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Abstract

Temporal storm surge clustering refers to a series of events affecting the same region within a
short period of time, which can strongly influence coastal flooding impacts and erosion.Here, we
analyze global storm surge clustering from tide gauges and a state-of-the-art global model
hindcast to identify geographical hotspots of extreme storm surge clusters and assess event
frequencies. We study the spatial distribution as well as the contribution of different event
intensities to clustering. On average, globally, 92% of coastal locations show significant temporal
clustering for 1-year return period events, and 25% for 5-year return level events, although
notable spatial differences exist. Our results reveal two distinct clustering regimes: (i) short
timescale clustering, where events occur in rapid succession (intra-annual), and (ii) long
timescales (inter-annual), providing varying recovery times between events. We also test the
validity of assuming a Poisson distribution, commonly used in storm surge frequency analyses.
Our results show that >80% of the stations analyzed do not follow a Poisson distribution, at least
when including events that are not themost extreme but exceeded, for example, the 1-year return
level. These findings offer insights into temporal clustering dynamics of storm surges and their
implications for coastal hazard assessments.

Impact Statement

Understanding when and where coastal storm surges tend to cluster over time is essential for
improving disaster preparedness and risk management. This study identifies global hotspots
where multiple extreme storm surge events can occur within short timeframes, increasing the
risk of compounded impacts on communities, infrastructure and ecosystems. The findings
challenge the traditional assumption that such events happen randomly and independently,
showing instead that certain regions face higher risks due to clustering. These insights can help
stakeholders by incorporating temporal clustering into coastal risk assessments, which can lead
to more effective and resilient coastal management strategies.

Introduction

Coastal flooding is among the most devastating natural hazards, causing substantial economic
losses and human casualties worldwide. While such floods often result from the combination of
multiple processes (e.g., tides, rainfall, wind-wave effects and storm surge), high storm surges are
a key contributing factor. Here, we refer to storm surges as events where coastal sea levels are
substantially higher than predicted as a response to changes in the mean sea-level pressure and
wind-driven setup. Reliable estimates of the occurrences of these extreme events are essential for
risk assessment, insurance companies and coastal communities. An emerging area of concern is
the temporal clustering of apparently independent extreme storm surge events (i.e., when
multiple events occur in quick succession rather than being randomly spaced over time).
Temporal clusteringmay have important consequences for coastal infrastructure and ecosystems
as recovery times between events are minimized, and cumulative effects compound the risk,
especially when communities are still recovering from previous shocks (Zscheischler et al., 2020).

In September 2017, Hurricanes Irma andMaria impacted Puerto Rico within 2 weeks, causing
severe winds, rainfall and storm surges. Similarly, the United Kingdom experienced a series of
storms during the winter of 2013/2014, with an average recurrence of 2.5 days (Jenkins et al.,
2022). More recently, in 2024, Hurricanes Helene andMilton impacted the Florida Gulf Coast in
quick succession, mirroring previous cases such as Ian andNicole (2023) and Charley and Jeanne
(2004), where subsequent storms exacerbated damage in already affected areas. Figure 1 shows
how the season of 2005 affected theUSGulf Coast with hurricanes and tropical cyclones and their
associated storm surges. While not all clustered events are extreme, moderate storms can still
cause significant damage, particularly when flood defenses and coastal protections are already
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weakened. Karunarathna et al. (2014) found that beach erosion
from clusters of moderate storms can resemble the erosion caused
by a single extreme event. Similarly, Macamo et al. (2016) observed
that consecutive events can slow down the recovery process of
mangrove forests, exacerbating the natural process of erosion and
sedimentation in those areas.

In some cases, consecutive events can have less detrimental
long-term effects. For example, when tropical cyclones occur within
a season and are not scattered throughout the year. This creates an
extended calm period, giving coral reefs and other natural ecosys-
tems more time to recover than they would under a more random
distribution of events with the same rate of occurrence (Mumby
et al., 2011; Jagger and Elsner, 2012). This underscores the need to
accurately predict both short-term clustering and longer recovery
periods between storm clusters.

Despite extensive research on individual storm surge events,
there is limited understanding of the temporal clustering patterns
and their consequences. This recurrence of extreme events illus-
trates long-term problems with the miscommunication of risk to
the public and decision-makers (Towe et al., 2020). Traditionally,
event frequency has been modeled using the Poisson distribution
(Jagger and Elsner, 2012), assuming independent and identically
distributed events where event inter-arrival times are exponentially
distributed. For example, the National Oceanic and Atmospheric
Administration (NOAA) Experimental Long Lead Seasonal Hybrid
Hurricane Forecast System, which uses a Poisson regression model
based on Villarini et al. (2010). However, historically observed
clustering, including those already discussed, suggests a higher
probability of shorter inter-arrival times than expected under an
exponential distribution. This could lead to a systematic under-
prediction of both the number of events per season and the fre-
quency of inactive seasons (Jagger and Elsner, 2012). Storm surge
events impact a wide range of natural ecosystems, including
beaches, dunes, as well as public infrastructure and coastal

communities. The recovery time of these systems varies signifi-
cantly, ranging from months to decades, and is highly site-specific
(Dollar and Tribble, 1993;Morton et al., 1994; Hamideh et al., 2018;
de Ruiter et al., 2020). Back-to-back events can slow down these
recovery times by exacerbating the impacts on these areas; there-
fore, the definition of a cluster is highly dependent on the system as
well as the area of study and can substantially influence the results
of the analysis.

Therefore, in this article, we present a comprehensive global
analysis of storm surge clustering using a wide range of clustering
definitions. We test the validity of the Poisson assumption under
those definitions and assess how event intensity influences cluster-
ing patterns. Additionally, we analyze inter-arrival times, distin-
guishing between short-term clustering and calm periods (recovery
time). The results provide critical insights into the temporal struc-
ture of storm surge events, contributing to improved risk assess-
ment and coastal adaptation strategies.

The article is organized as follows: the second section describes
the datasets and methodology. In the third section, we present the
results, including model validation against tide gauge observations
(“The role of clustering definition and validation of model hindcast
data” section), the application of the methodology at the global scale
(“Global analysis” section) and an analysis of inter-arrival times
(“Inter-arrival time analysis” section). The findings are discussed in
the fourth section, and conclusions are provided in the fifth section.

Data and methods

Data

To achieve a consistent spatial–temporal resolution of coastal sea
level at the global scale, we use model-based sea-level data from the
Coastal Dataset for the Evaluation of Climate Impact 2020
(CoDEC) (Muis et al., 2020, available at the Copernicus Climate

Figure 1. Tropical storms andhurricanes that produced storm surges at the Apalachicola River tide gauge (red star), Florida, in 2005. The tracks of the tropical storms and hurricanes
are shown in dashed lines with different colors. The inset plot indicates the inter-arrival times between these different storm surge events.
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Change Service [2023]). Time series of sea level and tides are
computed using the Deltares Global Tide and Surge Model
(GTSMv3.0), a hydrodynamic model that dynamically simulates
water levels at 10-min intervals using forcing fields from the ERA5
global reanalysis (Hersbach et al., 2020) from 1979 to 2018. The
dataset includes 18,719 grid points along a smoothed global coast-
line, with a spatial resolution of 10–50 km. The nontidal residual
time series (henceforth referred to as storm surge) are derived by
subtracting the tides from the sea-level data.

We assess the model’s ability to represent temporal clustering
using in situ observations from the Global Extreme Sea Level
Analysis database–version 3 (GESLA-3) (Woodworth et al., 2016;
Haigh et al., 2022). A total of 527 coastal tide gauges from GESLA
are used, those with at least 20 years of records between 1979 and
2018. To ensure consistency, gaps in the tide gauge storm surge data
are mirrored in the CoDEC time series, and the mean sea-level
variation is removed using a 30-day moving window, which leaves
the seasonality due to atmospheric conditions (also captured by the
hydrodynamic model used to produce the CoDEC data). The
astronomical tides are calculated using the MATLABU-Tide pack-
age (Codiga, 2025) on a year-by-year basis, for years with more
than 70% of data availability. U-tide is applied using the least-
squares method, white noise floor assumption for confidence inter-
vals and an automated choice of constituents, resulting in 67 tidal
constituents per year on average. Seasonal tidal components
(i.e., solar annual (SA) and solar semi-annual (SSA)) were excluded
from the harmonic analysis to preserve seasonality, which is not
already removed by the 30-day moving average. The tidal analysis
was performed on 369-day periods (12.5 lunar months) to consider
a period close to multiples of the synodic periods of the short-term
tidal constituents.

The independent storm surge events are identified following a
declustering process set out in Martín et al. (2024). This method
identifies a site-specific standard event duration, which is used to
isolate independent extreme events. The method accounts for the
temporal and spatial variability of the storms. To decluster
the time series, a threshold is required. By varying this threshold,
we evaluate the sensitivity of our results to different levels of
extremeness. Specifically, we used five return levels (1–5 years),
determined by fitting independent events to a generalized Pareto
distribution.

Methods

Usually, independent events are considered part of the same cluster
if their inter-arrival time is shorter than a predefined time window.
We refer to this time window as the “clustering window” herein-
after. To assess the sensitivity of results to different clustering
window definitions, we use 14 different windows ranging from
15 days to 2 years, allowing us to explore the temporal structure
of clustering within this period (exact values are: 15, 30, 45, 60,
75, 90, 120, 150, 180, 240, 300, 365, 545 and 730 days).

Another important factor is the severity of those consecutive
events. Return levels are commonly used to quantify risk over a
given period. For example, a 1-year return level represents an event
expected to occur (or be exceeded) annually on average. However,
clustering remains possible, leading to years with multiple excee-
dances above the 1-year return level threshold and others with
none. To align with traditional risk threshold definitions, we use
return levels to represent different intensity thresholds. Specifically,
we apply five thresholds, corresponding to 1- to 5-year return levels,

to determine the number of events included in the analysis (see
Supplementary Figure S1).

Stations with significant clustering violate the Poisson assump-
tion, indicating storm surge clustering that cannot be explained by a
Poisson process. In contrast, stations with no significant clustering
may still exhibit clustering patterns, but consistent with a Poisson
distribution. We test whether storm surges follow a Poisson-
distributed event frequency by using Ripley’s K metric (Ripley,
1981), which indicates the tendency for clustering within a time
series. It is defined as the average number of events within a time
window (i.e., our clustering window) around another event in the
same time series. The higher the value, themore clustering occurs in
that time series. We calculate this metric for all tide gauge stations
and CoDEC grid points and assess statistical significance using
bootstrap simulations, similar to the approach by Brunner and
Stahl (2023). Specifically, we generate 1,000 homogeneous Poisson-
distributed binary time series with the same rate of occurrence as
the observed time series. Values of the Ripley’s K index, for the
observed time series, above the 98th percentile of the index calcu-
lated for the 1,000 Poisson-distributed series are deemed to indicate
statistically significant clustering.

Results

The role of clustering: Definition and validation of model
hindcast data

We start by testing the sensitivity of clustering against different
clustering definitions and levels of extremeness, as well as compar-
ing results from model hindcasts to those derived from observa-
tions. Our results indicate that extreme storm surges cluster in time
at most sites, for both tide gauge observations and modeled data.
The level of clustering, however, varies with the threshold. Figure 2
compares the percentage of time series exhibiting temporal clus-
tering (Figure 2a,b) with the percentage of time series where the
clustering is deemed significant, that is, the clustering behavior
deviates from the Poisson distribution (Figure 2c,d). The analysis
is performed using observations from GESLA (Figure 2a,c) and
CoDEC model points (Figure 2b,d). Validation includes 527 tide
gauges and their corresponding CoDEC points, using 14 clustering
window definitions and 5 different thresholds.

Figure 2a,b show the percentage of stations (out of the
527 selected) that exhibit clustering at least once in the time series.
More stations lack clusters at higher thresholds (going from 1 to
5-year return levels), which is to be expected due to fewer events
exceeding these thresholds. As clustering windows lengthen, more
events cluster, which is also to be expected, but the relationship is
nonlinear. Particularly, for higher thresholds, less clustering occurs
when using 200 days as the clustering window. When focusing on
stations with significant clustering (Figure 2c,d), lower thresholds
yield more significant clustering due to increased event counts. The
number of stations with significant clustering decreases with
increasing thresholds, but never falls below 20%, that is, at least
20% of stations exhibit significant clustering at any threshold. Peaks
occur around 90- to 120-day windows, declining until 1-year
windows, which indicates that there are certain windows when
significant clustering is more likely.

The differences between general occurrences of clustering
(i.e., where some clustering was observed) and occurrences of
significant clustering (i.e., clustering is statistically significantly
different compared to a Poisson distribution) (Figure 2a–d, respect-
ively) indicate the number of stations where clustering happens but
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in a way that aligns with a Poisson process. For example, at the
1-year return level, nearly all stations show clustering, and 70%
(across all window definitions) exhibit statistically significant clus-
tering. Meaning only ~30% of those time series exhibit clustering
behavior that follows a Poisson distribution. For instance, at a
specific station in Brest (France), we derive a K value of 1.7 from
the observations (for the 1-year return level and 365-day clustering
window), exceeding the 98th percentile of the Poisson-based boot-
strap distribution (equivalent to a K value of 1.4), indicating stat-
istically significant overdispersion (P ≈ 0.01). Similar patterns are
observed at 95% of stations, where the likelihood of such clustering
occurring under a Poisson process is generally below 1%.

Moreover, our results indicate that the CoDEC data (Figure 2b,d)
is overall able to reproduce the temporal clustering of storm surges
observed in GESLA (Figure 2a,c). These differences are spatially
explored below. The same results as shown in Figure 2b,d, but
obtained using all the model points included in the CoDEC dataset,
can be found in Supplementary Figure S4, showing overall similar
behavior.

Next, we examine how temporal clusters vary from one location
to another. Figure 3 shows the percentage of clustering, defined as
the number of clusters divided by the total number of events, for the
1 and 3-year return levels, again for GESLA (Figure 3a,c) and
CoDEC (Figure 3b,d). We use a 90-day clustering window defin-
ition based on the peaks of significant clustering in Figure 2c,d.

Higher clustering values, up to 70%, exist at the 1-year return
level in regions like northern Europe and northern Australia. In
other words, when a storm surge exceeds the given threshold in
those regions, 70%of the time another event occurswithin <90 days.
A latitudinal difference is observed in Australia and Japan, with

equatorial regions showing higher clustering values. For the 1-year
return level (Figure 3a,b), stations without significant clustering
(no black contour) are found in northern Japan and parts of the US
East Coast. For the 3-year return level (Figure 3c,d), stations without
significant clusters are distributed more evenly across coastlines.
Results may vary depending on the threshold or clustering definition
(see Supplementary Figure S5). Considering longer windows leads to
a higher percentage of clustering, particularly at the lowest threshold,
whereas at the highest threshold (5-year return level), results are
more consistent across different clustering window definitions.

Results from CoDEC (Figure 3b,d) resemble those obtained
from GESLA (Figure 3a,c), with mean (median) differences (i.e.,
absolute difference in the percentage of clusters) of 10% (7.5%) for
the 1-year and 12% (10%) for the 3-year return level, and standard
deviations between stations of 8 and 11%, respectively. More than
half of the stations, 62% for the 1 year and 52% for the 3 years, show
differences (in the percentage of clusters) below 10%. Some differ-
ences persist in the Mediterranean Sea and some parts of the Baltic
Sea. However, the largest discrepancies appear to be randomly
distributed, suggesting they are likely due to site-specific charac-
teristics rather than a systematic bias. Such characteristics can
include influences of freshwater discharge, which would be cap-
tured by tide gauges but not in the model data, or differences in the
predicted tides (which are calculated using harmonic analysis for
theGESLAdata and predicted by a hydrodynamicmodel in the case
of the CoDEC data). However, on a global scale, these differences
are minor, and the spatial clustering patterns are consistent across
both datasets.

Finally, the same analysis was repeated using skew surge data
(calculated for all 527 stations, both for tide gauges and CoDEC

Figure 2. Identified clusters of storm surges at 527 coastal sites using varying thresholds and clustering windows. (a, b) Percentage of locations where clustering occurred based on
GESLA (a) andCoDEC (b)data. (c, d)Percentageof locationswhere clusteringbehavior differs significantly fromthe assumptionofaPoissondistribution forGESLA (c) andCoDEC (d) data.
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time series), where skew surge represents the difference between an
observed high water and the closest predicted high tide. This
analysis is to ensure that our findings are robust against the storm
surge definition and not substantially influenced by tide–surge
interaction. Supplementary Figures S2 and S3 show that the results
are consistent regardless of the definition.

Global analysis

After validating CoDEC against observations, we identify the tem-
poral clusters of storm surges at the global scale, using all 18,719
CoDEC coastal model points. To be consistent, we show the results
from defining clusters as those events occurring within a 90-day
time window; results for other cluster definitions (time windows
and thresholds) are shown in Supplementary Figure S5. On average,
39% of the 1-year return level events globally were part of a cluster
(Figure 4a). This value drops to roughly 10% when calculated using
the bootstrapmethod explained in “Methods” section (consisting of
1,000 Poisson time series with the same rate of occurrence as the
observations). Storm surges aroundOceania, the Baltic Sea, and the
Caribbean Sea exhibit a higher tendency to cluster, where, in some
cases, up to 70% of the events were part of a cluster. Overall, these
clusters (defined by <90 days and a 1-year return level threshold)
contain an average of 2.5 events, with some regions, such as the
Baltic Sea and parts of Indonesia, reaching up to 4 events on
average. However, at most stations (~66%), clusters typically con-
sist of just two events. Similar to what was shown before, fewer
temporal clusters occur when higher thresholds are considered.
On average, 14% of the 5-year return level events were part of a
cluster, while the average value obtained using a Poisson

distribution would be 2.5%. As with the 1-year return level events,
Oceania, the Baltic Sea, and the Caribbean Sea show a higher
tendency for clustering with values up to 60% (Figure 4b). Overall,
temporal clustering above the 1-year return level is significant at 92%
of themodel points, decreasing to 25% for the 5-year return level (see
Supplementary Figure S6). Places with no significant clustering are
mainly found in the northern part of Japan and the East coast of
South America (mostly Argentina and Uruguay), where clustering
values are below 20%.

So far, we have examined how clustering varies across different
return levels. Next, we examine the composition of these clusters,
specifically the contribution of different return level events to clusters
defined as ≤90 days apart. Since a single cluster can consist of events
with different intensities (e.g., one exceeding the 3-year return level
and another the 5-year return level), analyzing this composition
helps to better characterize the nature of clustered events. Toquantify
the contribution of different event intensities to clustering, we use the
cumulative distribution function of the percentage of times different
events with different return periods were part of a cluster (Figure 5a)
versus how often such events occurred without being part of a cluster
(Figure 5b). For example, when two events cluster (inter-arrival
time ≤ 90 days), at 50% of the coastal points where that happened,
at least 50% of the clustered events fall within the 1- to 2-year return
level range (blue line in Figure 5a). The remaining contributions
come from events reaching the 2- to 3-year return level (15%), 3- to
4-year return level (7%), 4- to 5-year return level (4%) and ≥5-year
return level (21%). This distribution reflects the average contribution
of events above certain thresholds to clustering.

As expected, the lower return level range (1–2 years) contributes
the most to clustering. As return levels increase, the curves move to

Figure 3. Percentage of clustering (i.e., number of clusters divided by the number of events) when using a 90-day clustering window and a 1- (a, b) and 3-year (c, d) thresholds to
identify storm surge events. Results are shown for GESLA (a, c) and CoDEC (b, d) data.
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the left, indicating decreasing contributions to clustering. The curve
representing the 5-year return level is an exception, and this is
because all events that reach or exceed that return level are included
here, and not just the ones falling into a narrow band of two
different return levels, as is the case for the other return levels
analyzed here. Hence, this category shows a significant influence,
ranking second in contribution after the 1- to 2-year return level
range. Figure 5b presents the same analysis for nonclustered events
(i.e., the number of times 1- to 2-year events, e.g., were not part of
any cluster). The results closely resemble those in Figure 5a, indi-
cating that there is no systematic trend in the relative contribution
of events with certain intensities to clustering versus nonclustering.

As shown in Figure 5a, events exceeding a 5-year return level
also contribute substantially to clustering. To further examine this,
Figure 5c focuses on cases where at least one event within a cluster is
at or above the 5-year return level. This analysis quantifies the

percentage of times (for each grid point) that a ≥5-year return level
event clusters with a smaller event (purple line) versus when it
clusters with another event at or above the 5-year return level (green
line). Results indicate that for at least 50% of the coastal points,
events exceeding the 5-year return level always cluster with lower-
threshold events. In the remaining 50% of the points, the contri-
bution of high-intensity events, while not zero, remains low. On
average, 87% of these clusters occur with a lower-threshold event,
while only 13% involve another event at (or above) the 5-year
return level.

Inter-arrival time analysis

Examining the inter-arrival times between events allows us to
provide a spatial representation of the average time between events
globally. Also, as suggested by numerous studies (Dollar and

Figure 4.Percentage of clustering, defined as the number of clusters divided by the number of events, for clusters of <90 days. For events above the 1- (a) and 5-year (b) return levels,
for all CoDEC coastal grid points.
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Tribble, 1993;Merz et al., 2016; Besio et al., 2017), the time between
two consecutive clusters can be as important as the time between
consecutive events; it depends on the type of impact one is con-
cerned about. We can distinguish these two stages of clustering as
short-term clustering and recovery time. Short-term clustering
refers to periods where events occur in rapid succession, leaving
little to no time for recovery between them. In contrast, recovery
time represents the longer intervals between clusters rather than
individual events. This phase provides a critical window for envir-
onments to regenerate, communities to rebuild and infrastructure
to be restored before the next clustering period begins. We analyze
both stages independently by splitting the inter-arrival time ana-
lysis into two. The stages are defined using 180 days as boundary
(i.e., inter-arrival times ≤ 180 days become part of the short-term
clustering, and we define recovery times as the periods between
events when they are more than 180 days apart); the 180 days
threshold was chosen based on a shift in the clustering behavior in
Figure 2 around that value, which generally aligns with the typical
duration of stormy seasons (e.g., North Atlantic hurricane season
from June to November, or the stormy season in Europe from
October to March). Figure 6 focuses on the short-term clustering,
using the median (Figure 6a) and standard deviation (Figure 6b) of
inter-arrival times shorter than 180 days, for events exceeding the
1-year return level. The shortest values occur around Europe and
southern Asia, with localized minima in the Southern Adriatic Sea,
Java (Indonesia) and northernMadagascar, where values fall below
1.5 days, commonly used as an independence window in storm
surge studies. However, such short intervals represent <6% of the
model points. Other notable regions, with short inter-arrival times,
include the Caribbean islands and northern Australia, with values
around 15 days and standard deviations in the order of 20 days. The
average inter-arrival time across all coastal points is 26 days, with a
standard deviation of 90 days. By contrast, estimating the average
inter-arrival time using an exponential decay model with the same
rate of occurrence (i.e., assuming a Poisson distribution) gives a
value of 90 days, with minimal variation between stations.

Figure 7 examines the time periods without clusters (in years;
Figure 7a) and the recovery times (inter-arrival times >180 days;

Figure 7b). Figure 7a shows the number of years without events, that
is, inter-arrival times longer than >360 days (twice the threshold we
use to separate short-term clusters); it is noteworthy that years do not
need to be consecutive (i.e., a 360-day period with events can occur
between two 360-day periods without events). Overall, values show
little variability, averaging 13 years (± 2.5 years) without events, over
the 40-year record. Only 17% of points exceed 15 years, and just
0.15% reach 20 years. The lowest values are found in the Black Sea,
where values drop below 5 years. Figure 7b shows the median
recovery time, which for 91% of the stations is <2 years. The average
time between events is 1.5 years, with higher values where clustering
occurs more often (Baltic Sea and the Sunda Islands). This indicates
the time window that communities and natural ecosystems have, on
average, to recover.

Discussion

This study presents a global analysis of the temporal clustering of
storm surges. We identified the temporal clusters using tide gauge
observations, which are spatially sparse and discontinuous but
provide accurate in situ sea-level information. We also use a global
reanalysis dataset, which allows us to identify the temporal clusters
of storm surges everywhere along the global coasts.

The CoDECmodel validation shows strong agreement with tide
gauges from GESLA. We hypothesize that discrepancies arise pri-
marily in regions where external factors, such as freshwater dis-
charge or tidal differences, influence surge behavior. Additionally,
uncertainties may stem from the declustering process or limitations
in model-based time series, but these remain within reasonable
margins for a global-scale study.

The validation was also extended to different definitions of clus-
tering, which can significantly influence the results. The selection
criteria for specific clustering definitions are largely dependent on the
local characteristics of the place of study (de Ruiter et al., 2020);
therefore, given the global scope of this analysis, selecting a unique
fixed window was not appropriate. Instead, we selected a range of
clustering windows supported by literature and assessed how
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Figure 5. Cumulative distribution function of the contribution of different return levels to (a) clusters and (b) the contribution of events that are not part of clusters. The cluster
definition used is ≤90 days, and colors indicate the intensity. Panel (c) shows the contribution of events below (purple) and above (green) a 5-year return level to cluster with another
5-year return level (or higher) within 90 days.
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clustering behavior varies across different definitions (following
other studies such as Santos et al., 2017; Jenkins et al., 2022; Brunner
and Stahl, 2023). Moreover, the results depend on the type of events
considered. While extreme events have been extensively studied due
to their high impact,moderate events are often overlooked.However,
they play a key role in clustering dynamics, as their short recurrence
intervals amplify cumulative impacts. The inclusion of these events is
essential for a comprehensive understanding of storm surge cluster-
ing and its implications (Towe et al., 2020). Accordingly, our analysis
focuses on a range of low to moderate return levels (1- to 5-year
return levels) while still accounting for the most extreme events, as
those exceeding the 5-year return levels are also included. Results
indicate (Figure 2) that the cluster frequency decreases as event
intensity increases, with clustering behavior strongly influenced by
the time window used for defining clusters.

Storm surge event frequency has traditionally been modeled
using the Poisson distribution. However, the presence of clustering
challenges the suitability of this assumption. To assess the Poisson

assumption, we compare the observed clustering (Figure 2a,b) to
the clustering expected under a Poisson process with the same
occurrence rate (Figure 2c,d). While the Poisson distribution per-
forms better at higher thresholds, it fails to adequately represent
clustering in at least 20% of stations, regardless of the chosen time
window. This discrepancy increases to over 80% as the threshold
decreases and more events are included.

Additionally, we observe a sharp decline in significant clustering
between 120 days and 1 year, suggesting a shift in clustering behavior.
Beyond 1 year, the clustering stabilizes; this could be linked to the fact
that when considering a 1-year window (or longer), we capture two
ormore storm seasons in certain areas, resulting in amore consistent
number of events within the clustering window. Shorter clustering
windows exhibit greater variability, with peaks in significant cluster-
ing around 90–120 days, indicating that clustering dynamics are
highly sensitive to the chosen definition.Overall, the results highlight
the need for alternative approaches to model event frequencies,
particularly when moderate events are considered. These events

Figure 6. Median (a) and standard deviation (b) of the inter-arrival times shorter than 180 days for all CoDEC coastal grid points and events above the 1-year return level.
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can be as impactful as extreme ones when the recovery time between
them is insufficient (Karunarathna et al., 2014).

Importantly, while the 1-year return level defines the minimum
event intensity included, clusters can involve higher-threshold
events, which can create greater damage. We quantify the contri-
bution of different return levels to these clusters (Figure 5). Lower-
threshold events (1-year return level) show the highest contribution
to clustering, and contributions decline while increasing the return
levels, except for the 5-year return level, which encompasses all
higher events and thus increases again. These results indicate that
extreme events make a considerable contribution to clustering.
While this study primarily focuses on low tomoderate return levels,
the clustering of more extreme events remains crucial. We perform
a detailed assessment of high-threshold clustering, imposing an
additional criterion requiring at least one event at or above the
5-year return level. The contribution is further divided into events

above or below the 5-year return level that cluster with another
event exceeding this threshold. Our results indicate that ~63% of
the stations experienced two events (at or above a 5-year return
level) within 90 days at least once over the study period (i.e., 63% of
the stations experience at least one cluster formed by two events at
or above a 5-year return level). On those stations, on average, this is
the composition of 22% of the clusters (<90 days). Overall, the
lowest return levels contribute themost to clustering, with very little
contribution from other high return level events clustering together
(within 90 days).

The widespread presence of clustering across nearly all stations
suggests that assuming the frequency of storm surge events follows a
Poisson distribution may not be appropriate. Instead, alternative
models should be considered to account for clustering. For instance,
Jagger and Elsner (2012) proposed a statistical model based on the
Poissondistributionwith an extra parameter to account for clustering.

Figure 7.Number of years without any events above the 1-year return level (a) andmedian time between events when they occur >180 days apart from each other (which we define
as recovery time).
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The main idea is that while events can cluster, each cluster remains
independent of the others and follows a Poisson distribution. The
statistical implications are the existence of two important “windows”
in the event frequency distribution: (1) the clustering size or short-
term clustering, and (2) the recovery time, which follows an expo-
nential decay.

We present a quantitative approach to this concept, studying the
inter-arrival time distributions. Short-term clustering (≤180 days,
Figure 6) reveals high event recurrence, with a median inter-arrival
time of 26 days and notable regional variability (standard deviation:
90 days). The lowest values are found in Europe, the Philippines,
and the Caribbean islands. Clustering implies, among other things,
the existence of calm periods in between. This recovery time has
been extensively studied, compared to short-term clusters, particu-
larly in natural environments, due to its critical role in the ecosys-
tem growth and recovery from extreme events (Mumby et al., 2011;
Karunarathna et al., 2014; Yao et al., 2022). For these longer inter-
arrival times (>180 days, Figure 7), we find that, on average, CoDEC
stations experience calmperiods of ~1.5 years between clusters. The
fact that the average recovery time is longer than a yearmeans there
are some years that do not experience any event; on average, those
represent 32% of the study period (i.e., 13 out of 40 years exhibiting
no events).

While our study focuses on identifying where storm surge
clustering occurs, understanding the underlying mechanism of
why this happens remains an open question. Most studies aiming
to understand the mechanisms behind storm clustering have
focused on cyclone genesis and track behavior. On daily timescales,
clustering is often linked to the development of cyclone families or
secondary cyclogenesis, described by Bjerknes and Solberg, (1922).
In these cases, storms are not independent; rather, secondary
cyclones form along the frontal boundaries of preexisting primary
cyclones, resulting in successive storm events. However, not all
storm clusters can be explained by the cyclone family mechanism.
As noted by Dacre and Pinto (2020), stormsmay also cluster purely
by chance. Evenwhen cyclone occurrences follow a randomprocess
(e.g., Poisson), some clusters are statistically expected to occur.

On longer timescales, storm clustering can be modulated by
large-scale modes of climate variability. Many studies have used
these teleconnection patterns to estimate the likelihood of active or
inactive storm seasons, often using regression models (e.g., see
Mailier et al., 2006; Vitolo et al., 2009; Economou et al., 2015).
However, despite growing interest, much of our current under-
standing of serial cyclone clustering remains centered on theNorth
Atlantic and European sectors (Dacre and Pinto, 2020; Xi and Lin,
2021; Xi et al., 2023).

More recently, research has begun to explore storm clustering
from a storm surge perspective, linking successive storm surge
events to large-scale ocean–atmosphere interactions (Jenkins
et al. 2022). In the United Kingdom, several studies have associated
consecutive storms with the North Atlantic Oscillation (NAO) and
the West European Pressure Anomaly (e.g., see Woodworth et al.,
2007; Castelle et al., 2017; Santos et al., 2017). Other regions also
show linkages between storm clustering and climate drivers. For
instance, clustering near Florida has been connected to the NAO
and the Southern Oscillation Index (e.g., see Jagger and Elsner,
2012), while in Madagascar, storm activity has been linked to El
Niño SouthernOscillation and theMadden–JulianOscillation (e.g.,
see Nash et al., 2015; Macron et al., 2016). Nonetheless, the inter-
action between synoptic-scale processes and large-scale climate
modes remains an open area of research, requiring further inves-
tigation across different regions and storm types.

Finally, despite ensuring the highest possible accuracy in our
analysis, certain limitations must be acknowledged. The use of
observational data introduces challenges, such as outliers, gaps
and inconsistencies, which were addressed as much as possible
through extensive preprocessing. Similarly, model-derived data
can present validation issues, particularly in regions lacking in situ
observations. However, our validation efforts focus not on the full
validation of the CoDEC model itself, but specifically on its ability
to reproduce clustering behavior. Another source of discrepancies
are the return level estimations. The methodology used to estimate
return levels is consistent across datasets; however, some differ-
ences may result from the declustering procedure. However, the
declusteringmethod has been previously validated and shown to be
robust and applicable to both tide gauge time series and CoDEC
data. Minor discrepancies may also stem from magnitude biases in
CoDEC, although a general inspection indicates that the model
captures event magnitudes reasonably well (here, the exact magni-
tude is less relevant as long as peaks exceed our thresholds of interest
at the same time the tide gauges recorded a storm surge event).
Finally, during the validation, the presence of gaps in the observa-
tional records (which were matched in CoDEC for consistency) may
result in missing events and slightly lower cluster counts (in both
datasets). However, this issue is mitigated in the global analysis,
where CoDEC’s complete and continuous time series are used. All
the methodological choices made were to provide a reliable frame-
work for assessing storm surge clustering globally, highlighting the
need for regional-scale analyses to further understand the mechan-
isms driving storm surge clustering and its implementation.

Conclusion

Storm clustering remains an underrepresented factor in coastal flood
risk assessments despite its significant impact on coastal communi-
ties and ecosystems. How communities and natural ecosystems are
prepared for back-to-back events will determine their ability to
recover. Properly understanding the probability of these consecutive
events and better characterizing their frequency is the first step to
enhancing the resiliency of coastal communities to repeated shocks.

While storm clustering is inherently site-specific, this study
provides a global perspective by analyzing different clustering
definitions, event intensities and their spatial distributions. More-
over, we evaluate the applicability of the commonly used Poisson
distribution and show that for relatively short return periods, this
assumption is not satisfied at the vast majority of locations. Finally,
we examine two important clustering definitions, short- and long-
term clustering, which provide useful information about the recov-
ery time between storms for each station. On average, the recovery
time is limited to <2 years for 90% of the sites. These results
underscore the importance of considering moderate events in
clustering analyses, challenging the adequacy of Poisson-based
assumptions and highlighting the need for alternative frequency
models that account for event dependencies. Such models could
then be used, among others, to generate boundary conditions for
coastal impact models (such as the Dynamic Interactive Vulner-
ability Assessment model (Hinkel and Klein, 2009) and the Coastal
Impact and Adaptation Model (Diaz, 2016), which currently lack
this information. This also includes integrating storm surge data
with tidal information, an aspect not explicitly addressed in our
study but essential for advancing toward comprehensive hazard
and risk assessments. Finally, the adaptability of this framework
provides a useful basis for extending the analysis to other types of
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hazards, enabling the inclusion of spatiotemporal patterns of con-
secutive events in broader risk assessments.
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