# SOME REMARKS ON MINIMAL ASYMPTOTIC BASES OF ORDER THREE

# **DENGRONG LING and MIN TANG**■

(Received 12 August 2019; accepted 27 October 2019; first published online 8 January 2020)

#### **Abstract**

We study a question on minimal asymptotic bases asked by Nathanson ['Minimal bases and powers of 2', *Acta Arith.* **49** (1988), 525–532].

2010 Mathematics subject classification: primary 11B13.

Keywords and phrases: asymptotic basis, minimal asymptotic basis.

#### 1. Introduction

Let A be a subset of  $\mathbb{N} = \{0, 1, 2, \ldots\}$ . For  $h \ge 2$ , let

$$hA = \{a_1 + \cdots + a_h : a_i \in A, i = 1, \dots, h\}$$

and, for  $c \in \mathbb{N}$ , let

$$A - c = \{a - c : a \in A\}.$$

The set A is called an *asymptotic basis* of order h if hA contains all sufficiently large integers. Let P be a subset of an asymptotic basis A of order h. We say that P is *necessary* if  $A \setminus P$  is not an asymptotic basis of order h and *unnecessary* if  $A \setminus P$  is an asymptotic basis of order h. An asymptotic basis A of order h is *minimal* if  $\{a\}$  is necessary for every  $a \in A$ . Let W be a nonempty subset of  $\mathbb{N}$ . Denote by  $\mathcal{F}^*(W)$  the set of all finite, nonempty subsets of W and by A(W) the set of all numbers of the form  $\sum_{f \in F} 2^f$ , where  $F \in \mathcal{F}^*(W)$ .

In 1988, Nathanson [8] gave a construction of minimal asymptotic bases of order h.

THEOREM 1.1 [8]. Let  $h \ge 2$ . For i = 0, 1, ..., h - 1, let  $W_i = \{n \in \mathbb{N} : n \equiv i \pmod{h}\}$ . Then  $\bigcup_{i=0}^{h-1} A(W_i)$  is a minimal asymptotic basis of order h.

Nathanson posed the following problem in [8]. (Jia and Nathanson restated this problem in [3].)

This work was supported by the National Natural Science Foundation of China, Grant No. 11971033, and the Natural Science Foundation of Anhui Normal University, Grant No. 2017XJJ45.

© 2020 Australian Mathematical Publishing Association Inc.



PROBLEM 1.2 [8]. Characterise the partitions  $\mathbb{N} = W_0 \cup \cdots \cup W_{h-1}$  with the property that  $A = A(W_0) \cup \cdots \cup A(W_{h-1})$  is a minimal asymptotic basis of order h.

In 2011, Chen and Chen [1] resolved Problem 1.2 for h = 2 and partially for  $h \ge 3$ .

**THEOREM** 1.3. Let  $\mathbb{N} = W_1 \cup W_2$  be a partition with  $0 \in W_1$  such that  $W_1$  and  $W_2$  are infinite. Then  $A = A(W_1) \cup A(W_2)$  is a minimal asymptotic basis of order two if and only if either  $W_1$  contains no consecutive integers or  $W_2$  contains consecutive integers or both.

**THEOREM** 1.4. Let  $h \ge 2$  and let t be the least integer with  $t > \log h / \log 2$ . Let  $\mathbb{N} = W_0 \cup \cdots \cup W_{h-1}$  be a partition such that each set  $W_i$  is infinite and contains t consecutive integers for  $i = 1, \ldots, h$ . Then  $A = A(W_0) \cup \cdots \cup A(W_{h-1})$  is a minimal asymptotic basis of order h.

For other related problems on minimal asymptotic bases, see [2, 4–7, 9]. Up to now, there are few results on Problem 1.2. We focus on Problem 1.2 for h = 3.

Let  $\mathbb{N} = W_0 \cup W_1 \cup W_2$  be a partition such that each set  $W_i$  (i = 0, 1, 2) is infinite. There are four possible classes of problems to consider.

Class 1. Each  $W_i$  contains no consecutive integers.

Class 2. Each  $W_i$  contains consecutive integers.

Class 3. One of the  $W_i$  contains consecutive integers; the other two  $W_i$  contain no consecutive integers.

Class 4. One of the  $W_i$  contains no consecutive integers; the other two  $W_i$  contain consecutive integers.

Theorem 1.1 gives an example of a minimal asymptotic basis belonging to Class 1. Theorem 1.4 shows that, for h = 3, the answer to Problem 1.2 is affirmative for Class 2. We study Class 3 of Problem 1.2 for h = 3 and obtain the following two results.

**THEOREM** 1.5. Let  $W_0 = \{n \in \mathbb{N} \mid n \equiv 0, 1 \pmod{6}\}$ ,  $W_1 = \{n \in \mathbb{N} \mid n \equiv 2, 4 \pmod{6}\}$  and  $W_2 = \{n \in \mathbb{N} \mid n \equiv 3, 5 \pmod{6}\}$ . Then  $A = A(W_0) \cup A(W_1) \cup A(W_2)$  is a minimal asymptotic basis of order three.

**REMARK** 1.6. By a similar proof to that of Theorem 1.5, for any  $i \in \{0, 1, 2, 3, 4, 5\}$ , if  $W_0 = \{n \in \mathbb{N} \mid n \equiv i, i + 1 \pmod{6}\}$ ,  $W_1 = \{n \in \mathbb{N} \mid n \equiv i + 2, i + 4 \pmod{6}\}$  and  $W_2 = \{n \in \mathbb{N} \mid n \equiv i + 3, i + 5 \pmod{6}\}$ , then  $A = A(W_0) \cup A(W_1) \cup A(W_2)$  is a minimal asymptotic basis of order three.

THEOREM 1.7. Let  $\mathbb{N} = W_0 \cup W_1 \cup W_2$  be a partition such that each set  $W_i$  is infinite for  $i \in \{0, 1, 2\}$ . Suppose that  $W_0$  contains consecutive integers,  $W_1$  and  $W_2$  contain no two consecutive integers and  $W_1 - 1 \subseteq W_0$ . Then  $A = A(W_0) \cup A(W_1) \cup A(W_2)$  is not a minimal asymptotic basis of order three.

### 2. A lemma

For  $W \subseteq \mathbb{N}$ , set  $W(x) = |\{n \in W \mid n \le x\}|$ .

Lemma 2.1 [8, Lemma 1].

- (a) If  $W_1$  and  $W_2$  are disjoint subsets of  $\mathbb{N}$ , then  $A(W_1) \cap A(W_2) = \emptyset$ .
- (b) If  $W \subseteq \mathbb{N}$  and  $W(x) = \theta x + O(1)$  for some  $\theta \in (0, 1]$ , then there exist positive constants  $c_1$  and  $c_2$  such that

$$c_1 x^{\theta} < A(W)(x) < c_2 x^{\theta}$$

for all x sufficiently large.

(c) Suppose that  $\mathbb{N} = W_0 \cup W_1 \cup \cdots \cup W_{h-1}$ , where  $W_i \neq \emptyset$  for  $i = 0, \dots, h-1$ . Then  $A = A(W_0) \cup A(W_1) \cup \cdots \cup A(W_{h-1})$  is an asymptotic basis of order h. Indeed,  $hA = \{n \in \mathbb{N} \mid n \geq h\}$  and  $h(A \cup \{0\}) = \mathbb{N}$ .

## 3. Proof of Theorem 1.5

By Lemma 2.1, A is an asymptotic basis of order three. To prove that A is minimal, it is sufficient to prove that  $\{x\}$  is necessary for every  $x \in A$ . Let  $x \in A$ . Then  $x \in A(W_u)$  for some  $u \in \{0, 1, 2\}$  and so x has a unique 2-adic representation of the form

$$x = \sum_{f \in F_u} 2^f,$$

where  $F_u$  is a finite, nonempty subset of  $W_u$ . Let  $f_u$  be the maximal element of the set  $F_u$ . Then there exists a unique  $k \in \mathbb{N}$  such that

$$f_u = 6k + v_u \tag{3.1}$$

for some  $v_u \in \{0, 1, 2, 3, 4, 5\}$ . If  $x \in A(W_0)$ , then choose

$$m = x + \left(\sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}) + 2^{6i+2}\right) + \left(\sum_{i=0}^{k} (2^{6i+3} + 2^{6i+5}) + 2^{6i+3}\right).$$
(3.2)

If  $x \in A(W_1)$ , then choose

$$m = \left(\sum_{i=0}^{k+1} 2^{6i} + \sum_{i=0}^{k} 2^{6i+1} + 2^{6i}\right) + x + \left(\sum_{i=0}^{k} (2^{6i+3} + 2^{6i+5}) + 2^{6i+3}\right).$$
(3.3)

If  $x \in A(W_2)$ , then choose

$$m = \left(\sum_{i=0}^{k+1} (2^{6i} + 2^{6i+1}) + 2^{6t}\right) + \left(\sum_{i=0}^{k+1} 2^{6i+2} + \sum_{i=0}^{k} 2^{6i+4} + 2^{6i+2}\right) + x.$$
 (3.4)

In all cases, t is any positive integer greater than k + 1.

By Lemma 2.1(c), for each  $i \in \{0, 1, 2\}$ , there are a  $j_i \in \{0, 1, 2\}$  and an  $m_i \in A(W_{j_i})$  so that

$$m = m_0 + m_1 + m_2. (3.5)$$

For i = 0, 1, 2, let  $c_i^{(n)}$  be the least nonnegative residue of  $m_i$  modulo  $2^n$ . Write  $M = \{m_0, m_1, m_2\}$ . We shall show that, for any  $j \in \{0, 1, 2\}$ ,

$$M \nsubseteq \bigcup_{i \in \{0,1,2\} \setminus \{j\}} A(W_i).$$

Case 1:  $x \in A(W_0)$ . By (3.1),  $f_0 = 6k$  or  $f_0 = 6k + 1$ . Suppose that  $M \subseteq A(W_1) \cup A(W_2)$ . Then

$$\sum_{i=0}^{2} c_i^{(f_0+1)} \le 3 \cdot \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}) = \sum_{i=0}^{k-1} 2^{6i+4} + \sum_{i=1}^{k} 2^{6i} + \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}).$$

By (3.2),

$$m \equiv x + \sum_{i=0}^{k-1} (2^{6i+2} + 2^{6i+4}) + \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}) \pmod{2^{f_0+1}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(f_0+1)} \pmod{2^{f_0+1}}$ , which contradicts (3.5). Suppose that  $M \subseteq A(W_0) \cup A(W_2)$ . Then

$$\sum_{i=0}^{2} c_i^{(6k+5)} \le 3 \cdot \left(\sum_{i=0}^{k} 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5}\right) = \sum_{i=0}^{k} 2^{6i+4} + \sum_{i=1}^{k} 2^{6i} + \sum_{i=0}^{k} 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5}.$$

By (3.2),

$$m \equiv x + \sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}) + \sum_{i=0}^{k} 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5} \pmod{2^{6k+5}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6k+5)} \pmod{2^{6k+5}}$ , which contradicts (3.5). Suppose that  $M \subseteq A(W_0) \cup A(W_1)$ . Then

$$\sum_{i=0}^{2} c_{i}^{(6(k+1))} \leq 3 \cdot \sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}) = \sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}) + \sum_{i=0}^{k} (2^{6i+3} + 2^{6i+5}).$$

By (3.2),

$$m \equiv x + \sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}) + \sum_{i=0}^{k} (2^{6i+3} + 2^{6i+5}) \pmod{2^{6(k+1)}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6(k+1))} \pmod{2^{6(k+1)}}$ , which contradicts (3.5).

Case 2:  $x \in A(W_1)$ . By (3.1),  $f_1 = 6k + 2$  or  $f_1 = 6k + 4$ . Suppose that  $M \subseteq A(W_1) \cup A(W_2)$ . Then

$$\sum_{i=0}^{2} c_i^{(6k+2)} \le 3 \cdot \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}) = \sum_{i=1}^{k} 2^{6i} + \sum_{i=0}^{k-1} 2^{6i+4} + \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}).$$

By (3.3),

$$m \equiv \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + \sum_{f \in F_1, f < 6k+2} 2^f + \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}) \pmod{2^{6k+2}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6k+2)} \pmod{2^{6k+2}}$ , which contradicts (3.5). Suppose that  $M \subseteq A(W_0) \cup A(W_2)$ . If  $f_1 = 6k + 2$ , then

$$\begin{split} \sum_{i=0}^{2} c_i^{(6k+4)} &\leq 2 \cdot \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k} 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5} \\ &= \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k} 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5}. \end{split}$$

By (3.3),

$$m \equiv \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + x + \sum_{i=0}^{k} 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5} \pmod{2^{6k+4}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6k+4)}$  (mod  $2^{6k+4}$ ), which contradicts (3.5). If  $f_1 = 6k + 4$ , then

$$\begin{split} \sum_{i=0}^2 c_i^{(6k+5)} &\leq 3 \cdot \bigg(\sum_{i=0}^k 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5}\bigg) \\ &= \sum_{i=1}^k 2^{6i} + \sum_{i=0}^{k-1} 2^{6i+4} + 2^{6k+4} + \sum_{i=0}^k 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5}. \end{split}$$

By (3.3),

$$m \equiv \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + x + \sum_{i=0}^{k} 2^{6i+3} + \sum_{i=0}^{k-1} 2^{6i+5} \pmod{2^{6k+5}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6k+5)} \pmod{2^{6k+5}}$ , which contradicts (3.5). Suppose that  $M \subseteq A(W_0) \cup A(W_1)$ . Then

$$\sum_{i=0}^{2} c_i^{(6(k+1)+1)} \le \sum_{i=0}^{k+1} 2^{6i} + \sum_{i=0}^{k} 2^{6i+1} + 2 \cdot \sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}).$$

By (3.3),

$$m \equiv \sum_{i=0}^{k+1} 2^{6i} + \sum_{i=0}^{k} 2^{6i+1} + x + \sum_{i=0}^{k} (2^{6i+3} + 2^{6i+5}) \pmod{2^{6(k+1)+1}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6(k+1)+1)} \pmod{2^{6(k+1)+1}}$ , which contradicts (3.5).

Case 3:  $x \in A(W_2)$ . By (3.1),  $f_2 = 6k + 3$  or  $f_2 = 6k + 5$ . Suppose that  $M \subseteq A(W_1) \cup A(W_2)$ . Then

$$\sum_{i=0}^{2} c_i^{(6k+3)} \leq \sum_{i=0}^{k} 2^{6i+2} + \sum_{i=0}^{k-1} 2^{6i+4} + 2 \cdot \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}).$$

By (3.4),

$$m \equiv \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k} 2^{6i+2} + \sum_{i=0}^{k-1} 2^{6i+4} + \sum_{f \in F_2, f < 6k+3} 2^f \pmod{2^{6k+3}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6k+3)} \pmod{2^{6k+3}}$ , which contradicts (3.5). Suppose that  $M \subseteq A(W_0) \cup A(W_2)$ . Then

$$\sum_{i=0}^{2} c_i^{(6(k+1)+3)} \le 2 \cdot \sum_{i=0}^{k+1} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k+1} 2^{6i} + \sum_{i=0}^{k} 2^{6i+1}$$
$$= \sum_{i=0}^{k+1} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k+1} 2^{6i+2} + \sum_{i=0}^{k} 2^{6i+1}.$$

By (3.4),

$$m \equiv \sum_{i=0}^{k+1} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k+1} 2^{6i+2} + \sum_{i=0}^{k} 2^{6i+4} + x \pmod{2^{6(k+1)+3}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6(k+1)+3)} \pmod{2^{6(k+1)+3}}$ , which contradicts (3.5). Suppose that  $M \subseteq A(W_0) \cup A(W_1)$ . If  $f_2 = 6k + 3$ , then

$$\sum_{i=0}^{2} c_i^{(6k+4)} \le 3 \cdot \left( \sum_{i=0}^{k} 2^{6i+2} + \sum_{i=0}^{k-1} 2^{6i+4} \right)$$

$$= \sum_{i=0}^{k-1} (2^{6i+3} + 2^{6i+5}) + \sum_{i=0}^{k} 2^{6i+2} + \sum_{i=0}^{k-1} 2^{6i+4} + 2^{6k+3}.$$

By (3.4),

$$m \equiv \sum_{i=0}^{k} (2^{6i} + 2^{6i+1}) + \sum_{i=0}^{k} 2^{6i+2} + \sum_{i=0}^{k-1} 2^{6i+4} + x \pmod{2^{6k+4}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6k+4)} \pmod{2^{6k+4}}$ , which contradicts (3.5). If  $f_2 = 6k + 5$ , then

$$\sum_{i=0}^{2} c_i^{(6(k+1)+1)} \le \sum_{i=0}^{k+1} 2^{6i} + \sum_{i=0}^{k} 2^{6i+1} + 2 \cdot \sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}).$$

By (3.4),

$$m \equiv \sum_{i=0}^{k+1} 2^{6i} + \sum_{i=0}^{k} 2^{6i+1} + \sum_{i=0}^{k} (2^{6i+2} + 2^{6i+4}) + x \pmod{2^{6(k+1)+1}}.$$

Thus,  $m \not\equiv \sum_{i=0}^{2} c_i^{(6(k+1)+1)} \pmod{2^{6(k+1)+1}}$ , which contradicts (3.5).

In all, we have proved that  $M \nsubseteq \bigcup_{i \in \{0,1,2\} \setminus \{j\}} A(W_i)$  for any  $j \in \{0,1,2\}$ , that is,  $m_i = x$  for some  $i \in \{0,1,2\}$ . Moreover, the 2-adic representation of m is unique and thus  $m \notin 3(A \setminus \{x\})$ .

This completes the proof of Theorem 1.5.

# 4. Proof of Theorem 1.7

By Lemma 2.1, A is an asymptotic basis of order three. Choose  $w \in W_0$  such that  $w-1 \in W_0$  and set  $a=2^w$ . We will show that  $A \setminus \{a\}$  is an asymptotic basis of order three, so A is not a minimal asymptotic basis of order three. For every sufficiently large integer n, we have  $n=a_1+a_2+a_3$ , where  $a_1,a_2,a_3 \in A$ . If  $a_i \neq a$  for all  $i \in \{1,2,3\}$ , then  $n \in 3(A \setminus \{a\})$ . So, it suffices to show that if  $a_1, a_2 \in A$  and  $n=a+a_1+a_2$ , then  $n \in 3(A \setminus \{a\})$  for all but at most finitely many integers  $a_1, a_2$ . By symmetry, we need to discuss the following six cases.

Case 1:  $a_1, a_2 \in A(W_0)$ . Write

$$a_1 = \sum_{i \in I} 2^i, \quad a_2 = \sum_{i \in J} 2^j,$$

where I, J are finite, nonempty subsets of  $W_0$ . If  $I \cap J = \emptyset$ , then

$$n=2^{w-1}+2^{w-1}+(a_1+a_2)\in 3(A\setminus \{a\}).$$

Now suppose that  $I \cap J \neq \emptyset$ .

Subcase 1.1:  $I, J \nsubseteq \{w, w-1\}$ . If  $|I| \ge 2$ , then

$$n = (2^{w} + 2^{i_0}) + \sum_{i \in I \setminus \{i_0\}} 2^i + \sum_{j \in J} 2^j$$

for some  $i_0 \in I$  and  $i_0 = w$  if  $w \in I$ , so  $n \in 3(A \setminus \{a\})$ . If  $I = \{i\}$ , then  $i \neq w, w - 1$  and

$$n = 2^{w-1} + (2^{w-1} + 2^i) + \sum_{j \in J} 2^j \in 3(A \setminus \{a\}).$$

Subcase 1.2:  $I, J \subseteq \{w, w-1\}$ . There are only finitely many integers n in this case.

*Subcase 1.3:*  $I \subseteq \{w, w - 1\}$  *and*  $J \nsubseteq \{w, w - 1\}$ .

*Subcase 1.3.1:*  $I = \{w\}$ . Then

$$n = 2^{w-1} + (2^{w-1} + 2^w) + \sum_{i \in I} 2^i \in 3(A \setminus \{a\}).$$

Subcase 1.3.2:  $I = \{w - 1\}$ . Since  $I \cap J \neq \emptyset$ , we have  $|J| \ge 2$ . If |J| = 2, then  $J = \{w - 1, j\}$  for some  $j \ne w$  and

$$n = (2^w + 2^{w-1}) + 2^{w-1} + 2^j \in 3(A \setminus \{a\}).$$

If  $|J| \ge 3$ , choose a  $j_0 \in J$  such that  $j_0 \ne w$ . Then

$$n = (2^w + 2^{w-1}) + 2^{j_0} + \sum_{j \in J \setminus \{j_0\}} 2^j \in 3(A \setminus \{a\}).$$

Subcase 1.3.3:  $I = \{w, w - 1\}$ . Then

$$n = 2^{w+1} + 2^{w-1} + \sum_{i \in J} 2^j \in 3(A \setminus \{a\}).$$

Case 2:  $a_1 \in A(W_0), a_2 \in A(W_1)$ . Write

$$a_1 = \sum_{s \in S} 2^s$$
,  $a_2 = \sum_{t \in T} 2^t$ ,

where S, T are finite, nonempty subsets of  $W_0$  and  $W_1$ , respectively.

Subcase 2.1:  $|S| \ge 3$ . Then

$$n = (2^w + 2^{s_0}) + \sum_{s \in S \setminus \{s_0\}} 2^s + \sum_{t \in T} 2^t$$

for some  $s_0 \in S$  and hence  $n \in 3(A \setminus \{a\})$ .

Subcase 2.2: |S| = 2. Write  $S = \{s_1, s_2\}$ . If  $w, w - 1 \notin S$ , then  $n = (2^w + 2^{s_1}) + 2^{s_2} + \sum_{i=1}^{s_2} 2^i \in 3(4 \setminus \{a_i\})$ 

$$n = (2^w + 2^{s_1}) + 2^{s_2} + \sum_{t \in T} 2^t \in 3(A \setminus \{a\}).$$

If  $w \in S$  and  $w - 1 \notin S$ , then

$$n=2^{w-1}+(2^{w-1}+2^{s_1}+2^{s_2})+\sum_{t\in T}2^t\in 3(A\setminus\{a\}).$$

If  $w - 1 \in S$  and  $w \notin S$ , then  $S = \{w - 1, s\}$  and

$$n = (2^w + 2^{w-1}) + 2^s + \sum_{t \in T} 2^t \in 3(A \setminus \{a\}).$$

If  $w, w - 1 \in S$ , then

$$n = 2^{w+1} + 2^{w-1} + \sum_{t \in T} 2^t \in 3(A \setminus \{a\}).$$

Subcase 2.3: |S| = 1. Let  $S = \{s\}$ . If  $s \neq w - 1$ , then

$$n=2^{w-1}+(2^{w-1}+2^s)+\sum_{t\in T}2^t\in 3(A\setminus\{a\}).$$

If s = w - 1, then

$$n = \begin{cases} (2^{w} + 2^{w-1}) + 2^{t_0} + \sum_{t \in T \setminus \{t_0\}} 2^t, & \text{if } |T| \ge 2, \\ (2^{w} + 2^{w-1}) + 2^{t_0-1} + 2^{t_0-1}, & \text{if } T = \{t_0\} \end{cases}$$

and hence  $n \in 3(A \setminus \{a\})$  except for finitely many integers n.

Case 3:  $a_1 \in A(W_0), a_2 \in A(W_2)$ . Proceeding as in Case 2,  $n \in 3(A \setminus \{a\})$  except for finitely many integers n.

Case 4:  $a_1 \in A(W_1), a_2 \in A(W_2)$ . Write

$$a_1 = \sum_{k \in K} 2^k,$$

where K is a finite, nonempty subset of  $W_1$ . Since  $w, w - 1 \in W_0$ , it follows that  $w - 1 \notin K - 1$ . Since  $K - 1 \subseteq W_0$ ,

$$n = \left(2^{w-1} + \sum_{k \in K} 2^{k-1}\right) + \left(2^{w-1} + \sum_{k \in K} 2^{k-1}\right) + a_2 \in 3(A \setminus \{a\}).$$

Case 5:  $a_1, a_2 \in A(W_1)$ . Proceeding as in Case 4,  $n \in 3(A \setminus \{a\})$  except for finitely many integers n.

Case 6:  $a_1, a_2 \in A(W_2)$ . Write

$$a_1 = \sum_{u \in U} 2^u, \quad a_2 = \sum_{v \in V} 2^v,$$

where U, V are finite, nonempty subsets of  $W_2$ . If  $U \cap V = \emptyset$ , then

$$n = 2^{w-1} + 2^{w-1} + (a_1 + a_2) \in 3(A \setminus \{a\}).$$

Now suppose that  $U \cap V \neq \emptyset$ . We claim that  $x+1 \in W_0$  for all  $x \in U \cap V$ . Otherwise, since  $W_1 - 1 \subseteq W_0$ , if there exists an  $x \in U \cap V$  such that  $x+1 \in W_1$ , then  $x = (x+1) - 1 \in W_0$ , which is a contradiction. Let  $U_0 = (U \cup V) \setminus (U \cap V)$ .

Subcase 6.1:  $U_0 \neq \emptyset$ . If  $|U \cap V| \geq 2$ , then  $w \notin (U \cap V) + 1$  and

$$n = (2^w + 2^{u_0 + 1}) + \sum_{u \in (U \cap V) \setminus \{u_0\}} 2^{u + 1} + \sum_{u \in U_0} 2^u$$

for some  $u_0 \in U \cap V$ ; hence,  $n \in 3(A \setminus \{a\})$ . If  $|U \cap V| = 1$ , let  $U \cap V = \{u\}$ . If  $u + 1 \neq w - 1$ , then

$$n = 2^{w-1} + (2^{w-1} + 2^{u+1}) + \sum_{u \in U_0} 2^u \in 3(A \setminus \{a\}).$$

If u + 1 = w - 1, then

$$n = \begin{cases} (2^{w} + 2^{w-1}) + 2^{u_0} + \sum_{u \in U_0 \setminus \{u_0\}} 2^{u}, & \text{if } |U_0| \ge 2, \\ (2^{w} + 2^{w-1}) + 2^{u_0-1} + 2^{u_0-1}, & \text{if } U_0 = \{u_0\} \end{cases}$$

and hence  $n \in 3(A \setminus \{a\})$  except for finitely many integers n.

Subcase 6.2:  $U_0 = \emptyset$ . Then

$$n = 2^{w-1} + 2^{w-1} + \sum_{u \in U \cap V} 2^{u+1} \in 3(A \setminus \{a\}).$$

This completes the proof of Theorem 1.7.

#### References

- [1] F. J. Chen and Y. G. Chen, 'On minimal asymptotic bases', European J. Combin. 32 (2011), 1329–1335.
- [2] Y. G. Chen and M. Tang, 'On a problem of Nathanson', Acta Arith. 185 (2018), 275–280.
- [3] X. D. Jia and M. B. Nathanson, 'A simple construction of minimal asymptotic bases', *Acta Arith*. **51** (1989), 95–101.
- [4] J. B. Lee, 'A construction of minimal asymptotic bases', *Period. Math. Hungar.* **26** (1993), 211–218.
- [5] D. R. Ling and M. Tang, 'On minimal asymptotic g-adic bases', Bull. Aust. Math. Soc. 92 (2015), 374–379.
- [6] D. R. Ling and M. Tang, 'On minimal asymptotic bases of order three', Colloq. Math. 151 (2018), 9–18.
- [7] M. B. Nathanson, 'Minimal bases and maximal nonbases in additive number theory', J. Number Theory 6 (1974), 324–333.
- [8] M. B. Nathanson, 'Minimal bases and powers of 2', Acta Arith. 49 (1988), 525–532.
- [9] C. F. Sun, 'On minimal asymptotic basis of order g-1', *Indag. Math.* 30 (2019), 128–135.

DENGRONG LING, School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, PR China e-mail: lingdengrong@163.com

MIN TANG, School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, PR China e-mail: tmzzz2000@163.com