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Abstract

Objectives: Remote injury assessment during natural disasters poses major challenges for
healthcare providers due to the inaccessibility of disaster sites. This study aimed to explore
the feasibility of using artificial intelligence (AI) techniques for rapid assessment of traumatic
injuries based on gait analysis.

Methods: We conducted an Al-based investigation using a dataset of 4500 gait images across
3 species: humans, dogs, and rabbits. Each image was categorized as either normal or limping. A
deep learning model, YOLOv5—a state-of-the-art object detection algorithm—was trained to
identify and classify limping gait patterns from normal ones. Model performance was evaluated
through repeated experiments and statistical validation.

Results: The YOLOv5 model demonstrated high accuracy in distinguishing between normal and
limp gaits across species. Quantitative performance metrics confirmed the model’s reliability,
and qualitative case studies highlighted its potential application in remote, fast traumatic
assessment scenarios.

Conclusions: The use of Al, particularly deep convolutional neural networks like YOLOVS5,
shows promise in enabling fast, remote traumatic injury assessment during disaster response.
This approach could assist healthcare professionals in identifying injury risks when physical
access to patients is restricted, thereby improving triage efficiency and early intervention.

Introduction

Recently, humans have experienced frequent natural disasters worldwide.' ™ A few days ago, a
massive 7.8 magnitude earthquake rocked Turkey and Syria, claiming the lives of over 36,000
people.” Tens of thousands of people have been injured, with traumatic injuries,” particularly
fractures, being the most common.”™ In this environment, due to the complexity of disaster
scenes, rescue teams cannot reach and search every corner. To save the wounded as quickly as
possible, the rescue team must perform a fast evaluation of the injuries at the scene of the
disaster." Moreover, collapsed buildings, unstable rubble, obscuring smoke or dust, poor
lighting, and intermittent network connectivity commonly hinder clear visual access and
reliable data transmission, making objective remote assessment of injuries extremely challen-
ging. This relies heavily on the experience of rescue personnel because rescuers can only judge
the condition of the injuries by their appearance.”” If not treated properly, the walking
wounded will become seriously wounded, and even the lives of the badly injured will be
endangered.

With the booming of deep learning technology, it has been introduced and widely used in
the fast classification of the injured at the scene of disasters.'”'' As one of the biometric
technologies, gait recognition aims to identify the wounded by analyzing their walking
gaits.'>'” Compared to other biometrics, gait recognition shows the advantages of being
contactless, nonintrusive, and easy to perceive. Gait recognition can be categorized into
model-based and appearance-based methods. Generally speaking, the model-based approach
is robust but less accurate. Some methods, represented by GaitGraph, the 2D/3D pose, and the
SMPL model, take the estimated human skeleton as the model input, which is naturally robust
against background noises (e.g., belongings and clothing) and prone to fail with low-
resolution images, such that it lacks practicability.'* The appearance-based approach learns
the shape features of objects directly from videos/images. It can work in low-resolution
conditions and achieve high recognition accuracy but be sensitive to the object’s appearance
(e.g., belongings, postures, angle of view, etc.). Gait Set is one of the most influential gait
recognition works in recent years, which innovatively takes a sequence of gaits as a set, then
uses the maximum function to compress the sequence of spatial features at frame level, which
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is simple and effective.'* GaitPart investigates the local informa-
tion of the input silhouette and models the time-dependency
through the micromotion capture module."* Holding the point
of view that the global spatial information of the gait represen-
tation usually neglects some details, meanwhile, using local infor-
mation cannot describe the relationship across neighboring
regions. GaitGL leverages both global and local convolutional
layers to extract more comprehensive information.'”

As deep learning has rapidly advanced, it has driven signifi-
cant progress in healthcare and medicine—especially in medical
image recognition and segmentation, disease diagnosis, and
prognosis.'”'® Transformer architectures can further enhance
medical-image understanding by modeling long-range depend-
encies.'” Deep learning-based gait recognition focuses on spatial
feature extraction and gait time-dependency modeling. Several
studies have been conducted on traumatic injury identification
based on gait image recognition,”’>’ and some of them have
outperformed experienced physicians in terms of recognition
accuracy.”

To address the challenges in the fast identification and classifi-
cation of injuries at the scene of disasters, in this work, we propose a
deep learning model to recognize injuries with abnormal gait to
improve the fast assessment accuracy of the wounded who should
be treated immediately.”” ™’ It follows the architecture of the
YOLOV5 model,”*™" a state-of-the-art deep neural network spe-
cifically for image classification and detection, which consists of
3 main pieces, namely, Backbone, Neck, and Head. The backbone is
a convolutional neural network that aggregates and forms image
features at different granularities; the neck is a series of layers to mix
and combine image features to pass them forward to prediction;
and the head consumes features from the neck and takes box and
class prediction steps. We conducted extensive experiments on
both experimental animals (dogs and rabbits) and humans. In the
experiment, wood sticks and protectors are used to fix the arms and
legs to simulate the injured at the scene of the disaster. We recorded
more than 500 video clips and 4500 images for training the
YOLOV5-based gait recognition model. Experimental results show
that our model can achieve high accuracy in distinguishing the
normal and the limped gaits, which validates the availability of our
initial ideas that the pure vision-based deep learning model can be
used to quickly identify the serious wounded.

Methods
Animals Source

We chose a Springer Spaniel as our pet due to its excellent adapt-
ability and obedience. It is important to note that we treated the
Springer Spaniel with utmost care and did not employ any harmful
behavior. The simulated broken leg injury was created by gently
immobilizing the joint on its foot for the study.

Datasets

The dataset consists of RGB video clips of humans, dogs, and
rabbits recorded under disaster-simulation conditions. As illus-
trated in Figures 1(a, b), we recruited some healthy volunteers
(ages 24-35, with no deformities in both lower limbs, and no
previous injury) to be captured on video using an iPhone 13 under
different environmental backgrounds (indoors, open grass fields,
etc.). We divided all samples into 2 groups: the normal gait group
and the limp gait group. In the normal group, the volunteers walked
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back and forth in a playground at a speed of 1-2 m/s, whereas in the
limp gait group, they imitated the fractured injured, armed and
armored with the fracture protection equipment. At the same time,
to enrich the variety and solidness of the study, we used the same
method to collect dog and rabbit samples, as depicted in Figures 1
(c-d). This yielded 6 distinct classes—human-normal, human-limp,
dog-normal, dog-limp, rabbit-normal, and rabbit-limp. Altogether,
we obtained >500 clips, each 3-5 s in duration. The recorded clips
from the normal-gait and limping cohorts were decomposed into
individual frames; any irrelevant or motion-blurred frames were
discarded, yielding a curated set of 4500 clean images.

Images Preprocessing

In this study, we collected a total of 9 experimental subjects, 4500
normal gait images, as well as images with distinguished limp gait
features. We manually annotated the normal gait and simulated
limp gait of different experimental subjects, as displayed in Figure 2.
Different colored rectangles are used to circle the regions of normal
gait and limp gait of different experimental subjects. In machine
learning and deep learning, these rectangles are called labels. Its role
is to let the model know what the important part of the image is
(category) and helps the computer obtain better meaning for later
use of these labels to recognize different categories in new unseen
images.

Model Construction

As demonstrated in Figure 3(a), we present the implementation of
the YOLOv5 model for the classification of normal gait and simu-
lated limp gait in humans, dogs, and rabbits. The model consists of
4 main components: Backbone, Neck, Dense Prediction, and Sparse
Prediction.”” " The backbone was responsible for extracting the
original features of the input image. A neck network is used to
enhance the feature fusion ability and diversity of the extracted
features, which improves the performance of the detection network.
Dense prediction and sparse prediction networks were used to
obtain the output content and predict the position and category
of the target using the previously extracted features. The dense
prediction network predicts the position information of the target
using the features obtained from the neck network and then con-
catenates the predicted position information with the features
obtained from the neck network to obtain deep latent features.
Finally, the model correctly identifies the target class.

Model Training

As depicted in Figure 3(b), the dataset was divided into a training
set, test set, and validation set, with 70% of the data being the
training set, 20% as the test set, and 10% as the validation set. To
balance the class distribution, every limping frame was addition-
ally subjected to small random rotations (+10°) and horizontal
flips until parity with the normal-gait class was achieved. First, a
convolutional neural network is used to extract the original
features of the input image. The YOLOv5 model was then
iteratively trained on the training set to fit the features of the
training set images using the Adam adaptive estimation moving
optimizer for iterative optimization. During the training process,
a validation set was used to verify the accuracy of the model.
After the model was trained, the test set was used to test the
precision of the object recognition model in recognizing the gait
in unknown scenarios. This method of data splitting is commonly
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(e) Rabbit normal gait

Figure 1. An illustration of the human images (a, b), dog (c, d) and rabbit (e, f) in both normal and limp groups.

used in machine learning/deep learning model development and
evaluation. The training set was used to train the model, the
validation set was used to tune the hyperparameters of the model,
and the test set was used to evaluate the performance of the
model. Splitting the data in this manner can help prevent over-
fitting, which occurs when the model is too complex and per-
forms well on the training set but not on new data. Furthermore,
it is crucial to ensure that the data split is random so that the
model can be trained and evaluated on a representative sample of
the data and that the data are balanced across classes, meaning
that all classes have a similar number of samples.

Results
Evaluation Metrics

We used a group of evaluation metrics to evaluate the gait recog-
nition performance by YOLOV5, including precision and recall,
which are computed as follows:

TP
Precision=——""—"—
ecision TP+ FP
TP
Recall=————
TP+FN
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where TP, FP, TN, and FN represent true positive, false positive,
true negative, and false negative samples, respectively. In our case,
we used TP to represent the model that correctly predicts that a
person walks in a normal state. FP indicates that the model predicts
a person walking in a normal gait, but it is a limp gait. The higher
the value obtained, the better the performance for all evaluation
metrics.

Prediction Results

Figure 4(a) displays that a classification model was used to analyze
gait recognition data, focusing on the classification of normal versus
limping walking states. The results of the model, as illustrated in the
figure, demonstrate that it is highly accurate in identifying normal
walking states, with a classification accuracy of 97%. Additionally,
the model had a relatively low rate of misclassifying a normal
walking state as a limping state at 3%. However, the model is less
accurate in identifying limping walking states, with an accuracy of
only 70% and a higher rate of misclassifying a limping state as a
normal state at 30%. Overall, the model demonstrated a high level
of accuracy in identifying normal walking states but could benefit
from further improvements in accurately identifying limping walk-
ing states.

An illustration of the precision-recall curve indicates that as
recall increases, the precision decreases. As depicted in Figure 4(b),
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Figure 2. An illustration of the original and labeled human (a-d), dog (e-h) and rabbit (i-l) images in normal and limp groups.
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Figure 3. An illustrative diagram of the YOLOV5 model structure (a) and the model training process (b).

the model successfully predicted normal and limping gaits. How-
ever, it can be observed that the precision-recall curve for normal
gait has a higher intersection point compared to that of limping gait,
indicating that the model has slightly better performance in recog-
nizing normal gait. In summary, the model demonstrated good
overall performance in recognizing both normal and limping gait,
with a slight inclination towards better recognition of normal gait.

Figure 4(c) illustrates the relationship between the classification
loss on the training set and the number of training iterations. As the
number of training iterations increases, the classification loss
decreases accordingly. The graph shows that the decrease in clas-
sification loss rate is faster at the beginning of training but gradually
slows as the number of iterations increases. This phenomenon
is known as “convergence” and is a common characteristic of
machine learning algorithms. The goal of training is to minimize
the classification loss and achieve the lowest possible value, indi-
cating that the model has learned the features of the data set. One
could also use another measure, such as accuracy, to assess the
performance of the model during the training process. Overall,
these results depict the relationship between the classification loss
and the number of training iterations and show how the model’s
performance improves as training continues.
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Figure 4(d) illustrates the relationship between the classification
loss on the validation set and the number of training iterations.
As the number of training iterations increased, the classification loss
in the validation set decreased. The graph displays that the rate of
decrease in classification loss is initially steep but gradually slows as
the number of iterations increases. This phenomenon is known as
“convergence” and is a common characteristic of machine-learning
algorithms. The training aims to minimize the classification loss and
achieve the lowest possible value, indicating that the model has
learned the features of the validation set. Despite the decrease in
the rate of descent, the model’s ability to recover from the classi-
fication losses demonstrates its robustness. These results depict
that as the number of training iterations increases, the classifica-
tion loss on the validation set decreases, indicating that the model
learns the features of the validation set and is robust.

Figure 4(e) illustrates the relationship between the precision of
the model and the number of training iterations. As can be seen, as
the number of training iterations increases, the precision of the
model also increases. The graph also shows that at the start of
training, the increase in precision is more dramatic, but as the
number of iterations increases, the rate of increase in precision
slows down. This phenomenon is known as “convergence” and is a
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Figure 4. An illustration of the classification results of the gait recognition (a), the obtained precision-recall curve (PR curve) (b), the classification loss on the training set as the
increase of training iteration (c), the classification loss on validation set as the increase of training iteration (d), the classification loss on precision as the increase of training iteration
(e) and the classification loss on recall as the increase of training iteration (f).
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Figure 5. A case study of predicted normal and limp human gait (a), dog gait (b), and rabbit gait (c).
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common characteristic of machine learning algorithms. The goal of
training is to maximize the precision of the model, indicating that
the model has learned the features of the data set effectively. In
summary, the graph shows that as the number of training iterations
increases, the precision of the model also increases.

Figure 4(f) illustrates the relationship between the recall metric
and the number of training iterations for the model. As the number
of training iterations increases, the recall fluctuates, with a consist-
ent pattern around 0.8. The graph shows that initially, the fluctu-
ation of recall is more pronounced, but as the number of iterations
increases, the fluctuation gradually decreases. This suggests that the
model is becoming more consistent in its ability to correctly identify
relevant instances in the data set. In summary, the graph demon-
strates how recall improves with an increase in the number of
training iterations, with the rate of improvement slowing down as
the model converges.

Finally, we tested the trained model on the test set and presented
the case study results for gait recognition. As illustrated in Figure 5
(a), rectangles of different colors are used to circle the predicted
regions of the model for the normal and limp gait of different
subjects, and the prediction area includes the entire body of the
experimental subject. We found that the accuracy of different gaits
in the model predictions was maintained above 0.95. Concurrently,
we also used the same method to predict the samples of dogs and
rabbits, and the accuracy of recognition was also very good, even
though some cases reached 0.98, as displayed in Figures 5(b, ). The
experimental results depict that our model performs well in quickly
recognizing normal and limp gaits.

Discussion

In traditional emergency disaster relief, rescuers are often con-
fronted with the perilous task of entering intricate disaster zones,
risking their lives. Through the deep learning model elucidated in
this paper, we can adeptly differentiate between the normal and
limping gaits of simulated injured individuals utilizing image rec-
ognition techniques. YOLOV5-s reaches ~30 FPS (FP32) and ~60
FPS (INT8) on a Jetson Xavier NX at 640 x 640 input; given our
smaller 256 x 256 resolution, real-time inference on low-power
edge devices is expected. This marks a pioneering endeavor in
integrating cutting-edge Al technologies into disaster relief, offer-
ing a preliminary affirmation of the efficacy of our experimental
design and methodology.

Although we have made some progress with our current experi-
mental results, there are still some limitations compared to actual
rescue practices. Firstly, there is the issue of the diversity of our
experimental volunteers. The volunteers we currently recruit are
relatively similar in terms of age, body shape, and appearance,
which may affect the model’s recognition accuracy in practical
applications. To enhance the model’s generalization ability, we plan
to recruit a wider variety of volunteers in future studies. Secondly,
we need to consider the timeliness of the assessment. Our ultimate
goal is to achieve a real-time assessment of the victim’s condition
and provide corresponding emergency medical advice. Real-time
recognition is crucial in rescue work because every second counts
when a disaster occurs. Therefore, we will strengthen the improve-
ment of this function in our subsequent work. In addition, in order
to make the model more practical, we also plan to combine other AI
technologies in future research to give the model more vital sign
detection capabilities, such as respiration, heartbeat, and pulse, to
more accurately assess the severity and urgency of the victim’s
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injuries in complex environments. Techniques ranging from self-
supervised pretraining and regularization—effective with scarce
annotations—to semisupervised consistency frameworks that
leverage abundant unlabeled data will be explored in future work
to further enhance the robustness of our system.””** In summary,
we are steadily moving towards the goal of real-time, accurate
rescue assessment and advice, and look forward to making greater
breakthroughs in future research.

Conclusion

This paper proposed a deep convolutional neural network model
based on YOLOV5 to recognize the limp and normal gait for
injuries. Our experimental results validate that our model can
distinguish injuries in complex environments using human walking
images. With the assistance of this model, we can perform fast
traumatic assessments in rescue, explore more artificial intelligence
technologies, and apply them to disaster rescue.
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