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SEPARATING SUBVERSION FORCING AXIOMS

COREY SWITZER AND HIROSHI SAKAI

Abstract. We study a family of variants of Jensen’s subcomplete forcing axiom, SCFA, and subproper
forcing axiom, SubPFA. Using these, we develop a general technique for proving nonimplications of SCFA,
SubPFA and their relatives and give several applications. For instance, we show that SCFA does not imply
MA+(�-closed) and SubPFA does not imply Martin’s Maximum.

§1. Introduction. In this article, we study variants of subcomplete and subproper
forcing classes with an eye towards investigating and distinguishing their forcing
principles. Subcomplete and subproper forcing are two classes of forcing notions
introduced by Jensen in [16] in connection with the extended Namba problem (see
[17, Section 6.4]1. Both are iterable with revised countable support and generalize
significantly �-closed and proper forcing notions, respectively, while allowing, under
some circumstances, new cofinal�-sequences of ordinals to be added to uncountably
cofinal cardinals. As such, each comes with a forcing axiom (consistent relative to a
supercompact cardinal). The forcing axiom for subcomplete forcing, in particular,
dubbed SCFA by Jensen in [14, 17] is especially interesting as it is consistent with
♦ while implying some of the strong, structural consequences of MM (see [17,
Section 4]. Since their initial introduction subcomplete and subproper forcing have
been tied to several applications and received further treatment (see, for instance,
[7, 9, 11, 12]).

Unfortunately, there is a fly in the ointment of the birth of the theory, initially
present in [16, Lemma 1, p. 18] in the form of a missing needed assumption of
CH (see also [17, Chapter 3, p. 154]. A consequence of this error led to the (false)
conclusion that the SCFA implied the failure of ��1 when in fact a careful reading
of the proof of that result shows that SCFA implies the failure of �2ℵ0 (hence the
conclusion under CH), the gap was first observed by Cox. An initial starting point
for us in this work was to determine if the gap was fixable and discovered that it was
not. Indeed, SCFA is consistent with ��1 .

Theorem 1.1 (See Theorem 3.1). Assuming the consistency of a supercompact
cardinal, SCFA does not imply the failure of �ℵ1 when CH fails.
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2 COREY SWITZER AND HIROSHI SAKAI

Figure 1. Subversion forcing axioms, � principles and their relations. An arrow
means direct implication.

This result led to a general method of separating various principles related to
SCFA and this method is, in essence, the subject of the present work. See [10] for a
very detailed and meticulous discussion of the error as well as its propagation in the
literature and corrections.

Already in [12], the second author and Fuchs found (seemingly) more general
classes, dubbed “∞-subcomplete” and “∞-subproper” each containing their non
“∞” version, respectively, and proved a variety of iteration and preservation
theorems. The main theorem in that work was that the forcing axiom for
∞-subcomplete forcing notions, ∞-SCFA, is compatible with a large variety of
behavior on ℵ1 when CH fails. For instance, ℵ1 = d < c = ℵ2 and the existence of
Souslin trees are both consistent with ∞-SCFA +¬CH. All of these results also hold
for SCFA as well (with no ∞).

In this article, we combine the ∞-versions of these forcing classes with
further parametrization “above �” for cardinals �, initially investigated, somewhat
sparingly, by Jensen in [15, Chapter 3]. This leads to a large family of forcing axioms
∞-SubPFA � � and ∞-SCFA � �, where ∞-SubPFA and ∞-SCFA coincide with
∞-SubPFA � 2ℵ0 and ∞-SCFA � 2ℵ0 , respectively. The main outcome of this work is
an investigation into how these axioms relate to one another and to other, more well
known axioms such as MM and MA+(�-closed). Formal definitions will be given
in the second part of this introduction and Section 2 but the definitions of these
axioms alongside well known results provide almost immediately that the following
diagram of implications holds with 2ℵ0 ≤ � < � cardinals.

The main result of this work is that essentially no arrows are missing from Figure 1.
above.

Main Theorem 1.1. Let 2ℵ0 ≤ � ≤ � < � = �+ be cardinals with �� < �.
Assuming the consistency of a supercompact cardinal, the implications given in
Figure 1. are complete in the sense that if no composition of arrows exists from
one axiom to another then there is a model of ZFC in which the implication fails2.

2Except for the trivial ∀κ¬�κ → ∀κ ≥ 2ℵ0¬�κ which did not fit aesthetically into the picture.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10101
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.121, on 21 Sep 2025 at 10:12:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10101
https://www.cambridge.org/core


SEPARATING SUBVERSION FORCING AXIOMS 3

As a corollary of this theorem and its proof, we obtain separations of several
“subversion” forcing principles from other, more well-studied reflection principles
and forcing axioms. As noted above, in particular, this corrects the aforementioned
error in the literature by showing SCFA to be consistent with ��1 . Another sample
application is the following.

Corollary 1.2. Assuming the consistency of a supercompact cardinal, SCFA does
not imply MA+(�– closed).

The rest of this article is organized as follows. In the next section of this
introduction, we give relevant background and terminology. In the next section,
we introduce the variants ∞-subcompleteness and ∞-subproperness above � and
discuss some of their properties. In Section 3, we study the forcing axioms associated
with these classes and show, among other things, that they are distinct as well
as the fact ∞-SCFA implies neither MA+(�– closed) nor ¬�κ for any κ < 2� . In
Section 4, we continue this investigation and show that ∞-SubPFA does not imply
MM. Section 5 concludes with some final remarks and open problems.

1.1. Preliminaries. We conclude this introduction with the key definitions we will
use throughout, beginning with that of subproperness and subcompleteness. These
are these two classes of forcing notions defined by Jensen in [17] which have found
several applications (see, e.g., [7, 11, 16, 21]). More discussion of these concepts
can be found in [17] or [12]. Before beginning with the definition, we will need one
preliminary definition. Below, we denote by ZFC– the axioms of ZFC without the
power set axiom3.

Definition 1.3. A transitive set N (usually a model of ZFC–) is full if there is an
ordinal � so that L�(N ) |= ZFC– and N is regular in L�(N ) i.e., for all x ∈ N and
f ∈ L�(N ) if f : x → N then ran(f) ∈ N .

Definition 1.4. Let P be a forcing notion and let 	(P) be the least size of a dense
subset of P.

(1) We say that P is subcomplete if for all sufficiently large 
, � > 
 so that
H
 ⊆ N := L�[A] |= ZFC–, s ∈ N , � : N̄ ≺ N countable, transitive, and full
with �(P̄, s̄ , 
̄) = P, s, 
, if Ḡ ⊆ P̄ ∩ N̄ is generic then there is a p ∈ P so that
if p ∈ G is P-generic over V then in V [G ] there is a �′ : N̄ ≺ N so that
1. �′(P̄, s̄ , 
̄, �̄) = P, s, 
, �
2. �′“Ḡ ⊆ G
3. HullN (	(P) ∪ ran(�)) = HullN (	(P) ∪ ran(�′)).

(2) We say that P is subproper if for all sufficiently large 
, � > 
 so that H
 ⊆
N := L�[A] |= ZFC–, s ∈ N , p ∈ N ∩ P, � : N̄ ≺ N countable, transitive and
full with �(p̄, P̄, s̄ , 
̄) = p,P, s, 
, there is a q ∈ P so that q ≤ p and if q ∈ G
is P-generic over V then in V [G ] there is a �′ : N̄ ≺ N so that
1. �′(p̄, P̄, s̄ , 
̄) = p,P, s, 

2. (�′)–1“G is P̄-generic over N̄
3. HullN (	(P) ∪ ran(�)) = HullN (	(P) ∪ ran(�′)).

3There is a subtlety here, see [13]. As usual, we mean by ZFC– the theory of ZFC without the powerset
axiom and the replacement scheme replaced by the collection scheme, see [13] for full details.
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4 COREY SWITZER AND HIROSHI SAKAI

Note that the special case, where � = �′ is properness (for subproperness) and
(up to forcing equivalence) �-closedness (for subcomplete). To explicate this in the
later case, we recall the definition of completeness, which is due to Shelah originally
though we take Jensen’s definition4 from [17, p. 112].

Definition 1.5. A forcing notionP is said to be complete if for all sufficiently large

 P ∈ H
 and all countable, transitive � : N̄ ≺ H
 with �(P̄) = P, if Ḡ is P̄-generic
over N̄ then there is a p ∈ P forcing that �“Ḡ ⊆ G .

It’s clear that �-closed forcing notions are complete. What is less clear (though
equally true) is that conversely if P is complete it is forcing equivalent to a �-closed
forcing notion, a result due to Jensen (see [17, Lemma 1.3, Chapter 3]. In this sense,
therefore, subcompleteness is the “subversion” of �-closedness.

It was pointed out in [12] that the “Hulls” condition 3) in both definitions is
somewhat unnatural. It is never used in applications and appears solely for the
purpose of proving the iteration theorem, [17, Theorem 3]. In [12] Fuchs and
the second author showed that by iterating with Miyamoto’s nice iterations this
condition could be avoided. As such, it makes sense to define the following.

Definition 1.6. Let P be a forcing notion.
(1) We say that P is ∞-subcomplete if for all sufficiently large 
, � > 
 so that
H
 ⊆ N := L�[A] |= ZFC–, s ∈ N , � : N̄ ≺ N countable, transitive, and full
with �(P̄, s̄ , 
̄) = P, s, 
, if Ḡ ⊆ P̄ ∩ N̄ is generic then there is a p ∈ P so that
if p ∈ G is P-generic over V then in V [G ] there is a �′ : N̄ ≺ N so that
1. �′(P̄, s̄ , 
̄, �̄) = P, s, 
, �;
2. �′“Ḡ ⊆ G.

(2) We say that P is ∞-subproper if for all sufficiently large 
, � > 
 so
that H
 ⊆ N := L�[A] |= ZFC–, s ∈ N , p ∈ N ∩ P, � : N̄ ≺ N countable,
transitive, and full with �(p̄, P̄, s̄ , 
̄) = p,P, s, 
, there is a q ∈ P so that q ≤ p
and if q ∈ G is P-generic over V then in V [G ] there is a �′ : N̄ ≺ N so that
1. �′(p̄, P̄, s̄ , 
̄) = p,P, s, 
;
2. (�′)–1“G is P̄-generic over N̄.

To be clear, this is just the same as the definitions of the “non-∞” versions, simply
with the additional “Hulls” condition removed. As mentioned, these classes come
with an iteration theorem.

Theorem 1.7 (Theorem 3.19 (for Subcomplete) and Theorem 3.20 (for Sub-
proper) of [12]). Let � be an ordinal and 〈Pα, Q̇α | α < �〉 be a nice itera-
tion in the sense of Miyamoto so that for all α < �, we have �Pα“Q̇α is ∞-
subproper (respectively, ∞-subcomplete). Then, P� is ∞-subproper (respectively,
∞-subcomplete).

We note that the above theorem in the case of ∞-subproper forcing was originally
proved first independently by Miyamoto in [20]. A consequence of this theorem
(initially observed for the non∞-versions by Jensen) is that, modulo a supercompact
cardinal, these classes have a consistent forcing axiom.

4Note that Jensen defines completeness using Boolean algebras but the definition we give below can
easily be seen to be equivalent.
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SEPARATING SUBVERSION FORCING AXIOMS 5

Definition 1.8. Let Γ be a class of forcing notions. The forcing axiom for Γ,
denoted FA(Γ) is the statement that for all P in Γ and any �1-sequence of dense
subsets of P, say {Di | i < �1} there is a filter G ⊆ P which intersects every Di .

If Γ is the class of (∞-)subproper forcing notions we denote FA(Γ) by
(∞-)SubPFA. Similarly, if Γ is the class of (∞-)subcomplete forcing notions we
denote FA(Γ) by (∞-)SCFA.

It is not known whether up to forcing equivalence each class is simply equal to
its “∞”-version or if their corresponding forcing axioms are equivalent. However,
since the “∞” versions are more general (or appear to be) and avoid the unnecessary
technicality of computing hulls, we will work with them in this article. Nearly,
everything written here could be formulated for the “non-∞” versions equally well,
though we leave the translation to the particularly persnickety reader.

If Γ ⊆ Δ then FA(Δ) implies FA(Γ) so we get the following collection of
implications, which are part of Figure 1.

Proposition 1.9. MM → ∞-SubPFA → PFA and MM → ∞-SubPFA →
∞-SCFA

Here, MM, known as Martin’s Maximum and introduced in [5], is the forcing
axiom for forcing notions which preserve stationary subsets of �1 (all ∞-subproper
forcing notions have this property) and PFA is the forcing axiom for proper forcing
notions. It is known from the work of Jensen (see also [12] that none of the above
implications can be reversed with the exception of whether SubPFA implies MM.
In this article, we will show the consistency of SubPFA + ¬MM, see Theorem 4.1
below.

On that note, we move to our last preliminary. Many of the theorems in
this article involve showing that we can preserve some fragment of ∞-SCFA (or
∞-SubPFA) via a forcing killing another fragment of it. Towards this end, we will
need an extremely useful theorem due to Cox. Below, recall that a class of forcing
notions Γ is closed under restrictions (see [2, Definition 39]) if for all P ∈ Γ, and
all p ∈ P the lower cone P � p := {q ∈ P | q ≤ p} ∈ Γ. One can check that both
the classes of ∞-subcomplete and ∞-subproper forcing notions (as well as the
restrictions “above �” defined in Section 2) have this property.

Theorem 1.10 (Cox, see [2, Theorem 20]). Let Γ be a class of forcing notions
closed under restrictions and assume FA(Γ) holds. Let P be a forcing notion. Suppose
that for every P-name Q̇ for a forcing notion in Γ there is a P ∗ Q̇-name Ṙ for a forcing
notion so that the following hold:

(1) P ∗ Q̇ ∗ Ṙ is in Γ,
(2) If j : V → N is a generic elementary embedding, 
 ≥ |P ∗ Q̇ ∗ Ṙ|+ is regular

in V and
a) HV
 is in the wellfounded part of N ;
b) j“HV
 ∈ N has size �1 in N ;
c) crit(j) = �V2 ;
d) There exists a G ∗H ∗K in N that is (HV
 ,P ∗ Q̇ ∗ Ṙ)-generic.

Then, in N the set j“G ⊆ j(P) that j“G has a lower bound in j(P) i.e., there
is a p ∈ j(P) ∩N so that p ≤ r for each r ∈ j“G ,

Then, �P FA(Γ) i.e., P preserves the forcing axiom for Γ.
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6 COREY SWITZER AND HIROSHI SAKAI

See [2] for more on strengthenings and generalizations of this wide ranging
theorem. In particular, a more general version stated in that article accounts for
“+-versions” of forcing axioms by carrying stationary sets through the list of
assumptions. Since we won’t use this here, we omit it.

A typical application of Theorem 1.10 is whenP adds some object witnessing some
“nonreflective” behavior andR adds the nonreflective behavior to the full generic for
P which allows j“G to have a lower bound. For instance, a classic result of Beaudoin
(see [1, Theorem 2.6]) states that PFA is consistent with a nonreflecting stationary
subset of �2, i.e., a subset whose intersection with every point of uncountable
cofinality below �2 is not stationary. In this case, the P would be the natural forcing
to add such a nonreflecting set, and R would be the forcing to shoot a club through
the compliment of the generic stationary set added by P. The meat of Theorem 1.10
is then that the forcing P preserves PFA if P ∗ Q̇ ∗ Ṙ is proper for any proper Q̇ ∈ V P

(which it is). A variation of this argument is made as part of Theorem 4.1, see
Section 4 for details.

§2. ∞-Subcompleteness and ∞-Subproperness above �. Most theorems in
this article filter through the notions of ∞-subcompleteness (respectively,
∞-subproperness) above � for a cardinal �. These are technical strengthenings
of ∞-subcompleteness (respectively, ∞-subproperness). In this section, we define
these strengthenings as well as make some elementary observations which will be
used in rest of the article.

Definition 2.1. Let � be a cardinal and P a forcing notion.
(1) We say that P is ∞-subcomplete above � if for all sufficiently large 
, � > 


so that H
 ⊆ N := L�[A] |= ZFC–, s ∈ N , � : N̄ ≺ N countable, transitive,
and full with �(P̄, s̄ , 
̄, �̄) = P, s, 
, �, if Ḡ ⊆ P̄ ∩ N̄ is generic then there is a
p ∈ P so that if p ∈ G is P-generic over V then in V [G ] there is a �′ : N̄ ≺ N
so that
1. �′(P̄, s̄ , 
̄, �̄) = P, s, 
, �;
2. �′“Ḡ ⊆ G ;
3. �′ � �̄ = � � �̄.

(2) We say that P is ∞-subproper above � if for all sufficiently large 
, � > 

so thatH
 ⊆ N := L�[A] |= ZFC–, s ∈ N , p ∈ N ∩ P, � : N̄ ≺ N countable,
transitive, and full with �(p̄, P̄, s̄ , 
̄, �̄) = p,P, s, 
, �, there is a q ∈ P so that
q ≤ p and if q ∈ G is P-generic over V then in V [G ] there is a �′ : N̄ ≺ N so
that
1. �′(p̄, P̄, s̄ , 
̄, �̄) = p,P, s, 
, �;
2. (�′)–1“G is P̄-generic over N̄ ;
3. �′ � �̄ = � � �̄.

Concretely being ∞-subcomplete above � simply means that P is ∞-subcomplete
and, moreover, for any � : N̄ ≺ N the corresponding �′ (in V [G ]) witnessing the
∞-subcompleteness can be arranged to agree with � “up to �” i.e., on the ordinals
below �–1“� (and idem for ∞-subproperness). The “non-∞” versions of these
classes were first introduced by Jensen in [16] and were investigated further by
Fuchs in [8] who made several of the elementary observations we repeat below. The
terminology “above �” was used by Fuchs as well as in [16, Chapter 2] while in
other places, e.g., [15] Jensen uses the terminology “�-subcomplete”. Following
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SEPARATING SUBVERSION FORCING AXIOMS 7

the first convention, we have moved the parameter � to the end to avoid the
awkwardness of “�-∞-subcomplete/�-∞-subproper”. The following is immediate
from the definitions.

Observation 2.2. Let � < � be cardinals. If P is ∞-subcomplete (respectively,
∞-subproper) above � then it is ∞-subcomplete (respectively, subproper) above � and
it is ∞-subcomplete (respectively, ∞-subproper) (without any restriction).

It is easy to see that being ∞-subcomplete (respectively, ∞-subproper) is
equivalent to being ∞-subcomplete (respectively, ∞-subproper) above �1, however
more is true, an observation due independently to the first author and Fuchs (see
[8, Observation 4.2], note also [8, Observation 4.7] which is relevant here).

Proposition 2.3. Let P be a forcing notion. P is ∞-subcomplete (respectively,
∞-subproper) if and only if P is ∞-subcomplete above 2ℵ0 (respectively, ∞-subproper
above 2ℵ0 ).

As noted above, this proposition (in the case of subcompleteness) is proved as
[8, Observation 4.2] but we give a detailed proof in order to help the reader get
accustomed to ∞-subversion forcing as well as to include the mild difference of
subproperness. However, let us note that essentially the point is that, using the
definable well order in L�[A], the reals of N̄ code the cardinality of the continuum.

Proof. We prove the case of ∞-subproperness and leave the reader to check the
case of ∞-subcompleteness since the latter, in its non “∞-version” can already be
found in the literature. Let P be a forcing notion. It is immediate as noted above that
if P is ∞-subproper above 2� then it is ∞-subproper so we need to check just the
reverse direction. Thus, assume that P is ∞-subproper and let � > 
 be cardinals so
that � : N̄ ≺ N := L�[A] with H
 ⊆ N be as in the definition of ∞-subproperness.
Finally, let p ∈ P force that there is a �′ : N̄ ≺ N so that �′(P̄) = P and �′–1G := Ḡ
is P̄-generic over N̄ for any generic G � p (the existence of such a condition is the
heart of the definition of ∞-subproperness of course). We need to show that p forces
that �′ � 2ℵ0 = � � 2ℵ0 , where, to be clear, 2ℵ0 denotes the cardinal (as computed in
N̄ ) which bijects onto the continuum (as defined in N̄ ). To avoid confusion, let us
denote the cardinal 2ℵ0 = κ (in V and hence N) and the preimage of κ in N̄ under
� as κ̄.

Fix a G � p generic and work in V [G ] with �′ etc as described in the previous
paragraph. First, note that by the absoluteness of � we have that for all reals x ∈ N̄
it must be the case that �(x) = �′(x) = x (and being a real is absolute between
N̄ and V/V [G ]). Moreover, since N = L�[A] there is a definable well order of the
universe, and, in particular, there is a definable bijection of the reals onto κ, say
f : 2� → κ. By elementarity in N̄, there is a definable bijection f̄ : 2� ∩ N̄ → κ̄. But
since f is definable we have �(f̄) = �′(f̄) = f and hence for allα ∈ κ̄we get �(α) =
�(f̄(f̄–1(α))) = �(f̄)(�(f̄–1(α))) = �′(f̄(f̄–1(α))) = �′(α), as needed. Since the
only assumption on G was that p ∈ G we have, back in V that p forces this situation
which completes the proof. �

Jensen showed that Namba forcing is∞-subcomplete above�1 assumingCHwhile
it is not even ∞-subproper above �2 in ZFC, a consequence of the next observation,
which essentially appears in [19, Theorem 2.12].
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8 COREY SWITZER AND HIROSHI SAKAI

Lemma 2.4. Let � be a cardinal.

(1) If P is ∞-subproper above � then any new countable set of ordinals less than
� added by P is covered by an old countable set of ordinals (less than �). In
particular, if �P“cf(�) = �” then cf(�) = � (in V).

(2) If P is ∞-subcomplete above � then P adds no new countable sets of ordinals
below �.

Proof. The proofs of both are similar to the corresponding proofs that every
new countable set of ordinals added by a proper forcing notion is contained in an
old countable set of ordinals and �-closed forcing notions do not add new countable
sets of ordinals at all, respectively. The point is that to show the corresponding
fact “below �” one only needs ∞-subproperness (respectively, ∞-subcompleteness)
above �, see [19, Theorem 2.12] for details. �

As mentioned before Lemma 2.4, an immediate consequence is the following.

Lemma 2.5. Namba forcing is not ∞-subproper above �2. In particular, Namba
forcing is not ∞-subproper if CH fails.

We do not know whether this lifts to the forcing axiom level. In other words, the
following is open though seems unlikely given Lemma 2.5.

Question 1. Does SCFA imply the forcing axiom for Namba forcing whenCH fails?

Finally, we end this section with some observations about the associated forcing
axioms for the classes we have been discussing.

Definition 2.6. Let � be a cardinal. Denote by ∞-SubPFA � � the forcing axiom
for forcing notions P which are ∞-subproper above � and ∞-SCFA � � the same for
P which are ∞-subcomplete above �.

The following is immediate by Observation 2.2.

Proposition 2.7. Let � < � be cardinals. We have that ∞-SCFA implies
∞-SCFA � � implies ∞-SCFA � �. Similarly, for the variants of ∞-SubPFA.

In the next section, we will show that (in many cases) the reverse implications do
not hold. Before doing this, let us note the following which was essentially known but
requires piecing together from several places in the literature (and sifting through
errors given by the initial mistake detailed above).

Theorem 2.8 (Essentially Jensen, [14]). Let 2ℵ0 ≤ � ≤ κ < � = κ+ be cardinals
with �� < �. The forcing axiom ∞-SCFA � � implies the failure of �κ and even that
there is no nonreflecting stationary subset of κ+ ∩ cof(�).

We remark that the definitions of �κ and “nonreflecting stationary set” are given
in Sections 3 and 4, respectively, where we use them.

Proof. This is essentially known though it needs to be pieced together from a
few sources—particularly taking into account the error discussed before, again (see
[10]). First, in [14], Jensen uses the forcing notion (at κ) from [17, Lemma 6.3 of
Section 3.3] to obtain the failure of �κ from SCFA. Indeed, it’s easy to see that
this forcing notion implies the nonexistence of reflecting stationary sets and much
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SEPARATING SUBVERSION FORCING AXIOMS 9

more. See [6] for a detailed discussion of the effect of SCFA on square principles. As
noted before, there is a missing assumption in the subcompleteness of the relevant
forcing—namely, that κ > 2ℵ0 . Second, [9, Lemma 3.5], which contains no errors
as written, implies that the forcing notion needed is indeed ∞-subcomplete above
� under the cardinal arithmetic assumptions mentioned in the theorem statement.
See the proof of [9, Lemma 3.5] and the discussion therein for more details. �

§3. Separating the ∞-SCFA � � Principles. In this section, we show that under
certain cardinal arithmetic assumptions ∞-SCFA � � does not imply ∞-SCFA � �
for � < �. Before proving this general theorem, we introduce our technique with
the simple example of separating ∞-SCFA � �1 from ∞-SCFA � �2. This involves
showing that adding a ��1 -sequence to a model of∞-SCFA preserves∞-SCFA � �2.
By contrast, note that Theorem 2.8 proves that SCFA + CH implies the failure of
��1 . Let us remark one more time that, as stated in the introduction the fact that
SCFA can coexist with a ��1 -sequence closes the door on the aforementioned error
by showing that the argument cannot be resurrected when CH fails.

This case is treated as a warm-up and we extract from it a more general lemma for
preservation of axioms of the form ∞-SCFA � �+ from which the other separation
results are then derived.

3.1. The case of ∞-SCFA � �2: Adding a ��1 sequence. Recall that for an
uncountable cardinal � a ��-sequence is a sequence 〈Cα | α ∈ �+ ∩ Lim〉 so that
for all α the following hold:

(1) Cα is club in α;
(2) ot(α) ≤ �;
(3) For each 
 ∈ lim(Cα) we have that Cα ∩ 
 = C
.

We recall the poset P0 from [3, Example 6.6] for adding a square sequence.
Conditions p ∈ P0 are functions so that the domain of p is 
 + 1 ∩ Lim for some

 ∈ �+ ∩ Lim and

(1) For all α ∈ dom(p) we have that p(α) is club in α with order type ≤ �; and
(2) If α ∈ dom(p) then for each 
 ∈ lim(p(α)) we have p(α) ∩ 
 = p(
).

The order is end extension. We remark that a moment’s reflection confirms that this
poset is �-closed. Moreover, it is <�+-strategically closed (see [3]). In particular, it
preserves cardinals up to �+.

Theorem 3.1. Assume ∞-SCFA � �2 and let P0 be the forcing notion defined above
for adding a ��1-sequence. Then, �P0 ∞-SCFA � �2. In particular, if the existence of
a supercompact cardinal is consistent with ZFC then ∞-SCFA � �2 + ��1 is consistent
as well.

Before proving this theorem, we need to define one more poset. Recall that if
G ⊆ P0 is generic and �CG = 〈Cα | α ∈ �+ ∩ Lim〉 is the generic ��-sequence added
by G then for any cardinal � < � we can thread the square sequence via the following
poset, TG,� . Conditions are closed, bounded subsets c ⊆ �+ so that c has order type
< �, and for all limit points 
 ∈ c we have that 
 ∩ c = C
 . See [4, Section 6] and
[18, p. 7] for more on this threading poset. The point is the following.
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10 COREY SWITZER AND HIROSHI SAKAI

Fact 3.2 ( [4, Lemma 6.9]). Let � < � be cardinals, P0 the forcing notion described
above for adding a ��-sequence and ṪĠ,� be the P0-name for the forcing to thread the
generic square sequence with conditions of size < �. Then, P0 ∗ ṪĠ,� has a dense
< �-closed subset.

We can now prove Theorem 3.1.

Proof. We let P0 be the forcing described above for adding a ��1 -sequence (so
� = �1). Let � = ℵ1 so in V P0 the threading poset Ṫ := ṪĠ,ℵ1

consists of countable
closed subsets of �2. We want to apply Theorem 1.10 to P0. Note that if Q̇ is a
P0-name for an ∞-subcomplete above�2 forcing notion, then Ṫ = ṪĠ,ℵ1

is absolute

between V P0 and V P0∗Q̇ by Lemma 2.4 (2).

Claim 3.3. It is enough to show that for any P0-name Q̇ for a forcing notion which
is ∞-subcomplete above �2, the three step P0 ∗ Q̇ ∗ Ṫ is ∞-subcomplete above �2.

Proof of Claim. This is becauseT adds a lower bound to j“G as described in the
statement of Theorem 1.10. In more detail, let Q̇ be a P0-name for a forcing notion
which is ∞-subcomplete above �2, we want to show that for Ṙ = Ṫ the hypotheses
of Theorem 1.10 are satisfied assuming that P0 ∗ Q̇ ∗ Ṫ is ∞-subcomplete above �2.
Since this is exactly the first clause we only need to concern ourselves with the second
one. Recall that, relativized to this situation, this says that if j : V → N is a generic
elementary embedding, 
 ≥ |P0 ∗ Q̇ ∗ Ṫ|+ is regular in V and

a) HV
 is in the wellfounded part of N;
b) j“HV
 ∈ N has size �1 in N;
c) crit(j) = �2;V

d) There exists a G ∗H ∗K in N that is (HV
 ,P0 ∗ Q̇ ∗ Ṫ)-generic.
Then, N believes that j“G has a lower bound in j(P0).
So fix some 
 and j : V → N as described in a) to d). Note that j“G = G by

c) and the fact that G is coded as a subset of �V2 . Thus, it suffices to find a lower
bound of G in j(P0). The point is now though that since G ∗H ∗K ∈ N we can,
in particular, form

⋃
K ∈ N which is a club subset of �V2 = supp∈G dom(p) and

coheres with all of the elements of G, and hence (
⋃
G) ∪ 〈�V2 ,

⋃
K〉 is as needed. �

Let us now show that P0 ∗ Q̇ ∗ Ṫ is ∞-subcomplete above �2. Let � > 
 be
sufficiently large cardinals and � : N̄ ≺ N = L�[A] ⊇ H
 be as in the definition
of ∞-subcompleteness above �2. Let �(P̄0,

˙̄Q, ˙̄T) = P0, Q̇, Ṫ. Let Ḡ ∗ H̄ ∗ K̄ be
P̄0 ∗ ˙̄Q ∗ ˙̄T-generic over N̄ . There are few things to note. First, let us point out
that Ḡ and K̄ are (coded as) subsets of �̄2, the second, uncountable cardinal from
the point of view of N̄ (so �(�̄2) = �2). Next note that P0 ∗ Q̇ ∗ Ṫ is isomorphic
to P0 ∗ Ṫ ∗ Q̇ since both Q̇ and Ṫ are in V P0 , and the same for the “bar” versions
in N̄ (i.e., we have a product not an iteration for the second and third iterands).
Now, note that since P0 ∗ Ṫ has a �-closed dense subset, �“Ḡ ∗ K̄ has a lower bound
(in N), say (p, t) (t is in the ground model and the �-closed dense subset is simply
the collection of conditions whose second coordinate is a check name decided by p).
By �-closedness (which again is implied completeness) (p, t), forces that there is
a unique lift of � : N̄ ≺ N to some �0 : N̄ [Ḡ ] ≺ N [G ] with �0(Ḡ) = G for any
P0-generic G � p (technically we need to work in the extension by P0 ∗ Ṫ, but we
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SEPARATING SUBVERSION FORCING AXIOMS 11

only want to specify the embedding of the P̄0 extension). Fix such a G (from which
�0 is defined) and work in V [G ]. Note that �0“K̄ = �“K̄ has t ∈ N as a lower
bound. Now, in V [G ] (NOT V [G ][K ]), we have that Q := Q̇G is ∞-subcomplete
above �2 as P forced this to be so by assumption. Therefore, in V [G ], we can apply
the definition of ∞-subcompleteness to �0 : N̄ [Ḡ ] ≺ N [G ] to obtain a condition
q̇G := q ∈ Q so that if H � q is Q-generic over V [G ] then in V [G ][H ] there is a
�1 : N̄ [Ḡ ] ≺ N [G ] so that �1(Ḡ, P̄0,

˙̄QḠ , ˙̄TḠ) = G,P0,Q,T, where T ∈ V [G ] is ṪG ,
�1“H̄ ⊆ H, and �1 � �̄2 = � � �̄2. Note also that by condensation we have that
N̄ = L�̄[Ā] and hence we can ensure that �1 � N̄ : N̄ ≺ N . Let us denote by �2 this
restriction �1 � N̄ . As this is an element of V [G ][H ] there is, in V a P0 ∗ Q̇-name
for this embedding, which we will call �̇2.

Now, by the first observation above, we know that since Ḡ and K̄ are coded as
subsets of �̄2 so it must be the case that in fact �2 � Ḡ = � � Ḡ and idem for K̄ .
In particular, (p, t) is still a lower bound of �1“Ḡ ∗ K̄ . But putting all of these
observations together now ensures that the triple (p, q̇, t) ∈ P0 ∗ Q̇ ∗ Ṫ forces that
�2 := �1 � N̄ is as needed to witness that the three step is ∞-subcomplete above �2

as needed. �
Note the following corollary of Theorem 3.1.

Corollary 3.4. The forcing axiom ∞-SCFA does not imply MA+(�– closed)
assuming the consistency of a supercompact cardinal. In particular, ∞-SCFA does
not imply SCFA+.

Proof. Begin with a model of ∞-SCFA + 2ℵ0 = 2ℵ1 = ℵ2 (for instance a model
of MM). Force with P0 to preserve these axioms and add a ��1 -sequence. Then,
∞-SCFA � �2 and ��1 hold in the extension by Theorem 3.1. But, since P0 does
not collapse cardinals (by 2ℵ1 = ℵ2) or add reals, the continuum is still ℵ2 hence
∞-SCFA holds yet MA+(�-closed) fails since this axiom implies that �κ fails for all
κ (see [5]. �

3.2. The general case. The proof of Theorem 3.1 can be generalized in many
ways. Observe that very little about P0 and Ṫ were used. In fact, essentially the same
proof as above really shows the following general metatheorem.

Theorem 3.5. Let � be an uncountable cardinal. Let P be a poset whose conditions
as well as any generic G can be coded by subsets of �+ and let Ṙ be a P-name for a
poset which is forced to be so that all of its conditions and any generic K are coded by
subsets of �+. Assume moreover, that P ∗ Ṙ has a �-closed dense subset and �P Ṙ ⊆ V
i.e., all of the elements of Ṙ are in the ground model5. Then, for every Q̇ a P-name for
a ∞-subcomplete above �+ poset the poset P ∗ Q̇ ∗ Ṙ is ∞-subcomplete above �+.

Consequently, if P ∗ Q̇ ∗ Ṙ satisfies (2) of Theorem 1.10 and ∞-SCFA � �+ holds
then P preserves ∞-SCFA � �+.

Proof. This is really just an abstraction of what we have already seen. Let � > 

be sufficiently large cardinals and � : N̄ ≺ N = L�[A] ⊇ H
 be as in the definition
of ∞-subcompleteness above �+. Let �(P̄, ˙̄Q, ˙̄R, �̄) = P, Q̇, Ṙ, �. Let Ḡ ∗ H̄ ∗ K̄ be

5For instance, in the case of Theorem 3.1, this follows from the strategic closure.
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12 COREY SWITZER AND HIROSHI SAKAI

P̄ ∗ ˙̄Q ∗ ˙̄R-generic over N̄ . As in Theorem 3.1, note that first of all Ḡ and K̄ are
(coded as) subsets of �̄+ (note �̄+, the successor of �̄ as computed in N̄ is the same
as �̄+, the preimage of �+ under � by elementarity). Next, note that P ∗ Q̇ ∗ Ṙ is
isomorphic to P ∗ Ṙ ∗ Q̇ since both Q̇ and Ṙ are in V P, and the same for the “bar”
versions in N̄ (i.e., we have a product not an iteration for the second and third
iterands), just as before. Now, note that since P ∗ Ṙ has a �-closed dense subset,
there is a condition (p, t) ∈ P ∗ Ṙ forcing �“Ḡ ∗ K̄ to be contained in the generic
and moreover, this condition is a lower bound on �“Ḡ ∗ K̄ by elementarity: since N̄
thinks P̄ ∗ ˙̄R has a �-closed dense subset densely many of the conditions in Ḡ ∗ K̄
are in this set and hence their images are in the real �-closed dense subset of P ∗ Ṙ
which in turn implies that we can find the lower bound. Note this condition (p, t) is
in N and by the assumption that Ṙ is forced to be contained in the ground model,
we can assume that t ∈ V (and in fact in N). It follows that (p, t) forces that there
is a unique lift of � : N̄ ≺ N to some �0 : N̄ [Ḡ ] ≺ N [G ] with �0(Ḡ) = G for any
P-genericG � p (technically we need to work in the extension by P ∗ Ṙ, but we only
want to specify the embedding of the P̄ extension). Fix such a G (from which �0 is
defined) and work in V [G ]. Note that �0“K̄ = �“K̄ and, as already stated, t ∈ N is
a lower bound. Since Q := Q̇G was forced to be ∞-subcomplete above �+, working
in V [G ], we can apply the definition of ∞-subcompleteness to �0 : N̄ [Ḡ ] ≺ N [G ]
to obtain a condition q̇G := q ∈ Q so that if H � q is Q-generic over V [G ] then in
V [G ][H ] there is a �1 : N̄ [Ḡ ] ≺ N [G ] so that �1(Ḡ, P̄, ˙̄QḠ , ˙̄RḠ ) = G,P,Q,R, where
R ∈ V [G ] is ṘG , �1“H̄ ⊆ H, and �1 � �̄+ = � � �̄+. Note also that by condensation,
we have that N̄ = L�̄[Ā] and hence we can ensure that�1 � N̄ : N̄ ≺ N . Let us denote
by �2 the embedding �1 � N̄ and let �̇2 be a P ∗ Q̇-name for �2 in V.

Now, Ḡ and K̄ are coded as subsets of �̄+ by assumption. Therefore, it must
be the case that in fact �1 � Ḡ = � � Ḡ and idem for K̄ - note the subtlety here
K̄ is not in N̄ [Ḡ ] but is a subset of it. In particular, (p, t) is still a lower bound
in �1“Ḡ ∗ K̄ . But putting all of these observations together now ensures that the
triple (p, q̇, t) ∈ P ∗ Q̇ ∗ Ṫ forces that �̇2 is as needed to witness that the three step is
∞-subcomplete above �+ as needed. �

Before moving to our main application, let us give another one at the level of �2.

Theorem 3.6. Assume ∞-SCFA � �2. The forcing S�2 to add an �2-Souslin tree
preserves ∞-SCFA � �2.

Proof (Sketch). Let S�2 be the standard forcing to add an �2-Souslin tree:
conditions are binary trees p ⊆ 2<�2 of size < ℵ2 ordered by end extension. This
adds an �2-Souslin tree and is �-closed. Let ṪĠ be the canonical name for the tree
added i.e., ifG ⊆ S�2 is generic over V then (ṪĠ)G =

⋃
G . Let Q̇ be a S�2 -name for

a forcing notion which is ∞-subcomplete above �2. As before, it is enough to show
that S�2 ∗ Q̇ ∗ ṪĠ is ∞-subcomplete above�2,where ṪĠ is the name for the tree as a
forcing notion, by essentially the same proof as in the case of Theorem 3.1. However,
that this three step is∞-subcomplete above�2 now follows almost immediately from
Theorem 3.5. �

We have the following corollary similar to Corollary 3.4 above by invoking a
model of ∞-SCFA + 2ℵ0 = ℵ2.
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Corollary 3.7. Assuming the consistency of a supercompact cardinal we have the
consistency of SCFA + ¬CH + ¬TP(�2).

Here, TP(�2) is the tree property at �2 i.e., no �2-Aronszajn trees. This result
contrasts with [22, Corollary 4.1] which shows that under Rado’s Conjecture,
another forcing axiom-like statement compatible with CH, TP(�2) is equivalent
to ¬CH.

The proof of Theorem 3.1, using Theorem 3.5 can be easily generalized to establish
that for any cardinal � adding a �� sequence via P0 preserves ∞-SCFA � �+.

Theorem 3.8. Let � be an uncountable cardinal and assume ∞-SCFA � �+ holds.
If P0 is the forcing from the previous subsection to add a ��-sequence then P0 preserves
∞-SCFA � �+.

Proof. In V P0 let Ṫ := ṪĠ,ℵ1
. We only give the proof of the claim obtained from

Claim 3.3 by replacing �2 with �. The other part of the proof—that the requisite
three step forcing is ∞-subcomplete above �+ is an immediate consequence of
Theorem 3.5.

Suppose j : V → N , 
 and G ∗H ∗K are as in the proof of Claim 3.3. Let

 := (�+)V = supp∈G dom(p). Then,

⋃
K ∈ N is a club subset of 
 and coheres

with all of the elements of G. Note that all initial segments of
⋃
K are countable

sets in V. So K∗ := j“
⋃
K is club in 
∗ := sup(j“
) and coheres with all of the

elements of G∗ := j“G . Hence, (
⋃
G∗) ∪ 〈
∗, K∗〉 is a lower bound of j“G in

j(P0). �

Putting all of these results together we get the following.

Theorem 3.9. Let 2ℵ0 ≤ � ≤ κ < � = κ+ be cardinals with �� < �. Modulo the
existence of a supercompact cardinal ∞-SCFA � �+ ¬∞-SCFA � � is consistent.

Proof. By Theorem 3.8, we know that ∞-SCFA � � is consistent with �κ hence
it suffices to see that ∞-SCFA � � implies the failure of �κ, but this is exactly the
content of Theorem 2.8 above. �

§4. Separating MM from SubPFA. In this section, we prove the following result.

Theorem 4.1. Assume there is a supercompact cardinal. Then, there is a forcing
extension in which ∞-SubPFA holds but MM fails. In particular, modulo the large
cardinal assumption, ∞-SubPFA does not imply MM.

The idea behind this theorem is a combination of the proof technique from [1,
Theorem 2.6] and the proof of Theorem 3.1. Starting from a model of MM, we will
force to add a nonreflecting stationary set to 2ℵ0 (= ℵ2 since MM holds). This kills
MM by the results of [5] but will preserve ∞-SubPFA by an argument similar to that
of [1, Theorem 2.6]. In that paper Beaudoin proves that in fact PFA is consistent
with a nonreflecting stationary subset of any regular cardinal κ. The interesting
difference in the subproper case is that ∞-SubPFA (in fact SCFA) implies that there
are no nonreflecting stationary subsets of any cardinal greater than the size of the
continuum, see Theorem 2.8 above. In short, PFA is consistent with a nonreflecting
stationary subset of every regular cardinal κ while ∞-SubPFA is only consistent
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14 COREY SWITZER AND HIROSHI SAKAI

with a nonreflecting stationary subset of �2. We begin by recalling the relevant
definitions.

Definition 4.2. Let κ be a cardinal of uncountable cofinality and S ⊆ κ. For a
limit ordinal α < κ of uncountable cofinality, we say that S reflects to α if S ∩ α is
stationary in α. We say that S is nonreflecting if it does not reflect to any α < κ of
uncountable cofinality.

Fact 4.3 (See [5, Theorem 9]). MM implies that for every regular κ > ℵ1 every
stationary subset of κ ∩ Cof(�) reflects.

Compare this with the following, which was also noted in the proof of Theorem 2.8
above.

Fact 4.4 (See [17, Lemma 6, Section 4]). SCFA implies that for every regular
κ > 2ℵ0 every stationary subset of κ ∩ Cof(�) reflects.

Remark 1. Again, in [17] it is claimed that SCFA implies that the above holds for
all κ > ℵ1, regardless of the size of the continuum. However, this too is incorrect
without CH because of the error.

There is a natural forcing notion to add a nonreflecting stationary subset
S ⊆ κ ∩ Cof(�) for a fixed regular cardinal κ. The definition and basic properties
are given in [3, Example 6.5]. We record the basics here for reference.

Definition 4.5. Fix a regular cardinal κ > ℵ1. The forcing notion NRκ is defined
as follows. Conditions are functions p with domain the set of countably cofinal
ordinals below some ordinal α < κ mapping into 2 with the property that if 
 ≤
sup(dom(p)) has uncountable cofinality then there is a set c ⊆ 
 club in 
 which is
disjoint from p–1(1) = {α ∈ dom(p) | p(α) = 1}. The extension relation is simply
q ≤NRκ p if and only if q ⊇ p.

Proofs of the following can be found in [3].

Proposition 4.6. For any regular κ > ℵ1 the forcing NRκ has the following
properties.

(1) NRκ is �-closed.
(2) NRκ is κ-strategically closed and in particular preserves cardinals.
(3) If G ⊆ NRκ is generic then SG :=

⋃
p∈G p

–1(1) is a nonreflecting stationary
subset of κ.

We neglect to give the definition of strategic closure since we will not need it
beyond the fact stated above, see [4] or [3] for a definition.

Let κ be as above, G ⊆ NRκ be generic over V and let SG :=
⋃
p∈G p

–1(1) be the
generic nonreflecting stationary set. We want to define a forcing to kill SG (this will
be the “Ṙ” in our application of Theorem 1.10). Specifically, we will define a forcing
notion QSG so that forcing with QSG will add a club to κ \ SG and hence kill the
stationarity of SG . Note that since SG is nonreflecting its complement must also be
stationary and indeed has to be fat, i.e., contain continuous sequences of arbitrary
length α < κ cofinally high.

Definition 4.7. Borrowing the notation from the previous paragraph define the
forcing notion QSG as the set of closed, bounded subsets of κ \ SG ordered by end
extension.
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Clearly, the above forcing generically adds a club to the complement of SG thus
killing its stationarity (see [3, Definition 6.10]). It is also �-distributive.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Assume ∞-SubPFA holds (the consistency of this is
the only application of the supercompact). Note that the continuum is ℵ2 and will
remain so in any cardinal preserving forcing extension which adds no reals. Let
P = NRℵ2 ,G ⊆ P be generic over V and work inV [G ]. Obviously, in this model, we
have “there is a nonreflecting stationary subset of ℵ2” and thus MM fails by Fact 4.3.
We need to show that ∞-SubPFA holds.

We will apply Theorem 1.10 much as in the proof of Theorem 3.1. Let Q̇ be a
P-name for an ∞-subproper forcing notion and let Ṙ name QSĠ in V P∗Q̇ (NOT just
in V P - this is different than the proof of Theorem 3.1 and crucial). By exactly the
same argument as in the proof of Theorem 3.1, it suffices to show that P ∗ Q̇ ∗ Ṙ
is ∞-subproper (in V). This is because (2) from Theorem 1.10 follows from the
fact that, borrowing the notation from the statement of that theorem applied to
our situation Ṙ shoots a club through the complement of SG hence j“SG = SG is
nonstationary in its supremum and so has a lower bound in N.

So we show that P ∗ Q̇ ∗ Ṙ is ∞-subproper. This is very similar to the proof of
Theorem 3.1 or even Theorem 3.5 more generally but enough details are different
to warrant repeating everything for completeness. Let � > 
 be sufficiently large
cardinals and � : N̄ ≺ N = L�[A] ⊇ H
 be as in the definition of ∞-subproperness.
Let �(P̄, ˙̄Q, ˙̄R, �̄2) = P, Q̇, Ṙ, �2. Let (p0, q̇0, ṙ0) be a condition in P ∗ Q̇ ∗ Ṙ with
�(p̄0, ˙̄q0, ˙̄r0) = (p0, q̇0, ṙ0). Applying the �-closure of P we can find a P̄-generic Ḡ
over N̄ and a condition p ≤ p0 so that p is a lower bound on �“Ḡ and, letting
α = sup(�“�̄2), we have p(α) = 0 (i.e., p forces α to not be in the generic stationary
set). Let us assume p ∈ G and note that this condition forces �“Ḡ ⊆ G and hence �
lifts uniquely to a �̃ : N̄ [Ḡ ] ≺ N [G ] that �̃(Ḡ) = G and α := sup(�“�̄2) /∈ SG . Let
Q̄ = ˙̄QḠ as computed in N̄ [Ḡ ] and let q̄0 = ˙̄qḠ0 ∈ N̄ [Ḡ ]. Applying the fact that Q̇ is
forced to be ∞-subproper let q ≤ q0 = �̃(q̄0) be a condition forcing that ifH ⊆ Q is
V -generic with q ∈ H then there is a �′ ∈ V [G ][H ] so that �′ : N̄ [Ḡ ] ≺ N [G ] as in
the definition of ∞-subproperness (with respect to �̃). Note that as in the proof of
Theorem 3.1, �′ � N̄ : N̄ ≺ N and �′ � �̄2 = � � �̄2. Let �̃′ : N̄ [Ḡ ][H̄ ] → N [G ][H ]
be the lift of �′, where H̄ = (�′)–1“H .

Claim 4.8. In V [G ][H ], the set SG does not contain a club.

Proof of Claim. Since ℵ2 is the continuum in V [G ] note that �V [G ]
2 remains

uncountably cofinal in V [G ][H ] (though of course it can be collapsed to �1).
Suppose towards a contradiction that SG contains a club and note that since we
chose 
 and � to be sufficiently large with respect to the forcing (and, therefore, in
particular, we can assume H
 contains the powerset of �2) we have N [G ][H ] |=
“∃C which is club and C ⊆ SG”. By elementarity, there is a C̄ ∈ N̄ [Ḡ ][H̄ ] so that

N̄ [Ḡ ][H̄ ] |= C̄ ⊆ S̄G is club,

where H̄ := �′–1H is Q̄-generic over N̄ [Ḡ ] by the definition of ∞-subcompleteness
and the choice of q. But now note that if C = �̃′(C̄ ) then C ∩ α is cofinal in α by
elementarity so α ∈ C but α /∈ SG which is a contradiction. �
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Given the claim, we know that �V2 \ SG is a stationary set in V [G ][H ] and
hence R := ṘG∗H is the forcing to shoot a club through a stationary set. Let R̄ ∈
N̄ [Ḡ ][H̄ ] be ˙̄RḠ∗H̄ . Note that for each 
 ∈ N̄ ∩ �̄2 it is dense (in N̄ [Ḡ ][H̄ ]) that
there is a condition r̄ ∈ R̄ with 
 ∈ dom(r̄). It follows that if K̄ is generic for R̄

over N̄ [Ḡ ][H̄ ] with K̄ � r̄0 := ˙̄rḠ∗H̄ then �̃′“K̄ unions to a club in α \ SG . Since
α /∈ SG we have that r :=

⋃
�̃′“K̄ ∪ {α} is a condition in R which is a lower bound

on �̃′“K̄ and hence r ≤ ṙG∗H0 . Finally, let K � r be R-generic over V [G ][H ]. It is
now easy to check that the condition (p, q̇, ṙ) and �′ � N̄ collectively witness the
∞-subproperness of P ∗ Q̇ ∗ Ṙ so we are done. �

We note that by the same proof adding a nonreflecting stationary set of
� ∩ Cof(�) for larger cardinals �, we can preserve ∞-SubPFA � �. The following,
therefore, holds.

Theorem 4.9. Let 2ℵ0 ≤ � ≤ � < � = �+ be cardinals with �� < �. Modulo the
existence of a supercompact cardinal ∞-SubPFA � � + ¬∞-SubPFA � � is consistent.

The proof of this Theorem finishes the proof of all nonimplications involved in
Main Theorem 1.1.

§5. Conclusion and Open Questions. We view this article, alongside its predeces-
sor [12] as showing, amongst other things, that the continuum forms an interesting
dividing line for subversion forcing: below the continuum the “sub” plays no role as
witnessed by the fact that the same nonimplications can hold as those that hold for
the nonsub versions. Above, it adds considerable strength to the associated forcing
axioms. However, as of now we only know how to produce models of SCFA in which
the continuum is eitherℵ1 orℵ2. The most pressing question in this area is, therefore,
whether consistently SCFA can co-exist with a larger continuum.

Question 2. Is SCFA consistent with the continuum ℵ3 or greater?

We note here that the most obvious attempt to address this question i.e., starting
with a model of SCFA and adding ℵ3-many reals with e.g., ccc forcing, does not
work, an observation due to the first author.

Lemma 5.1. Suppose P is a proper forcing notion adding a real. Then, SCFA fails
in V P.

All that is needed about “properness” here is that being proper implies that
stationary subsets of κ ∩ Cof(�) are preserved. The proof of this is standard and
generalizes the proof of Lemma 2.4 above (swapping subproper for proper and
removing the bound by the continuum).

Proof. AssumeP is proper. Let G be aP-generic filter over V. For a contradiction,
assume SCFA holds in V [G ].

Take a regular cardinal � > 2� inV [G ]. In V, take stationary partitions 〈Ak : k <
�〉 of � ∩ Cof(�) and 〈Di : i < �〉 of �1. In V [G ], take a subset r of � which is not
in V. Let {k(i)}i<� be the increasing enumeration of r.
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By [17, Lemma 7.1 of Section 4]6 in V [G ], there is an increasing continuous
function f : �1 → � such that f[Di ] ⊆ Ak(i) for all i < �. Let α := sup(range(f)).
Then, in V [G ], we have that r = {k ∈ � : Ak ∩ α is stationary in α}.

But the set {k ∈ � : Ak ∩ α is stationary in α} is absolute between V and V [G ]
since P is proper and hence preserves stationary subsets of Cof(�) points. But then
r is in V, which is a contradiction. �

This shows that either SCFA implies the continuum is at mostℵ2 - though given the
results of this paper this seems difficult to prove by methods currently available—or
else new techniques for obtaining 2ℵ0 ≥ ℵ3 are needed, which is well known to be in
general an open and difficult area on the frontiers of set theory.
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[22] V. Torres-Pérez and L. Wu, Strong Chang’s conjecture and the tree property at�2. Topology and
its Applications, vol. 196 (2015), pp. 999–1004.
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KURT GÖDEL RESEARCH CENTER UNIVERSITÄT WIEN
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