝑥 ∈ 𝛾 satisfies the assumptions of one of the two cases above. Indeed, for
𝑥 = 𝛾𝑡 ∈ 𝛾, let 𝐼− be the set of all the 𝑗 ∈ 𝐼 such that 𝑐 𝑗 is not of the form 𝛾𝑡′ with 𝑡 ′ > 𝑡. Suppose first
that 𝐼− is nonempty and let j be its maximal element. If x does not satisfy Case 2, then 𝑐 𝑗+1 does not
belong to 𝛾 |[𝑥,𝛾ℓ ] . But if 𝑗 = 𝑗𝑖 < 𝑗𝑘 , then 𝑗𝑖+1 ∉ 𝐼−, so that 𝑥 ∈ 𝛾 |[𝑐 𝑗𝑖+1 ,𝑐 𝑗𝑖+1 ] and x satisfies Case 1.

Also, if 𝑗 = 𝑗𝑘 , then 𝑥 ∈ 𝛾 |[𝑐 𝑗𝑖+1 ,𝑐𝑛 ] and x also satisfies Case 1. Therefore, we can assume that 𝐼− is
empty. But if I is nonempty then 𝑥 ∈ 𝛾 |[𝑐0 ,𝑐 𝑗1 ] and x satisfies Case 1, and if I is empty then 𝑥 ∈ 𝛾 |[𝑐0 ,𝑐𝑛 ]
and x also satisfies Case 1.

Now, take 𝑥 ∈ 𝛾 and let 𝑥 ∈ 𝛾 within r from 𝜙(𝑥) in Cay(Γ, 𝑆), where r is independent of 𝑥 and 𝛾. If
x satisfies Case 1, by (A.2) we conclude that 𝑑X (𝑥, 𝐻𝑥0) ≤ 𝐾1 for 𝐾1 a constant independent of 𝑥 and 𝛾.

If x satisfies Case 2, suppose that 𝑥 ∈ 𝛾 |[𝑐 𝑗 ,𝑐 𝑗+1 ] for 𝑗 ∈ 𝐼. Then by (A.3) there exist vertices 𝑥−, 𝑥+ ⊂ 𝛾
satisfying 𝑑X (𝑐 𝑗𝑥0, 𝑥

−) ≤ 𝑟 and 𝑑X (𝑐 𝑗+1𝑥0, 𝑥
+) ≤ 𝑟 , where 𝑟 depends only on 𝜙 and 𝐿, 𝐶.

Let F be the set of pairs 𝛼, 𝛽 ∈ Γ satisfying |𝛼 |𝑆 , |𝛽 |𝑆 ≤ 𝐴0 + 𝜅. By our assumption and [76, Theorem
1.1] we can find a convex core 𝑍𝛼,𝛽 ⊂ X for the group 𝛼𝐻𝛼−1∩𝛽𝑃𝛽−1 that contains the 𝑟-neighborhood
of 𝑥0. By cocompactness, we can find 𝐾2 > 0 such that

𝑍𝛼,𝛽 ⊂ 𝑁𝐾2 ((𝛼𝐻𝛼−1 ∩ 𝛽𝑃𝛽−1)𝑥0) ⊂ 𝑁𝐾2 ((𝛼𝐻𝛼−1)𝑥0)

for all (𝛼, 𝛽) ∈ 𝐹. Note that 𝐾2 is independent of 𝛾. In particular we have

𝑥 ∈ 𝑐 𝑗𝑍𝑐−1
𝑗 ℎ 𝑗 ,𝑐

−1
𝑗 𝑐̂ 𝑗

⊂ 𝑐 𝑗𝑁𝐾3 (𝑐−1
𝑗 𝐻 (ℎ−1

𝑗 𝑐 𝑗 )𝑥0) ⊂ 𝑁𝐾2 (𝐻𝑥0),

where 𝐾3 := 𝐾2 + max{𝑑X (𝛼𝑥0, 𝑥0) : |𝛼 |𝑆 ≤ 𝐴0 + 𝜅} is independent of 𝑥 and 𝛾. In conclusion,
𝛾 ⊂ 𝑁𝐾 (𝐻𝑥0) for 𝐾 := max{𝐾1, 𝐾3}, and the implication (2) ⇒ (1) follows. �
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