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ABSTRACT: Bio-inspired designs offer innovative solutions for optimizing heat exchangers, though their
complexity often exceeds the capabilities of traditional manufacturing methods. Additive manufacturing (AM)
enables intricate geometries with enhanced surface areas for improved heat transfer. This study presents a modular
algorithm to integrate internal structures into heat exchanger designs, balancing thermal performance and
manufacturability. A case study demonstrates the design, simulation, and production of internal structures,
identifying the “Diamond Radial” structure as the optimal choice due to its high R-factor and potential to improve
efficiency. Future work includes exploring multi-material components and designs for hydrogen storage and fuel
cell applications, paving the way for more efficient, application-specific systems.

KEYWORDS: design for additive manufacturing (DfAM), Inspired design/biomimetics, computer aided design
(CAD), heat exchangers, thermal efficiency

1 Introduction
Nature provides a wealth of innovative solutions to technical challenges. Bionics offers a systematic
approach to analyze, abstract, and adapt these principles for engineering applications (Lachmayer et al.,
2024; Nachtigall, 2002). One prominent example is the efficiency optimization of heat exchangers,
essential components across various industrial applications (Deng et al., 2021; Rong et al., 2023; Stephan
et al., 2019; Yu et al., 2024). Systems found in nature, such as the specialized vascular structures in
seagull feet, demonstrate effective thermoregulation with minimal energy loss under extreme conditions
(Zerbst, 1987). Bio-inspired designs hold significant promise for creating heat exchangers that are more
compact, lightweight, and resource-efficient, without compromising performance (Pieper & Klei., 2011;
Wu et al., 2023; Zhu et al., 2023). However, the complexity of these designs often exceeds the
capabilities of traditional design and manufacturing methods. Additive manufacturing (AM) provides a
viable solution, enabling the production of intricate geometries and already being successfully applied in
the development of high-performance, compact heat exchangers (Ehlers et al., 2023; Kahlfeld et al.,
2023; Niedermeyer et al., 2023). Designing heat exchangers, however, presents significant challenges.
The development of internal structures often relies heavily on expert knowledge, shaped by individual
experience in simulation and thermodynamics (Lebaal et al., 2022). Standardized approaches for
identifying suitable internal structures and integrating them into heat exchangers remain limited.
Furthermore, harnessing the potential of additive manufacturing to thermodynamically and structurally
optimize heat exchanger development requires new strategies to address existing process limitations
(Niknam et al., 2021; Scheithauer et al., 2018).
This work aims to tackle these challenges by developing a modular, extendable generative CAD
algorithm that facilitates the integration of internal structures into heat exchanger designs. The algorithm
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focuses on enhancing thermal performance while ensuring manufacturability and scalability. The study
begins with a review of strategies for improving heat exchanger performance. A case study then explores
the design, simulation, and manufacturing of optimized internal structures for heat exchangers. Finally,
the findings are synthesized into actionable recommendations and future directions for advancing heat
exchanger design and development.

2 Strategies for improving heat exchanger performance
While conventional methods for improving heat transfer have made significant progress, they face
manufacturing and thermodynamic limitations. AM enables the targeted design of complex, flow-
optimized structures, offering new approaches to enhancing efficiency. This section provides an
overview of the current state of research on existing optimization strategies, including both
conventional methods and additively manufactured structures for improving heat exchanger
performance.

2.1 Conventional methods for optimizing heat transfer
In a heat exchanger, heat transfer occurs through convective heat transfer from the hot fluid to the wall,
thermal conduction within the wall, and subsequent heat transfer to the cold fluid (Baehr & Stephan,
2019; Ning et al., 2022). The heat flow Q̇ is determined by the temperature difference (ϑ1 – ϑ2) and the
total thermal resistance R. For cylindrical walls, this relationship can be expressed as:

Q̇ � ϑ1 � ϑ2
R ; R � 1

αinner � Ainner
� δ

λ � Amiddle
� 1

αouter � Aouter
(1)

A lower total resistance R results in a higher heat flow, which is desirable for efficient heat transfer
(Cengel & Ghaja., 2020; Fawaz et al., 2022; Jouhara et al., 2023). The equation suggests the following
approaches for optimization:

• Maximizing the surface area A
• Maximizing the heat transfer coefficient α
• Maximizing the thermal conductivity λ through material selection
• Minimizing the wall thickness δ

This work focuses on geometric adaptation. Bergmann et al. (2018) distinguish four conventional
approaches to improving heat transfer in internal pipe flows. An increase in α can be achieved
through surface roughness or pipe inserts. Such inserts allow for retrofitting existing heat exchangers
but may introduce thermal resistance due to poor contact with the pipe surface (Webb, Ralph L. &
Kim, Nae-Hyun, 2005). Helical spring inserts generate turbulence through additional roughness,
while twisted-tape inserts induce tangential flow components and enhanced mixing due to their
helical geometry (Webb, Ralph L. & Kim, Nae-Hyun, 2005). Another approach involves increasing
the wetted surface area A. Shah and Sekulić (2003) distinguish between primary surfaces, which are
directly in contact with the fluids and conduct heat, and secondary surfaces (extended surfaces),
which create a larger area through additional geometries, such as longitudinal fins, but do not allow
direct contact between the fluids. Extended surfaces are often used on the gas side of flow, as the heat
transfer resistance is higher there (Webb, Ralph L. & Kim, Nae-Hyun, 2005). While A can be
increased by a factor of 10 to 100, additional thermal resistance occurs along the fins (Baehr &
Stephan, 2019). Combined approaches, such as spiral fins, simultaneously increase both A and α,
thereby utilizing both effects (Bergmann et al., 2018).

2.2 Additively manufactured structures for enhancing heat transfer efficiency
Several recent studies have explored the potential of additively manufactured structures to optimize heat
transfer in heat exchangers (Dixit et al., 2022; Lebaal et al., 2022; Liang et al., 2023; Mahmoud et al., 2023;
Sajjad et al., 2022). For instance, Lebaal et al. (2022) numerically modeled and analyzed octahedron lattice
structures. The lattice was designed using CATIA V5 and optimized by arranging unit cells. The results
demonstrated a 70 % reduction in pressure drop and a 7.1 K increase in outlet temperature, significantly
improving heat dissipation compared to conventional heat exchangers. Powder bed fusion of metals using a
laser beam (PBF-LB/M) was proposed as a suitable additive manufacturing method; however, the
component was not fabricated within the scope of this study. Mahmoud et al. (2023) designed heat
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exchanger channels utilizing gyroid structures created with nTopology software and analyzed them through
computational fluid dynamics (CFD) simulations in ANSYS Fluent. The structures were manufactured
using PBF-LB/M. The results confirmed that gyroid designs can significantly enhance the thermal efficiency
of heat exchangers. Dixit et al. (2022) investigated a compact, 3D-printed heat exchanger featuring gyroid
lattice structures. With a high surface-to-volume ratio (670 m2/m3) and turbulence-inducing geometry, the
heat exchanger achieved a 55 % higher effectiveness while occupying only one-tenth the size of
conventional heat exchangers. The gyroid structure was designed using SolidWorks™ and manufactured
through stereolithography (SLA). The study highlights that additive manufacturing technologies like SLA
enable the creation of lightweight, compact, and highly efficient heat exchangers that are unattainable with
traditional methods.
These studies collectively underscore that heat exchangers with additively manufactured structures
exhibit improved thermal performance compared to conventional designs. Optimization is
primarily based on maximizing the surface area A and/or the heat transfer coefficient α. The targeted
selection of specific structural geometries has not yet been systematically investigated but is mostly
compared to conventional designs. Additionally, there is a lack of comprehensive consideration that
accounts not only for manufacturability but also for compatibility with standardized simulation
programs.

3 Case study: optimizing heat exchangers through internal
structures

This case study follows a systematic approach: Based on a literature review, a design catalog is
created, from which a preliminary selection of suitable variants of internal structures is made. These
structures are designed using algorithm-aided design to ensure both simulation and manufacturing
feasibility. Subsequently, flow simulations are conducted to evaluate and further refine the selection
of structures, which are then fabricated in the final step. Finally, specific recommendations for action
are derived.
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Figure 1. Design catalog for internal structures with classification and application objectives

ICED25 1257



3.1 Preliminary selection of internal structures based on a design catalog
Additive manufacturing enables the production of internal structures, which can significantly enhance
heat transfer efficiency (Wahl et al., 2022). This section presents the preliminary selection of internal
structures based on a literature-based design catalog, developed following the methodology based on
(Roth, Karlheinz, 2001) and visualized in Figure 1. The catalog classifies structures based on their
dimension (2D or 3D), arrangement (Periodic or Stochastic), and element type (Extrusion (Niu et al.,
2022; Reyes et al., 2022; Xia et al., 2023), Strut (Kang et al., 2022; Khan & Riccio, 2024; Lebaal et al.,
2022; Sajjad et al., 2022; Wang et al., 2023), Mathematical Surface (including Triply Periodic Minimal
Surfaces (TPMS)) (Dixit et al., 2022; Liang et al., 2023; Mahmoud et al., 2023) or Cell (Castañeda et al.,
2023; Han et al., 2024)). Examples of each structure group are illustrated in the main section, while the
access section highlights key objectives and potential applications. The structures are categorized into
three primary application areas: structural components, heat transfer, and biomedical engineering. As
shown in the catalog, a wide range of structural variations has been applied for heat transfer. From these,
three particularly promising structures were selected: “Lattice” and “Polyhedron” from periodic strut
structures, as well as “Thickening” from periodic mathematical surface structures.

3.2 Design of internal structures for simulation and manufacturing suitability
While PBF-LB/M enables the production of entirely novel and innovative structures, the tools available
in conventional CAD environments are primarily designed for traditional manufacturing methods
(Niedermeyer et al., 2024). These tools often reach their limits when creating intricate internal structures,
failing to fully exploit the potential of additive manufacturing via PBF-LB/M. Algorithms-Aided Design
offers a compelling alternative approach (Müller et al., 2024; Steinnagel et al., 2023; Yao et al., 2024;
Zhang et al., 2022).
In this study, Rhino® 7, with its integrated Grasshopper® visual programming environment, was
employed. This tool enables the creation of algorithms specifically tailored to the automated generation
of various internal structures. Additionally, its extensive library of third-party plugins enhances
functionality to meet specific application requirements. While many existing algorithms and workflows
are limited to generating structures as meshes only, this study focuses on creating a closed Boundary
Representation (BRep) solid model. This model serves as the foundation for exporting to the universal
STEP exchange format, allowing for further processing in external software. Crucially, it ensures
compatibility with conventional CFD software and facilitates seamless integration into the specific CFD
workflow selected later in this study. To generate the chosen structures, two distinct workflows,
illustrated in Figure 2, were employed. These workflows are tailored to address different structure types:
mathematically derived surfaces and strut-based designs (Data available at: https://doi.org/10.25835/
8eitlrmr).
Strut-based “Lattice” and “Polyhedron” structures are initially created as single unit cells composed of
lines using the IntraLattice plugin. These unit cells are then arranged in either a rectangular or polar array
to conform to the outer pipe geometry. Since the resulting skeleton is not a solid body, the lines must be
thickened, which is achieved through two different approaches. The first approach involves thickening
the lines with cylindrical elements that are joined by placing spheres at their intersections and using
Boolean operations. The second approach employs the “MultiPipe” component built intoGrasshopper®
to automatically generate a smooth, continuous subdivision body with integrated joints, which can be
seamlessly converted into a BRep body. In contrast, the periodic mathematical structures are created by
inputting the corresponding mathematical function into the plugin Axolotl, which first generates a
volumetric voxel representation. This volume is then converted into a mesh and uniformly thickened to
form a sheet. Since BRep bodies are essential for the later employed workflow, the resulting meshes
undergo a reconstruction process. This involves quadratic remeshing, subdivision, and final conversion
into a BRep format.
For this study, a total of ten structures in various configurations were generated to cover a wide range of
design variations. As illustrated in Figure 3, the structures include mathematical surfaces (1–2), struts in a
rectangular array with spherical joints (3–6), struts in a polar array with spherical joints (7–8), and struts
in a polar array with MultiPipe joints (9–10). All BRep bodies were subsequently combined into a unified
geometry for simulation purposes using Boolean operations, with the final assembly enclosed within a
pipe body, completing the design. Depending on the structure, the computation time for each script
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ranges from 2 to 6 minutes, with the majority of the time spent on either the boolean union of individual
struts or the quadratic remeshing process and conversion to BRep, respectively.

3.3 Detailed selection of internal structures based on simulation
In this section, a fine selection of the ten structures presented in the previous chapter is made based on
CFD simulations in ANSYS Fluent®. The boundary conditions of the simulation are defined as cooling
of hot air with an inlet velocity vair,in of 5 m/s and an inlet temperature Tair,in of 700 K, with an outlet
pressure pair,out of 101325 Pa. The heat transfer on the outside of the pipe is modeled as a convective heat
transfer coefficient hwater of 1200W/m2K at a free flow temperature Twater,free of 300 K. This corresponds,
for example, to a tube in a tube bundle with water flowing around it. To validate the results, a mesh
independence analysis was carried out on one of the structures, varying the number of cells (i.e., the mesh
resolution) between approximately 3·106 and 9·106 elements. A suitable number of elements was found
to be 5.5·106. Further mesh refinement did not result in any change in the transferred heat flux. The
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Figure 2. Mathematical and strut-based workflow for generating BRep structures

1. Diamond 2. Gyriod 3. Polyhedron 4. Triangular 5. Quadrangular

6. Octagonal 7. Star Radial 8. Cross Radial 9. Diamond Radial 10. Vintiles Radial

Figure 3. Design of various internal structures for CFD simulation
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settings of this mesh were used for all simulations. The geometry of the simulated tube and resulting
temperature and velocity distributions can be seen in Figure 4.

To evaluate the performance of the structures, the ratio between the resulting heat flow and pressure loss
is analyzed using the R-factor (Yilmaz et al., 2005). This factor represents the ratio of the transferred heat
flow Q̇ and the pump power Ppump required to compensate for the pressure loss. A higher R-factor
indicates a more efficient heat exchanger.

R � factor � Q̇
Ppump

(2)

Table 1 presents the heat flows transferred within the structured area of the pipe, the pressure losses, and
the resulting R-factor for various structures.

The heat transfer and, in particularly, the pressure loss of the structures differ significantly. The
“Diamond” structure (1) achieves the highest heat transfer. In contrast, the centrally oriented
“Diamond Radial” structure (9) exhibits the lowest pressure loss. The transferred heat flux of this
structure is 23 % lower than the “Diamond” structure, while the pressure loss is 66.5 % lower. Based
on these results, the “Diamond Radial” structure can be selected as the optimal choice, as it achieves
the highest R-factor and thus offers the greatest potential to enhance the performance of heat
exchangers.

3.4 Demonstration of manufacturability: Integration of internal structures into
heat exchangers

This section demonstrates the successful manufacturability and integration of internal structures
into heat exchangers through practical implementation. For the exemplary demonstration,

Temperature [K] Velocity [m/s]

air ,in

air ,in air ,

ℎwater water ,

Di

Li

Figure 4. Geometry (Ø25 × 80 mm with Di = 20 mm und Li = 30 mm), boundary conditions and
exemplary results of diamond radial structure

Table 1. Surface area, heat flux, pressure drop and R-factor of the simulated structures

Number Name Surface area A [m2] Heat flux Q̇ [W] Pressure loss Δp [Pa] R-factor [-]

1 Diamond 0.0082 178.09 131.78 1193.21
2 Gyroid 0.0072 162.60 133.39 1098.33
3 Polyhedron 0.0059 138.78 85.46 1476.26
4 Triangular 0.0097 169.09 157.15 1016.54
5 Quadrangular 0.0076 140.69 107.13 1157.33
6 Octagonal 0.0067 137.68 96.51 1243.91
7 Star Radial 0.0090 150.00 111.05 1213.93
8 Cross Radial 0.0080 147.67 83.59 1567.88
9 Diamond Radial 0.0055 137.16 44.16 2666.74
10 Vintiles Radial 0.0055 136.55 63.66 1830.99
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generated structures were integrated into a double-pipe heat exchanger functioning as a gas cooler
using the CAD software SolidWorks®. The heat exchanger enables the cooling of a hot gas stream
(inner pipe), while cooling water flows through the outer helical jacket and absorbs the heat
through the inner pipe wall. The entire heat exchanger (dimensions: Ø46 × 120 mm) is
manufacturable using the PBF-LB/M process without the need for additional support structures
inside the component. For the fabrication, three exemplary heat exchangers with differently
oriented diamond-shaped internal structures were produced from the material 1.2709 maraging
steel using an EOS M280 system (laser power: 200 W, scan speed: 1200 mm/s). Figure 5
illustrates the successful fabrication of the design.

3.5 Derivation of measures and recommendations for action
Algorithms-Aided Design has proven to be a highly promising tool for developing customized
workflows for additively manufactured heat exchangers. The methods and workflows employed in this
study, including third-party plugins, performed effectively in generating and processing complex
geometries. However, the long-term applicability of such approaches depends heavily on the
maintenance and support of these third-party tools, introducing a level of risk to future projects.
Exporting structures as BRep solids worked well for simulation purposes and manufacturing, but
significant challenges were encountered with large data volumes and high computational times in
Grasshopper® and Rhino®, particularly during surface reconstruction. It remains unclear whether the
current workflow is scalable to larger full-scale heat exchangers or if there is a practical upper limit to the
complexity that can be handled efficiently. The same applies to the analysis with CFD simulations, which
become increasingly computationally intensive when applied to complex, complete heat exchanger
designs. Despite these limitations, the Grasshopper® workflow and associated scripts offer significant
potential for future development and customization. For example, the generated structures can be further
enhanced by introducing gradation in structure size or by integrating manufacturability considerations
into the design process. Such enhancements could include warnings for excessive overhangs, predictions
of expected surface roughness, or automated adjustments to improve printability.

4 Summary and outlook
This study focuses on the optimization of heat exchangers through the integration of internal structures
enabled by additive manufacturing. A case study demonstrates the successful manufacturing and
integration of these structures to enhance thermodynamic efficiency and structural flexibility. Additive
manufacturing facilitates the creation of designs with enlarged surface areas for high heat transfer rates,
as well as compact and adaptable constructions tailored to various gas and water flow rates. The findings
underscore the potential of combining simulation-driven design and additive manufacturing to advance
heat exchanger development.
The next step is to experimentally analyze the additively manufactured heat exchangers by measuring
their heat transfer and pressure loss characteristics, comparing them with simulated values, and
subsequently evaluating the results. This allows for the identification of specific optimization potentials
for future designs. Additionally, material variation – such as the use of multi-material components –
holds significant potential for making future structures even more efficient and application-specific
(Meyer et al., 2023; Meyer, Glitt, et al., 2025; Meyer, Messmann, et al., 2025; Oel et al., 2023). Another

Figure 5. Additively manufactured heat exchangers with different diamond structures
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promising avenue for research is the use of these structures in hydrogen applications. Topology-
optimized and mathematically-defined geometries significantly increase internal surface areas, making
them ideal for hydrogen metal hydride storage and gas diffusion layers in polymer electrolyte membrane
(PEM) fuel cells (Niblett et al., 2022; Röver et al., 2023). Additively manufactured lattice structures offer
superior performance due to their higher surface area and interconnectivity, enhancing hydrogen
production and storage (Lei et al., 2019; Mesecke et al., 2025; Ndoye et al., 2021). Finally, comparing
additively manufactured lattice structures with conventional designs in terms of their thermal and
mechanical properties remains a valuable approach. The presented methods thus offer substantial
potential to further optimize existing design and manufacturing processes while setting new standards in
the design of internal structures for heat exchangers.
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