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Abstract

We study a question on minimal asymptotic bases asked by Nathanson [‘Minimal bases and powers of 2’,
Acta Arith. 49 (1988), 525–532].
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1. Introduction

Let A be a subset of N = {0, 1, 2, . . .}. For h ≥ 2, let

hA = {a1 + · · · + ah : ai ∈ A, i = 1, . . . , h}

and, for c ∈ N, let
A − c = {a − c : a ∈ A}.

The set A is called an asymptotic basis of order h if hA contains all sufficiently large
integers. Let P be a subset of an asymptotic basis A of order h. We say that P is
necessary if A \ P is not an asymptotic basis of order h and unnecessary if A \ P is
an asymptotic basis of order h. An asymptotic basis A of order h is minimal if {a} is
necessary for every a ∈ A. Let W be a nonempty subset of N. Denote by F ∗(W) the
set of all finite, nonempty subsets of W and by A(W) the set of all numbers of the form∑

f∈F 2 f , where F ∈ F ∗(W).
In 1988, Nathanson [8] gave a construction of minimal asymptotic bases of order h.

Theorem 1.1 [8]. Let h ≥ 2. For i = 0, 1, . . . , h − 1, let Wi = {n ∈ N : n ≡ i (mod h)}.
Then ∪h−1

i=0 A(Wi) is a minimal asymptotic basis of order h.

Nathanson posed the following problem in [8]. (Jia and Nathanson restated this
problem in [3].)
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Problem 1.2 [8]. Characterise the partitions N = W0 ∪ · · · ∪Wh−1 with the property
that A = A(W0) ∪ · · · ∪ A(Wh−1) is a minimal asymptotic basis of order h.

In 2011, Chen and Chen [1] resolved Problem 1.2 for h = 2 and partially for h ≥ 3.

Theorem 1.3. Let N = W1 ∪W2 be a partition with 0 ∈ W1 such that W1 and W2 are
infinite. Then A = A(W1) ∪ A(W2) is a minimal asymptotic basis of order two if and
only if either W1 contains no consecutive integers or W2 contains consecutive integers
or both.

Theorem 1.4. Let h ≥ 2 and let t be the least integer with t > log h/ log 2. Let
N = W0 ∪ · · · ∪Wh−1 be a partition such that each set Wi is infinite and contains t
consecutive integers for i = 1, . . . , h. Then A = A(W0) ∪ · · · ∪ A(Wh−1) is a minimal
asymptotic basis of order h.

For other related problems on minimal asymptotic bases, see [2, 4–7, 9]. Up to now,
there are few results on Problem 1.2. We focus on Problem 1.2 for h = 3.

Let N = W0 ∪W1 ∪W2 be a partition such that each set Wi (i = 0, 1, 2) is infinite.
There are four possible classes of problems to consider.

Class 1. Each Wi contains no consecutive integers.

Class 2. Each Wi contains consecutive integers.

Class 3. One of the Wi contains consecutive integers; the other two Wi contain no
consecutive integers.

Class 4. One of the Wi contains no consecutive integers; the other two Wi contain
consecutive integers.

Theorem 1.1 gives an example of a minimal asymptotic basis belonging to Class 1.
Theorem 1.4 shows that, for h = 3, the answer to Problem 1.2 is affirmative for Class 2.
We study Class 3 of Problem 1.2 for h = 3 and obtain the following two results.

Theorem 1.5. Let W0 = {n ∈ N | n ≡ 0, 1 (mod 6)}, W1 = {n ∈ N | n ≡ 2, 4 (mod 6)}
and W2 = {n ∈ N | n ≡ 3, 5 (mod 6)}. Then A = A(W0) ∪ A(W1) ∪ A(W2) is a minimal
asymptotic basis of order three.

Remark 1.6. By a similar proof to that of Theorem 1.5, for any i ∈ {0, 1, 2, 3, 4, 5},
if W0 = {n ∈ N | n ≡ i, i + 1 (mod 6)}, W1 = {n ∈ N | n ≡ i + 2, i + 4 (mod 6)} and
W2 = {n ∈ N | n ≡ i + 3, i + 5 (mod 6)}, then A = A(W0) ∪ A(W1) ∪ A(W2) is a minimal
asymptotic basis of order three.

Theorem 1.7. Let N = W0 ∪W1 ∪W2 be a partition such that each set Wi is infinite
for i ∈ {0, 1, 2}. Suppose that W0 contains consecutive integers, W1 and W2 contain no
two consecutive integers and W1 − 1 ⊆ W0. Then A = A(W0) ∪ A(W1) ∪ A(W2) is not
a minimal asymptotic basis of order three.
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2. A lemma

For W ⊆ N, set W(x) = |{n ∈ W | n ≤ x}|.

Lemma 2.1 [8, Lemma 1].

(a) If W1 and W2 are disjoint subsets of N, then A(W1) ∩ A(W2) = ∅.
(b) If W ⊆ N and W(x) = θx + O(1) for some θ ∈ (0, 1], then there exist positive

constants c1 and c2 such that

c1xθ < A(W)(x) < c2xθ

for all x sufficiently large.
(c) Suppose that N = W0 ∪W1 ∪ · · · ∪Wh−1, where Wi , ∅ for i = 0, . . . , h − 1. Then

A = A(W0) ∪ A(W1) ∪ · · · ∪ A(Wh−1) is an asymptotic basis of order h. Indeed,
hA = {n ∈ N | n ≥ h} and h(A ∪ {0}) = N.

3. Proof of Theorem 1.5

By Lemma 2.1, A is an asymptotic basis of order three. To prove that A is minimal,
it is sufficient to prove that {x} is necessary for every x ∈ A. Let x ∈ A. Then x ∈ A(Wu)
for some u ∈ {0, 1, 2} and so x has a unique 2-adic representation of the form

x =
∑
f∈Fu

2 f ,

where Fu is a finite, nonempty subset of Wu. Let fu be the maximal element of the set
Fu. Then there exists a unique k ∈ N such that

fu = 6k + vu (3.1)

for some vu ∈ {0, 1, 2, 3, 4, 5}. If x ∈ A(W0), then choose

m = x +

( k∑
i=0

(26i+2 + 26i+4) + 26t+2
)

+

( k∑
i=0

(26i+3 + 26i+5) + 26t+3
)
. (3.2)

If x ∈ A(W1), then choose

m =

( k+1∑
i=0

26i +

k∑
i=0

26i+1 + 26t
)

+ x +

( k∑
i=0

(26i+3 + 26i+5) + 26t+3
)
. (3.3)

If x ∈ A(W2), then choose

m =

( k+1∑
i=0

(26i + 26i+1) + 26t
)

+

( k+1∑
i=0

26i+2 +

k∑
i=0

26i+4 + 26t+2
)

+ x. (3.4)

In all cases, t is any positive integer greater than k + 1.
By Lemma 2.1(c), for each i ∈ {0, 1, 2}, there are a ji ∈ {0, 1, 2} and an mi ∈ A(W ji )

so that
m = m0 + m1 + m2. (3.5)
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For i = 0, 1, 2, let c(n)
i be the least nonnegative residue of mi modulo 2n. Write

M = {m0,m1,m2}. We shall show that, for any j ∈ {0, 1, 2},

M *
⋃

i∈{0,1,2}\{ j}

A(Wi).

Case 1: x ∈ A(W0). By (3.1), f0 = 6k or f0 = 6k + 1.
Suppose that M ⊆ A(W1) ∪ A(W2). Then

2∑
i=0

c( f0+1)
i ≤ 3 ·

k−1∑
i=0

(26i+3 + 26i+5) =

k−1∑
i=0

26i+4 +

k∑
i=1

26i +

k−1∑
i=0

(26i+3 + 26i+5).

By (3.2),

m ≡ x +

k−1∑
i=0

(26i+2 + 26i+4) +

k−1∑
i=0

(26i+3 + 26i+5) (mod 2 f0+1).

Thus, m .
∑2

i=0 c( f0+1)
i (mod 2 f0+1), which contradicts (3.5).

Suppose that M ⊆ A(W0) ∪ A(W2). Then

2∑
i=0

c(6k+5)
i ≤ 3 ·

( k∑
i=0

26i+3 +

k−1∑
i=0

26i+5
)

=

k∑
i=0

26i+4 +

k∑
i=1

26i +

k∑
i=0

26i+3 +

k−1∑
i=0

26i+5.

By (3.2),

m ≡ x +

k∑
i=0

(26i+2 + 26i+4) +

k∑
i=0

26i+3 +

k−1∑
i=0

26i+5 (mod 26k+5).

Thus, m .
∑2

i=0 c(6k+5)
i (mod 26k+5), which contradicts (3.5).

Suppose that M ⊆ A(W0) ∪ A(W1). Then

2∑
i=0

c(6(k+1))
i ≤ 3 ·

k∑
i=0

(26i+2 + 26i+4) =

k∑
i=0

(26i+2 + 26i+4) +

k∑
i=0

(26i+3 + 26i+5).

By (3.2),

m ≡ x +

k∑
i=0

(26i+2 + 26i+4) +

k∑
i=0

(26i+3 + 26i+5) (mod 26(k+1)).

Thus, m .
∑2

i=0 c(6(k+1))
i (mod 26(k+1)), which contradicts (3.5).

Case 2: x ∈ A(W1). By (3.1), f1 = 6k + 2 or f1 = 6k + 4.
Suppose that M ⊆ A(W1) ∪ A(W2). Then

2∑
i=0

c(6k+2)
i ≤ 3 ·

k−1∑
i=0

(26i+3 + 26i+5) =

k∑
i=1

26i +

k−1∑
i=0

26i+4 +

k−1∑
i=0

(26i+3 + 26i+5).
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By (3.3),

m ≡
k∑

i=0

(26i + 26i+1) +
∑

f∈F1, f<6k+2

2 f +

k−1∑
i=0

(26i+3 + 26i+5) (mod 26k+2).

Thus, m .
∑2

i=0 c(6k+2)
i (mod 26k+2), which contradicts (3.5).

Suppose that M ⊆ A(W0) ∪ A(W2). If f1 = 6k + 2, then

2∑
i=0

c(6k+4)
i ≤ 2 ·

k∑
i=0

(26i + 26i+1) +

k∑
i=0

26i+3 +

k−1∑
i=0

26i+5

=

k∑
i=0

(26i + 26i+1) +

k∑
i=0

(26i + 26i+1) +

k∑
i=0

26i+3 +

k−1∑
i=0

26i+5.

By (3.3),

m ≡
k∑

i=0

(26i + 26i+1) + x +

k∑
i=0

26i+3 +

k−1∑
i=0

26i+5 (mod 26k+4).

Thus, m .
∑2

i=0 c(6k+4)
i (mod 26k+4), which contradicts (3.5). If f1 = 6k + 4, then

2∑
i=0

c(6k+5)
i ≤ 3 ·

( k∑
i=0

26i+3 +

k−1∑
i=0

26i+5
)

=

k∑
i=1

26i +

k−1∑
i=0

26i+4 + 26k+4 +

k∑
i=0

26i+3 +

k−1∑
i=0

26i+5.

By (3.3),

m ≡
k∑

i=0

(26i + 26i+1) + x +

k∑
i=0

26i+3 +

k−1∑
i=0

26i+5 (mod 26k+5).

Thus, m .
∑2

i=0 c(6k+5)
i (mod 26k+5), which contradicts (3.5).

Suppose that M ⊆ A(W0) ∪ A(W1). Then

2∑
i=0

c(6(k+1)+1)
i ≤

k+1∑
i=0

26i +

k∑
i=0

26i+1 + 2 ·
k∑

i=0

(26i+2 + 26i+4).

By (3.3),

m ≡
k+1∑
i=0

26i +

k∑
i=0

26i+1 + x +

k∑
i=0

(26i+3 + 26i+5) (mod 26(k+1)+1).

Thus, m .
∑2

i=0 c(6(k+1)+1)
i (mod 26(k+1)+1), which contradicts (3.5).
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Case 3: x ∈ A(W2). By (3.1), f2 = 6k + 3 or f2 = 6k + 5.
Suppose that M ⊆ A(W1) ∪ A(W2). Then

2∑
i=0

c(6k+3)
i ≤

k∑
i=0

26i+2 +

k−1∑
i=0

26i+4 + 2 ·
k−1∑
i=0

(26i+3 + 26i+5).

By (3.4),

m ≡
k∑

i=0

(26i + 26i+1) +

k∑
i=0

26i+2 +

k−1∑
i=0

26i+4 +
∑

f∈F2, f<6k+3

2 f (mod 26k+3).

Thus, m .
∑2

i=0 c(6k+3)
i (mod 26k+3), which contradicts (3.5).

Suppose that M ⊆ A(W0) ∪ A(W2). Then

2∑
i=0

c(6(k+1)+3)
i ≤ 2 ·

k+1∑
i=0

(26i + 26i+1) +

k+1∑
i=0

26i +

k∑
i=0

26i+1

=

k+1∑
i=0

(26i + 26i+1) +

k+1∑
i=0

26i+2 +

k∑
i=0

26i+1.

By (3.4),

m ≡
k+1∑
i=0

(26i + 26i+1) +

k+1∑
i=0

26i+2 +

k∑
i=0

26i+4 + x (mod 26(k+1)+3).

Thus, m .
∑2

i=0 c(6(k+1)+3)
i (mod 26(k+1)+3), which contradicts (3.5).

Suppose that M ⊆ A(W0) ∪ A(W1). If f2 = 6k + 3, then

2∑
i=0

c(6k+4)
i ≤ 3 ·

( k∑
i=0

26i+2 +

k−1∑
i=0

26i+4
)

=

k−1∑
i=0

(26i+3 + 26i+5) +

k∑
i=0

26i+2 +

k−1∑
i=0

26i+4 + 26k+3.

By (3.4),

m ≡
k∑

i=0

(26i + 26i+1) +

k∑
i=0

26i+2 +

k−1∑
i=0

26i+4 + x (mod 26k+4).

Thus, m .
∑2

i=0 c(6k+4)
i (mod 26k+4), which contradicts (3.5). If f2 = 6k + 5, then

2∑
i=0

c(6(k+1)+1)
i ≤

k+1∑
i=0

26i +

k∑
i=0

26i+1 + 2 ·
k∑

i=0

(26i+2 + 26i+4).
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By (3.4),

m ≡
k+1∑
i=0

26i +

k∑
i=0

26i+1 +

k∑
i=0

(26i+2 + 26i+4) + x (mod 26(k+1)+1).

Thus, m .
∑2

i=0 c(6(k+1)+1)
i (mod 26(k+1)+1), which contradicts (3.5).

In all, we have proved that M *
⋃

i∈{0,1,2}\{ j} A(Wi) for any j ∈ {0, 1, 2}, that is, mi = x
for some i ∈ {0, 1, 2}. Moreover, the 2-adic representation of m is unique and thus
m < 3(A \ {x}).

This completes the proof of Theorem 1.5.

4. Proof of Theorem 1.7

By Lemma 2.1, A is an asymptotic basis of order three. Choose w ∈ W0 such that
w − 1 ∈ W0 and set a = 2w. We will show that A \ {a} is an asymptotic basis of order
three, so A is not a minimal asymptotic basis of order three. For every sufficiently large
integer n, we have n = a1 + a2 + a3, where a1, a2, a3 ∈ A. If ai , a for all i ∈ {1, 2, 3},
then n ∈ 3(A \ {a}). So, it suffices to show that if a1, a2 ∈ A and n = a + a1 + a2, then
n ∈ 3(A \ {a}) for all but at most finitely many integers a1, a2. By symmetry, we need
to discuss the following six cases.

Case 1: a1, a2 ∈ A(W0). Write

a1 =
∑
i∈I

2i, a2 =
∑
j∈J

2 j,

where I, J are finite, nonempty subsets of W0. If I ∩ J = ∅, then

n = 2w−1 + 2w−1 + (a1 + a2) ∈ 3(A \ {a}).

Now suppose that I ∩ J , ∅.

Subcase 1.1: I, J * {w,w − 1}. If |I| ≥ 2, then

n = (2w + 2i0 ) +
∑

i∈I\{i0}

2i +
∑
j∈J

2 j

for some i0 ∈ I and i0 = w if w ∈ I, so n ∈ 3(A \ {a}). If I = {i}, then i , w,w − 1 and

n = 2w−1 + (2w−1 + 2i) +
∑
j∈J

2 j ∈ 3(A \ {a}).

Subcase 1.2: I, J ⊆ {w,w − 1}. There are only finitely many integers n in this case.

Subcase 1.3: I ⊆ {w,w − 1} and J * {w,w − 1}.

Subcase 1.3.1: I = {w}. Then

n = 2w−1 + (2w−1 + 2w) +
∑
j∈J

2 j ∈ 3(A \ {a}).
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Subcase 1.3.2: I = {w − 1}. Since I ∩ J , ∅, we have |J| ≥ 2. If |J| = 2, then
J = {w − 1, j} for some j , w and

n = (2w + 2w−1) + 2w−1 + 2 j ∈ 3(A \ {a}).

If |J| ≥ 3, choose a j0 ∈ J such that j0 , w. Then

n = (2w + 2w−1) + 2 j0 +
∑

j∈J\{ j0}

2 j ∈ 3(A \ {a}).

Subcase 1.3.3: I = {w,w − 1}. Then

n = 2w+1 + 2w−1 +
∑
j∈J

2 j ∈ 3(A \ {a}).

Case 2: a1 ∈ A(W0), a2 ∈ A(W1). Write

a1 =
∑
s∈S

2s, a2 =
∑
t∈T

2t,

where S ,T are finite, nonempty subsets of W0 and W1, respectively.

Subcase 2.1: |S | ≥ 3. Then

n = (2w + 2s0 ) +
∑

s∈S \{s0}

2s +
∑
t∈T

2t

for some s0 ∈ S and hence n ∈ 3(A \ {a}).

Subcase 2.2: |S | = 2. Write S = {s1, s2}. If w,w − 1 < S , then

n = (2w + 2s1 ) + 2s2 +
∑
t∈T

2t ∈ 3(A \ {a}).

If w ∈ S and w − 1 < S , then

n = 2w−1 + (2w−1 + 2s1 + 2s2 ) +
∑
t∈T

2t ∈ 3(A \ {a}).

If w − 1 ∈ S and w < S , then S = {w − 1, s} and

n = (2w + 2w−1) + 2s +
∑
t∈T

2t ∈ 3(A \ {a}).

If w,w − 1 ∈ S , then

n = 2w+1 + 2w−1 +
∑
t∈T

2t ∈ 3(A \ {a}).

Subcase 2.3: |S | = 1. Let S = {s}. If s , w − 1, then

n = 2w−1 + (2w−1 + 2s) +
∑
t∈T

2t ∈ 3(A \ {a}).
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If s = w − 1, then

n =

(2w + 2w−1) + 2t0 +
∑

t∈T\{t0} 2
t, if |T | ≥ 2,

(2w + 2w−1) + 2t0−1 + 2t0−1, if T = {t0}

and hence n ∈ 3(A \ {a}) except for finitely many integers n.

Case 3: a1 ∈ A(W0), a2 ∈ A(W2). Proceeding as in Case 2, n ∈ 3(A \ {a}) except for
finitely many integers n.

Case 4: a1 ∈ A(W1), a2 ∈ A(W2). Write

a1 =
∑
k∈K

2k,

where K is a finite, nonempty subset of W1. Since w,w − 1 ∈ W0, it follows that
w − 1 < K − 1. Since K − 1 ⊆ W0,

n =

(
2w−1 +

∑
k∈K

2k−1
)

+

(
2w−1 +

∑
k∈K

2k−1
)

+ a2 ∈ 3(A \ {a}).

Case 5: a1, a2 ∈ A(W1). Proceeding as in Case 4, n ∈ 3(A \ {a}) except for finitely
many integers n.

Case 6: a1, a2 ∈ A(W2). Write

a1 =
∑
u∈U

2u, a2 =
∑
v∈V

2v,

where U,V are finite, nonempty subsets of W2. If U ∩ V = ∅, then

n = 2w−1 + 2w−1 + (a1 + a2) ∈ 3(A \ {a}).

Now suppose that U ∩ V , ∅. We claim that x + 1 ∈ W0 for all x ∈ U ∩ V . Otherwise,
since W1 − 1 ⊆ W0, if there exists an x ∈ U ∩ V such that x + 1 ∈ W1, then x =

(x + 1) − 1 ∈ W0, which is a contradiction. Let U0 = (U ∪ V) \ (U ∩ V).

Subcase 6.1: U0 , ∅. If |U ∩ V | ≥ 2, then w < (U ∩ V) + 1 and

n = (2w + 2u0+1) +
∑

u∈(U∩V)\{u0}

2u+1 +
∑
u∈U0

2u

for some u0 ∈ U ∩ V; hence, n ∈ 3(A \ {a}). If |U ∩ V | = 1, let U ∩ V = {u}. If
u + 1 , w − 1, then

n = 2w−1 + (2w−1 + 2u+1) +
∑
u∈U0

2u ∈ 3(A \ {a}).
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If u + 1 = w − 1, then

n =

(2w + 2w−1) + 2u0 +
∑

u∈U0\{u0}
2u, if |U0| ≥ 2,

(2w + 2w−1) + 2u0−1 + 2u0−1, if U0 = {u0}

and hence n ∈ 3(A \ {a}) except for finitely many integers n.

Subcase 6.2: U0 = ∅. Then

n = 2w−1 + 2w−1 +
∑

u∈U∩V

2u+1 ∈ 3(A \ {a}).

This completes the proof of Theorem 1.7.
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