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Abstract

How canwemake global sensitivity analysis accessible and viable for engineering practice? In this translation article,
we present a methodology to enable sensitivity analysis for structural and geotechnical engineering for built
environment design and assessment workflows. Our technique wraps computational mechanics and geomechanics
finite element (FE) simulations and combines high-performance computing on public cloud with surrogate modeling
using machine learning. A key question we address is: “Is there a noticeable loss in fidelity of results from the
sensitivity analysis when substituting a simulation model with a surrogate model?”We answer this question for both
linear and nonlinear FE simulations.

Impact Statement

Simulationmodels, and in particular, physics-driven simulationmodels, underpin design andmaintenance across
several disciplines in the built environment. Practicing engineers use these models as core engines to predict the
behavior of a physical asset, such as a building or a tunnel, or to compute cost functions in optimization, or as
forward models while solving inverse problems. Complex simulation models used on real-world projects can
depend on a large number of parameters. These parameters describe attributes of the real-world asset, such as its
materials, cross-section properties, or support conditions, and control the behavior of the simulation model. Not
all parameters are created equal; there are often a small minority that are disproportionately influential compared
with the rest. Being able to identify these influential parameters canmake a significant difference to the outcomes
of the design or optimization task that an engineer is interested in solving. Global sensitivity analysis helps us
discover influential parameters; however, it is relatively uncommon in industry workflows, not least because
finding these parameters is in itself a computationally expensive task. In this work, we develop a methodology to
make global sensitivity analysis practical and tractable using machine learning and high-throughput computing
on a public cloud. Specifically, we propose a more efficient approach by first training a neural network surrogate
of a finite element model and then performing sensitivity analysis on the surrogate, rather than directly on the
simulation data as is conventionally done. Using our method, a practitioner can viably complete a sensitivity
analysis in a fraction of the time and budget, both of which are tight constraints on engineering design projects,
without losing accuracy in the process.
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1. Introduction

In the design, construction, and maintenance of infrastructure and the built environment, reducing
embodied carbon is a goal of paramount importance (World Green Building Council, 2019) to counter
climate change. A reduction in carbon consumption can be achieved by optimal use of construction
materials when designing new projects or by promoting retrofit and maintenance through an assessment
of an existing asset. To this end, engineers rely on simulations, for instance, structural analysis or
geotechnical analysis, that compute the response of a system using numerical solutions to differential
equations. Using these simulations as underpinnings, they solve design and assessment tasks using
techniques such as optimization, digital prototyping, back analysis, or inverse modeling. The simulation
models are defined using the geometries and other input parameters that describe the system being
simulated. These can range from mechanical properties of the materials, details of the boundary and
support conditions, to geometries and profiles of members, parts, and components.

Sensitivity analysis, which is a technique that characterizes how variations in input parameters affect the
output of a model, can play a vital role in the solution to the above problems. It can help to explore causalities
in a system, to reduce its dimensionality, and to support decision-making (Rajabi Moshtaghi et al., 2021.
Sensitivity analysis can be broadly categorized into two main branches: local and global. Local sensitivity
analysis examines how small perturbations around a fixed point in the input space affect the model output. In
contrast, a global sensitivity analysis considers the entire range of input parameters simultaneously, providing
a more comprehensive understanding of a model’s behavior. It can account for interactions between
parameters and is suitable for models of varying complexity, including those that are nonlinear; in this sense,
a global sensitivity analysis is advantageous comparedwith a local sensitivity analysis. Sensitivity analysis is
a well-established field with a wide range of methods developed for both local and global analyses (Saltelli
et al., 2008. These include local derivative-based approaches, as well as global methods such as the Morris
screening method, the Fourier Amplitude Sensitivity Test, and variance-based techniques like Sobol indices.

When solving optimization and design problems, a sensitivity analysis helps identify a subset of most
input parameters that have the most influence on the response quantity of interest. During the assessment
of existing structures or the construction of excavations and foundations, which can often be modeled as
an inverse problem, identifying parameters that are most influential to the system’s behavior enables any
remedial modification to the system to be focused on this smaller subset. This can be a critical step that
dictates whether such problems can be solved at all from the perspective of economy and practicality.

Within built environment engineeringworkflows in the industry, numerically rigorous and robust tools
for computing the sensitivities of a simulation model are relatively uncommon and, as such, engineers
often resort to ad-hoc approaches or rely on engineering judgment and intuition. In this article, we
investigate the use of Sobol’s method for global sensitivity analysis (GSensA) for finite element
(FE) models of structural engineering and geotechnical engineering problems (we abbreviate global
sensitivity analysis to GSensA to avoid confusing the reader with Oasys GSA, which we introduce in the
next section). There are two main contributions of this article:

• We describe how we can make GSensA feasible and accessible to industry practitioners using a
combination of commercial simulation software, high-performance computing on the public cloud,
and machine learning-based surrogation.

• We demonstrate, through numerical experiments, how we can alleviate the prohibitively high-
computational cost of doing a GSensAwithout losing fidelity of the results (Figure 1).

2. Background

Several methods are available to compute a GSensA, and in Crusenberry et al. (2023), the authors present
a comprehensive comparison of thesemethods. For ourwork, we chose themethod of Soboĺ (1993), for its
relative ease of use, the maturity of the “toolset,” that is, the software ecosystem supporting the method,
and its explainability to nonspecialist practitioners who would be the eventual end-users of our tool.
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Sobol indices use an analysis of the variance of a function to estimate the importance of an input
variable. It decomposes the variance of the model output into contributions from individual input
parameters and their interactions, and computes first-order and higher-order indices. For a further
summary of Sobol’s method, we refer the reader to Crusenberry et al. (2023) and Sobol (2001); however,
the main point of interest here is that a Sobol analysis relies on sampling the parameter space, and the
number of samples needed to identify influential parameters grows with the size of the space. Since we
must invoke and solve the simulation model for each realization of the sample, a GSensA using Sobol’s
method has a very high computational expense and is unsuited for typical built environment design or
assessment workflows. As such, the motivation for this work has been to explore how we can ameliorate
the computational burden without losing the fidelity of the original analysis.

Surrogate models offer a compelling solution to this challenge by providing fast, approximate
representations of complex simulations or processes. Among the various approaches, feed-forward neural
networks are particularly attractive due to their ability to model highly nonlinear relationships with strong
generalization capabilities. They can be trained on a dataset of high-fidelity simulation outputs and then
used tomake rapid predictions. Feed-forward neural networks are a type of artificial neural networkwhere
information flows in one direction—from input nodes, through hidden layers, to output nodes—without
any cycles or feedback loops. Each neuron processes inputs using weighted connections and an activation
function. The number of hidden layers and the number of neurons per layer are critical design choices:
more layers and neurons increase the model’s capacity to capture intricate relationships, but also raise the
risk of overfitting and computational cost. Their widespread adoption is supported by amature ecosystem:
neural network training is now ubiquitous, well-understood, and backed by robust, open-source software
libraries such as TensorFlow and PyTorch. Advances in hardware—especially GPU acceleration and
cloud computing—have made it both efficient and accessible to train these surrogate models, even for
large-scale scientific and engineering applications.

There are two applications we have investigated, which originate from the disciplines of bridge
engineering and ground engineering. The first is for a structural analysis of a global bridge FE model. We
model the bridge in Oasys GSA, a structural analysis and design software developed by Arup (www.
oasys-software.com/gsa). Oasys GSA is aWindows, desktop-based software package that encapsulates a
headless modular solver for computational mechanics, which we deploy on the cloud using container-
ization.

The second application is a geotechnical analysis of a FE model of a retaining wall. We model this in
Oasys Gofer (https://gofer.oasys-software.com/). Gofer is a cloud-native two-dimensional FE program
for geotechnical analysis. Gofer encapsulates the same core FE solver as GSA, although in this case, it
solves computational geomechanics problems. TheApplication Programming Interfaces (APIs) for either
software are different and tailored for modeling workflows close to their respective disciplines.

Figure 1. Schematic illustrating the workflow of Sobol analysis. Using a defined input space of
parameters and a model, Sobol indices are computed using quasirandom samples. These indices are then

used to identify a subset of sensitive parameters, the labels of which are denoted as u.
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Nevertheless, the key constraint is the computational cost as FE simulations can typically take between
minutes and hours to solve, depending on model complexity, the behavior being simulated, and other
factors. To resolve, we first train amachine learning surrogate from the simulations, and use this surrogate
subsequently for performing the GSensAwith Sobol. Since a machine learning surrogate is a black-box
approximation to the behavior of the simulation model, a key question is: what is the loss of fidelity in the
results? To expand, how different are the influential parameters from a Sobol using surrogates from a
Sobol using the actual simulator? This is the central question we have addressed through our numerical
experiments.

3. The simulation models

In this section, we detail the FE models we use for structural and geotechnical simulations. These models
are inspired by real-world design and assessment projects carried out using Oasys GSA and Oasys Gofer.

3.1. Structural FE analysis

Weused the global model of a 900m span cable-stayed bridge featuring a twin-spine steel box girder deck
and two monopole towers as the case study for our research (see Figure 2). The FE model was developed
in Oasys GSA and has 4,508 elements, with the bridge deck modeled as two lines of spine beams
connected by crossbeams, towers as beam elements, cables as cable elements, and bearings and
foundations as spring elements.

The parameters in this model are the cross-section properties of members and cables, and the stiffness
of the springs. A preliminary parameter grouping is used to reduce the number of effective variables in the
model. By treating a group of parameters as one, the complexity of themodel is lowered, which can lead to
amore efficient exploration of the parameter space for the sensitivity analysis. This grouping is done using
engineering judgment (Table 1).

The groups and corresponding section indices in GSA are provided in Table 2. The cross-sections are
modified using modification factors that are constrained as shown under the “Constraint” column. The
constraints ensure a particular variable is bounded during sensitivity analysis. In addition to
section modifiers, we also vary spring stiffnesses, as summarized in Table 3. In this model, the parameters
in Tables 2 and 3 define the input parameter space. We consider a total of 54 input parameters and are
interested in identifying their influence on the natural vibration frequencies of the structure. Since we
measure the variance of the frequencies of the first 10 fundamental modes of free vibration, the simulation
involves solving a modal dynamic analysis.

Figure 2. GSA model of a 900-m span cable-stayed bridge (image upscaled using Microsoft Copilot
v19.2509.59141.0, GPT-4).
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3.2. Geotechnical FE analysis

For our geotechnical case study, wemodeled a 22-m deep excavation with a staged construction sequence
tailored to typical Central London ground conditions (see Figure 3). The excavationwas simulated using a

Table 1. Notation for section modifiers used in the GSA model

Description Notation

Area A
Second moment of area around the local y-axis I yy
Second moment of area around the local z-axis I zz
Torsional J

Table 2. Parameter groups and corresponding section indices for the GSA model. Constraints are
applied to each parameter and are enforced during sampling

Description Group Parameters Section indices Constraint

Main girder 1 A, Iyy, I zz,J 1–3, 12–14 0:5,1:2½ �
2 A, Iyy, I zz,J 4–5, 15–16 0:5,1:2½ �
3 A, Iyy, I zz,J 6–9, 17–20 0:5,1:2½ �
4 A, Iyy, I zz,J 10, 21 0:5,1:2½ �
5 A, Iyy, I zz,J 11, 22 0:5,1:2½ �

Crossbeams 1 A, Iyy, I zz,J 27–50 0:5,1:2½ �
Towers 1 A, Iyy, I zz,J 351–378 0:9,1:1½ �

2 A, Iyy, I zz,J 379–398 0:9,1:1½ �
3 A, Iyy, I zz,J 399–414 0:9,1:1½ �

Caisson 1 A, Iyy, I zz,J 301–304, 306–309 0:9,1:1½ �
Cables 1 A 101–110, 151–160, 201–210, 251–260 0:85,1:15½ �

2 A 111–125, 161–175, 211–225, 261–275 0:85,1:15½ �

Table 3. Spring stiffnesses and constraints for the GSA model. Constraints are applied to each
parameter and are enforced during sampling

Description Parameters Constraint

North tower springs kx kNm�1
� �

946400,94640000½ �
ky kNm�1
� �

946400,94640000½ �
kz kNm�1
� �

2329500,232950000½ �
kxx kNmrad�1

� �
1876700000,187670000000½ �

kyy kNmrad�1
� �

1876700000,187670000000½ �
kzz kNmrad�1

� �
1183000000,118300000000½ �

South tower springs kx kNm�1
� �

1790700,179070000½ �
ky kNm�1
� �

1790700,179070000½ �
kz kNm�1
� �

6534200,653420000½ �
kxx kNmrad�1

� �
4497400000,449740000000½ �

kyy kNmrad�1
� �

6106900000,610690000000½ �
kzz kNmrad�1

� �
2238400000,223840000000½ �
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nonlinear FE model under plane-strain conditions with Oasys Gofer. The model consists of 1,029
elements, with the soil represented by second-order quadrilateral elements, the retaining wall by beam
elements, and temporary props by spring elements. The soil material behavior was modeled using a
nonassociated Mohr-Coulomb (MC) failure criterion.

The short-term construction sequence was divided into six stages, allowing us to capture variations in
soil stresses and pore pressure, thereby providing the expected site deformation response. The initial stage
was modeled using drained MC soil properties (i.e., effective friction angles and effective cohesions) to
establish the initial site conditions before excavation. From the second stage onwards, clay soil materials
were switched to undrained effective stress MC soil properties (i.e., zero friction angle and undrained
shear strength values for cohesion) to capture the short-term behavior. In stage 2, a 1.2-m wide concrete
retaining wall was installed along with a 10-kPa uniformly distributed load at ground level. Stage
3 involved excavating 3.3 m from the ground surface. Stage 4 included excavating 10.66 m from the
ground surface and inserting the first temporary prop to support the wall. Stage 5 involved excavating
16.5 m from the ground surface and inserting a second temporary prop to support the wall. Finally, stage
6 consisted of the final excavation to a depth of 22m from the ground surface. The ground-water table was
3.3 m below the ground surface, and the water was dewatered during the excavation.

As in the structural case, engineering judgment was used to reduce the number of effective variables in
the model, facilitating efficient exploration of the parameter space for the sensitivity analysis. Parameter
groups for each soil layer are detailed in Table 4. The London Clay layers were subdivided into several
layers to identify sensitive zones. The same set of input parameters was applied from stages 2 to 6. The
outputs are the total wall displacements at the final stage.

4. Methodology and numerical experiments

4.1. Software implementation

Our tools are prototyped in Python and useNumPy (Harris et al., 2020,Numba (Lam et al., 2015,Pandas
(McKinney et al., 2011, Pytorch (Paszke et al., 2019, SALib (Herman and Usher, 2017, and SciPy
Virtanen et al., 2020.

To execute andmanipulate Oasys GSAmodels, we used its in-process API feature in Python. Analysis
and manipulation of the Oasys Gofer models was performed using a purpose-built (i.e., a product feature
not part of the official release) version of Oasys Gofer and a purpose-built Python API object. Each of
these Python modules was then containerized using Docker (Merkel et al., 2014 using aWindows Server
2022 base image as the solvers to both programs are Windows-native.

Figure 3. Schematic showing our geotechnical case study in Oasys Gofer: A 22-m deep excavation
problem with a staged construction sequence tailored to typical Central London ground conditions.
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4.1.1. HPC using Amazon Web Services (AWS)
The sampling for a Sobol analysis is highly computationally intensive as it involves generating quasi-
random samples and executing the function, that is, the FE model, for each realization. Fortunately, this
process is embarrassingly parallel and, therefore, amenable to being scaled using high-performance
computing (HPC). We use AWS for parallelization. Using a public cloud provider gives us several
advantages over traditional HPC supercomputing facilities or on-premise clusters, such as on-demand
compute, elastic scalability, and the ability to only pay for the compute instead of investing capital
expenditure upfront. We parallelized the sampling dataset generation using AWSFargate on AWS Batch,
which is a highly scalable service for executing containers. Fargate is a serverless environment that
abstracts away the need to manage the underlying compute infrastructure. Each Fargate instance was
configured with two vCPUs and 4 GB of random access memory.

A bespoke implementation was built to trigger and orchestrate the parallel data generation. This
workflow initially generates all samples sequentially on a single machine, then chunks them up based on
the number of parallel container instances. Each instance processes a chunk of the samples, generates a
GSA or a Gofer model for each realisation, executes the analysis, and stores the analysis results. The
results from each individual container are then concatenated to produce the combined dataset of samples
and corresponding simulation results. We then use AWS SageMaker to both train the surrogates using
Pytorch, and subsequently run the sensitivity analysis using SALib.

4.2. Sobol analysis with surrogates

4.2.1. Creating the reference dataset
In this study, we investigate the effect of both surrogate complexity and training dataset size on the output
from Sobol analysis. The accuracy of this output can be quantified by comparing the surrogate case with a
reference, whichwe define to be the output using a large dataset obtained directly from the FEmodel. This
reference dataset was obtained by sampling the FE model over the input space of parameters. We use
SALib’s quasi-random Sobol sampler (Herman and Usher, 2017; Renardy et al., 2021 to generate a
uniform grid over the input parameter space. The number of samples from this method is related to the
dimensionality of the parameter space N as 2n N þ1ð Þ, where n is a parameter controlling the density of
the grid. InSALib, this should be a power of 2.We investigated output from the Sobol analysis for various
values of n and found no significant change in the output at n¼ 210. This value for n was used in all
subsequent sampling, with the workload parallelized over 1000 container instances. A summary of the
parameters used for Sobol analysis is provided in Table 5.

Table 4. Young’s Modulus (E) and Cohesion (C) input parameters for the Gofer model. Constraints
are applied to each parameter and are enforced during sampling

Description Layer Drainage E constraint (kPa) C constraint (kPa)

Class 6F5 Vary 1 Drained 10000,100000½ � -
Weathered London Clay 1 Undrained 10000,100000½ � 10,100½ �
London Clay 1 1 Undrained 20000,200000½ � 20,200½ �

2 Undrained 20000,200000½ � 20,200½ �
3 Undrained 20000,200000½ � 20,200½ �
4 Undrained 20000,200000½ � 20,200½ �

London Clay 2 1 Undrained 75000,300000½ � 75,300½ �
2 Undrained 75000,300000½ � 75,300½ �
3 Undrained 75000,300000½ � 75,300½ �
4 Undrained 75000,300000½ � 75,300½ �
5 Undrained 75000,300000½ � 75,300½ �
6 Undrained 75000,300000½ � 75,300½ �
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4.2.2. Training the surrogate models
We used feed-forward neural networks as surrogates to approximate the FE models. These neural
networks were designed with four hidden layers and use rectified linear unit activation functions. Data
for training the surrogate models was obtained by taking random subsets of the reference dataset. The
percentage of data used was varied and constrained so that the minimum in the range was greater than the
number of parameters in themodel, to avoid overfitting.We used amaximum of 60% reference dataset for
both the GSA and Gofer surrogates, and considered N GSAð Þ

pcts ¼ 20 and N Goferð Þ
pcts ¼ 10 percentage values for

GSA and Gofer, respectively. To obtain an averaged comparison against the reference, for a given
percentage value, we require a number of trials Ntrials to be taken. To do this, and for each percentage
value, we trainNtrials ¼ 10models using random subsets of the reference dataset. The performance of each
surrogate relative to the reference output is then averaged.

We repeat this process for models of varying complexity, adjusting the number of neurons in each
hidden layer of the network to modify the complexity. For the GSA surrogate, we consider 4models with
15, 20, 35, and 50 neurons in each hidden layer, corresponding to models with 1705, 2570, 6065, and
10910 parameters, respectively. For the Gofer surrogate, we consider 3 neural nets with 5, 8, and 12
neurons in each hidden layer, corresponding tomodels with 252, 471, and 847 parameters, respectively. In
total, we trained N GSAð Þ

models ¼ 800 and N Goferð Þ
models ¼ 300models for GSA and Gofer, respectively. We compute

the Sobol indices for each model according to the parameters in Table 5.

Algorithm 1. Summary of our workflow for training surrogates, performing Sobol analysis, and
evaluating performance.

Let Nneurons be the set of neurons per hidden layer
Let Npct be the set of percentages of reference dataset
Let Ntrials be the set of n trials.
for nneurons in Nneurons do
for npct in Npct do
for ntrials in Ntrials do
Let D¼ random subset with npct% of the reference dataset
Train a surrogate model with nneurons neurons per hidden layer usingD
Perform Sobol analysis using trained surrogate

end for
end for

end for

A summary of the parameters used for surrogate training is provided in Tables 6 and 7. A summary of
our workflow for training surrogates is provided in Algorithm 1.

4.2.3. Comparing Sobol analysis output
For a given output, SALib can calculate the first and total effects indices for each parameter, which
represent the influence of that parameter on the output. We can sort these indices, from greatest to least,

Table 5. Summary of parameters used for Sobol analysis

Description GSA Gofer

Number of parameters (inputs) 54 23
Number of outputs (frequencies/displacements) 10 7
Number of samples in the reference dataset 112640 49152
Sobol sample density (n) 210 210
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leading to a list of strings (the parameter names) arranged by reducing influence. This qualitative output is
most relevant from a practical perspective and is, therefore, what we want to use in any comparison
between FE and surrogate output. To compare the qualitative output from Sobol analysis using FE and
surrogate models, we use a difference measure, which compares the lists of parameter names. A simple
measure of correspondence between two rankings is to compare the ordering of elements. Let uFE and
usurrogate be the vector of parameter labels from the Sobol analysis, arranged by their corresponding Sobol
indices in descending order. We assert that the elements of usurrogate are some permutations of uFE.

Defining a linear elementwise operator P̂, which returns the rank of a label in uFE, the rank difference
between labels in usurrogate and uFE is then

ΔI¼ abs P̂uFE� P̂usurrogate
� �

, (1)

where abs Ið Þ denotes the elementwise absolute value of I. P̂usurrogate is the expected rank and P̂uFE is the
actual rank. In order to place greater importance on the rank differences between more influential
parameters, we can weight according to the first-order Sobol indices. Dividing by the largest first-
order Sobol index gives an interpretable measure: it is the number of rank moves of the most sensitive
parameter. We refer to this as the normalized weighted rank difference

Δ Î weighted ¼ S1 �ΔI
maxS1

: (2)

5. Results

5.1. Structural surrogate

In this section, we present a series of results that compare the output from the Sobol analysis between an
FE model and a surrogate trained on output from the FE model. Figure 4 shows the rank differences
between GSA and the surrogate (Nparam ¼ 6065) output. For each plot, the ordering of parameters is
generally well preserved for those influential parameters with larger Sobol indices—a behavior which is

Table 6. Parameters defining the scope of investigation for GSA and Gofer surrogates

Description GSA Gofer

Max percentage of the reference dataset 60 60
Number of neural network surrogates 4 3
Percentage intervals 20 10
Number of trials for averaging 10 10
Total number of surrogates 800 300

Table 7. Summary of parameters used for training GSA and Gofer surrogates

Description Value

Batch size for training 64
Ratio used for testing 0:05
Ratio used for training 0:8
Ratio used for validation 0:15
Learning rate 0:2
Number of epochs for training 700
Number of layers in the model 4
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found to be consistent across all training set sizes. For less influential parameters, with smaller Sobol
indices, significant ordering discrepancies can be seen. This is most likely to do with “fluctuations” of
order due to numerical issues, such as the number of sampling points used to compute the Sobol indices.
We found no qualitative difference in these results across surrogate architectures.

The effect of these fluctuations can be reduced by plotting the normalized weighted rank differences
(see Section “Comparing Sobol analysis output”), which weights the rank difference according to the
influence of each parameter. Plots of this measure are shown in Figure 5. No clear trend can be seen
between the normalized weighted rank differences and the size of the surrogate training dataset. The rank
differences are found to be consistently small across the training datasets, indicating the differences are
most likely due to small fluctuations in uninfluential parameters.

Methods of sensitivity analysis can be used for dimensionality reduction, which can, in turn, be used to
improve the efficiency of computations that involve an exploration of the parameter space. From a
practical perspective, the most useful output of sensitivity analysis is, therefore, the set of variables that
can significantly influence a model’s behavior. This output may be post-processed and tailored for a
specific use case, such as optimization, uncertainty quantification, or surrogate model training. Figure 6
shows output from the Sobol analysis, where parameters with Sobol indices ≤ 0:01 were excluded.
Output from both the first-order and total effects indices was joined to obtain a final set of sensitive
parameters. uGSA and usurrogate denote the set of outputs for GSA and surrogate, respectively (it is
noteworthy that unlike in Section “Comparing Sobol analysis output”, the ordering here is not important,
so the vector notation has been dropped). ∣uA�uB∣ denotes the size of the relative complement of the sets,
that is, all those elements in uA but not in uB. uGSA�usurrogate is the set of influential parameters found
when using the GSA output that were not found when using the surrogate (and vice versa).

Figure 6 shows Sobol analysis with the surrogate tends to predict a larger (superset) space of sensitive
parameters than in the FE case, as indicated by ∣usurrogate�uGSA∣> 0 and ∣uGSA�usurrogate∣≃0. Conse-

quently, this inclusion of additional parameters may lead to reduced efficiency for any downstream
computations. In the majority of surrogate architectures tested, except for the lowest complexity case, we

Figure 4. Heatmap showing the rank differences (averaged over trials) for input parameters of the GSA
model. The surrogate model used here had 6065 parameters. The Sobol index for each input parameter
from the FE simulation is shown on the y-axis. The percentage of the reference dataset used to train the
surrogate model is shown on the x-axis. The color intensity of the heatmap represents the rank differences
between the FE and surrogate output. Each panel represents these differences for each output of the

model. Only Sobol indices ≥ 10�3 are shown.
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observed that ∣uGSA�usurrogate∣¼ 0. This indicates that Sobol analysis using the surrogate consistently
identified the same sensitive parameters when using the surrogate as it did with the FE model.

5.2. Geotechnical surrogate

Figure 7 shows the rank differences betweenGofer and surrogate (Nparam ¼ 471) output. For each plot, we
find a similar result to the GSA case, which shows the ordering of parameters to be generally well

Figure 5. Averaged normalized weighted rank differences as a function of the percentage of reference
data for different GSA neural network surrogates. Each surrogate is described by Nnn parameters.

Averaging was performed over parameters, outputs, and trials. The error bars are the standard error of
the mean when averaged over trials. Only the lowest and highest complexity models are shown here.

Figure 6. Set differences between outputs from (post-processed) Sobol analysis for surrogates and GSA.
uGSA and usurrogate denote the set of outputs for GSA and surrogate, respectively. ∣uA�uB∣ denotes the size
of the set difference, that is, all those elements in uA but not in uB. Each surrogate is described by Nnn

parameters. Averaging was performed over parameters, outputs, and trials. The error bars are the
standard error of the mean when averaged over trials.
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preserved for influential parameters with larger Sobol indices. With the structural model, we do not find
significant rank differences for the Sobol indices approximately ≥ 0:01. However, for the geotechnical
model, small rank discrepancies can be seen in some outputs for the Sobol indices ≥ 0:01, suggesting the
sensitivity analysis is less reliable for the surrogate. For the lowest complexity case (Nparam ¼ 252),
significant discrepancies can be observed in some of the outputs, particularly when the percentage of the
reference dataset is small in the case of Displacement 1 (Figure 8).

Figure 9 shows the averaged normalized weighted rank differences for surrogates of different sizes. A
clear trend can be seen for Nnn ¼ 252, where increasing training data benefits the accuracy of the
sensitivity analysis. For the larger neural nets, this trend is less clear. The larger surrogates are also found
to perform better in the sensitivity analysis.

The increased difficulty in training surrogates for Gofer is likely to originate from inherent nonlinearity
in the MCmaterial model. These behaviors include sharp gradients and discontinuities in the response of
the FEmodel, making it challenging for neural networks to generalize accurately across the input space. In
contrast, the modal analysis of the GSA model, which is linear elastic, typically exhibits smoother and
more globally linear behavior. This makes the surrogate learning taskmore tractable, as themapping from
input parameters to outputs is more stable and predictable.

6. Conclusion

Our study using Sobol analysis with neural network surrogates reveals several key insights. First, we have
shown that, in the case of GSA and Gofer, the ordering of influential parameters with larger Sobol indices
is generallywell preserved across all training set sizes andmodel complexities investigated. This indicates
the surrogate model’s reliability in identifying these parameters.

However, significant discrepancies are observed for less influential parameters, likely due to numerical
issues such as the number of sampling points used. This may lead to qualitatively different predictions for
the set of sensitive parameters in practice, which we find in the case of GSA. In these tests, the set of
sensitive parameters was found to be a superset of the FE reference case. Our results also show that
accurate results fromSobol analysis can be achieved evenwith surrogates trained on a small fraction of the

Figure 7.Heatmap showing the rank differences (averaged over trials) for input parameters of the Gofer
model. The surrogate model used here had 471 parameters. The Sobol index for each input parameter
from the FE simulation is shown on the y-axis. The percentage of the dataset used to train the surrogate
model is shown on the x-axis. The color intensity of the heatmap represents the rank differences between
the FE and surrogate output. Each panel represents these differences for each output of the model. Only

Sobol indices ≥ 10�3 are shown.
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reference dataset. Model complexity appears to play a bigger role in determining the accuracy of Sobol
output with surrogates, which is particularly apparent for Gofer.

One method of generating a set of sensitive parameters is to include only those parameters with Sobol
indices greater than a threshold. Our results suggest that, when surrogates are used, this threshold should
typically be lowered so as to minimize the chances of excluding parameters that may have otherwise been
deemed sensitive had the full FE model been used.

Future work should focus on several key areas. First, it would be worth exploring the impact of
sampling density on the accuracy of Sobol indices. Large sampling densities could help mitigate the
numerical issues observed for less influential parameters. Finally, expanding the scope of the study to

Figure 9. Averaged normalized weighted rank differences as a function of percentage of training data for
different Gofer surrogates. Each surrogate is described by Nnn parameters. Averaging was performed
over parameters, outputs, and trials. The error bars are the standard error of the mean when averaged

over trials. Only the lowest and highest complexity models are shown here.

Figure 8.Heatmap showing the rank differences (averaged over trials) for input parameters of the Gofer
model. The surrogate used herewas the lowest complexity we considered, with 252 parameters. The Sobol
index for each input parameter from the FE simulation is shown on the y-axis. The percentage of the
dataset used to train the surrogate is shown on the x-axis. The colour intensity of the heatmap represents
the rank differences between the FE and surrogate output. Each panel represents these differences for

each output of the model. Only Sobol indices ≥ 10�3 are shown.
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include awider range of case studies and real-world applicationswould validate the generalizability of our
approach and highlight its practical relevance in various domains.
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