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Induced diffusion (ID), an important mechanism of spectral energy transfer due to
interacting internal gravity waves (IGWs), plays a significant role in driving turbulent
dissipation in the ocean interior. In this study, we revisit the ID mechanism to elucidate its
directionality and role in ocean mixing under varying IGW spectral forms, with particular
attention to deviations from the standard Garrett–Munk spectrum. The original interpreta-
tion of ID as an action diffusion process, as proposed by McComas et al., suggests that ID
is inherently bidirectional, with its direction governed by the vertical-wavenumber spectral
slope σ of the IGW action spectrum, n ∝ mσ . However, through the direct evaluation of
the wave kinetic equation, we reveal a more complete depiction of ID, comprising both
a diffusive and a scale-separated transfer rooted in the energy conservation within wave
triads. Although the action diffusion may reverse direction depending on the sign of σ (i.e.
red or blue spectra), the net transfer by ID consistently leads to a forward energy cascade
at the dissipation scale, contributing positively to turbulent dissipation. This supports
the viewpoint of ID as a dissipative mechanism in physical oceanography. This study
presents a physically grounded overview of ID, and offers insights into the specific types
of wave–wave interactions responsible for turbulent dissipation.
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1. Introduction
Internal gravity waves (IGWs) are ubiquitous features of the ocean and are generated
when stratified fluids are perturbed. The oceanic IGW field is primarily energised at
large scales by atmospheric and tidal forcings, and dissipated at small scales. Given the
scale separation between forcing and dissipation, interscale energy transfer is crucial
for sustaining an energy cascade across the IGW continuum. Mechanisms facilitating
this interscale energy transfer include wave–wave interactions (e.g. Hasselmann 1966;
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Figure 1. A resonant wave triad p = p1 + p2 typical of the induced diffusion (ID) mechanism. The angle α

between the wavenumber vector and the vertical is positively correlated with the wave frequency according to
the dispersion relation.

Hasselmann, Saffman & Lighthill 1967), wave-mean/eddy interactions (e.g. Kafiabad,
Savva & Vanneste 2019; Dong et al. 2020, 2023; Savva, Kafiabad & Vanneste 2021;
Delpech et al. 2024), and bottom scattering (e.g. Kunze & Llewellyn Smith 2004). Of
these pathways, wave–wave interactions are regarded in many studies as the dominant
process in the interior of the ocean (Polzin & Lvov 2011; Polzin et al. 2014).

The study of interscale energy transfer via wave–wave interactions was pioneered by
McComas et al. in a series of publications (McComas & Bretherton 1977a; McComas
1977; McComas & Müller 1981a,b). These works posited that interscale energy transfer is
dominated by three types of non-local interactions (i.e. wave triads that are scale-separated
in vertical wavenumber, frequency, or both), namely parametric subharmonic instability,
elastic scattering, and ID. This framework laid the theoretical foundation for finescale
parameterization to infer turbulent dissipation (Henyey, Wright & Flatté 1986; Gregg
1989; Polzin et al. 1995, 2014), but it has recently been shown to be incorrect due to the
overlooked role of local interactions (Dematteis, Polzin & Lvov 2022; Wu & Pan 2023).

The present work focuses on the ID mechanism, one of the three types of non-local
interactions. ID describes the scattering of a high-frequency, high-vertical-wavenumber
wave by a low-frequency, low-vertical-wavenumber wave, resulting in the generation of
another high-frequency, high-vertical-wavenumber wave through resonant interactions.
The dynamics at small scales (represented by p and p2 in figure 1) has been shown
to satisfy a diffusion equation in terms of wave action n (defined as wave energy E
divided by intrinsic frequency ω), driving a diffusive cascade across vertical wavenumber
m (McComas & Bretherton 1977b):

∂n( p)

∂t
= ∂

∂m

[
D33

∂

∂m
n( p)

]
. (1.1)

Here, p = (kx , ky, m) denotes the three-dimensional wavenumber vector. Vertical dif-
fusivity D33, being the dominant component of the three-dimensional diffusion tensor, is
determined by the shear content of the large-scale wave p1 (figure 1). (An alternative per-
spective presented by Lanchon & Cortet (2023) demonstrates that ID conserves the ratios
ω/|m| and k/m2 within a wave triad.) Assuming a stationary large-scale field where n( p1)
and D33 remain constant, McComas & Müller (1981a) evaluated the downscale energy
flux towards higher m using (1.1), assuming a logarithmic correction n ∝ − ln(m) at small
scales to the standard Garrett–Munk (GM) spectrum. Turbulent dissipation is then ap-
proximated by the flux across the dissipation scale, where IGWs become unstable to shear
instability, and break at vertical scales smaller than 10 m. As a result, ID was estimated
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to account for approximately 20 % of the total turbulent dissipation (McComas & Müller
1981a), with the remainder attributed to parametric subharmonic instability.

McComas’s viewpoint on ID is not without problems under closer scrutiny. For the
GM spectrum characterised by n ∝ m0 at small scales (Cairns & Williams 1976), ID
vanishes since the action spectrum displays no gradient in m. While secondary diffusion
can arise from off-diagonal components in the diffusion tensor (Dematteis et al. 2022), the
relative contribution of ID to the total turbulent dissipation is certainly much less than that
postulated by McComas et al. The situations for spectra deviating from GM are even more
elusive, despite being commonly observed in field measurements (Polzin & Lvov 2011).
Since diffusion always acts in the down-gradient direction, ID has the potential to reverse
direction depending on the relative action intensity between the two small-scale waves, p
and p2, in a single triad (figure 1). For an IGW spectrum, this direction is consequently
governed by the sign of the vertical-wavenumber spectral slope σ of the action spectrum
at small scales, n ∝ mσ . Specifically, for a blue or red action spectrum with positive or
negative σ , the action diffusion at small scales corresponds to a backward or forward
cascade, respectively. Does this imply that ID can contribute negatively to turbulent
dissipation? This is a perplexing question, particularly given the long-standing consensus
within the community that ID is a dissipative mechanism, as neither observational nor
numerical evidence has reported a scenario involving a backward ID transfer (e.g. Pan
et al. 2020; Skitka et al. 2024).

Via direct evaluation of the wave kinetic equation (WKE), we now have a clear answer
to the above question: for GM-like spectra adhering to specific spectral forms as detailed
in Appendix A, ID always contributes positively to turbulent dissipation. This finding
arises from the inclusion of a previously unrecognised scale-separated transfer occurring
between the large-scale wave p1 and the two small-scale waves, p and p2 (figure 1).
This is in addition to the well-established diffusive transfer between the two small-scale
waves, p and p2, as described by (1.1). Physically, the scale-separated transfer is a direct
consequence of energy conservation, since the diffusive transfer conserves action but not
energy. Although McComas & Müller (1981b) recognised the indispensable role of scale-
separated transfer in conserving energy within wave triads, computational limitations
in the 1980s necessitated treating the large-scale wave as an ‘external field’ that did
not actively participate in energy/action exchanges with the two small-scale waves. This
simplification allowed for the theoretical reduction of ID to a diffusion problem (1.1), but
it confined attention to the diffusive transfer at small scales for decades thereafter.

Leveraging advancements in high-performance computing, we can now evaluate the
full WKE without adopting heuristic assumptions, thereby enabling exploration of the
complete dynamics of the ID mechanism. The energy flux across a specified vertical
scale emerges as a combined result of both scale-separated and diffusive transfers: for
an action spectrum that is red or blue in m, the diffusive or scale-separated transfer
dominates near the 10 m vertical scale, respectively, leading to a consistently positive
effect on ocean mixing. We conclude by quantifying the relative contribution of ID to the
total turbulent dissipation, and examining the connection between the WKE results and
finescale parameterization.

2. Methodology

2.1. The Wave kinetic equation (WKE)
The WKE describes the evolution of the wave action spectrum under interactions of
weakly nonlinear waves, providing a framework for understanding the energy transfer
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across scales. For IGWs, the WKE is given by

∂n( p, t)

∂t
=

∫∫
4π |V ( p, p1, p2)|2 Fp12 δ(ω − ω1 − ω2) δ( p − p1 − p2) d p1 d p2

−
∫∫

8π |V ( p1, p, p2)|2 F1p2 δ(ω1 − ω − ω2) δ( p1 − p − p2) d p1 d p2.

(2.1)

The right-hand side of (2.1), namely the collision integral, describes the time evolution of
the wave action density at a given wavenumber p due to triad interactions with two other
components, p1 and p2, satisfying the resonant conditions p = p1 ± p2 and ω = ω1 ± ω2.
The functions Fp12 = n1n2 − n p(n1 + n2) and F1p2 = n pn2 − n1(n p + n2) are quadratic
in terms of wave action, where n p is shorthand for n( p, t), n1 for n( p1, t), and so on.
The interaction kernel V has been derived using various methods for hydrostatic (e.g.
McComas 1977; Lvov & Tabak 2001, 2004; Lvov et al. 2010) and non-hydrostatic (e.g.
Olbers 1974, 1976; Müller & Olbers 1975; Labarre et al. 2024b) set-ups. Notably, the
interaction kernel from derivations up to Lvov et al. (2010) has been demonstrated to be
equivalent on the resonant manifold (Lvov, Polzin & Yokoyama 2012).

An important metric to characterise the nonlinearity level of wave–wave interactions
is the normalised Boltzmann rate (Nazarenko 2011; Lvov et al. 2012), which is the ratio
between the linear time scale (wave period) τL and the nonlinear time scale τNL

Bo ≡ τL

τNL = 2π

ω

∂ E/∂t

E
. (2.2)

The normalised Boltzmann rate establishes a criterion for interpreting the WKE results
within specific spectral regimes. Theoretically, the WKE (2.1) is valid only when |Bo| �
1, as implied by the weakly nonlinear assumption underlying wave turbulence theory
(Zakharov, Lvov & Falkovich 1992; Nazarenko 2011).

Although earlier results based on the work of McComas et al. often relied on heuristic
assumptions, such as the (overly) simplified collision integral, recent advances in
high-performance computing have allowed for direct evaluation of the complete collision
integral for general spectral forms (Eden et al. 2019a,b, 2020; Dematteis & Lvov 2021;
Dematteis et al. 2022, 2024; Lanchon & Cortet 2023; Wu & Pan 2023; Labarre et al.
2024a,b). The WKE has since been applied to global datasets of IGW spectra and
benchmarked by finescale parameterization and microstructure observations (Dematteis
et al. 2024), establishing itself as a powerful tool for estimating turbulent dissipation and
improving parameterizations of ocean mixing in general circulation and climate models.
In this work, we follow the numerical method in Wu & Pan (2023) for the evaluation of
the collision integral, with the necessary details described in the next subsection.

2.2. Numerical procedures
To simulate a physical problem representative of oceanic IGWs, we consider a horizontally
isotropic domain with horizontal circular radius 42.4 km and vertical extent 2.1 km.
This vertical extent is chosen to minimise the effects of surface and bottom boundaries,
allowing a focus on IGW interactions in the ocean interior. The wavenumber domain is
discretised using a 128 × 128 log-scale grid in both k and m, with wavenumber ranges
k ∈ [1.5 × 10−4, 1.6 × 10−1] m−1 and m ∈ [3.0 × 10−3, 3.2] m−1. (Results using the log-
scale grid and the previous linear grid (Wu & Pan 2023) do not show a statistically
significant difference upon testing.) This set-up provides a spatial resolution as fine as
40 m horizontally and 2 m vertically.
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The GM-like spectrum (Appendix A) is used as input to the WKE (2.1), specifically
in terms Fp12 and F1p2. At an instantaneous time t , integrating the collision integral in
(2.1) yields ∂n( p)/∂t and consequently ∂ E( p)/∂t . Invoking the conservation of spectral
energy

∂ E(m)

∂t
+ ∂P(m)

∂m
= 0, (2.3)

where ∂ E(m)/∂t = ∫∫
(∂ E( p)/∂t) dkx dky , one can define the downscale energy flux

P(m) across an arbitrary vertical wavenumber m

P(m) =
∫ m

0

∂ E(m′)
∂t

dm′ =
∫ m

0

[∫∫
∂ E(k′

x , k′
y, m′)

∂t
dk′

x dk′
y

]
dm′. (2.4)

Instead of directly resolving turbulent events, the WKE evaluates the energy flux down
to the 10 m vertical scale (represented by the critical vertical wavenumber mc = 0.62
m−1) as an estimate of the energy available for turbulent dissipation (Polzin et al. 2014).
However, interpreting the WKE results near mc is often constrained by potential violation
of the weakly nonlinear assumption (Holloway 1978, 1980). Although recent studies have
shown that P(m) exhibits low sensitivity to m near mc (Wu & Pan 2023; Dematteis
et al. 2024), we choose to further quantify this uncertainty by introducing a spectrum-
specific cutoff vertical wavenumber mcutoff (usually less than mc), up to which no more
than 10 % of waves violate the weakly nonlinear assumption, characterised by |Bo| > 0.2.
It is important to acknowledge the gap between mcutoff, beyond which the WKE becomes
invalid, and mc, at which IGWs become unstable to shear instability. Turbulent dissipation
is approximated as the mean value of the downscale energy flux P(m) over the range
m ∈ [mcutoff, mc], when mcutoff < mc. The difference between the maximum and minimum
values in P(m) over this range is introduced as the uncertainty. When mcutoff > mc, the
WKE can be interpreted up to the dissipation scale without the breakdown of the weakly
nonlinear assumption, thus the uncertainty associated with nonlinearity level becomes zero
(although the choice of mc may also exhibit uncertainty).

To evaluate the relative contribution of ID to the total turbulent dissipation, we isolate
ID triads by applying a selection criterion based on the geometry of individual triads. We
rank the frequencies of each wave component in a triad from high to low as (ωH , ωM , ωL)

and the magnitudes of vertical wavenumbers as (|m H |, |mM |, |mL |). As a scale-separated
mechanism in both ω and m, an ID triad consists of a low-ω, low-m wave, and two high-
ω, high-m waves (figure 1), satisfying ωM/ωL > 4 and |mM |/|mL | > 4. The threshold
value for ‘scale separation’ is defined by a factor 4, as in Dematteis et al. (2024). Similar
selection procedures have been adopted by Eden et al. (2019b) and Wu & Pan (2023).

3. Results
We start with the GM spectrum (Cairns & Williams 1976), then extend to spectra that
deviate from GM, with a focus on the role of ID in turbulent dissipation across varying
spectra. The direction of action diffusion, as described by (1.1), depends on the sign of
σ , which is the vertical-wavenumber spectral slope of the action spectrum, n ∝ mσ . For
GM-like spectra, σ ≡ sm − sω represents the difference between the vertical-wavenumber
and frequency spectral slopes of the energy spectrum in the high-frequency, high-vertical-
wavenumber limit (see Appendix A for a detailed illustration). We consider the range σ ∈
[−0.5, 0.5], corresponding to sm ∈ [−2.5, −1.5] with fixed sω = −2, which is consistent
with the range from global statistics of field measurements (Dematteis et al. 2024). The

1021 A48-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
74

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10749


Y.C. Wu and Y. Pan

energy level E0 = 3 × 10−3 m−2 s−2, as defined in (A1), is kept constant as σ varies to
ensure that the total energy of the IGW field remains unchanged. For comparison with
GM, we present two extreme cases: a red spectrum with σ = −0.5, and a blue spectrum
with σ = 0.5. We then explore the entire range σ ∈ [−0.5, 0.5], followed by a sensitivity
study with respect to the parameters E0 and sω in Appendix B.

In the absence of generation and dissipation of IGWs, energy is conserved within a
finite domain and redistributes through wave–wave interaction, with energy fluxes across
the (spectral) domain boundaries remaining zero. Therefore, the rate of change of spectral
energy density ∂ E/∂t interprets spectral energy transfer within the domain, as shown
in (2.3). Henceforth, we define regimes where ∂ E/∂t < 0 as sources, since their energy
decays over time, supplying energy to other regimes. Conversely, regimes where ∂ E/∂t >

0 are sinks, since their energy increases, accumulating energy. The terms ‘source’ and
‘sink’ follow the conventions of Eden et al. (2019a,b), where they describe the direction
of energy transfer rather than referring to specific generation or dissipation mechanisms.

3.1. The standard GM spectrum
For the GM spectrum characterised by a white action spectrum n ∝ m0 in the high-vertical-
wavenumber limit, spectral energy transfer arising from all triad interactions exhibits
a source between 2 f and 4 f , with sinks at lower and higher frequencies (figure 2a).
The normalised Boltzmann rate (2.2) indicates that the high-m regime is subject to
strong nonlinearity, casting doubt on the validity of the WKE results in this regime
(figure 2c). The corresponding cutoff vertical wavenumber is mcutoff = 0.30 m−1, a factor
of 2 smaller than the critical vertical wavenumber mc = 0.62 m−1. The total turbulent
dissipation estimated by the WKE is P = (8.12 ± 0.26) × 10−10 W kg−1 (figure 2d), in
good agreement with the finescale parameterization prediction PFP = 8 × 10−10 W kg−1,
with the latter computed following the standard procedure described in Polzin et al. (2014).
(These results correspond to a Coriolis frequency f = 7.84 × 10−5 s−1 and a buoyancy
frequency N = 5.24 × 10−3 s−1 (Appendix A), which differ from the values used in Wu &
Pan 2023.) Due to the vanishing gradient of the action spectrum in m, ID contributes
almost no flux, except for some weak secondary diffusion (figures 2b,d), corroborating the
findings of Dematteis et al. (2022).

3.2. A red action spectrum
For a typical red action spectrum characterised by n ∝ m−0.5 in the high-vertical-
wavenumber limit, action and energy are more concentrated at large vertical scales
compared to GM. With total energy held constant, action and energy at small scales
are correspondingly reduced. Spectral energy transfer is dominated by a source between
2 f and approximately 10 f , with a sink below 2 f and a much weaker sink above
20 f (figure 3a). The magnitudes of the source and sinks, along with the downscale
energy flux, are an order of magnitude smaller than those in GM (figures 3a,d). The
weakly nonlinear assumption is better satisfied compared to that for GM, as indicated
by the normalised Boltzmann rate (2.2) (figure 3c). The corresponding cutoff vertical
wavenumber is mcutoff = 0.69 m−1, allowing the WKE results to extend to the dissipation
scale represented by mc = 0.62 m−1 without introducing uncertainty associated with
nonlinearity level as described in § 2.2.

ID exhibits a source above approximately 7 f and two distinct sinks below 7 f
(figure 3b). The two sinks occur in separate regimes relative to the source: the first
sink spreads over intermediate frequencies (ω ≈ 5 f ) and large vertical wavenumbers
(m � 0.1 m−1), while the second sink is concentrated near the inertial frequency (ω ≈ f )
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Figure 2. (a) Spectral energy transfer mω (∂ E/∂t) computed from the WKE (2.1) for the GM spectrum of
the form n ∝ m0 in the high-m, high-ω limit. The prefactor mω is included to preserve variance in the log–log
representation. Energy sources (∂ E/∂t < 0) and sinks (∂ E/∂t > 0) are indicated in red and blue, respectively.
(b) The same as (a), but retaining only the ID mechanism. (c) Normalised Boltzmann rate (2.2), where |Bo| � 1
indicates weak nonlinearity and the validity of the WKE. (d) Downscale energy flux (2.4), shown for all triads
and for ID triads only. Horizontal lines in (a–c) denote frequencies 2 f , 3 f and 4 f . Vertical solid and dashed
lines denote the critical vertical wavenumber mc and the cutoff vertical wavenumber mcutoff, respectively.

and small vertical wavenumbers (m � 0.1 m−1). These three regimes – comprising the
source and the two sinks – reflect the diffusive and scale-separated transfers characteristic
of ID. In particular, the source and the first sink arise from the action diffusion at small
scales described by (1.1), featuring a forward cascade in m accompanied by a backward
cascade in ω. Since this diffusive transfer conserves action, it results in an energy surplus
when moving towards lower frequencies, as energy is given by E = nω, and ω decreases.
(This is more straightforward if we focus on a single triad (e.g. the one in figure 1). In
this case, a red action spectrum leads to a forward diffusive transfer from p to p2. While
action is conserved, i.e. �n = −�n2, energy is not: the energy lost by p is always greater
than that received by p2, i.e. ω �n > ω2(−�n2), since ω > ω2. This results in an energy
surplus between p and p2, where excess energy must be absorbed by the large-scale mode
p1, indicative of a backward scale-separated transfer.) To conserve total energy, excess
energy must be absorbed by the large scale, leading to the formation of the second sink
and enabling a scale-separated transfer that is backward in both m and ω.

Inclusion of both diffusive and scale-separated transfers is crucial to understanding the
full picture of ID, as further illustrated by the ID-driven downscale energy flux P ID(m)
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Figure 3. The same as figure 2 but for a red action spectrum, n ∝ m−0.5 in the high-m, high-ω limit.
(a) mω(∂ E/∂t) × 109, (b) mω(∂ E/∂t) × 109, (c) Normalised Boltzmann rate, (d) Downscale energy flux.

(figure 3d). ID represents a backward cascade with P ID(m) < 0 when m < 0.2 m−1, and
a forward cascade with P ID(m) > 0 when m > 0.2 m−1. The former results from the
scale-separated transfer with the large scale as a sink, and the latter is governed by the
diffusive transfer described by (1.1). At the dissipation scale, the ID-driven downscale
energy flux is dominated by the diffusive transfer with P ID(mc) = (0.07 ± 0.00) ×
10−10 W kg−1, which contributes approximately 16 % of the total turbulent dissipation
Pall(mc) = (0.41 ± 0.00) × 10−10 W kg−1.

3.3. A blue action spectrum
For a typical blue action spectrum characterised by n ∝ m0.5 in the high-vertical-
wavenumber limit, more action and energy are distributed to small vertical scales
compared to GM. Spectral energy transfer is dominated by a source below 4 f , with sinks
below 1.5 f and above 3 f at m � 1 m−1 (figure 4a). The magnitudes of the source and
sinks, along with the downscale energy flux, are an order of magnitude greater than those
in GM (figures 4a,d). Violation of the weakly nonlinear assumption is more pronounced,
as indicated by the normalised Boltzmann rate (2.2) (figure 4c). The corresponding
cutoff vertical wavenumber mcutoff = 0.12 m−1 is significantly smaller than the critical
vertical wavenumber mc = 0.62 m−1, resulting in increased uncertainty associated with
interpreting the WKE results in the strongly nonlinear regime (figure 4d).

ID manifests the reversed scenario relative to the red spectrum case presented in § 3.2.
In particular, the diffusive transfer at small scales is now backwards towards lower m,
1021 A48-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
74

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10749


Journal of Fluid Mechanics

40

20

10

4
3

2

1

ω
/
f

40

20

10

4

3

2

1

ω
/
f

40

20

20

15

10

5

0

10

4
3

2

1

ω
/
f

10−2 10−1 100

10−2 10−1 100

10−2 10−1 100

m (m–1)

m (m–1)

10−2 10−1 100

m (m–1)

m (m–1)

1.010

5

0

0.5

−0.5−5

−10 −1.0

−5

0

1.0

0.5

−0.5

−1.0

0

×10−9

P(
m

) 
(W

 k
g

–
1
)

All triads
ID triads

(a)

(c) (d)

(b)

Figure 4. The same as figure 2 but for a blue action spectrum, n ∝ m0.5 in the high-m, high-ω limit.
(a) mω(∂ E/∂t) × 109, (b) mω(∂ E/∂t) × 109, (c) Normalised Boltzmann rate, (d) Downscale energy flux.

and the scale-separated transfer is forwards, with energy sourced from the large scale to
compensate for the deficit at small scales; see figure 4(b). (In this case, a blue action
spectrum leads to a backward diffusive transfer from mode p2 to mode p in a single
triad (figure 1). The energy required by p is always greater than that supplied by p2, i.e.
ω �n > ω2(−�n2), given that ω > ω2 and �n = −�n2. This results in an energy deficit
between p and p2, which will be compensated for by the large-scale mode p1, indicative
of a forward scale-separated transfer.) However, the regime where the backward cascade
dominates is confined to vertical scales smaller than the dissipation scale (m > 0.8 m−1),
while the forward cascade regime spans a much broader range of m, encompassing both
mcutoff and mc.

The downscale energy flux driven by ID is quantified as P ID = (13 ± 6.5) × 10−10

W kg−1 over the range between mcutoff and mc, accounting for 11 % of the total turbulent
dissipation Pall = (120 ± 63) × 10−10 W kg−1 (figure 4d). Within this range, the forward
scale-separated transfer dominates the ID cascade, with energy fluxed downscale to sustain
turbulent dissipation. As a result, despite its reversed direction relative to the red spectrum
case, ID continues to act as a dissipative mechanism.

4. Discussion and conclusion
We begin by elaborating on and summarising the role of ID in ocean mixing for spectra
deviating from the GM spectrum. At any given vertical wavenumber, the energy flux
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Figure 5. Conceptual models of ID for a resonant wave triad p = p1 + p2. The large-scale, near-inertial wave
p1 has an oppositely signed vertical wavenumber and thus appears to the left of the m = 0 axis (figure 1). (a)
McComas’ model illustrating a diffusive transfer from p to p2 at small scales, while the large-scale wave p1
remains stationary. (b,c) Our extension of the model for red (σ < 0) and blue (σ > 0) action spectra, n ∝ mσ ,
respectively. In both cases, a diffusive transfer (between p and p2) and a scale-separated transfer (involving
p1) are highlighted, presenting ID as a broadband process rather than one confined to small scales. Red,
blue and grey dots denote energy sources, sinks and stationary states, respectively. Yellow arrows indicate
the direction of energy transfer. Turbulent dissipation is approximated by the downscale energy flux across the
critical vertical wavenumber mc.

comprises two components: a diffusive transfer described by (1.1), and a scale-separated
transfer associated with energy absorption or compensation by the large scale. To facilitate
energy fluxes across the dissipation scale represented by mc and contribute to mixing, the
diffusive transfer must involve triads with two high modes on each side of mc, and the
scale-separated transfer must involve triads with a low mode below mc and two high modes
above mc. A complete picture of ID in the spatiotemporal domain is illustrated in figure 5.
For red spectra with σ < 0 in n ∝ mσ , the diffusive transfer dominates near mc, driving a
forward cascade towards dissipation. As σ increases and passes zero (which corresponds
to blue spectra with σ > 0), the scale-separated transfer becomes more and more important
near mc, where the energy compensation process supplies energy available for dissipation.
While McComas’s original conceptualisation of ID was based on a stationary large-scale
field (figure 5a), our evaluation of the WKE reveals far richer dynamics of ID, in which the
large scale actively participates in the energy cascade, and plays a crucial role in driving
turbulent dissipation (figures 5b,c).

For a comprehensive evaluation of the role of ID across varying spectra, we swept the
entire range σ ∈ [−0.5, 0.5] using step size 0.1. The total turbulent dissipation increases
dramatically with increasing σ , as bluer spectra allocate more energy to small scales and
thus drive stronger turbulent dissipation (figure 6a). The WKE results align well with
the finescale parameterization predictions for spectra that are close to GM. However,
discrepancies increase as the spectra deviate from GM (figure 6a). This may be because
finescale parameterization was primarily developed based on GM, which could lead to
biased shear content estimates when applied to spectra that differ significantly from GM
(Polzin et al. 2014). The relative contribution of ID is quantified as the turbulent dissipation
driven by ID triads normalised by the total turbulent dissipation by all triads. For σ = 0,
i.e. the GM spectrum, P ID/Pall is minimal due to the vanishing of both diffusive and
scale-separated transfers; in this case, ID contributes almost no flux, despite some weak
secondary diffusion (Dematteis et al. 2022; Wu & Pan 2023); see figure 6(b). Apart
from this state, the relative contribution of ID remains consistently positive, and the ratio
P ID/Pall is positively correlated with the deviation |σ |. At the two endpoints, σ = ±0.5,
ID contributes up to 16 % of the total dissipation. Moreover, the estimated uncertainty
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Figure 6. (a) Total turbulent dissipation Pall estimated using the WKE compared with that obtained from
finescale parameterization (FP). (b) Relative contribution of ID, P ID/Pall, as a function of σ ≡ sm − sω.
All results are based on fixed energy level E0 = 3 × 10−3 m−2 s−2 and a constant frequency spectral
slope sω = −2.0. The error bars represent the uncertainty associated with nonlinearity level in Pall(m) and
P ID(m)/Pall(m) over the range m ∈ [mcutoff, mc], if mcutoff < mc. When mcutoff > mc, the uncertainty is zero.

associated with nonlinearity level grows with increasing σ , reflecting the widening gap
between mcutoff and mc.

This study represents a significant step forward in understanding the role of ID in
oceanic mixing. Unlike the empirical approach of finescale parameterization, the WKE
captures the underlying mechanisms of wave–wave interactions, enabling diagnostic
insights such as the role of ID, which constitutes the central focus of this study. Leveraging
the WKE, we address long-standing theoretical gaps and provide a physically grounded
depiction of ID in the spatiotemporal domain, without being restricted to the high-
ω, high-m regime of the spectra, or relying on the diffusion (1.1) as a reduced-order
alternative. By elucidating the dynamics of energy cascade in the IGW field, our findings
offer valuable insights into the specific types of wave–wave interactions responsible for
turbulent dissipation.

We conclude by placing two caveats on the present work. First, the analysis is based
on the instantaneous energy transfer of GM-like spectra. The underlying assumption is
that these spectra remain stationary under balanced forcing and dissipation in the ocean.
An important direction is to examine the evolution of the spectra under wave–wave
interactions within the WKE framework (see the recent work by Labarre, Krstulovic &
Nazarenko 2025). Second, the present study assumes that the spectra retain a power-law
form at small scales, even beyond the dissipation scale mc. In practice, this assumption
may be violated due to dissipative effects, which could result in a damped spectrum tail
beyond mc, and thus affect the interpretation of ID, especially in the case of blue spectra.
A detailed investigation of this problem likely requires simulations of stratified turbulence.
We leave this opportunity to future research.
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Appendix A. The GM spectrum and variations
The spectral representation of oceanic IGWs was first modelled by Peter H. Garrett and
Walter H. Munk in the 1970s in a series of publications (Garrett & Munk 1972, 1975;
Cairns & Williams 1976), providing a statistical and empirical description of the wave
energy distribution based on the frequency and vertical wavenumber of IGWs

E(ω, m) = N

N0
E0 A(m) B(ω), (A1)

where E(ω, m) is the wave energy in the frequency–vertical wavenumber domain. The
factor N/N0 is a stratification scaling, where N and N0 = 5.24 × 10−3 s−1 are the actual
and reference buoyancy frequencies, respectively. The parameter E0 is the energy level of
the IGW field.

Functions A and B in (A1) are separable with respect to m and ω, and are normalised
to integrate to unity such that the total energy is

∫∫
E(ω, m) dω dm = (N/N0)E0

A(m) ∝ 1
m∗

[
1 +

( m

m∗
)r]sm/r

, (A2)

B(ω) ∝ ω sω−2sNI
(
ω2 − f 2

)sNI
, (A3)

where m∗ = π j/b is the characteristic vertical wavenumber, j is the mode number, and b
is the stratification scale height. The parameter r controls the steepness of the transition
from the low-m plateau to the high-m power-law regime; r = 2 is commonly used, as
alternative values are rarely confirmed observationally. The Coriolis or inertial frequency
f = 2Ω sin ϕ is a function of latitude ϕ, where Ω = 7.29 × 10−5 s−1 is the Earth’s
rotational angular velocity. The spectrum is characterised by three spectral slopes: sNI
in the near-inertial frequency limit, sω in the high-ω limit, and sm in the high-vertical-
wavenumber limit. Common to all variations of GM is the presence of an inertial peak
and red spectra in both ω and m, signifying a concentration of energy near the inertial
frequency and in low vertical modes (Polzin & Lvov 2011).

For the standard GM spectrum described in Cairns & Williams (1976), the parameters
are j = 4 and b = 1300 m, so m∗ = 0.01 m−1. The buoyancy frequency is N = N0 =
5.24 × 10−3 s−1, and the Coriolis frequency is f = 7.84 × 10−5 s−1, corresponding to
the latitude ϕ = 32.5◦ for mid-latitude oceans. The energy level is E0 = 3 × 10−3 m−2

s−2. The three spectral slopes are sω = sm = −2 and sNI = −0.5.
The energy spectrum given by (A1) follows power-law scaling in the high-ω, high-

m regime, expressed as E(ω, m) ∝ ωsωmsm . This corresponds to an action spectrum
n(k, m) ∝ ksω−2msm−sω . The conversion adheres to the relationship

n(k, m) = E(k, m)

ω
= E(ω, m)

2πkω

∂ω

∂k
= E(ω, m)

2πkω

N 2 − ω2

k2 + m2 . (A4)

Appendix B. Sensitivity study to parameters E0 and sω
The results presented in § 3 are based on fixed values for the energy level E0 = 3 × 10−3

m−2 s−2 and the frequency spectral slope sω = −2.0, with ‘scale separation’ defined at
a factor 4. To validate our conclusions across a broader parameter space, a sensitivity
study has been conducted (figure 7). When the frequency spectral slope is held fixed at
sω = −2.0 (figures 7a,b), the effect of E0 on the relative contribution of ID to the total
turbulent dissipation P ID/Pall vanishes for the two reddest spectra (σ �−0.4). In this
regime, the weakly nonlinear assumption holds up to the dissipation scale (mcutoff > mc),
so the downscale energy flux is evaluated solely across a constant mc. As a result, E0
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Figure 7. Relative contribution of ID to the total turbulent dissipation, P ID/Pall, as a function of σ ≡ sm − sω,
for cases with ‘scale separation’ defined at factor (a,c) 2 and (b,d) 4. (a,b) Results for varying energy levels E0
with fixed frequency spectral slope sω = −2.0. (c,d) Results for varying sω with fixed E0 = 3 × 10−3 m−2 s−2.

factors out when evaluating P ID/Pall. In contrast, the effect of E0 becomes increasingly
prominent for bluer spectra when mcutoff < mc. The greater the value of E0, the wider the
separation between mcutoff and mc, introducing increased uncertainty in the prediction of
turbulent dissipation using the WKE.

Despite the influences of E0 and sω, the main conclusion of this study remains robust,
even under a less stringent definition of ‘scale separation’ (i.e. a factor 2; see figures 7a,c).
When both diffusive and scale-separated transfers are considered, ID always contributes
positively to turbulent dissipation and acts as a dissipative mechanism.
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