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Abstract
Number systems are shared social technologies. They are heterogeneous, differing along dimensions of
modality, base, and marking. These characteristics impart differential advantages depending on purpose
and context, which explains why most cultures employ multiple number systems simultaneously.
Number systems are embedded in patterns of complementarity involving both human and physical
capital. Viewing number systems this way allows us to apply economic insights about production, cost,
and technology to things often regarded as purely abstract cognitive conventions. Combining these
insights with the literature on 4E cognition shows how concrete economic factors can shape key aspects
of how humans think.
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Introduction

The decimal system’s contestable;
We’ve inches and eggs duodecimal.
Computing is binary,
Tally marks quinary,
And timekeeping near sexagesimal!

– the author

In the latter half of the 19th century, as the metric system of revolutionary France was gradually adopted
by most countries in Europe, a great debate occurred in the English-speaking countries where metric
had met its strongest resistance. The leading argument of metric advocates in the US and UK, then as
now, was that metric’s decimal character made it consistent with the decimal number system. Many of
metric’s vocal opponents actually agreed, but argued that existing units of measure had practical
advantages, especially their multiple divisibility. As an alternative, therefore, they advocated changing
the number system to match the measurement system, instead of the reverse. Some businesspeople and
scholars, including Herbert Spencer (1896), supported replacing the decimal system with duodecimal
(Reeve 1903, Eldridge 1903). Others, seeing the advantages of binary ratios, supported either octonary
(Johnson 1891) or hexadecimal (Nystrom 1862).

What metric advocates and their anti-decimal opponents shared was a belief in consistency: one way
or another, the dominant number system and measurement system should have the same base. They
only disagreed on which one. Even advocates of base eight, twelve, or sixteen typically favoured reforms
to assure the same base was used in all types of measurement.
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Ultimately, neither side got its way. The UK resisted metric for nearly another century, and the US
never followed. Even now, ‘fully’ metric countries aren’t consistent about it. The UK allows various
exceptions. Metric time was rejected relatively early and never made a comeback (Vera 2009).
Europeans often buy milk and other beverages in half- and double-litres – an implicit concession to
binary ratios. Broadening the point beyond measurement, people use a variety of number systems in
daily life: duodecimal (dozens) in commerce, binary in computing, quinary in tallying scores, and
sexagesimal in timekeeping. Historically, using multiple systems of numeration simultaneously was
even more common. Why?

One explanation is inertia or inefficient path dependence (Arthur 1989): people don’t like to change
their ways, especially if nobody else does. That may indeed be part of the story. This article suggests
another: that deviations from decimal may persist because they are advantageous in particular
circumstances. More broadly, this paper investigates the functional heterogeneity of number systems –
that is, how they are shaped by pragmatic needs in specific use contexts.

A common though usually implicit perspective, which I dub the overlay fallacy, holds that numbers
are merely abstractions that describe reality without interacting with it. On this view, the only basis on
which to judge number systems is their cognitive burden, i.e., how easy they are to learn and
understand. This naturally favours having a single system for everything. If one system (such as
decimal) is equally functional everywhere, why learn more than one?

The alternative perspective advanced here is that number systems interact with pragmatic, real-
world concerns in ways that matter. Number systems are shared social technologies that arise to solve
recurrent practical problems. They are embedded in concrete routines, processes, human capital, and
physical capital. Their heterogeneity means they can have differential advantages, leading to a
correspondence between form and function. Multiple number systems can coexist because their
advantages address different demands. As economic factors alter the costs and benefits of competing
production patterns, their associated number systems may change as well – albeit with a lag. One
possibly surprising upshot is that economic factors, such as relative price changes, can affect our
cognitive frameworks.

Beyond historical interest, the thesis has implications for how we think about planning and design.
Given their apparently abstract nature, numbers look like the perfect candidate for deliberate, rational
control. The planner’s temptation is to design a perfectly consistent system to impose in top-down
fashion on everything within its theoretical domain. But if this article’s thesis is correct, the
comprehensive top-down approach is misguided. States and quasi-state actors have, of course, played
significant and occasionally beneficial roles in shaping number systems (especially in measurement).
Yet such efforts have their limits, particularly if driven by a universalising impulse. Bottom-up
processes, perhaps shaped by meso-level institutions like guilds and merchant associations, have
allowed number systems to serve practical needs in specific contexts – a lesson that may apply, mutatis
mutandis, to other institutions whose connection to practical concerns is more obvious.

The next section lays out the theoretical framework, using Harper (2010) and Whitman (2023) as
starting points; a subsection covers related literature in institutional economics. The subsequent section
describes a taxonomy of number systems with three key dimensions: modality, base, and marking. The
section after that offers a series of historical examples to illustrate functional variation across number
systems. The penultimate section connects the discussion to the 4E Cognition literature, showing how
4E can be fruitfully wedded to the economics of production and technology, enriching our
understanding of how cognitive tools and economic practices coevolve. The final section summarises
and concludes.
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Theoretical framework

Numbers as shared cognitive-institutional technologies

Harper (2010) is, to date, the only work that addresses the role of number systems in economic
behaviour and organisation, despite their obvious importance to the discipline. Numbers are usually
treated as given or at least self-evident. Harper instead recognises number systems as technologies:
‘objects that human beings create (oftentimes unintentionally) and that serve as an indirect means to
human satisfaction. They are “tools” in the widest sense of the term’ (171). Work in cognitive science
has also recognised number systems as tools (e.g., Bender & Beller 2018; Kaaronen et al. 2024).

Conceivably, the technology of number systems could be undifferentiated: a single system governing
all activities related to numeration or quantification. But, as Harper strongly implies without saying
outright, actual number systems are heterogeneous. For instance, Harper distinguishes number words
like ‘ONE, TWO, THREE’ from numerals like ‘1, 2, 3’ (2010, 167). Elsewhere, Harper notes that
Babylonian cuneiform differed from Egyptian hieroglyphics because the former was written on clay
and the latter on papyrus – a difference in media that likely influenced the distinct mathematical
advances made in these civilisations (2010, 181, citing Boyer 1944).

Here, I draw attention to the functionality of such heterogeneity. Although Harper gestures towards this
topic (e.g., describing number sequences as having ‘emergent causal properties (their “functionality”)’ (2010,
186), he does not develop the idea in detail. This paper seeks to fill that gap. To extend Harper’s first
example: number words have an advantage in speech, being immediate and audible but ephemeral, whereas
written numerals offer relative permanence that can facilitate record-keeping.1 The clay-versus-papyrus
claim above implies differing advantages within the field of mathematics, but not a decisive edge for either
system. This point can be broadened dramatically. As will be shown in the sections ‘A taxonomy of number
systems’ and ‘Illustrative cases of functional heterogeneity’, number systems differ along multiple
dimensions in ways that affect their functionality in everyday economic life.

Harper recognises the affinity between his perspective and Lachmann’s work on capital (Harper
2010, 180; Lachmann 1978). Lachmann characterises capital not as an undifferentiated mass, but as
heterogeneous objects embedded in patterns of complementarity with other productive inputs –
including other forms of capital (Lachmann 1978, 35). While number systems are not capital, they are
technologies instantiated in both physical and human capital. They are embedded in mechanical
devices, such as calculators and measuring instruments, and accompanied by skills and behavioural
patterns, such as arithmetic algorithms for making calculations and ‘mnemotechnics’ for producing
smaller units from larger ones (Kula 1986, 85). One well-known case is the use of binary in computing,
driven by its compatibility with the on/off nature of logic gates. Hexadecimal offers a cognitively
accessible shorthand for binary, thus serving as a bridge between humans and computers.

Harper also connects his discussion to the growing literature on 4E (embodied, extended, enactive,
and embedded) cognition – a connection I will explore in greater depth and with concrete applications.
I will leave this discussion for the penultimate section of the paper, however, so that I may draw on the
illustrative examples in the sections titled ‘A taxonomy of number systems’ and ‘Illustrative cases of
functional heterogeneity’.

Whitman (2023) advances a transaction cost-based theory of customary measurement systems. The
present article generalises that framework to number systems more broadly, offering a typology and a
cognitive-economic perspective to explain their variation and functional fit, while incorporating
economic factors beyond transaction costs such as technological complementarity. Measurement
constitutes a subset of numeration; specifically, the subset aimed at quantifying physical properties.2

Whitman argues that, at least in preindustrial times, there was good reason for customary measures
not to be consistently decimal. Scarcity of standards put a premium on units with lower
implementation costs, which privileged measures whose subsidiary units were easily reproducible

1Depending on the medium, of course; numbers written in chalk or sand will be less durable.
2See Wiese (2003, 40) quotation on p. 10.
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through a process of halving or doubling the base unit – leading to units with ratios such as 8:1 and
16:1. Whitman calls this the binary principle (2023, 713).3 The utility of multiple divisibility is another
contributing factor, which has sometimes resulted in 3:1 ratios that, when combined with binary, yield
12:1 ratios (Whitman 2023, 715; Gyllenbok 2018, 3). But the relative difficulty of physically
implementing non-binary divisions, combined with diminishing marginal value of further possible
divisions, explains why additional factors beyond a single 3 and multiple 2’s are relatively uncommon
in customary measurement.

Whitman introduces a refinement that will help broaden the discussion to numeration in general:
the counting principle (2023, 715). In some quantity ranges, people rely on simply counting things that
have been individually measured (barrels, bales, etc.) rather than measuring their totals directly.4 When
counting takes over, people may use decimal grouping – but often rely on groups of twelve or twenty
instead. These groupings offer multiple divisibility without the difficulty of accurate division, since the
parts are already discrete. In addition, twelve and twenty offer advantages of spatial configuration: they
can be arranged in recognisable blocks like 3x4 and 4x5, which ‘may also fit better in spaces such as
storage rooms, carts, and cargo holds’ (Whitman 2023, 716; see also Eldridge 1903). In the larger
domain of numeration, these advantages will loom large in explaining non-decimal systems.

Aside from minimising implementation costs, customary measures had to solve coordination
problems arising from the availability of multiple systems (Whitman 2023, 712). Like most standards,
they have the potential for multiple equilibria. Coordinating on shared units facilitates commerce
across different regions and trades. In some cases, those gains may drive convergence on a single
system. In other cases, however, people find it cost-effective to continue using different – often trade-
specific – standards, or else to effect a partialmerger into a hybrid system (Whitman 2023, 717). As we
will see, the same insight holds for number systems in general. As Harper notes, numbers are devices
for ‘tackling recurrent coordination problems’ (2010, 171). There is no reason to assume the same
number system will serve best in all possible domains.

Although number systems are not all created equal, some are highly substitutable. This is the overlay
fallacy’s kernel of truth: any two sufficiently complete number systems can, in principle, describe the
same things and perform the same operations. Consequently, a slight functional advantage of System
A over System B will not necessarily result in System A’s dominance – a variety of path dependence
(Arthur 1989, David & Greenstein 1990). However, Liebowitz and Margolis (1995) emphasise that not
all path dependence is inefficient, since transition costs are real and existing systems may be supported
by durable physical and human capital. Choi (2008) extends the discussion by highlighting political
and structural barriers to change. A new standard’s advantages must outweigh transition costs and
structural impediments to justify switching. Whether ‘the best’ number system will prevail in any given
context depends, therefore, on the strength of selection pressure.5

Conceiving of number systems as shared social technologies enables us to import existing economic
insights about production, cost, and technology to understand what are often understood as purely
abstract cognitive conventions. Numerical technologies are instantiated in production patterns whose
total costs are determined by the (sometimes implicit) prices of their inputs, and must therefore
compete on the basis of efficacy and cost. The most effective numerical technology may vary by activity.
As relative prices and other economic factors change over time, production patterns can be expected to
change – along with the number systems embedded in them.

However, new technologies do not always prevail, even over long time scales, if their advantages are
not decisive. Consider a different competition between technologies: electric vehicles (EVs) versus

3In Whitman (2023), I used the Eye of Horus fractions (1/2 through 1/64) as a leading example of this principle. Since then,
I’ve learned these fractions were associated with hieratic symbols, and their association with the Eye of Horus hieroglyph is
likely apocryphal (Ritter 2003). However, the sequence itself is authentic and still exemplifies the binary principle.

4Depending on one’s language, bundling things into discrete packages may transform mass nouns (‘hay’, ‘wheat’) into
count nouns (‘bales’, ‘bushels’). I thank a referee for this observation.

5See Chrisomalis (2020, xiv-v) for a similar perspective.
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internal combustion engines. While EVs are superior in many respects, such as reducing emissions and
noise, they face clear disadvantages, especially limited range and long recharge times. Moreover, the
network of EV charging stations is still nascent (at least in the US in 2025), which complicates long-
distance travel. Many drivers will wait to adopt EVs until the network is more extensive – a variety of
coordination problem. Consequently, combustion engines have a relative advantage in long road trips,
while EVs suit everyday commuting. Cars are also durable, meaning combustion engines would likely
remain on the roads for a substantial period even if EVs’ advantage among new cars were undisputed.

Considerations like these are familiar when comparing vehicles and other capital goods based on
differing technologies. The thesis of this article is that number systems, as cognitive-institutional
technologies, ought to be treated analogously. We should expect them to be responsive to cost, efficacy,
and coordination concerns.

Related literature in institutional economics

The previous section covered the most relevant topic-specific literature; here, I briefly situate the
discussion within broader schools of thought.

This article’s approach is broadly consistent with the New Institutional Economics (NIE)
framework; see Coase (1937, 1960), North (1981), Nelson and Winter (1982), and Williamson (1985)
among many others. A persistent NIE theme is showing how seemingly arbitrary institutions were
often functional or efficient under specific conditions, and this applies to numbers as well.

This article’s treatment of number systems as solutions to recurring economic concerns – including
coordination problems – echoes Nelson and Sampat’s (2001) characterization of institutions as social
technologies and Denzau and North’s (1994) treatment of institutions as shared mental models. It also
resonates with more recent post-Northian approaches that integrate cognition into institutional
analysis (e.g., Petracca & Gallagher 2020; Frolov 2023), a connection explored further in this article’s
section on 4E cognition. The overall perspective aligns with the ecological rationality literature, which
emphasises the adaptive fit between cognitive strategies and their environments (Todd &
Gigerenzer 2012).

Finally, the theory dovetails with Langlois’s (2006) and Baldwin and Clark’s (2002) view of
standards and modularity, which treats measurement as a special coordination module for agents
otherwise acting (largely) independently. This insight extends to number systems generally. Number
systems provide modular interfaces for negotiations involving quantities, thus contributing to the
partial decomposability of complex systems that Simon (1962) argues makes them manageable. Yet
such interfaces must be shared, creating potential for coordination problems like those discussed
earlier.

A taxonomy of number systems

This section explicates the diversity of number systems along multiple dimensions. But first, what is a
number system? Harper (2010, 171, 174), drawing on Wiese (2003) and Searle (2005), posits three
criteria for an object to qualify as a ‘number sequence’: it must be (1) a collection of well-distinguished
elements, (2) constituting a progression, (3) used by a network of agents to accomplish quantitative
functions. Quantitative functions include assessing ‘properties of objects as diverse as cardinality,
weight, temperature, rank, and identity’ (Wiese 2003, 40).

Three caveats are needed. First, Harper limits the scope of his analysis to the natural numbers (2010,
171), but nothing in these criteria rules out other numerical sets: negative numbers, fractions, and
so on.

Second, these criteria define what constitutes a number sequence, but they do not exhaust the
characteristics of the number systems built on them. Their other features are typically what
distinguish them.
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Third, seeing number systems as technologies raises the possibility of substitute technologies –
objects that fail criterion (1) or (2) but nevertheless serve quantitative functions. For example, tally
marks in the form of notches on sticks arguably fail criterion (1), as the notches are not well
distinguished.6 Nevertheless, they serve quantitative functions (especially tracking cardinality) and thus
constitute a viable substitute for a full-fledged number system. Seemingly ‘primitive’ substitutes may
persist even when more ‘advanced’ technologies are available.

With these caveats in mind, we may turn to the dimensions of number systems. Other typologies,
such as those analysed by Widom & Schlimm (2012), emphasise characteristics like dimensionality,
organisation, and extendibility that are important for their purposes. Here, I focus on three dimensions
that seem most relevant to economic analysis:

Modality. Modality refers to the physical means by which elements are expressed (Chrisomalis
2020, 11). Two modalities mentioned earlier are verbal number words and written numerals. The
former may be subdivided between spoken words and their written representations.7 To these we can
add the somatic modality: using the body to convey numbers. Examples include finger-counting and
the practice in some Papua New Guinean cultures of counting by pointing to body parts in sequence
(Saxe and Esmonde 2004, 12).8 Lastly, there is the artefactualmodality: representation of numbers in
physical form on external devices.9 Examples include abacuses, counting boards, and Incan quipus.
For people who used these devices historically, the abstract idea of number could be inseparable from
its physical representation. As Netz says of the Ancient Greek reliance on counters, ‘We imagine
numbers as an entity seen on the page; the Greeks imagined them as an entity grasped between the
thumb and the finger’ (2002, 329).

The distinctions between modalities are not always sharp. Inasmuch as speaking involves the
mouth, the spoken modality could be considered somatic; insofar as the body qualifies as an ‘external
device’, the somatic modality could be subsumed within the artefactual. Nevertheless, these distinctions
can matter for practical and economic reasons. Verbal and somatic modalities are portable and require
no manufacturing, whereas artefactual modalities’ relative permanence often facilitates record-keeping.
For instance, the Incan quipu allowed a form of ‘material tracking and tracing : : : useful for the
coordinating of wealth and labour at scale and at a distance’ (Souleles 2020, 4).

Base. In modern mathematics, a base is a number raised to successive powers in a positional place-
value system. But positional place-value is not required, and most historical number systems lacked it
(Widom & Schlimm 2012, 192-194, Figure 19).10 As I use the term here, base refers to how smaller
units are combined into larger groups.11 The modern Hindu-Arabic system is fully decimal,
i.e., consistently based on groups of ten. Many measurements are partially duodecimal – for example,
twelve inches to the foot, twelve hours to the half-day. Vigesimal (base-20) systems have appeared in
various cultures, including the ancient Mayans, and a vigesimal aspect can also be seen in the once-
common grouping of discrete items like fish and nails by the ‘score’ (Stevenson 1890, 322).

6We could say a set of notches constitutes the numeral for the notches’ cardinality; i.e., the sequence is: (i) a stick with one
notch, (ii) a stick with two notches, (iii) a stick with three notches, etc. But this seems a stretch beyond the intent of Harper’s
criterion (1).

7In logographic systems, such as Chinese, there may be no difference between the written-verbal and written-numeral
modalities (Chrisomalis 2020, 156).

8This system violates Harper’s criterion (1) because at least one body location is used for two different numbers (Saxe and
Esmonde 2004, 12). Bender & Beller (2012) document the diversity of somatic number systems.

9These modality terms are my own, but others have classified modalities similarly, e.g., Bender & Beller’s (2018) ‘material,
body-based, verbal, and notational’ modalities.

10Cumulative-additive systems, for example, have distinct characters for higher-order values and repeat them as needed;
Roman numerals are a well-known example (Chrisomalis 2020, 12).

11This broader concept of base is common in metrology (e.g., Gyllenbok 2018, 5), though less so in the study of number
systems generally. Still, it aligns with Bender & Beller’s (2018) dimensional approach, which allows for irregularity in the sense
that the same base and/or subbase need not be ‘applied at every power level and : : : used to generate all power numerals in a
consistent manner’ (301).
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Sexagesimal (base-60) was used by the Babylonians, and aspects of it appear in modern time
measurement.

Not every number system has a single base. They may contain multiple bases – sometimes coequal,
other times primary and auxiliary.12 The notion that a number system must have a single base is
probably recent. Ancient people were fairly ‘promiscuous’ in their groupings, using different bases as
suited their needs. This could prove useful, as multiple bases allow divisibility by the factors of all bases.
For example, the old British monetary system’s pound consisted of twenty shillings of twelve pence
each, making it divisible by all factors of twelve and twenty. Systems like this are called ‘mixed-radix’
and are especially common in measurement (Knuth 1998, ch. 4.1).

Why have bases at all? Simply put, they help human brains grasp large quantities by breaking them
into recognisable groups. Larger groups can be treated as single units; a merchant can count dozens of
eggs in much the same way he counts individual eggs. Thus, a base structure makes a number system
decomposable (Simon 1962), even as the system itself functions as a module within the broader realm
of economic activity.

We should also be cognizant of how decimal has been superimposed on other number systems,
especially in measurement. As a result, a system may appear decimal in its symbols yet have a
fundamentally non-decimal character. Time is an excellent example. When we say something is
scheduled for 12:45 p.m., the ‘12’ and ‘45’ are rendered in decimal numerals. Yet the grouping system
reflects a mix of duodecimal and sexagesimal.

Marking. The third dimension is marking, meaning elements that provide additional context or
information about the function being performed. The simplest examples occur with written numerals,
where punctuation does the heavy lifting. In the US, people know 5’11” is a height, 5:11 a time, 5/11 a
date, and $5.11 a price because of marking. In speech, markers may be morphemes such as the -st and -
th suffixes used in English to indicate ordinality. In the artefactual modality, the thread colours in
quipus could indicate the commodities being quantified (Mackey 2002, 503-4). In the somatic
modality, the presentation of a gesture might distinguish a buy from a sell offer – as with the hand
signals used on commodity trading floors (Garner 2010, 45).

In calling modality, base, and marking dimensions, I mean to convey that they are cross-cutting. We
might imagine a number system being ‘designed’ by selecting a modality from column A, a base (or
bases) from column B, and one or more markings from column C. For instance, the somatic modality
might combine with a duodecimal base through the practice in some cultures of using the thumb to
count the three segments of the other four fingers (Huylebrouck 2019, 51); marking could be added by
using different hand presentations to indicate an offer or acceptance.

Illustrative cases of functional heterogeneity

In this section, I present several historical cases selected to illustrate the functional heterogeneity of
number systems – specifically, how differences along the above dimensions can correspond to
practical needs.

Tally sticks

As mentioned earlier, tally sticks constitute a ‘primitive’ form of counting that doesn’t satisfy the formal
requirements for a number sequence. Cultures worldwide have used some form of tally sticks (Baxter
1989). Although not suited to all purposes, tally sticks were remarkably serviceable for recording
cardinality. For example, shepherds could rely on a one-to-one correspondence between notches and
sheep to ensure the whole flock came home each night.

12See the sections ‘Roman fractions’, ‘Duodecimal counting in Europe’, and ‘Sexagesimal counting in Sumer’ for examples.
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In the European ‘double tally stick’ system, trading partners marked transactions – such as items
bought on credit – on a single stick that was then split down the middle. Each party kept one half as a
record that could be verified against the other; neither party could add or subtract a mark without
causing a mismatch (Baxter 1989, 50). Versions of this system lasted well beyond the Middle Ages
(ibid.), despite the availability of ostensibly superior alternatives such as Roman and Hindu-Arabic
numerals.

The special advantage of tally sticks was combining easy adjustment (new notches could be added
easily and sliced off when necessary) with a durable record to facilitate monitoring or contract
enforcement. The double tally stick presumably faded only when alternative means of recording and
enforcing contracts became readily and cheaply available.

Bullae and tokens

The ancient Sumerian and Elamite bullae-and-tokens system offered similar advantages. A bulla was a
hollow clay envelope that could be filled with clay tokens and sealed. The tokens represented quantities,
such as goods owed or promised for delivery. The bulla’s closure, along with one party’s seal, made it
costly or impossible to change the contents before payment or delivery. Thus, the bullae-and-tokens
served as an administrative record (Schmandt-Besserat 2010, 32) and possibly a tool of contract
enforcement (Goetzmann 2016, 25-27), though the latter is disputed. As with tally sticks, bullae-and-
tokens’ relative permanence suited them to these purposes.

Notably, the tokens came in various shapes – and some bore ‘markings in the form of incised lines’ –
to distinguish among different commodities (Schmandt-Besserat 2010, 28), thereby providing
transactional clarity in a time when non-numeric writing was still nascent. This is a straightforward
example of markings serving an economic function.

Roman and mediaeval finger reckoning

We often imagine the Romans doing all counting and calculations with Roman numerals. But this was
not the case. A remarkable form of finger-reckoning was used throughout the Mediterranean during
the Roman Empire (Williams & Williams 1995, 590), and ample evidence suggests it was used across
‘the medieval Latin West, the Byzantine East, and all of medieval Islamdom’ (Richardson 2017, 173). In
this system, three fingers in various positions represented units, while the index finger and thumb
represented tens. The same gestures on the opposite hand could represent hundreds and thousands.
Although Roman numerals lacked both place value and zero, finger reckoning implicitly had both:
place value by reserving specific fingers for specific orders of magnitude (Maher & Makowski 2001,
377), and zero by allowing the fingers to rest in a neutral position.

What purpose did this number system, operating in parallel with Roman numerals, serve? Although
it is unknown exactly how its users performed calculations, there is good evidence they did so
(Williams & Williams 1995, 595). Having zero and place value would have suited it to algorithmic
calculations analogous to modern pencil-and-paper methods. This likely made finger reckoning useful
in marketplace settings when quick math was needed or an abacus was unavailable (Turner 1951, 69).

But other explanations have been suggested. Some say that it eased trade between speakers of
different languages, though this has been challenged (Williams & Williams 1995). Others claim that
gestures helped reinforce understanding in noisy marketplaces (Williams & Williams 1995, 594).
Finally, because gestures can be touched, they may have enabled secrecy in bargaining, as shown by
‘hidden tactile negotiation’ in present-day Somaliland (Musa & Schwere 2019) and historically in parts
of India and the Middle East (Bayley 1883, 4).
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Roman fractions

Roman numerals have a quinary-decimal structure: a primary base of ten (as shown by X, C, and M)
with an auxiliary base of five (V, L, and D).13 In the fractional realm, however, the Romans went
duodecimal. The unit was divided into twelve unciae. Each uncia was subdivided into 24 scrupuli –
essentially, another (negative) power of twelve, halved once more (Wyatt 1964, 269). Tellingly, Latin
had a distinct name for every uncia from 1/12 to 11/12, but not for every tenth from 1/10 to 9/10 (Glare
1968). Some Roman abaci had a column for unciae, with six treated analogously to five in the whole-
number columns: a single bead above the line (Wyatt 1964, 271n6).

Why were Roman fractions duodecimal? After all, the Romans clearly had access to a decimal way of
thinking. But the realm of fractions is where twelve’s superior divisibility is most advantageous. This
explanation is supported by the system’s origin in weight and land measurement (Maher & Makowski
2001, 378). Although it originally applied to fractions of the as, a Roman currency and weight unit, the
system was generalised to other domains – including downward division of larger things counted
upward decimally. The term as came to refer not only to currency but to any ‘whole’, such as an estate
(Stewart 2019, 98). A treatise by the Roman jurist Maecianus ‘affirms the primacy of the duodecimal
system in Roman fractional calculations of the time, and ties this directly to the dividing up of money
and property’ (ibid.).

Duodecimal counting in Europe

When it comes to counted measurements, dozens were common historically in Europe, and to some
extent in modern times. Sometimes they are even raised to higher powers: a gross is twelve dozen, and a
great gross is twelve gross (Darling 2004, 140). The practice was widespread; as Kula notes, ‘As far as
transactions involving counting are concerned, it would appear that the duodecimal system prevails
throughout Europe: the dozen rules, assisted by its divisions and multiples’ (1986, 83, emphasis added).
The word ‘counting’ is key here, distinguishing these uses from direct measurement, where binary
divisions were more common (ibid., 85). In short, twelve’s multiple divisibility privileges it in a specific
context – counting discrete items – where the practical difficulty of accurate division is absent.

Aside from powers of twelve, preindustrial European commerce often employed the counterintui-
tive ‘long hundred’ of 120 and the ‘long thousand’ of 1200 (Ulff-Møller 1991). This hybrid system
combined two bases, ten and twelve, and was so familiar that the Roman numeral ‘C’ could denote
either 100 or 120 (Ulff-Møller 1991, 327).

How might this system have emerged? Multiple divisibility is again the likely suspect. A long
hundred could be constructed as either ten groups of twelve or twelve groups of ten. Likewise, the long
thousand could be ten long hundreds or twelve short (decimal) hundreds. Ulff-Møller surmises that
these constructions were typically used for different purposes: groups of twelve (or 120) when counting
upward, groups of ten (or 100) when dividing downward (1991, 327). The latter method leverages the
divisibility of 12: a third of a long hundred is forty; a quarter of a long thousand is three (short)
hundreds. This pattern parallels the Roman use of duodecimal fractions in the downward direction.

Although divisibility is part of the long hundred’s story, there is a link to coordination problems.
Some evidence suggests a ten-twelve-hybrid system was used by Teutonic people before
Christianization, with the long hundred being the original hundred (Stevenson 1890, 313). Later,
the encounter with Roman numerals and Christianity introduced the decimal hundred (ibid., 317),
after which the two hundreds coexisted; as Ulff-Møller puts it, ‘the long and the short hundred interact’
(1991, 325). This suggests that both were useful – for the reasons above – but also that the long-
hundred system effected a compromise between different coordinative equilibria, accommodating
people accustomed to working with tens and people accustomed to working with twelves.

13Five constitutes an auxiliary base (or subbase) because there is no special role for powers of five such as 25 and 125.
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The morphemes ‘long’ and ‘short’ (or their equivalents) served as verbal markings to distinguish the
two hundreds – but such indicators were often missing, leaving readers to infer the meaning from
context (ibid., 325). This lack of marking may have inhibited the system’s functionality.

Duodecimal systems have appeared in other cultures, including some in the Plateau of Nigeria
(Hammarström 2010, 28). Still, Europeans seem to have had a special affinity for dozens; examining the
reasons would merit a longer treatment.

Sexagesimal counting in Sumer

Many have noted the similarities between the Sumerian sexagesimal system and European long
hundred, with some even positing a historical influence. That influence now seems unlikely (Ulff-
Møller 1991, 323). But the striking similarities suggest a similar story about the Sumerian system’s
functionality.

The origins of Sumerian sexagesimal remain unknown, but several hypotheses have been offered:
that it arose from an encounter between base-6 and base-10 cultures (Thureau-Dangin 1939, 98); from
multiplying the twelve finger segments of one hand by the five fingers of the other (Huylebrouck 2019,
51); from an encounter between base-10 and base-12 cultures, with 60 as the least common multiple
(LCM) (Ifrah 1981/1998, 93); from the need to relate two distinct units of measure, one substantially
larger than the other (Neugebauer 1927, 44-45); or from efforts to rationalise multiple units of measure
with various ratios (Rahmstorf 2010, 101–102).

The first hypothesis is supported by the form of Sumerian written numerals, which are visibly
decimal from 1 to 59, consisting of clusters of ‘tens’ and ‘ones’. In terms of overall structure, Sumerian
numbers are a mixed-radix system. Higher orders of magnitude are formed by alternating between 10
and 6: first multiply by 10 to get 10, then by 6 to get 60, then by 10 to get 600, then by 6 to get 3600, and
so on (Thureau-Dangin 1939, 104).14 The 6-meets-10 hypothesis is further supported by archaeological
evidence of a base-6 civilisation that may have migrated into Mesopotamia (Laki 1969). All the above
hypotheses can find some support in Sumerian units of measure, which exhibit ratios of 6, 10, 12, 20,
and, of course, 60 (see Gyllenbok 2018, 565).

I am not qualified to adjudicate among these hypotheses. But notice that most share something in
common: an encounter between, and merger of, different systems. The competing systems may have
come from different cultures. Or they might have come from different trades, with each using the
groupings best suited to their differing needs in production, packing, distribution, and sale. In that
situation, 60 might have become a coordinative focal point (Schelling 1960, 57) because it could be
reached by counting in tens, twelves, or twenties. When traders using dozens met traders using tens, for
example, the LCMwould have been a natural stopping place (‘I will trade my five dozen for your six lots
of ten’). This is not necessarily an origin story; it might instead describe the system’s persistence,
however it emerged.15 Either way, it shows how number systems can reflect a blend of practical needs
and coordinative concerns.

Timekeeping

Although sometimes attributed to Babylon, the 24-hour day’s actual origin lies in ancient Egypt
(Neugebauer 1969, 81-82). Daytime and nighttime were sharply distinguished and allotted twelve
hours each. Although these hours – especially at night – were mapped onto the apparent movement of

14As Thureau-Dangin observes, the Sumerian system appears simply sexagesimal only if one ignores every other order of
magnitude. Widom & Schlimm classify it as base-60 with subbase 10 (2012, 194 Fig. 19) and implicitly as Type 3 in their
subbase typology (158–159, Fig. 1). That classification, while mathematically equivalent to Sumerian, does not fully capture
the system’s mixed-radix character. The later Babylonian system eliminated most of the mixed-radix elements and is more
comfortably characterised as base-60 subbase-10.

15Ifrah characterises this LCM origin as a ‘learned’ solution that requires ‘too much intellectual sophistication’ to be
plausible (1981/1998, 93). I disagree because of the focal-point explanation just offered.
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the stars (ibid.), the stars’ positions do not inherently favour twelve over (say) ten or sixteen. We may
surmise that twelve benefited from its usual advantage of multiple divisibility. Indeed, dividing the
workday and corresponding day-wage into halves, quarters, and thirds was common in the Middle
Ages (Dohrn-van Rossum 1996, 311). Fully binary divisions were less useful because periods of time –
unlike lengths of cloth or volumes of liquid – could not be directly compared to each other. Hours were
therefore always going to be approximate, and their length varied seasonally, a practice that persisted
for centuries (Landes 2000, 438n18). In this context, divisibility trumped precision.

The 60-second minute and 60-minute hour are also often attributed to Mesopotamia. But the
Sumerian divisions of the day bore little resemblance to ours, with sexagesimal playing a negligible
role.16 Later scholars inherited the 360-degree circle, with its 60-part subdivision of degrees, from the
Babylonians (Merzbach & Boyer 2011, 152). While these divisions mattered in astronomy and
geometry, they played no role in everyday timekeeping (Dohrn-van Rossum 1996, 282). Even among
scholars, sexagesimal time divisions differed greatly from modern ones. Ptolemy divided the day into
360moîrai, equal to four modern-day minutes; in later centuries, theminutum could refer to ‘1/15 hour
(4 min.), 1/10 hour (6 min.), and 1/60 day (24 min.); but it never denoted 1/60 hour, which was an
ostentum’ (Holford-Strevens 2005, 9). Scholars adopted the 60-part time divisions in the ‘later Middle
Ages’ (ibid.), and common people in Europe did not regard the hour as having 60 minutes until the late
16th century (Dohrn-van Rossum 1996, 282), by which time clockmakers had begun adding minute
hands (Cipolla 1978, 50).

The Mesopotamian inheritance was not, therefore, a continuous timekeeping tradition maintained
out of inertia or path dependence; European clockmakers chose to adopt sexagesimal. Why? They were
likely influenced by scholars’ use of base-60, and also fascinated by ancient civilisations (Englund 1988,
122). But there was a more practical reason. In everyday European life, the hour ‘was divided into
halves, thirds, quarters, sometimes into twelve parts’ (Dohrn-van Rossum 1996, 282). When finer
divisions became desirable, they needed to align with the conventional fractions people already found
useful. A 60-part division fit the bill, while also allowing division by 5 and 10. Furthermore, it could be
easily superimposed on a 12-hour dial, while a 100-minute division could not.

Roman versus Hindu-Arabic numerals in Europe

Hindu-Arabic numerals were introduced to Europe as early as the 10th century and became more
widely known when Fibonacci worked to popularise them in the 12th century (Chrisomalis 2020, 79,
105). Yet Roman numerals predominated over Hindu-Arabic numerals in Europe well into the 16th

century (ibid., 107), including among people aware of the supposedly superior system. Was this
intransigence or path dependence? Perhaps – but there is another explanation.

Although written calculations with Roman numerals are possible, most people did their calculations
with a counting board, also known as the Western abacus.17 These devices may have been
supplemented by finger-reckoning for simpler sums or preserving intermediate results (Williams &
Williams 1995, 588-589). There were practical reasons for these methods –most notably, the scarcity of
writing materials throughout the Middle Ages (Sugden 1981, 14). Papermaking did not become
widespread in Europe until the 15th century; before then, writing required costly parchment made from
animal skins (Hoffmann 2024). Meanwhile, counting boards were durable capital goods, and fingers
were always available. Both methods already embodied place value and zero, the primary virtues of
Hindu-Arabic numerals. Furthermore, counting boards nicely complemented Roman numerals. In
typical European versions, each row represented a decimal order of magnitude, with fives represented
by a single token between the lines. This structure created a one-to-one correspondence between tokens

16The Sumerians divided the full day (not just half) into twelve danna of 30 giš each. A giš was equivalent to four modern
minutes. Sexagesimal appears only in the division of the giš into 60 ninda (Thureau-Dangin 1939, 112-3). But it is doubtful
common people ever used ninda, lacking any means of measuring time so precisely.

17A counting board is a grid with rows or columns for placing tokens – essentially an abacus without rods.
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and the quinary-decimal Roman system (Netz 2002, 327). For instance, CLXXVI (176) would be
represented by six tokens, one per character – enabling an easy translation from calculation to
recording the final answer.18

More to the point, there were really two patterns of technological complementarity: Roman
numerals paired with the counting board (and sometimes finger-reckoning), and Hindu-Arabic
numerals paired with pen and paper. Switching from Roman to Hindu-Arabic was not just a matter of
cognitive adjustment. It was a matter of changing a whole pattern of economic behaviour. People had
durable physical and human capital in the old system, and high input costs of adopting the new system.
All things considered, there were good reasons to stay put until the complementary inputs for Hindu-
Arabic numerals became cheaper. In Liebowitz and Margolis’s (1995) terminology, this was a case of
second-degree path dependence – where persistence results from pragmatic constraints and
technological complementarity rather than genuine inefficiency. Eventually, as innovation drove
down paper manufacturing costs and papermaking spread through Europe during the late Middle Ages
and Renaissance (Harford 2017), switching became economically viable.

This story does not necessarily rule out inefficient path dependence; it is possible that Roman
numerals persisted even after Hindu-Arabic became cost-effective. Chrisomalis (2020) attributes the
eventual shift to the printing press and rising literacy, which along with new arithmetic texts allowed
the new numerals to ‘develop[] a critical mass of use alongside a critical mass of new users in the
sixteenth century especially : : : until their frequency cemented their position as the dominant notation
of the region’ (Chrisomalis 2020, 115). This is essentially a tipping-point story, wherein an influx of
newly educated people shifted the coordinative equilibrium from the old technology to the new.
However, Chrisomalis also emphasises that, for some time, the two systems coexisted, often side-by-
side (ibid., 108-109; Sugden 1981, 14), implying that users found both systems adequate for their
purposes. While Hindu-Arabic had advantages that likely increased over time, the selective pressures
were apparently not strong enough to generate a speedy shift. For most of the Middle Ages, Roman
numerals were part of a production pattern that was at least not markedly inferior – and may well have
been superior until paper became cheap and abundant.

Number systems and 4E cognition

Number systems provide a compelling exemplar of key ideas from the 4E cognition paradigm, whose
influence in institutional economics is growing. Moreover, this article’s approach suggests how 4E
cognition theorists might incorporate insights from economic theory. Just as 4E cognition has
informed economics, economics may, in turn, inform 4E cognition. I support this claim by showing
how each ‘E’ relates to factors such as technology adoption, capital structure, responsiveness to relative
prices, and coordination on shared standards.

4E is an umbrella term for four related perspectives – designated as embodied, extended, embedded,
and enactive – that emphasise how human cognition draws on resources from outside the brain. These
‘externalist’ views contrast with orthodox (‘internalist’) views that locate cognition entirely within the
brain (Newen et al. 2018, 4).

It’s important to note that embodied, extended, embedded, and enactive are used in ways that are
overlapping, sometimes conflicting, not fully distinct, and not always consistent with the vernacular
meanings of the words. Most prominently, extended and embedded do not usually denote two distinct
aspects of human cognition, but rather two ways of characterising the same aspects of human
cognition. Extended usually treats the human mind as literally extending into the environment, whereas
embedded sees the mind as distinct from but nevertheless embedded in an external environment
(Rowlands 2010, loc 1282-89; Rupert 2009, 35). Some theorists do not even regard embedded cognition
as a full-fledged ‘E’ in its own right, but rather as an argumentative foil for extended cognition. Enactive

18This correspondence was less perfect with subtractive Roman numerals, such as IX (9). However, subtractive notation was
optional.
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cognition is sometimes treated as an overarching perspective that encompasses both extended and
embodied cognition, while emphasising the dynamic interplay between agent and environment
(Petracca & Gallagher 2020, 754n7). Yet some theorists see a tension between embodied and extended,
as the former highlights how cognition is crucially shaped by the physical medium (body) involved,
whereas the latter tends to abstract from the medium to focus on functional similarities (Clark 2008).
The fluidity of 4E terminology makes it difficult to draw sharp distinctions, especially across
disciplinary boundaries.

In this article, I use all four terms to characterise relevant aspects of how people interact with
number systems. I will lean on these words’ vernacular meanings in a way that treats them as distinct
yet compatible. My hope is that this approach complements the 4E perspective without doing too much
violence to these terms’ past usage in the field. I intentionally sidestep the debates among 4E
perspectives, especially the extended-versus-embedded debate. Scholars from all 4E camps should find
my claims about number systems broadly compatible with their perspective, although they might
prefer different language.

Embodied cognition. Embodied cognition theorists emphasise how humans use their bodies to
support cognitive processes. ‘Cognition is embodied when it is deeply dependent upon features of the
physical body of an agent, that is, when aspects of the agent’s body beyond the brain play a significant
causal or physically constitutive role in cognitive processing’ (Wilson & Foglia 2011). Finger counting is
a common illustration of this idea (e.g., Fischer & Brugger 2011; Bender & Beller 2012). Indeed, any
number system with a somatic modality likely qualifies as embodied cognition. A deeply somatic
imprint appears in the modern decimal system; if humans had eight or twelve fingers, its base would
likely be different as well. Yet decimal is not the only somatically influenced option. Historical vigesimal
systems probably arose from counting on both fingers and toes; quinary subbases, as in Mayan and
Roman numerals, reflect the importance of the single hand.

It is tempting to relegate finger-counting to the status of origin story, useful today only in teaching
children. But Roman finger-reckoning shows how sophisticated embodied aids to cognition can
become. It had implicit place value and zero. It served functions including calculation, secrecy, and
communication in loud marketplaces. This shows how the right economic circumstances can foster
greater reliance on embodied cognition over other cognitive strategies (such as mechanical devices). In
this way, cognitive tools can be competing production technologies that prosper in different contexts.19

Extended cognition. Although extended often denotes the view that cognition literally takes place
outside the human body, here I use it in its more contained sense: recognising that cognitive activities
may rely upon ‘processes and structures that occur outside the body in the wider environment’
(Rowlands 2010, loc 542). These structures are typically ‘extrabodily components or tools’ (Newen et al.
2018, 6) or ‘external physical devices’ (Varga 2016, 2469). The connection to number systems with an
artefactual modality is straightforward: tally sticks, abacuses, rulers, and scales all qualify as forms of
extended cognition – or, in Zhang & Norman’s (1995) terms, ‘distributed numerical cognition’. Some
argue that clay tokens (the kind used with bullae) preceded the abstract concept of number and
supported its development (Malafouris 2010, 39-40).

Extended cognition theorists often emphasise skilled use of artefacts (Clark 2003). Such skill is
obvious with abacuses, which work best in the hands of experienced practitioners. Skill also manifests
in mnemotechnics, i.e., behavioural algorithms that effectively mimic cognitive processes such as
counting or arithmetic.20 As one example, Kula (1986, 83) quotes from a letter from the Commission
for Weights and Measures of the Cisalpine Republic (Northern Italy) in 1800, which had encountered
resistance to metrication: ‘Every girl and every unlettered tailor know what half a quarter-ell stands for;
but we would lay a hundred to one that many professional accountants would be unable to assure you
that half a quarter-ell is equal to one hundred and twenty-five thousandths’. In a system based on

19This is not meant to rule out complementary cognitive strategies; see below.
20There is a natural connection here to ethnomathematics, which examines how different societies have developed cultural

practices that achieve mathematical ends; see D’Ambrosio (1985) and Ascher (1991).
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binary divisions, workers could produce a smaller unit from a larger one by splitting it three times (‘half
a quarter’), without necessarily understanding the underlying math. Skilled artefact use illustrates how
different inputs (physical capital and human capital) can be tight complements in production.

Enactive cognition. Enactive cognition theorists emphasise that cognition ‘involves an active
engagement in and with an agent’s environment’ (Newen et al. 2018, 6). In the present context,
enaction means that number systems do not typically arise in the abstract, but from recurrent problem
situations – specifically, those involving a need for quantification, such as keeping track of livestock,
dividing goods among parties, settling terms of trade, and maintaining records of debts. We are talking
again about mnemotechnics, but now focusing on why they arise: to solve practical problems in
everyday life. Successful methods tend to be copied; as a result, useful knowledge becomes embedded in
practice.21 People may then incorporate these practices into their basic view of the world; recall how
Roman weight measurement gave birth to a general system for all fractions. To the Romans, fractions
simply were duodecimal. Their cognition was shaped, ultimately, by practical concerns.

One especially important kind of recurring problem situation is coordination. The challenge is not
just to quantify, but to do so in a way that others can understand and verify. Number systems, as well as
the devices and techniques for manipulating them, therefore tend to be communal. While in principle
an individual could adopt an alternative method, the structure of a coordination game creates
incentives to conform (or else risk exclusion from communication and trade). As people internalise
shared methods, the equilibria of coordination games become routine parts of their cognitive
apparatus. Number systems thus qualify as ‘economic cognitive institutions’ in the sense of Petracca &
Gallagher (2020).22 However, sufficient changes in economic circumstances can prompt some people to
adopt alternative conventions; if enough others follow, the system may shift to a new equilibrium. This
is consistent with the enactive view’s emphasis on the two-way interaction between individuals and
their environment.

Embedded cognition. Embedded cognition theorists emphasise that humans ‘structure our
environments to facilitate problem-solving; we create scaffolding on which human cognition
depends’ (Rupert 2009, 207). This environment is explicitly social, with scaffolding provided by
‘technological and cultural creations’ (ibid., 151), including prevailing equilibria in coordination
games. Although embedded cognition is often treated as the less-radical cousin of extended or
enactive cognition, in my usage, it is arguably more radical. It means that systems of numeration are
never chosen in a vacuum, but are instead selected to fit into broader environments that include both
scarcity of resources and other institutions. Moreover, number systems come in the relatively stable
packages that I’ve called patterns of complementarity. Complementarity matters because the cost of
any input can hoist or hinder all other elements in the same pattern. The best example is Roman
versus Hindu-Arabic numerals. The former came in a package with the abacus or counting board
plus finger-reckoning, the latter in a package with writing instruments and paper. Scarcity of paper
could thus influence the acceptance or rejection of an entire package, including its embedded number
system.23

As in Lachmann’s discussion of substitutes and complements, alternative number systems are
substitutes – but at the level of the pattern rather than as an isolated practice. You cannot simply swap
in a new technology while everything else remains the same. To substitute is to adopt a different
package of complementary inputs (Lachmann 1978, 56-57). As D’Adderio (2011) puts it,
‘configurations of artifacts and people are stabilized in recurrent – but continuously challenged –
patterns of interaction’ (2011, 199). The relative costs of competing complementarity patterns can
explain the maintenance of an old pattern; changes in relative costs can explain switching to a new one.

21Compare Hodgson’s (1988, 126-127) treatment of habits as devices for ‘tacit knowing’ and acquisition of skills.
22Petracca & Gallagher (2020) frame their theory of economic cognitive institutions in terms of extended cognition, but

explicitly ground it in an enactivist framework (754n7).
23Compare Choi’s (2008, 199) claim that Korea’s switch from Chinese characters to a phonetic alphabet was aided by the

arrival of typewriters.
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Hence, we may be able to explain some aspects of our cognition by reference to the relative prices of
their complementary inputs.

This last insight suggests a promising direction for research at the intersection of cognitive science
and economics: to see whether other cognitive institutions are similarly responsive to economic
incentives such as implicit prices.

Conclusions

It is common to think of number systems as belonging to the rarefied and abstract realm of pure
mathematics. To the contrary, I have argued that they arose historically for practical purposes, and
those purposes shaped their forms. Number systems are heterogeneous, differing along dimensions
of base, modality, and marking. Because these features offer differential advantages depending on
context and purpose, we should not expect a single number system to be used for everything.
Historically and even today, we see different systems used alongside each other – and this
heterogeneity is practical.

Future research might explore how broad economic patterns – such as dominant occupations,
modes of production, and scarcity of materials – have shaped different societies’ numerical practices.
While this remains hypothetical for now, a suggestive parallel can be seen in how different trades within
a single society have historically developed distinct units of measure (Whitman 2023, 724).

Another direction concerns the symbolic and institutional authority of number systems. Work in
the quantification literature (e.g., Porter 1995, Gooday 2004) emphasises how numbers can legitimise
decisions and project rationality in bureaucratic and scientific contexts. While these dynamics are
typically associated with how numbers are used rather than how number systems are structured, they
too may have influenced the adoption or design of number systems – particularly in periods of state-led
standardisation.

Once we conceive of number systems as shared social technologies, we can see how they are
shaped by the same economic forces that drive other technologies. One such force is the
emergence of coordinative equilibria to accommodate competing commercial needs. Another is
patterns of technological complementarity, whose value can be boosted or burdened by price
changes of any component. Yet another is the persistence of ‘primitive’ substitutes that
outperform full-fledged number systems in specific contexts. We can see these forces at work in a
range of historical examples. By merging these insights with 4E cognition, we find that economic
forces can shape not just the world around us, but some basic aspects of how we think and
understand.

Further, the correspondence between number systems and the specific problems they arise to solve
lends support to a broader proposition: that bottom-up processes can produce effective and functional
economic institutions. This is not to deny the role of top-down interventions such as legal mandates,
educational reforms, and standardisation efforts. States, empires, and other institutional players have
exerted influence over numeration systems for political, commercial, and administrative purposes. For
such efforts to be lasting and effective, however, they must align with pragmatic needs and deeply
embedded behaviour patterns. While number systems may be subject to planning and reform, their
long-term viability depends on reflecting the decentralised bottom-up processes that helped
shape them.
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