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Abstract

To address the complexity and excessive reliance on expert experience in tuning fuzzy
Proportional-Integral-Derivative (PID) controller parameters, this study proposes a variable-rate
spraying control system that integrates an improved Beetle Antennae Search (IBAS) algorithm
with fuzzy PID control. To evaluate the feasibility of the system, a mathematical transfer
function of the variable-rate spraying system was constructed, and a flow control simulation
platform was established for simulation analysis. To overcome the limitations of conventional
BAS, which is prone to premature convergence and limited search precision, the IBAS algorithm
was developed. The improvements include a hybrid disturbance strategy to enhance individual
search capability and a simulated annealing mechanism to prevent the algorithm from being
trapped in local optima. Using the IBAS algorithm, the proportional and quantization factors of
the fuzzy PID controller were optimized offline to obtain the optimal parameters. The IBAS-
fuzzy PID controller was then compared in simulation with conventional PID, fuzzy PID, and
BAS-optimized fuzzy PID controllers. The simulation results demonstrated that the IBAS-fuzzy
PID algorithm achieved higher flow control accuracy than existing methods. To further validate
the effectiveness of the improved algorithm under practical conditions, field experiments were
conducted. The results indicated that the IBAS-optimized fuzzy PID controller outperformed the
three other control methods in terms of flow control accuracy. Overall, both simulation and field
results confirm that the proposed IBAS algorithm for fuzzy PID parameter optimization
significantly enhances response speed, control precision, and overshoot reduction, providing a

novel approach and potential application for variable-rate spraying technology.

Keywords: Beetle antennae search algorithm; fuzzy PID control; parameter optimization;
variable-rate spraying.
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Introduction

Weed management remains one of the major challenges in modern agriculture, profoundly
influencing both crop yield and quality. Weeds are generally defined as plants that grow where
they are not desired and compete with crops for essential resources, thereby constraining
sustainable agricultural development (Sachin et al. 2024). Globally, weeds are recognized as a
dominant factor limiting crop productivity, accounting for an estimated 37% of total yield losses,
compared with 29% and 22% caused by insect pests and plant diseases, respectively (Demjanova
et al. 2009). In this context, exploring diversified cropping systems and developing site-specific
or variable-rate spraying technologies have become crucial strategies to enhance crop

productivity and promote efficient, sustainable weed control (Wang et al. 2025).

The soybean [Glycine max (L.) Merr.]-maize (Zea mays L.) strip intercropping system has
evolved from traditional intercropping and relay-cropping practices (Monteiro and Santos 2022).
During the growing period, the temporal and spatial complementarity between maize and
soybean enables more efficient utilization of light, water, and nutrients, thereby improving
overall crop yield (Chen et al. 2025). Weeds hinder the growth of crops by competing with the
plants for water, nutrients and sunlight, which results in large losses in crop production (Anténio
Monteiro et al. 2022). Therefore, in the soybean—-maize intercropping system, the
implementation of variable-rate spraying technology is essential for improving crop yield.
Traditional spraying practices typically apply a uniform pesticide rate across the entire operation
area in a single continuous pass. However, this approach does not take into account the spatial
variability and distribution differences of weeds, pests, and diseases within the field. As a result,
the amount of active ingredients applied is often insufficient in areas with severe infestations,
while excessive in areas with light or no infestations (He 2020). Under such traditional spraying
practices, pesticide application can easily lead to serious environmental contamination and
considerable chemical waste (He 2018). Variable-rate spraying technology, by contrast, can
precisely adjust the herbicide application rate according to weed and pest distribution, vehicle
speed, and crop growth status, effectively addressing the shortcomings of traditional spraying
methods (Wen et al. 2018).
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Variable-rate spraying technology can generally be classified into three main types:
pressure-regulated control, liquid concentration-regulated control, and pulse-width modulation
(PWM)-based control (Abbas et al. 2024; Zhang et al. 2024). Pressure-based variable-rate
spraying achieves variable application by altering the internal pipeline pressure, thereby
changing the spray volume. Zhang et al. (2025) developed a pressure-based variable-rate
spraying system in which spray pressure was regulated by adjusting the pesticide pump voltage;
their study demonstrated that the coefficient of variation in spray distribution reached 16.93%,
which was significantly lower than the 23.76% obtained with the single regulation method.
However, pressure-regulated systems frequently exhibit unstable spray performance and limited
precision. In contrast, liquid concentration-regulated systems typically offer superior spray
quality and higher control accuracy. Liu et al. (2009) designed a real-time mixing variable-rate
spraying system that adjusted pesticide concentration according to crop requirements using a
chemical mixer; tests indicated that liquid uniformity was significantly improved, with a
maximum average relative error of £3%. Jiang et al. (2015) investigated a PWM-based variable-
rate spraying system, testing individual nozzles at different duty cycles and frequencies. Their
findings indicated that once the duty cycle reached a threshold sufficient to stabilize flow, further
increases in duty cycle led to improved spray uniformity both along the boom and in the nozzle’s

travel direction.

With the advancement of information technology (Liu et al. 2021; Wang et al. 2022; Zheng
et al. 2023), novel algorithms have been increasingly adopted for variable-rate spraying control
(He et al. 2024). Sheng et al. (2018) developed a UAV-based variable-rate spraying system that
interpreted prescription maps in real time to obtain target values; a PID control algorithm then
adjusted the duty cycle accordingly to regulate flow rate. Experimental evaluation demonstrated
that the deviation between the theoretical and actual flow rates did not exceed 2.16%, reflecting
precise and stable spray control performance. Hao et al. (2024) designed a pesticide application
machine for a maize-peanut strip intercropping system based on an incremental PID algorithm,
achieving variable-rate application by adjusting the opening of a proportional control valve in
real time. Field trials indicated that the difference between the applied dosage and the theoretical
value was 2.1%. Zhao et al. (2024) introduced the Artificial Bee Swarm (ABS) algorithm into
variable-rate spraying to optimize the PID controller parameters—namely, the proportional gain

(K;), integral gain (K;), and derivative gain (Kgy)—for improved control performance.
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Experimental evaluation demonstrated substantial improvements in suppressing overshoot and
enhancing control accuracy, indicating the effectiveness of the proposed spraying control

strategy.

In summary, conventional PID parameter tuning methods still largely rely on empirical
approaches, which are not only time-consuming but also poorly adaptable to complex dynamic
systems (Song et al. 2022). Fuzzy PID controllers can adjust PID parameters online according to
system error and its rate of change, thereby enhancing control performance, robustness, and
system stability under varying operating conditions (Luo et al. 2024). However, determining the
optimal parameters for fuzzy PID controllers remains a challenging task. To address this issue,
this study employs an improved Beetle Antennae Search (BAS) algorithm to identify the optimal
fuzzy PID parameters. BAS is a nature-inspired optimization method that simulates beetle
foraging behavior, updating candidate solutions based on the differences in objective function
values detected at the two antennae. Although conventional BAS is simple, computationally
efficient, and possesses strong global search capability, it is prone to premature convergence,
sensitive to step size, and exhibits limited adaptability to dynamic or time-varying systems (Ding
et al. 2025). In this study, the IBAS algorithm is applied to optimize fuzzy PID parameters,

thereby enhancing both the control accuracy and robustness of the variable-rate spraying system.
Materials and Methods
Experimental Conditions and Equipment

To evaluate the spraying control performance of the IBAS-fuzzy PID algorithm, field

experiments were conducted from July 4 to July 9, 2025, at the core demonstration site for

soybean-corn strip intercropping in Xuzhou, China. The spraying target was corn. During the
trial period, weather conditions were clear with a wind speed of 1.5 m s™. The maize—soybean

strip intercropping sprayer is shown in Figure 1.
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System Composition and Design
System Composition

The structure and components of the variable-rate spraying system for the maize—soybean strip
intercropping sprayer are illustrated in Figure 2. Due to the differing pesticide tolerances
between maize and soybean, two independent pipeline systems were designed to apply pesticides
separately. To prevent cross-contamination of pesticides, the system employs anti-drift nozzles
(Lechler GmbH, Remshalden, Germany), and soybean nozzles are equipped with protective
covers. During operation, a peristaltic pump (Kamoer, Shanghai, China) delivers pesticide from
the chemical tank through pipelines to the jet mixers (Huamei, Weifang, China). Simultaneously,
a water pump supplies water from the water tank to the jet mixers where it mixes with pesticide,
resulting in a uniformly blended spray solution. Among them, the nozzle spacing is 40 cm for
soybean and 36 cm for maize. The mixed solution then flows through pressure sensors (SGN,
Jiangsu, China), flow sensors (Xinzun Technology, Shandong, China), and High-speed solenoid
valves (AirTAC, Taiwan, China) before being supplied to the anti-drift nozzles. Every three
nozzles constitute a group for pesticide application. The flow and pressure sensors transmit
signals to the variable-rate spraying controller to monitor real-time system flow and pressure.
High-speed solenoid valves serve as the primary actuators in the variable-rate spraying system,
controlling the opening and closing of each individual nozzle. The controller receives pesticide
application commands by analyzing prescription maps and adjusts the PWM duty cycle of the
high-speed solenoid valves accordingly, thereby modulating nozzle flow to achieve variable-rate

spraying.
Hardware Design

In the variable-rate spraying system, an STM32F103ZET6 72MHz (STMicroelectronics, Geneva,
Switzerland) microcontroller was employed as the controller. Signals from the speed, pressure,
and flow sensors were acquired and processed in real time. The PWM duty cycle of the solenoid
valve was adjusted according to a pre-generated prescription map to achieve dynamic regulation
of the spray rate. The prescription map was developed based on the analysis of the leaf area
index (LAI) and plant height of soybean-maize, enabling variable-rate spraying control to be

implemented according to crop growth characteristics. The sensors used include a BRT38-
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V5M4086-RT1 (BRITER, Shenzhen, China) speed encoder, a QDW90A-VD pressure
transmitter with a measurement range of 0-1 MPa, and an OFO6ZAT turbine flow meter with a
range of 5-200 L min™. A 12 V automotive power supply (Chaowei, Zhejiang, China) was used
to provide power to the sensors. The solenoid valves operated at a rated voltage of 12 V, whereas
the output voltage of the microcontroller pins was 3.3 V, insufficient for direct actuation. To
achieve rapid switching, the valves were controlled via a metal-oxide-semiconductor (MOS)
transistor as an electronic switch, driven by the PWM signal from the microcontroller. When the
output pin voltage was 0 V, the transistor remained off; when the voltage was 3.3 V, the
transistor was turned on. Through this configuration, the 12 V power supply could be switched
on and off effectively, allowing the voltage across the solenoid valves to alternate between 0 and
12 V and enabling fast and stable opening and closing of the valves. To protect the transistor
from potential voltage spikes generated when the solenoid valves close, a diode protection circuit
was installed. Figure 3 illustrates the hardware structure of the variable-rate spraying system,

along with the corresponding calculation formulas for each parameter.
Speed Parameter Measurement

The speed encoder is connected to the rear wheel axle of the tractor via a coupling, as illustrated
in Figure 4. The speed encoder outputs an analog voltage signal ranging from 0 to 5 V to the
STM32 microcontroller, corresponding to a rotational speed range of 0-3000 rpm. The analog
voltage is linearly related to the rotational speed, allowing the current travel speed to be
determined based on the measured voltage. Since the STM32 microcontroller can only accept
input voltages between 0 and 3.3 V, an AD conversion voltage module is used to linearly convert
the 0-5 V signal to the 0-3.3 V range, ensuring compatibility with the STM32’s input voltage
limits. Vehicle speed is calculated by the following formula:

3607RA
_ 1
V" "4095 [1]

where, v is vehicle speed (km h™); R is wheel radius (m); and A is the STM32 ADC sampling
value ranging from 0 to 4095.
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Pressure Parameter Measurement

The pressure sensor is installed in the pipeline to monitor whether the internal pressure remains
within a safe range, thereby preventing occurrences such as pipeline rupture, pressure release, or
sudden pressure fluctuations. The pressure sensor is shown in Figure 5. The pressure sensor used
in this study outputs an analog voltage of 0-5 V, similar to the speed sensor, and is processed

using the same method. The pressure is calculated by the following formula:

A
P:(Pmax'Pmin) x m [2]

where, P represents the measured pressure (MPa); P« and P,;, denote the upper and lower
measurement limits of the pressure sensor, which are set to 1 MPa and 0 MPa, respectively; A is
the 12-bit ADC value sampled by the STM32 microcontroller, ranging from 0 to 4095.

Flow Parameter Measurement

The flow sensor is installed in front of the nozzle and behind the solenoid valve. The pressure
regulator stabilizes the internal pipeline pressure to prevent the impact of transient pressure
spikes caused by the rapid opening and closing of the solenoid valve. The installation positions
are shown in Figure 6. The liquid passing through the sensor is sprayed through the nozzle, so
the measured flow rate corresponds to the actual flow rate. A Hall element is a semiconductor
device that is sensitive to magnetic fields. In the flow sensor, the turbine is driven to rotate by the
fluid flow, causing the magnets mounted on the turbine to produce variations in the magnetic
field. These variations are detected by the Hall element and converted into voltage pulse signals.
The pulse frequency is proportional to the flow rate, which allows the actual flow rate to be

determined. The flow rate is calculated by the following formula:

 Nx60
K

[3]

where, Q is the flow rate (L min™); N is the number of pulses counted within one second, and K

is the flow coefficient (540 pulses per liter).
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IBAS-Based Search Algorithm
BAS Algorithm

The beetle antennae search (BAS) algorithm (Jiang et al. 2015) is a heuristic optimization
algorithm inspired by the foraging behavior of beetles in nature. Beetles use their antennae to
sense odors: if the left antenna detects a stronger scent than the right, the beetle moves left, and
vice versa. This process iterates until the beetle finds food. Compared to other optimization
algorithms, BAS is simple and efficient, requiring only one beetle (individual) for searching,
making it more lightweight than particle swarm optimization or genetic algorithms. The

optimization procedure consists of the following three steps:

Step 1: Randomly generate an n-dimensional vector X = (X, X,, X3, ..., X,), and

normalize it to a unit vector:

rand(n,1)

“lrand(n, 1) [4]

where, rand(n,1) represents a random function generating an nx1 vector; c is a unit vector with a

magnitude of 1.

Step 2: Define X, and X, as the left and right antenna coordinates, respectively, A as the

centroid coordinate, and d, as the distance between the two antennae:

X]:X+d0 *c
{ 51

Xr:X-do *c

Step 3: Determine the moving direction and find the next position. For the fitness function
f the responses at the left and right antennae positions are computed as fieq = (X)) and fiign=
f(X,). The beetle advances by a distance of step in the direction of the antenna corresponding to
the higher fitness value; specifically, if fi.;>f,qn, it moves toward the left antenna, otherwise, it

moves toward the right antenna:

{Xm:Xt+5tep*n0r(X1-Xr), flei>Tright [6]

Xir1=X-step*nor(X;-X,), fleft<fright
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where, step denotes the search step size; t is the iteration number; f(X;) and f(X,) represent the
odor intensities sensed by the beetle’s left and right antennae, corresponding to the fitness

function values; and nor(-) denotes the normalization function.
IBAS Algorithm

The traditional BAS algorithm searches by randomly generating direction vectors. However, an
unfavorable initial position may cause premature convergence to a local optimum, limiting the
global search capability. While BAS performs well in low-dimensional problems, its accuracy
and convergence speed decline in high-dimensional scenarios, increasing the likelihood of being
trapped in local optima. To address these issues, this study introduces a chaotic mapping strategy
to optimize the BAS algorithm.

The introduction of chaotic perturbation allows the algorithm to escape local optima by
driving the individual through nonlinear disturbances generated by chaotic sequences when
stagnation occurs. Due to the excellent ergodicity, randomness, and sensitivity to initial
conditions of chaotic sequences, the search process gains increased diversity and dynamics,
enhancing the algorithm’s global optimization capability and convergence speed. Common
chaotic mapping methods (Varol et al. 2022) include Logistic map, Tent map, Chebyshev map,
and Iterative map. This study adopts the Logistic chaotic map due to its superior ergodicity,
randomness, and sensitivity to initial values (Zhang et al. 2024). The calculation formula of the
Logistic chaotic map is as follows:

XnJrlzr*Xn*(1 'Xn) [7]

where, r is the control parameter ranging in (0, 4]; the degree of chaos increases with r, and the
system reaches full chaos when r =4, which is the value used in this study.
X, denotes the state value at the n -th iteration, and x,,; is the next iteration value calculated

based on the current state.

In the BAS algorithm, the search direction is typically generated by normalizing a random
vector. Although this method is simple and efficient, it does not utilize historical optimal
solutions; thus, the search direction relies entirely on random perturbations, resulting in a

stochastic search path. To address this, the present study introduces a Guided Direction
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Perturbation Mechanism, which preserves the exploratory randomness while incorporating the

historical best solution to improve search efficiency. The calculation formula is as follows:

C XbestXcurrent
b=(1-0)* —— -+ oo _rent

| |C| | | |Xbest'xcurrent | |

[8]

b—b 9
1ol [9]

where, ¢ is a random vector sampled from a uniform distribution over (-1,1), X IS the current
global best solution, x.,..n¢ IS the current position of the search individual, and a is the guidance

factor balancing the weights of the guided and random terms, with a=0.2 in this study.

Finally, the vector b is normalized to ensure the perturbation direction is a unit vector,

facilitating decoupling from the step size.

In the basic BAS algorithm, the step size remains fixed throughout the search process. A
small step size in the early stage slows down the search speed, while a large step size in the later
stage may cause oscillations near the optimal solution or lead to entrapment in local optima. To
address this, the present study introduces a dynamic decaying step size factor. A larger step size
is employed during the early phase of the search to broadly explore potential global optima and
accelerate the global search, whereas a smaller step size is used near the optimum in the later

phase to enhance local search precision and improve result stability. The formula is as follows:
step,=step,, *r [10]
r=rt! [11]

where, step, is the initial step size controlling the exploration scale in the early phase, set to 0.5;

r is the step decay factor controlling the convergence rate, set to 0.95; and t is the current

iteration number.

As the iteration count increases, the step size decreases exponentially, satisfying the requirement

of a large step size during early search and a smaller step size during later search.
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In this study, there are five parameters to be optimized. The basic BAS algorithm, with a
dimensionality higher than five, suffers from reduced search accuracy and slower convergence
speed, making it more prone to becoming trapped in local optima during iterations. To address
these issues, the BAS algorithm is enhanced by incorporating the Simulated Annealing (SA)
algorithm, thereby improving the algorithm’s accuracy (Ding et al. 2025). The SA algorithm
introduces stochastic elements into the search process. It accepts inferior solutions with a certain
probability, increasing the likelihood of escaping local optima and achieving a global optimum.

Here, p denotes the probability of accepting a worse solution. The formula is as follows:

1 ’ fneW< fcurrent

= fn -1, rren 12
P {exp (' %ﬂet) ’ fnewZ fcurrent [ ]

T=T,*p' [13]

where, f,... IS the fitness value at the current position, f,.,, is the fitness value at the candidate
updated position, T is the current temperature, T, is the initial temperature, exp(-) denotes the
natural exponential function, B is the temperature decay coefficient, and t is the current iteration
number. As the iteration proceeds, the temperature gradually decreases, reducing the probability

of accepting worse solutions.
IBAS-Optimized Fuzzy PID Control Algorithm
PID Control

The PID controller is a linear feedback controller widely used in various engineering fields due
to its high control accuracy (Nan et al. 2023). Its fundamental principle is to continuously adjust
the controlled object based on the error e(t) between the system’s target value r(t) and the
feedback output y(t), so that the output approaches the target value, ultimately driving the error

toward zero. The error is defined as follows:

e(t) =r(0) - y() [14]

The mathematical model of the PID controller is:
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u(t) = K, *e(t) + K; f e(t) dt + Ky % [15]
0

where, u(t) is the controller output; K, is the proportional gain; K; is the integral gain; and Kg is

the derivative gain.

The classical PID controller is designed for linear time-invariant systems and exhibits poor
control performance for nonlinear or time-varying systems because its three parameters remain
fixed and cannot self-adjust based on system states. To improve the control accuracy and
response speed of the soybean-corn variable rate spraying system, a fuzzy PID controller is

introduced in the control algorithm, allowing the three PID parameters to adaptively change.
Fuzzy PID Control Design

Fuzzy PID control is an improvement over the classical PID. While the classical PID uses the
error as input, the fuzzy PID takes both the error and the rate of change of error as inputs. By
establishing a well-designed fuzzy rule base, the fuzzy controller adjusts the three PID
parameters in real time, enabling effective control of nonlinear or time-varying systems (L.i et al.
2023; Li et al. 2025; Song et al. 2022). The structure of the fuzzy PID controller is illustrated in
Figure 7.

The fuzzy controller designed in this study takes the error and rate of change of the error
between the target flow rate and the actual flow rate as inputs. Through fuzzification, fuzzy
inference, and defuzzification processes, it produces three outputs: AKp, AK;, and AKy. The
input variables e and ec are mapped from their actual ranges to fuzzy domains via quantization
factors K. and K. . The output variables are then mapped back to actual control quantities
through scaling factors K, K,, and K. These outputs are added respectively to the initial PID
parameters Kp, K;;, and Ky;, and fed into the PID controller to achieve adaptive real-time

updating of the PID parameters. The adjustment formulas for the PID parameters are as follows:
KP:KP1+K1 *AKP

K=K tK;*AK, [16]
Kd:Kdl +K3 *AKd
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In this system, the fuzzy controller is designed using MATLAB, with the error e and the
rate of change of the error ec between the target flow rate and the actual flow rate as the input
variables, andAKyp, AK;, and AKy. as the output variables. Based on the actual variation range of
the flow rate in this study, the fuzzy domains of the input linguistic variables E and EC are
defined as [-6,6], while the fuzzy domains of the output linguistic variables AKp, AK;, and AK4
are defined as [-3,3]. The membership functions of the input and output variables, as shown in
Figures 8, are defined using seven fuzzy subsets {NB, NM, NS, ZO, PS, PM, PB}, which
correspond to {Negative Big, Negative Medium, Negative Small, Zero, Positive Small, Positive
Medium, Positive Big}. Each fuzzy subset is represented by a triangular membership function,
which is a common choice due to its simple structure and computational efficiency. The overall

design of the fuzzy controller is illustrated in Figure 9.

The fuzzy rule table constitutes the core of the fuzzy PID controller, serving as the critical
link between the input fuzzy variables and the output control variables. The Mamdani fuzzy
inference method is employed to fuzzify the input variables, mapping them to the corresponding
linguistic variables, and performing fuzzy reasoning based on the established rule table. The

Mamdani inference method offers strong robustness and adaptability.

Based on the actual conditions observed during the variable-rate spraying process and
expert knowledge, the fuzzy rule table is constructed as follows: when the error is large and
changes rapidly, Kp should be increased, K; decreased, and K, increased to enable fast system
response and avoid integral saturation; when the error is large but changes slowly, Ky should be
increased, K; slightly increased, and K; maintained to accelerate convergence and prevent
oscillations; when the error is small but changes rapidly, Ky and K; should be reduced, and K,
increased to prevent overshoot; when the error is small and changes slowly, K; should be
reduced, K; increased, and K, reduced to improve steady-state accuracy. The final fuzzy rule
tables for AKp, AK;, and AK, are presented in Table 1.

In the Mamdani fuzzy inference method, the result of inference is a fuzzy set of output
variables, which cannot be directly applied for control purposes and therefore requires a
defuzzification step to convert it into a precise numerical value. Common defuzzification

approaches include the centroid method, the maximum membership method, and the weighted

https://doi.org/10.1017/wsc.2025.10071 Published online by Cambridge University Press


https://doi.org/10.1017/wsc.2025.10071

average method. Among these, the centroid method is most commonly employed in Mamdani
inference, as it produces smooth and continuous outputs with high control accuracy. Its

expression is given as follows:

\Y G
i= X AK X
AKP . Z 1 [ p( )

- 17
=M, H*AK (x;) 1]

where, nAK,, is the membership degree at sampling point x; is the sampling point; the values of

AKp, AK;, and AK4 can be calculated similarly by the above expression.
IBAS-Optimized Fuzzy PID

In the fuzzy PID control system, the quantization factors K. and K. , as well as the proportional
factors K, K,, and K, are critical parameters that determine the actual regulation performance
of the fuzzy PID controller. Selecting appropriate parameters is of paramount importance (Cao et
al. 2024). However, parameter tuning typically relies on expert experience or trial-and-error
methods, which are inefficient and may fail to achieve optimal system performance, especially
for complex nonlinear systems. To address the main issues in soybean-corn variable-rate
spraying technology and optimize the fuzzy PID controller, this study introduces the Improved
Beetle Antennae Search (IBAS) algorithm to optimize the quantization factors K¢ and K., and
the proportional factors K;, K,, and K5. The fitness function adopted in this study employs a
multi-objective weighted optimization including ITAE, overshoot, and response time. The
objective of the fitness function is to achieve precise spraying, and the IBAS optimization
algorithm is used to find the optimal parameters. The ITAE calculation formula is as follows:
T

ITAE= f t*le(t)dt [18]
0

where, T is the simulation end time, set as T =5 in this study.

This metric reflects the cumulative error throughout the entire response process, with smaller

ITAE values indicating higher control accuracy.

The calculation formula for overshoot (M,) is as follows:
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=T

ymax
M, = = x100% [19]

where, y _is the maximum peak value of the system output; t is the target value.

Overshoot is used to evaluate the stability of the control system and the severity of fluctuations

during the regulation process.
The calculation formula for response time (T,) is as follows:
T, = min{t|[It>t, |e(t)|<6[I]r|} [20]

where, 6 is the tolerance coefficient, set at 5%; T, is the time when the system first enters and

remains within the £5% range of the setpoint; r denotes the reference input signal.

This metric measures the time required for the system to reach steady state, with faster responses
being preferable.

The fitness function formula is as follows:
f(x) = W *ITAE + w,*M,, + w3*Ty [21]

where, w;, w,, and w; are the weights of each performance metric, set as w;=0.5, w,=0.3,

and w;=0.2.

The weighted performance index function designed in this study encompasses key characteristics
such as error, overshoot, and response speed, facilitating ideal system optimization and

improving both response speed and accuracy.
The flowchart of the IBAS-optimized fuzzy PID algorithm is shown in Figure 10 below.
Transfer Function of the Spraying System

The system mathematical model describes the relationships among internal components of the
control system during dynamic processes through mathematical equations. The switching

frequency of the solenoid valve is controlled using PWM. Due to the nonlinear and time-varying
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nature of the variable-rate spraying system, it is necessary to analyze the transfer functions of
each subsystem. The fuzzy PID controller combines the traditional PID controller with fuzzy
logic inference, functioning as a nonlinear adaptive controller. It cannot be represented by a
fixed-structure transfer function since it essentially adjusts fixed PID parameters online. Its core
concept aligns with that of the traditional PID controller; therefore, modeling is still based on the

traditional PID structure. The transfer function is as follows:
Kj
GPID(S) = Kp + ? + Kd*S [22]

In the variable-rate spraying process, the actuator used is a solenoid valve. A solenoid valve
IS an actuator that utilizes electromagnetic force to control the movement of the valve core,
thereby enabling fluid flow switching or regulation. Its main components include an
electromagnetic coil, armature, spring, and valve body. When the coil is energized, the generated
electromagnetic force attracts the armature, overcoming the spring force to move the valve core
and open the valve. When power is cut off, the electromagnetic force disappears, and the spring
resets the valve core, closing the valve. The solenoid valve selected in this study is a switching
type and can be approximately modeled as a first-order lag pure hysteresis system. The transfer

function is given as follows :

Gi(s)=

T+ (23]

where, K is the steady-state gain of the solenoid valve; T is the first-order inertia time constant.

The pressure reducing valve is the core component responsible for maintaining stable
system pressure. In practical systems, the pressure regulation process of the pressure reducing
valve exhibits hysteresis and inertial response. Therefore, it can be simplified as a first-order

system, with the transfer function expressed as follows :

Pin(s) K
Pout(s) B T+1

Ga(s) = [24]

where, Pin(s) is the input pressure; Pout(s) is the output pressure; and K is the system gain of the

pressure reducing valve.
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The pulse-type flow sensor outputs a pulse frequency. To more accurately reflect the
dynamic characteristics of the actual pulse flowmeter, a first-order inertial element is used to

approximate its frequency response. The transfer function is given as follows.

Gs(s) = [25]

T, + 1
where, K is the system gain constant, set to 540; T is the first-order inertia time constant.

Based on the above equations, the system transfer function can be derived as follows:

Gpip(8)*G1(8)*Ga(s)

O GG (97 G979

[26]

Based on the technical parameters of the solenoid valve, pressure reducing valve, and
sensors, the system transfer function was obtained by automatic identification using the System

Identification module in MATLAB and experimental determination of the time constants.

1.56s-0.3
s2+0.84s+7.5e-04

G(s)= [27]

Results and Discussion
Simulation Experiments

The experimental hardware platform consisted of an Intel Core i5-12400F 2.5 GHz CPU (Intel
Corporation, Santa Clara, United States), ASUS RTX4060 GPU (Asustek Computer Inc., Taipei,
Taiwan), and 32 GB of RAM (Kingston Technology Co., Fountain Valley, CA, USA).
Simulations were performed using MATLAB R2023b (Version R2023b, MathWorks, Natick,
United States). The PID, fuzzy PID, BAS-fuzzy PID, and IBAS-fuzzy PID controllers were

simulated and compared.
PID Parameter Tuning

Based on the previous analysis, the time-domain model of the classical PID controller and the
system closed-loop transfer function were obtained. The control system model was established
and simulated in the MATLAB Simulink environment, as shown in Figure 11.
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The PID parameters were tuned using the Ziegler-Nichols (Z-N) method, with the following

procedure:

Determination of the ultimate proportional gain (K,). Pure proportional control was applied by
setting the integral gain (K;) and derivative gain (Ky) to zero, eliminating their interference. A
step input of magnitude 1 was applied, and the proportional gain (K,) was gradually increased
until the system output exhibited sustained oscillations of constant amplitude. When K, = 7, this
condition was met, indicating that only K, was nonzero and equal to the ultimate gain K.
According to Figure 12, the oscillation period T, was 0.26 s.

Based on the Z-N tuning rules, the PID parameters were calculated as K, = 4, K; = 30, and
Kq = 0.13. The Z-N method, proposed by Ziegler and Nichols, summarizes empirical parameter
ratios that are broadly applicable. Using these ratios can shorten rise time and reduce overshoot.
However, the parameters derived from the Z-N table are not necessarily optimal and require

further adjustment to meet specific performance requirements.

The tuned parameter values were input into the PID model for simulation. As shown in Figure 13,
the response curve reaches a peak value of 1.22 at 0.35 s, with an overshoot of 22% and a
response time of 1.38 s. The overshoot mainly results from the large proportional gain causing
response inertia. Previous studies have indicated a correlation between proportional gain and
overshoot (Tsavnin et al. 2022). This PID tuning method is suitable for scenarios prioritizing fast
response but produces relatively high overshoot, necessitating further PID parameter adjustment
to reduce overshoot.

Fuzzy PID Control Model Construction

The fuzzy PID model was established in Simulink by integrating a fuzzy logic controller into the
original PID model, setting the quantization factors K. , K. and proportional factors K, K,, and
K5. The input variables e and de were defined over the domains [-4, 4] and [-3, 3], respectively;
the output variables AKp, AK;, and AK4 were assigned domains of [-24, 24], [-18, 18], and [-1.5,
1.5]. As mentioned previously, the linguistic variables E and EC are defined over the fuzzy
domain [-6, 6], and the output linguistic variables AKp, AK;, and AK, over [-3, 3]. Linear

scaling from the real domain to the fuzzy domain yields quantization and proportional factors of
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K. =2/3, K., =2, K; =8, K, =6, and K5 = 0.5. This approach ensures that the fuzzy controller’s
internal rules and membership functions remain universal while the input and output values
correspond appropriately to the actual system magnitudes. The PID parameters obtained from the
previous section were adjusted and updated into the fuzzy PID controller (Chen et al. 2017). The
fuzzy rule table and membership functions were loaded into the fuzzy logic controller to

complete the fuzzy PID control model construction, as shown in Figurel4.
Simulation Results Analysis

The IBAS algorithm was implemented in MATLAB and integrated with the Simulink control
model for simulation. The IBAS code and key parameters have been provided in the
supplementary materials. The main parameters of IBAS were set as follows: maximum iteration
number of 100, dimensionality of 5, and an initial step size of 0.5. After 100 iterations, the
algorithm outputs the optimal parameter set. Since five parameters require optimization, the
dimensionality is set to five. The initial step size was chosen as 0.5 based on prior studies to
balance search precision and avoid premature convergence; a step size too large reduces

accuracy, while too small increases the risk of getting trapped in local optima.

The previously tuned PID parameters were further optimized, resulting in initial PID values of
Kp =8, Kj= 27, and Ky = 0.13. These optimized parameters were updated in the PID module,
while the five parameter values obtained from the IBAS algorithm were incorporated into the
IBAS-fuzzy PID model for simulation and fitness evaluation. The IBAS-fuzzy PID model is
shown in Figure 15.

The convergence curves of the fuzzy PID quantization factors and proportional factors
during the IBAS optimization iterations are shown in Figurel6. The data reveal clear

convergence characteristics throughout the optimization process.

In the initial stage (iterations 0-20), the quantization factors K., K., and proportional
factors K;, K,, and K; fluctuate significantly. K, rapidly decreases from 0.9 to 0.15, then
gradually rises to 0.42, indicating strong global search capability in the early phase. This allows
exploration of the parameter space with larger step sizes to avoid premature convergence to local

optima. Previous studies have shown that increasing the initial step size in BAS algorithms
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enhances global search ability and effectively prevents early trapping in local optima (Yan et al.
2024).

During the middle stage (iterations 20-35), the parameters gradually approach optimal
values and their variation diminishes, indicating that the IBAS algorithm has entered a local
search phase with a more stable optimization direction. Notably, parameter K, continues to
increase from a lower value, which can be attributed to the simulated annealing mechanism
introducing random jumps. This enables the algorithm to escape local optima and explore better
solutions. Prior research (Ding et al. 2025) confirms that simulated annealing, by accepting
solutions of certain inferior quality with some probability, significantly enhances global search

capabilities, further validating the IBAS algorithm’s advantage in escaping local minima.

In the later stage (iterations 35-100), the five parameters stabilize, demonstrating that the
algorithm has converged and found an approximate global optimum. This result not only
confirms the effectiveness of IBAS in parameter optimization but also provides a reliable
parameter basis for subsequent field experiments. The final optimized parameter values after
iteration completion are K, = 0.85, K., = 0.1, K; =3.57, K, = 4.45, and K5 = 0.32.

To verify the control accuracy of the IBAS-fuzzy PID, simulations were conducted
comparing it with BAS-fuzzy PID, fuzzy PID, and classical PID controllers. A unit step signal
was used as the system input, with a runtime of 5 seconds and a sampling interval of 0.01
seconds. The overshoot, steady-state error, and response time of different control algorithms

were compared. The simulation results are shown in Figure 17.

Based on Figure 13, all four algorithms eventually reach a steady state, demonstrating their
effectiveness. Both PID and fuzzy PID control algorithms exhibit relatively large overshoot and
longer response times during the startup phase. However, fuzzy PID reaches its peak faster than
the traditional PID, as the fuzzy PID dynamically adjusts control parameters in response to error
variations, enabling a more flexible system response and improved speed. This finding is
supported by previous studies (Li et al. 2023). Compared with the BAS algorithm, the IBAS
control algorithm shows significant improvements in both response time and absolute error. This
advantage arises from the IBAS algorithm’s fitness function, which combines multiple weighted

objectives including time-weighted integral of absolute error (ITAE), overshoot, and response
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time, balancing both speed and control accuracy. The effective integration of global and local
search capabilities in IBAS ensures that the algorithm finds optimal solutions within the

parameter space.

As shown in Table 3, the BAS-fuzzy PID algorithm’s maximum response value does not
exceed the set target, resulting in zero overshoot; however, this does not indicate superior
performance compared to IBAS. The IBAS algorithm’s overshoot is 0.002 L min™, which is
closer to the target value. The response time of the IBAS-fuzzy PID controller is 0.56 s,
representing reductions of 54%, 38%, and 14% compared to traditional PID, fuzzy PID, and
BAS-fuzzy PID controllers, respectively. Similarly, the absolute error decreases by 76%, 57%,
and 95%, and the overshoot is reduced by 97% and 96% compared to traditional PID and fuzzy
PID, respectively. In summary, the IBAS-fuzzy PID algorithm exhibits stronger dynamic
adjustment capabilities than the other three methods. With well-tuned parameters, it effectively
reduces system overshoot, shortens settling time, and enhances both steady-state and dynamic

performance, thereby contributing to more precise variable-rate spraying.
System Modeling and Simulation under Disturbance Signals

In practical pesticide application operations, the field environment is complex, often resulting in
significant control deviations or oscillations. Simulation analysis can be used to evaluate the
robustness of the BAS-fuzzy PID control algorithm under disturbance signals, assessing the
algorithm’s resistance to system parameter variations, thereby verifying its practicality and
stability. The IBAS-fuzzy PID control model under disturbance conditions is constructed as

shown in Figure 18.

The PID, fuzzy PID, BAS-fuzzy PID, and IBAS-fuzzy PID models were simulated jointly.
During the simulation, a unit step input signal was applied at = 0 s. At = 3 s, a disturbance
signal—generated by the Signal Generator as a sawtooth wave with amplitude 0.15 and
frequency 15 Hz—was introduced, which stopped at = 3.3 s. The resulting control response

curves are shown in Figure 19.

After the system stabilized, the disturbance caused all four control curves to exhibit varying
degrees of overshoot. The PID control curve reached its peak at point B with an overshoot of
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5.3%, returning to stability at B; (t = 3.75 s). The fuzzy PID curve peaked at point A with an 8.6%
overshoot, stabilizing at A; (t = 3.7 s). The BAS-fuzzy PID curve peaked at point C with 5.6%
overshoot, stabilizing at C; (t = 3.68 s). The IBAS-fuzzy PID curve peaked at point D with the
lowest overshoot of 3.3%, stabilizing earliest at Dy (t = 3.6 s). The IBAS-fuzzy PID algorithm’s
response time improved by 33%, 25%, and 21% compared to PID, fuzzy PID, and BAS-fuzzy
PID, respectively.

The figure also shows that in the initial stage, fuzzy PID had a lower overshoot than
traditional PID. However, after the disturbance, fuzzy PID’s overshoot exceeded that of PID,
illustrating the typical trade-off between response speed and overshoot. In control system design,
enhancing response speed often sacrifices overshoot performance—this classic trade-off means
faster systems risk “overshooting” aggressively, whereas slower systems have smaller overshoot

but longer settling times.

In summary, during disturbance, the IBAS-fuzzy PID control algorithm demonstrates stronger
robustness and faster response speed compared to the other three algorithms, making it more

suitable for field operation scenarios.
Evaluation of Spray Volume Control Accuracy under Different Vehicle Speeds

Field tests on control accuracy were conducted under different driving speeds. Based on the
anti-drift nozzle parameters and prescription values, the spraying range was set between 0.6 and
1.0 L min™, divided into three levels with an increment of 0.2 L min™. To verify the practical
performance of the IBAS-fuzzy PID algorithm, experiments were conducted comparing IBAS-
fuzzy PID, BAS-fuzzy PID, fuzzy PID, and traditional PID algorithms. The sprayer speed was
set 3,4, and 5 km h™ respectively. The code implementations of these four algorithms are
provided in the supplementary materials. For each speed, the relative error between the
theoretical flow rate and the actual flow rate for each algorithm was measured. The relative error
was calculated as follows:

B |Qtarget'Qactual |

ge=——*100% [28]
Qactual

where,Q is the prescribed application rate; Q is the actual application rate.

target actual
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The experimental data are presented in Table 4.

According to Table 4, the average relative errors for PID, fuzzy PID, BAS-fuzzy PID, and IBAS-
fuzzy PID are 9.66%, 8.17%, 6.04%, and 2.77%, respectively.

Under different preset application rates for the same algorithm, the relative error is smallest
at the intermediate value of 0.8 L min™. This is mainly because the actual flow rate is adjusted by
controlling the duty cycle of the solenoid valve. The solenoid valves used in this study exhibit
dead zone effects at low duty cycles and saturation effects at high duty cycles. The dead zone
effect refers to a nonlinear region caused by mechanical structure and valve characteristics,
where small changes in duty cycle do not produce significant flow changes due to insufficient
energy to drive valve movement. Saturation occurs when the valve opening reaches or
approaches its maximum, and further increases in duty cycle do not significantly affect flow.
These effects cause decreased control performance at the extremes of the duty cycle range, while
the middle range (e.g., 0.8 L min™) shows better control accuracy. Related studies have
confirmed this conclusion (Jiang et al. 2015). Future work will focus on selecting higher-

sensitivity high-speed solenoid valves.

Under all four control algorithms, the relative error tends to increase with increasing speed.
This is because higher speeds cause increased pressure in the pipeline system, which raises
control difficulty, leading to larger relative errors at higher speeds. However, the maximum error
of the IBAS-fuzzy PID algorithm is 3.61%, which meets experimental requirements, verifying
the algorithm’s stability and reliability. Similar phenomena of increased control error with
system speed have been reported in the literature (Wang et al. 2022). Further research will focus

on stabilizing pipeline pressure.
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Conclusions

A variable rate spraying control system for soybean was proposed, which regulates the duty
cycle of the solenoid valve based on the real-time flow rate measured at the nozzle, as well as the
error and error change rate relative to the target flow rate, thereby controlling the flow to reach

the desired value.

Simulation results of PID, fuzzy PID, BAS-fuzzy PID, and IBAS-fuzzy PID demonstrated
that the IBAS-fuzzy PID algorithm exhibits faster response and lower overshoot. The IBAS
algorithm incorporates chaotic disturbance and simulated annealing strategies to optimize the
fuzzy PID parameters, yielding K.= 0.85, K., = 0.1, K; = 3.57, K, = 4.45, and K; = 0.32,
significantly reducing flow errors. Compared to PID, fuzzy PID, and BAS-fuzzy PID, the IBAS-
fuzzy PID control algorithm reduced response time by 54%, 38%, and 14%, respectively, and
decreased absolute error by 76%, 57%, and 95%, respectively. When a disturbance signal was
introduced at 3 seconds, the IBAS-fuzzy PID algorithm restored stability 33%, 25%, and 21%

faster than the other three methods, validating the superiority of the proposed algorithm.

Field test results indicated that the designed system improves control accuracy of the
spraying volume and reduces pesticide waste. The average relative errors under PID, fuzzy PID,
BAS-fuzzy PID, and IBAS-fuzzy PID controls were 9.66%, 8.17%, 6.04%, and 2.77%,
respectively. The IBAS-fuzzy PID algorithm achieved the lowest average relative error among
the four, enabling precise variable rate spraying control and demonstrating superior stability in

practical operations.

However, some limitations remain. The designed hardware circuit lacks anti-interference
designs in A/D conversion, crystal oscillator, and microcontroller circuits, leading to unstable
sensor signal reception during field tests. Future work will focus on designing dedicated anti-
interference and lightning protection circuits for sensitive electronic components. Currently, crop
leaf area index data are pre-collected and stored on an SD card for microcontroller reading,
without real-time crop growth data acquisition to enable precision variable-rate spraying.
Integrating deep learning, artificial intelligence, and other technologies to continuously optimize
and improve the variable rate spraying control algorithm, achieving smarter and more efficient

field management, will be the focus of future research.
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(@) (b)

Figure 1. (a) Soybean-Corn strip intercropping sprayer; (b) Schematic diagram of the variable

rate spraying system.
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Figure 2. Structure and components of the soybean-maize variable-rate spraying system: (1)
water tank(1000L); (2) maize pesticide tank(7L); (3) peristaltic pump; (4) jet mixer; (5) chemical
mixer; (6) pressure sensor; (7) flow sensor; (8) anti-drift nozzle; (9) high-speed solenoid valve;
(10) check valve; (11) pressure regulating valve; (12) water pump; (13) protective cover; (14)

soybean pesticide tank(7L); (15) variable-rate controller; (16) speed sensor.
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Figure 3. Composition of variable-rate spraying system hardware structure. RX, TX, ADC, 1/0,
and IC are respectively Receive, Transmit, Analog to Digital Converter, Input/Output, and Input
Capture.
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Figure 4. Schematic diagram of the speed encoder.
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Figure 5. Schematic diagram of the pressure sensor.
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Figure 6. Schematic of the flow sensor installation.
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Figure 7. Structure diagram of the fuzzy PID controller. AKp, AK;, and AK, represent the

!

incremental adjustments to the proportional, integral, and derivative coefficients of the PID
controller. K, and K. are the input scaling factors for the error and error change rate,
respectively, while K, K,, and K; are the output scaling factors for the proportional, integral,

and derivative parameters. E and EC are input linguistic variables.
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Figure 8. (a) Membership functions of input variables e and ec; (b) Membership functions of
output variables AKp, AK;, and AK4. NB, NM, NS, ZO, PS, PM, and PB represent the linguistic
variables Negative Big, Negative Medium, Negative Small, Zero, Positive Small, Positive

Medium, and Positive Big, respectively.
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Figure 9. Design of membership functions using a triangular shape. E and EC are input
linguistic variables. K, denotes the proportional gain. K; denotes the integral gain. Ky denotes the

derivative gain.
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Parameter initialization

1
Logistic imtialization, randomly generating Ke, Kee, K1, K2, K3
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Calculate the current fitness value and update the record
optimum

l

Construct the search direction and generate two solutions

l
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the optimal solution
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Figure 10. Algorithm flowchart. K, and K, are the input scaling factors for the error and error
change rate, respectively, while K;, K,, and K; are the output scaling factors for the

proportional, integral, and derivative parameters.
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Figure 11. PID controller model. K, denotes the proportional gain. K; denotes the integral gain.

Kq denotes the derivative gain.
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Figure 12. The continuous oscillation response curve under proportional integral derivative (P1D)

control.
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Figure 13. The response curve after proportional integral derivative (PID) parameter tuning.
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Figure 14. Fuzzy PID controller model. E and EC are input linguistic variables, while K, Ko,
and Ks are the output scaling factors corresponding to the proportional, integral, and derivative

parameters, respectively.
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Figure 15. IBAS-fuzzy PID model. K, and K, are the input scaling factors for the error and
error change rate, respectively, while K;, K,, and K5 are the output scaling factors for the

proportional, integral, and derivative parameters.
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Figure 16. Iteration curves of parameters optimized by the IBAS algorithm. K, and K, are the
input scaling factors for the error and error change rate, respectively, while K, K,, and K5 are

the output scaling factors for the proportional, integral, and derivative parameters.
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Figure 17. Curves obtained by simulation using four different proportional integral derivative
(PID) control algorithms, the BAS algorithm is the Beetle Antennae Search algorithm, while the

IBAS algorithm is an improved version of the BAS algorithm.
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Figure 18. Simulation model of control system with added disturbance. K, and K, are the input
scaling factors for the error and error change rate, respectively, while K, K,, and K5 are the

output scaling factors for the proportional, integral, and derivative parameters.
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Figure 19. The time required for four different proportional integral derivative (PID) control
algorithms to regain stability under disturbance conditions, the BAS algorithm is the Beetle
Antennae Search algorithm, while the IBAS algorithm is an improved version of the BAS

algorithm.
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Table 1. Fuzzy control rule table.?

EC
: NB NM NS Z0 PS PM PB
PB/NB/ PB/NB/ PM/NM/ PS/ NS/ z0/z0/ ZO [/ 2O/ ZO/NM/
NE PM NS NB NB NM PM NB
PB/NB/ PB/NB/ PM/NM/ PS/ NS/ PS/NS/ zZO/ZO/ NS/ zO /
M PM NS NB NM NM NS Z0
PM/NB PM/NM/ PS/NS/ ZO/NS/ NS/ZO/ NM/PS/ NM/PS/
NS I PM NS NM NM NS NS Z0
PS/NM PS/NS/ ZO/NS/ NS/zO/ zZzO/PS/ NS/PM/ NM/PM/
#0 1Z0O NS NS NS NS NS Z0
PS/NM ZO/NS/ z0/2ZO/ NS/PS/ NS/PS/ NM/PM/ NM/NM/
”S 1Z0O Z0 Z0 Z0 Z0 Z0 Z0
PS/zZ0/ zO/ZO/ NS/PS/ NM/PS/ NM/PM/ NM/PB/ NB/PB/
"M PM PM PS PS PS PS PM
Z0 /20 Z0/2Z0/ NM/PS/ NM/PM/ NM/PM/ NB/PB/ NB/PB/
°e / PB PM PM PM PS PS PM

®NB, NM, NS, ZO, PS, PM, and PB represent the linguistic variables Negative Big, Negative

Medium, Negative Small, Zero, Positive Small, Positive Medium, and Positive Big, respectively.

E and EC are input linguistic variables.
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Table 2. Proportional integral derivative (PID) Parameter tuning table.?

Control Proportional Points time/ Differential ) ] Differential
) b ) Point gain/ K; )

Model gain/ K, T time/ T¢° gain/Ky

PID 0.6K, 0.5T,° 0.125T, Ko /T Kp *Tq

*Tuning PID parameters by empirical method. K, denotes the proportional gain. K; denotes the

integral gain. Ky denotes the derivative gain.

bT; denotes the integral time constant.

“Tq4 denotes the derivative time constant.

9K, is the ultimate gain at which continuous oscillations occur.

®T. is the corresponding oscillation period.
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Table 3. Simulation results of four different proportional integral derivative (PID) control

algorithms.

Control Algorithm  Response Time/s  Overshoot Quantity/(L min™)  Absolute Error (L min™)

PID 1.23 0.075 0.0042
Fuzzy PID 0.9 0.057 0.0023
BAS® fuzzy PID  0.65 0 0.024
IBAS- fuzzy PID  0.56 0.002 0.001

®The BAS algorithm is the Beetle Antenna System algorithm.

®The IBAS algorithm is an improved BAS algorithm.
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Table 4. Flow accuracy test results under different proportional integral derivative (PID) control

algorithms.

Speed/km h Control Algorithm Target value Actual value /L Relative error

/L min™ min™ 1%

0.6 0.66 9.09
PID 0.8 0.87 8.04
1.0 0.92 8.69
0.6 0.65 7.69
Fuzzy PID 0.8 0.75 6.67
3 1.0 0.93 7.52
0.6 0.57 5.26
BAS®-fuzzy PID 0.8 0.84 4.76
1.0 0.95 5.26
0.6 0.59 1.69
IBAS*-fuzzy PID 0.8 0.78 2.56
1.0 1.02 1.96
0.6 0.55 9.09
PID 0.8 0.73 9.58
1.0 111 9.90
0.6 0.66 9.09
Fuzzy PID 0.8 0.86 6.97
4 1.0 0.92 8.69
0.6 0.64 6.25
BAS-fuzzy PID 0.8 0.76 5.26
1.0 0.94 6.38
0.6 0.62 3.22
IBAS-fuzzy PID 0.8 0.82 2.43
1.0 1.03 291

0.6 0.67 10.44

PID 0.8 0.72 11.11
1.0 0.89 11.0
0.6 0.66 9.09
Fuzzy PID 0.8 0.73 9.58
5 1.0 1.09 8.25
0.6 0.56 7.14
BAS-fuzzy PID 0.8 0.75 6.67
1.0 1.08 7.40
0.6 0.58 3.44
IBAS-fuzzy PID 0.8 0.83 3.61
1.0 0.97 3.09

®The BAS algorithm is the Beetle Antenna System algorithm.

®The IBAS algorithm is an improved version of the BAS algorithm.
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