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Abstract 

To address the complexity and excessive reliance on expert experience in tuning fuzzy 

Proportional-Integral-Derivative (PID) controller parameters, this study proposes a variable-rate 

spraying control system that integrates an improved Beetle Antennae Search (IBAS) algorithm 

with fuzzy PID control. To evaluate the feasibility of the system, a mathematical transfer 

function of the variable-rate spraying system was constructed, and a flow control simulation 

platform was established for simulation analysis. To overcome the limitations of conventional 

BAS, which is prone to premature convergence and limited search precision, the IBAS algorithm 

was developed. The improvements include a hybrid disturbance strategy to enhance individual 

search capability and a simulated annealing mechanism to prevent the algorithm from being 

trapped in local optima. Using the IBAS algorithm, the proportional and quantization factors of 

the fuzzy PID controller were optimized offline to obtain the optimal parameters. The IBAS-

fuzzy PID controller was then compared in simulation with conventional PID, fuzzy PID, and 

BAS-optimized fuzzy PID controllers. The simulation results demonstrated that the IBAS-fuzzy 

PID algorithm achieved higher flow control accuracy than existing methods. To further validate 

the effectiveness of the improved algorithm under practical conditions, field experiments were 

conducted. The results indicated that the IBAS-optimized fuzzy PID controller outperformed the 

three other control methods in terms of flow control accuracy. Overall, both simulation and field 

results confirm that the proposed IBAS algorithm for fuzzy PID parameter optimization 

significantly enhances response speed, control precision, and overshoot reduction, providing a 

novel approach and potential application for variable-rate spraying technology. 

Keywords: Beetle antennae search algorithm; fuzzy PID control; parameter optimization; 

variable-rate spraying. 
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Introduction 

Weed management remains one of the major challenges in modern agriculture, profoundly 

influencing both crop yield and quality. Weeds are generally defined as plants that grow where 

they are not desired and compete with crops for essential resources, thereby constraining 

sustainable agricultural development (Sachin et al. 2024). Globally, weeds are recognized as a 

dominant factor limiting crop productivity, accounting for an estimated 37% of total yield losses, 

compared with 29% and 22% caused by insect pests and plant diseases, respectively (Demjanova 

et al. 2009). In this context, exploring diversified cropping systems and developing site-specific 

or variable-rate spraying technologies have become crucial strategies to enhance crop 

productivity and promote efficient, sustainable weed control (Wang et al. 2025). 

The soybean [Glycine max (L.) Merr.]-maize (Zea mays L.) strip intercropping system has 

evolved from traditional intercropping and relay-cropping practices (Monteiro and Santos 2022). 

During the growing period, the temporal and spatial complementarity between maize and 

soybean enables more efficient utilization of light, water, and nutrients, thereby improving 

overall crop yield (Chen et al. 2025). Weeds hinder the growth of crops by competing with the 

plants for water, nutrients and sunlight, which results in large losses in crop production (António 

Monteiro et al. 2022). Therefore, in the soybean–maize intercropping system, the 

implementation of variable-rate spraying technology is essential for improving crop yield. 

Traditional spraying practices typically apply a uniform pesticide rate across the entire operation 

area in a single continuous pass. However, this approach does not take into account the spatial 

variability and distribution differences of weeds, pests, and diseases within the field. As a result, 

the amount of active ingredients applied is often insufficient in areas with severe infestations, 

while excessive in areas with light or no infestations (He 2020). Under such traditional spraying 

practices, pesticide application can easily lead to serious environmental contamination and 

considerable chemical waste (He 2018). Variable-rate spraying technology, by contrast, can 

precisely adjust the herbicide application rate according to weed and pest distribution, vehicle 

speed, and crop growth status, effectively addressing the shortcomings of traditional spraying 

methods (Wen et al. 2018). 
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Variable-rate spraying technology can generally be classified into three main types: 

pressure-regulated control, liquid concentration-regulated control, and pulse-width modulation 

(PWM)-based control (Abbas et al. 2024; Zhang et al. 2024). Pressure-based variable-rate 

spraying achieves variable application by altering the internal pipeline pressure, thereby 

changing the spray volume. Zhang et al. (2025) developed a pressure-based variable-rate 

spraying system in which spray pressure was regulated by adjusting the pesticide pump voltage; 

their study demonstrated that the coefficient of variation in spray distribution reached 16.93%, 

which was significantly lower than the 23.76% obtained with the single regulation method.  

However, pressure-regulated systems frequently exhibit unstable spray performance and limited 

precision. In contrast, liquid concentration-regulated systems typically offer superior spray 

quality and higher control accuracy. Liu et al. (2009) designed a real-time mixing variable-rate 

spraying system that adjusted pesticide concentration according to crop requirements using a 

chemical mixer; tests indicated that liquid uniformity was significantly improved, with a 

maximum average relative error of ±3%. Jiang et al. (2015) investigated a PWM-based variable-

rate spraying system, testing individual nozzles at different duty cycles and frequencies. Their 

findings indicated that once the duty cycle reached a threshold sufficient to stabilize flow, further 

increases in duty cycle led to improved spray uniformity both along the boom and in the nozzle’s 

travel direction. 

With the advancement of information technology (Liu et al. 2021; Wang et al. 2022; Zheng 

et al. 2023), novel algorithms have been increasingly adopted for variable-rate spraying control 

(He et al. 2024). Sheng et al. (2018) developed a UAV-based variable-rate spraying system that 

interpreted prescription maps in real time to obtain target values; a PID control algorithm then 

adjusted the duty cycle accordingly to regulate flow rate. Experimental evaluation demonstrated 

that the deviation between the theoretical and actual flow rates did not exceed 2.16%, reflecting 

precise and stable spray control performance. Hao et al. (2024) designed a pesticide application 

machine for a maize-peanut strip intercropping system based on an incremental PID algorithm, 

achieving variable-rate application by adjusting the opening of a proportional control valve in 

real time. Field trials indicated that the difference between the applied dosage and the theoretical 

value was 2.1%. Zhao et al. (2024) introduced the Artificial Bee Swarm (ABS) algorithm into 

variable-rate spraying to optimize the PID controller parameters—namely, the proportional gain 

(Kₚ), integral gain (Kᵢ), and derivative gain (Kd)—for improved control performance. 
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Experimental evaluation demonstrated substantial improvements in suppressing overshoot and 

enhancing control accuracy, indicating the effectiveness of the proposed spraying control 

strategy. 

In summary, conventional PID parameter tuning methods still largely rely on empirical 

approaches, which are not only time-consuming but also poorly adaptable to complex dynamic 

systems (Song et al. 2022). Fuzzy PID controllers can adjust PID parameters online according to 

system error and its rate of change, thereby enhancing control performance, robustness, and 

system stability under varying operating conditions (Luo et al. 2024). However, determining the 

optimal parameters for fuzzy PID controllers remains a challenging task. To address this issue, 

this study employs an improved Beetle Antennae Search (BAS) algorithm to identify the optimal 

fuzzy PID parameters. BAS is a nature-inspired optimization method that simulates beetle 

foraging behavior, updating candidate solutions based on the differences in objective function 

values detected at the two antennae. Although conventional BAS is simple, computationally 

efficient, and possesses strong global search capability, it is prone to premature convergence, 

sensitive to step size, and exhibits limited adaptability to dynamic or time-varying systems (Ding 

et al. 2025). In this study, the IBAS algorithm is applied to optimize fuzzy PID parameters, 

thereby enhancing both the control accuracy and robustness of the variable-rate spraying system. 

Materials and Methods 

Experimental Conditions and Equipment 

To evaluate the spraying control performance of the IBAS-fuzzy PID algorithm, field 

experiments were conducted from July 4 to July 9, 2025, at the core demonstration site for  

soybean-corn strip intercropping in Xuzhou, China. The spraying target was corn. During the 

trial period, weather conditions were clear with a wind speed of 1.5 m s
-1

. The maize–soybean 

strip intercropping sprayer is shown in Figure 1. 
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System Composition and Design 

System Composition 

The structure and components of the variable-rate spraying system for the maize–soybean strip 

intercropping sprayer are illustrated in Figure 2. Due to the differing pesticide tolerances 

between maize and soybean, two independent pipeline systems were designed to apply pesticides 

separately. To prevent cross-contamination of pesticides, the system employs anti-drift nozzles 

(Lechler GmbH, Remshalden, Germany), and soybean nozzles are equipped with protective 

covers. During operation, a peristaltic pump (Kamoer, Shanghai, China) delivers pesticide from 

the chemical tank through pipelines to the jet mixers (Huamei, Weifang, China). Simultaneously, 

a water pump supplies water from the water tank to the jet mixers where it mixes with pesticide, 

resulting in a uniformly blended spray solution. Among them, the nozzle spacing is 40 cm for 

soybean and 36 cm for maize. The mixed solution then flows through pressure sensors (SGN, 

Jiangsu, China), flow sensors (Xinzun Technology, Shandong, China), and High-speed solenoid 

valves (AirTAC, Taiwan, China) before being supplied to the anti-drift nozzles. Every three 

nozzles constitute a group for pesticide application. The flow and pressure sensors transmit 

signals to the variable-rate spraying controller to monitor real-time system flow and pressure. 

High-speed solenoid valves serve as the primary actuators in the variable-rate spraying system, 

controlling the opening and closing of each individual nozzle. The controller receives pesticide 

application commands by analyzing prescription maps and adjusts the PWM duty cycle of the 

high-speed solenoid valves accordingly, thereby modulating nozzle flow to achieve variable-rate 

spraying. 

Hardware Design 

In the variable-rate spraying system, an STM32F103ZET6 72MHz (STMicroelectronics, Geneva, 

Switzerland) microcontroller was employed as the controller. Signals from the speed, pressure, 

and flow sensors were acquired and processed in real time. The PWM duty cycle of the solenoid 

valve was adjusted according to a pre-generated prescription map to achieve dynamic regulation 

of the spray rate. The prescription map was developed based on the analysis of the leaf area 

index (LAI) and plant height of soybean-maize, enabling variable-rate spraying control to be 

implemented according to crop growth characteristics. The sensors used include a BRT38-
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V5M4086-RT1 (BRITER, Shenzhen, China) speed encoder, a QDW90A-VD pressure 

transmitter with a measurement range of 0-1 MPa, and an OF06ZAT turbine flow meter with a 

range of 5-200 L min
-1

. A 12 V automotive power supply (Chaowei, Zhejiang, China) was used 

to provide power to the sensors. The solenoid valves operated at a rated voltage of 12 V, whereas 

the output voltage of the microcontroller pins was 3.3 V, insufficient for direct actuation. To 

achieve rapid switching, the valves were controlled via a metal-oxide-semiconductor (MOS) 

transistor as an electronic switch, driven by the PWM signal from the microcontroller. When the 

output pin voltage was 0 V, the transistor remained off; when the voltage was 3.3 V, the 

transistor was turned on. Through this configuration, the 12 V power supply could be switched 

on and off effectively, allowing the voltage across the solenoid valves to alternate between 0 and 

12 V and enabling fast and stable opening and closing of the valves. To protect the transistor 

from potential voltage spikes generated when the solenoid valves close, a diode protection circuit 

was installed. Figure 3 illustrates the hardware structure of the variable-rate spraying system, 

along with the corresponding calculation formulas for each parameter. 

Speed Parameter Measurement 

The speed encoder is connected to the rear wheel axle of the tractor via a coupling, as illustrated 

in Figure 4. The speed encoder outputs an analog voltage signal ranging from 0 to 5 V to the 

STM32 microcontroller, corresponding to a rotational speed range of 0-3000 rpm. The analog 

voltage is linearly related to the rotational speed, allowing the current travel speed to be 

determined based on the measured voltage. Since the STM32 microcontroller can only accept 

input voltages between 0 and 3.3 V, an AD conversion voltage module is used to linearly convert 

the 0-5 V signal to the 0-3.3 V range, ensuring compatibility with the STM32’s input voltage 

limits. Vehicle speed is calculated by the following formula: 

v 
3     

    
 [1] 

where, v is vehicle speed (km h
-1

); R is wheel radius (m); and A is the STM32 ADC sampling 

value ranging from 0 to 4095. 

  

https://doi.org/10.1017/wsc.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10071


Pressure Parameter Measurement 

The pressure sensor is installed in the pipeline to monitor whether the internal pressure remains 

within a safe range, thereby preventing occurrences such as pipeline rupture, pressure release, or 

sudden pressure fluctuations. The pressure sensor is shown in Figure 5. The pressure sensor used 

in this study outputs an analog voltage of 0-5 V, similar to the speed sensor, and is processed 

using the same method. The pressure is calculated by the following formula: 

  ( ma   min) 
 

    
 [2] 

where,   represents the measured pressure (MPa);  ma  and  min  denote the upper and lower 

measurement limits of the pressure sensor, which are set to 1 MPa and 0 MPa, respectively;   is 

the 12-bit ADC value sampled by the STM32 microcontroller, ranging from 0 to 4095. 

Flow Parameter Measurement 

The flow sensor is installed in front of the nozzle and behind the solenoid valve. The pressure 

regulator stabilizes the internal pipeline pressure to prevent the impact of transient pressure 

spikes caused by the rapid opening and closing of the solenoid valve. The installation positions 

are shown in Figure 6. The liquid passing through the sensor is sprayed through the nozzle, so 

the measured flow rate corresponds to the actual flow rate. A Hall element is a semiconductor 

device that is sensitive to magnetic fields. In the flow sensor, the turbine is driven to rotate by the 

fluid flow, causing the magnets mounted on the turbine to produce variations in the magnetic 

field. These variations are detected by the Hall element and converted into voltage pulse signals. 

The pulse frequency is proportional to the flow rate, which allows the actual flow rate to be 

determined. The flow rate is calculated by the following formula: 

  
    

K
 [3] 

where,   is the flow rate (L min
-1

); N is the number of pulses counted within one second, and K 

is the flow coefficient (540 pulses per liter). 
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IBAS-Based Search Algorithm 

BAS Algorithm 

The beetle antennae search (BAS) algorithm (Jiang et al. 2015) is a heuristic optimization 

algorithm inspired by the foraging behavior of beetles in nature. Beetles use their antennae to 

sense odors: if the left antenna detects a stronger scent than the right, the beetle moves left, and 

vice versa. This process iterates until the beetle finds food. Compared to other optimization 

algorithms, BAS is simple and efficient, requiring only one beetle (individual) for searching, 

making it more lightweight than particle swarm optimization or genetic algorithms. The 

optimization procedure consists of the following three steps: 

Step 1: Randomly generate an n-dimensional vector     (  ,  2,  3,  ,  n) , and 

normalize it to a unit vector: 

c 
rand(n, )

  rand(n, )  
 [4] 

where, rand(n, ) represents a random function generating an n   vector; c is a unit vector with a 

magnitude of 1. 

Step 2: Define  l and  r as the left and right antenna coordinates, respectively,   as the 

centroid coordinate, and d  as the distance between the two antennae: 

  
 l   d  c

 r   d  c
   [5] 

Step 3: Determine the moving direction and find the next position. For the fitness function 

 , the responses at the left and right antennae positions are computed as  fleft =  f  l  and fright=  

f  r . The beetle advances by a distance of step in the direction of the antenna corresponding to 

the higher fitness value; specifically, if  fleft>fright, it moves toward the left antenna, otherwise, it 

moves toward the right antenna: 

 
 t    t step nor  l  r ,  fleft fright
 t    t step nor  l  r ,  fleft fright

  [6] 

https://doi.org/10.1017/wsc.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10071


where, step denotes the search step size; t is the iteration number; f  l  and f  r  represent the 

odor intensities sensed by the beetle’s left and right antennae, corresponding to the fitness 

function values; and nor    denotes the normalization function. 

IBAS Algorithm 

The traditional BAS algorithm searches by randomly generating direction vectors. However, an 

unfavorable initial position may cause premature convergence to a local optimum, limiting the 

global search capability. While BAS performs well in low-dimensional problems, its accuracy 

and convergence speed decline in high-dimensional scenarios, increasing the likelihood of being 

trapped in local optima. To address these issues, this study introduces a chaotic mapping strategy 

to optimize the BAS algorithm. 

The introduction of chaotic perturbation allows the algorithm to escape local optima by 

driving the individual through nonlinear disturbances generated by chaotic sequences when 

stagnation occurs. Due to the excellent ergodicity, randomness, and sensitivity to initial 

conditions of chaotic sequences, the search process gains increased diversity and dynamics, 

enhancing the algorithm’s global optimization capability and convergence speed. Common 

chaotic mapping methods (Varol et al. 2022) include Logistic map, Tent map, Chebyshev map, 

and Iterative map. This study adopts the Logistic chaotic map due to its superior ergodicity, 

randomness, and sensitivity to initial values (Zhang et al. 2024). The calculation formula of the 

Logistic chaotic map is as follows: 

 n   r  n (   n) [7] 

where, r is the control parameter ranging in (0, 4]; the degree of chaos increases with r, and the 

system reaches full chaos when r =4, which is the value used in this study. 

 n denotes the state value at the n -th iteration, and  n   is the next iteration value calculated 

based on the current state. 

In the BAS algorithm, the search direction is typically generated by normalizing a random 

vector. Although this method is simple and efficient, it does not utilize historical optimal 

solutions; thus, the search direction relies entirely on random perturbations, resulting in a 

stochastic search path. To address this, the present study introduces a Guided Direction 
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Perturbation Mechanism, which preserves the exploratory randomness while incorporating the 

historical best solution to improve search efficiency. The calculation formula is as follows: 

b (   ) 
c

  c  
   

 best  current

   best  current  
 [8] 

b 
b

  b  
 [9] 

where, c is a random vector sampled from a uniform distribution over (-1,1),  best is the current 

global best solution,  current is the current position of the search individual, and   is the guidance 

factor balancing the weights of the guided and random terms, with  =0.2 in this study. 

Finally, the vector b  is normalized to ensure the perturbation direction is a unit vector, 

facilitating decoupling from the step size. 

In the basic BAS algorithm, the step size remains fixed throughout the search process. A 

small step size in the early stage slows down the search speed, while a large step size in the later 

stage may cause oscillations near the optimal solution or lead to entrapment in local optima. To 

address this, the present study introduces a dynamic decaying step size factor. A larger step size 

is employed during the early phase of the search to broadly explore potential global optima and 

accelerate the global search, whereas a smaller step size is used near the optimum in the later 

phase to enhance local search precision and improve result stability. The formula is as follows: 

step
t
 step

 
 r [10] 

r rt   [11] 

where, step
 
 is the initial step size controlling the exploration scale in the early phase, set to 0.5; 

r is the step decay factor controlling the convergence rate, set to 0.95; and t is the current 

iteration number. 

As the iteration count increases, the step size decreases exponentially, satisfying the requirement 

of a large step size during early search and a smaller step size during later search. 
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In this study, there are five parameters to be optimized. The basic BAS algorithm, with a 

dimensionality higher than five, suffers from reduced search accuracy and slower convergence 

speed, making it more prone to becoming trapped in local optima during iterations. To address 

these issues, the BAS algorithm is enhanced by incorporating the Simulated Annealing (SA) 

algorithm, thereby improving the algorithm’s accuracy (Ding et al. 2025). The SA algorithm 

introduces stochastic elements into the search process. It accepts inferior solutions with a certain 

probability, increasing the likelihood of escaping local optima and achieving a global optimum. 

Here, p denotes the probability of accepting a worse solution. The formula is as follows: 

p   

      ,                                    fnew   fcurrent

e p   
fnew fcurrent

T
 ,               fnew    fcurrent

  [12] 

T T   
t
 [13] 

where,   fcurrent is the fitness value at the current position, fnew is the fitness value at the candidate 

updated position, T is the current temperature, T  is the initial temperature, e p    denotes the 

natural exponential function,   is the temperature decay coefficient, and t is the current iteration 

number. As the iteration proceeds, the temperature gradually decreases, reducing the probability 

of accepting worse solutions. 

IBAS-Optimized Fuzzy PID Control Algorithm 

PID Control 

The PID controller is a linear feedback controller widely used in various engineering fields due 

to its high control accuracy (Nan et al. 2023). Its fundamental principle is to continuously adjust 

the controlled object based on the error e t  between the system’s target value r t  and the 

feedback output y t , so that the output approaches the target value, ultimately driving the error 

toward zero. The error is defined as follows: 

e t    r t    y t  [14] 

The mathematical model of the PID controller is: 
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u(t)   Kp e(t)   Ki e(t)

t

 

dt   Kd

de(t)

dt
 [15] 

where, u(t) is the controller output;  Kp is the proportional gain; Ki is the integral gain; and  Kd is 

the derivative gain. 

The classical PID controller is designed for linear time-invariant systems and exhibits poor 

control performance for nonlinear or time-varying systems because its three parameters remain 

fixed and cannot self-adjust based on system states. To improve the control accuracy and 

response speed of the soybean-corn variable rate spraying system, a fuzzy PID controller is 

introduced in the control algorithm, allowing the three PID parameters to adaptively change. 

Fuzzy PID Control Design 

Fuzzy PID control is an improvement over the classical PID. While the classical PID uses the 

error as input, the fuzzy PID takes both the error and the rate of change of error as inputs. By 

establishing a well-designed fuzzy rule base, the fuzzy controller adjusts the three PID 

parameters in real time, enabling effective control of nonlinear or time-varying systems (Li et al. 

2023; Li et al. 2025; Song et al. 2022). The structure of the fuzzy PID controller is illustrated in 

Figure 7. 

The fuzzy controller designed in this study takes the error and rate of change of the error 

between the target flow rate and the actual flow rate as inputs. Through fuzzification, fuzzy 

inference, and defuzzification processes, it produces three outputs:  K ,  Ki , and  Kd . The 

input variables e and ec are mapped from their actual ranges to fuzzy domains via quantization 

factors Ke  and Kec  . The output variables are then mapped back to actual control quantities 

through scaling factors K , K2, and K3. These outputs are added respectively to the initial PID 

parameters K  , Ki , and Kd , and fed into the PID controller to achieve adaptive real-time 

updating of the PID parameters. The adjustment formulas for the PID parameters are as follows: 

 

   K  K   K   K 

 Ki  Ki  K2  Ki

   Kd Kd  K3  Kd

  [16] 
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In this system, the fuzzy controller is designed using MATLAB, with the error e and the 

rate of change of the error ec between the target flow rate and the actual flow rate as the input 

variables, and K ,  Ki, and  Kd. as the output variables. Based on the actual variation range of 

the flow rate in this study, the fuzzy domains of the input linguistic variables E and EC are 

defined as [-6,6], while the fuzzy domains of the output linguistic variables  K ,  Ki, and  Kd 

are defined as [-3,3]. The membership functions of the input and output variables, as shown in 

Figures 8, are defined using seven fuzzy subsets {NB, NM, NS, ZO, PS, PM, PB}, which 

correspond to {Negative Big, Negative Medium, Negative Small, Zero, Positive Small, Positive 

Medium, Positive Big}. Each fuzzy subset is represented by a triangular membership function, 

which is a common choice due to its simple structure and computational efficiency. The overall 

design of the fuzzy controller is illustrated in Figure 9. 

The fuzzy rule table constitutes the core of the fuzzy PID controller, serving as the critical 

link between the input fuzzy variables and the output control variables. The Mamdani fuzzy 

inference method is employed to fuzzify the input variables, mapping them to the corresponding 

linguistic variables, and performing fuzzy reasoning based on the established rule table. The 

Mamdani inference method offers strong robustness and adaptability. 

Based on the actual conditions observed during the variable-rate spraying process and 

expert knowledge, the fuzzy rule table is constructed as follows: when the error is large and 

changes rapidly, K  should be increased, Ki decreased, and Kd increased to enable fast system 

response and avoid integral saturation; when the error is large but changes slowly, K  should be 

increased, Ki  slightly increased, and Kd  maintained to accelerate convergence and prevent 

oscillations; when the error is small but changes rapidly, K  and Ki should be reduced, and Kd  

increased to prevent overshoot; when the error is small and changes slowly, K  should be 

reduced, Ki increased, and Kd  reduced to improve steady-state accuracy. The final fuzzy rule 

tables for  K ,  Ki, and  Kd are presented in Table 1. 

In the Mamdani fuzzy inference method, the result of inference is a fuzzy set of output 

variables, which cannot be directly applied for control purposes and therefore requires a 

defuzzification step to convert it into a precise numerical value. Common defuzzification 

approaches include the centroid method, the maximum membership method, and the weighted 
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average method. Among these, the centroid method is most commonly employed in Mamdani 

inference, as it produces smooth and continuous outputs with high control accuracy. Its 

expression is given as follows: 

 K    
  i   Kp( i)
M
i  

    Kp( i)
M
i  

 [17] 

where,   Kp is the membership degree at sampling point  i is the sampling point; the values of 

 K ,  Ki, and  Kd can be calculated similarly by the above expression. 

IBAS-Optimized Fuzzy PID 

In the fuzzy PID control system, the quantization factors Ke and Kec , as well as the proportional 

factors K , K2, and K3, are critical parameters that determine the actual regulation performance 

of the fuzzy PID controller. Selecting appropriate parameters is of paramount importance (Cao et 

al. 2024). However, parameter tuning typically relies on expert experience or trial-and-error 

methods, which are inefficient and may fail to achieve optimal system performance, especially 

for complex nonlinear systems. To address the main issues in soybean-corn variable-rate 

spraying technology and optimize the fuzzy PID controller, this study introduces the Improved 

Beetle Antennae Search (IBAS) algorithm to optimize the quantization factors Ke and Kec, and 

the proportional factors K , K2, and K3. The fitness function adopted in this study employs a 

multi-objective weighted optimization including ITAE, overshoot, and response time. The 

objective of the fitness function is to achieve precise spraying, and the IBAS optimization 

algorithm is used to find the optimal parameters. The ITAE calculation formula is as follows: 

 T    t  e(t) dt

T

 

 [18] 

where, T is the simulation end time, set as T =5 in this study. 

This metric reflects the cumulative error throughout the entire response process, with smaller 

 T   values indicating higher control accuracy. 

The calculation formula for overshoot (Mp) is as follows: 
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Mp   
y
ma 

  

 
      [19] 

where, y
ma 

 is the maximum peak value of the system output;   is the target value. 

Overshoot is used to evaluate the stability of the control system and the severity of fluctuations 

during the regulation process. 

The calculation formula for response time (Ts) is as follows: 

Ts   min t    t,  e( )     r   [20] 

where,   is the tolerance coefficient, set at 5%; Ts is the time when the system first enters and 

remains within the ±5% range of the setpoint; r denotes the reference input signal. 

This metric measures the time required for the system to reach steady state, with faster responses 

being preferable. 

The fitness function formula is as follows: 

f      w   T     w2 Mp   w3 Ts [21] 

where,  w ,  w2, and  w3 are the weights of each performance metric, set as  w =0.5,  w2=0.3, 

and  w3=0.2. 

The weighted performance index function designed in this study encompasses key characteristics 

such as error, overshoot, and response speed, facilitating ideal system optimization and 

improving both response speed and accuracy. 

The flowchart of the IBAS-optimized fuzzy PID algorithm is shown in Figure 10 below. 

Transfer Function of the Spraying System 

The system mathematical model describes the relationships among internal components of the 

control system during dynamic processes through mathematical equations. The switching 

frequency of the solenoid valve is controlled using PWM. Due to the nonlinear and time-varying 
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nature of the variable-rate spraying system, it is necessary to analyze the transfer functions of 

each subsystem. The fuzzy PID controller combines the traditional PID controller with fuzzy 

logic inference, functioning as a nonlinear adaptive controller. It cannot be represented by a 

fixed-structure transfer function since it essentially adjusts fixed PID parameters online. Its core 

concept aligns with that of the traditional PID controller; therefore, modeling is still based on the 

traditional PID structure. The transfer function is as follows: 

    (s)   Kp   
Ki

s
   Kd s [22] 

In the variable-rate spraying process, the actuator used is a solenoid valve. A solenoid valve 

is an actuator that utilizes electromagnetic force to control the movement of the valve core, 

thereby enabling fluid flow switching or regulation. Its main components include an 

electromagnetic coil, armature, spring, and valve body. When the coil is energized, the generated 

electromagnetic force attracts the armature, overcoming the spring force to move the valve core 

and open the valve. When power is cut off, the electromagnetic force disappears, and the spring 

resets the valve core, closing the valve. The solenoid valve selected in this study is a switching 

type and can be approximately modeled as a first-order lag pure hysteresis system. The transfer 

function is given as follows： 

  (s)   
K

Ts  
 [23] 

where, K is the steady-state gain of the solenoid valve; Ts is the first-order inertia time constant. 

The pressure reducing valve is the core component responsible for maintaining stable 

system pressure. In practical systems, the pressure regulation process of the pressure reducing 

valve exhibits hysteresis and inertial response. Therefore, it can be simplified as a first-order 

system, with the transfer function expressed as follows： 

 2(s)   
 in(s)

 out(s)
   

K

Ts  
 [24] 

where,  in(s) is the input pressure;  out(s) is the output pressure; and K is the system gain of the 

pressure reducing valve. 
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The pulse-type flow sensor outputs a pulse frequency. To more accurately reflect the 

dynamic characteristics of the actual pulse flowmeter, a first-order inertial element is used to 

approximate its frequency response. The transfer function is given as follows. 

 3(s)   
K 

Ts    
 [25] 

where, K is the system gain constant, set to 540; Ts is the first-order inertia time constant. 

Based on the above equations, the system transfer function can be derived as follows: 

  s  
    (s)   (s)  2(s)

      (s)   (s)  2(s)  3(s)
 [26] 

Based on the technical parameters of the solenoid valve, pressure reducing valve, and 

sensors, the system transfer function was obtained by automatic identification using the System 

Identification module in MATLAB and experimental determination of the time constants. 

  s  
 .  s  .3

s2  .  s  . e   
 [27] 

Results and Discussion 

Simulation Experiments 

The experimental hardware platform consisted of an Intel Core i5-12400F 2.5 GHz CPU (Intel 

Corporation, Santa Clara, United States), ASUS RTX4060 GPU (Asustek Computer Inc., Taipei, 

Taiwan), and 32 GB of RAM (Kingston Technology Co., Fountain Valley, CA, USA). 

Simulations were performed using MATLAB R2023b (Version R2023b, MathWorks, Natick, 

United States). The PID, fuzzy PID, BAS-fuzzy PID, and IBAS-fuzzy PID controllers were 

simulated and compared. 

PID Parameter Tuning 

Based on the previous analysis, the time-domain model of the classical PID controller and the 

system closed-loop transfer function were obtained. The control system model was established 

and simulated in the MATLAB Simulink environment, as shown in Figure 11. 
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The PID parameters were tuned using the Ziegler-Nichols (Z-N) method, with the following 

procedure: 

Determination of the ultimate proportional gain (Ku). Pure proportional control was applied by 

setting the integral gain (Ki) and derivative gain (Kd) to zero, eliminating their interference. A 

step input of magnitude 1 was applied, and the proportional gain (Kp) was gradually increased 

until the system output exhibited sustained oscillations of constant amplitude. When Kp = 7, this 

condition was met, indicating that only Kp was nonzero and equal to the ultimate gain Ku. 

According to Figure 12, the oscillation period Tu was 0.26 s.  

Based on the Z-N tuning rules, the PID parameters were calculated as Kp = 4, Ki = 30, and 

Kd = 0.13. The Z-N method, proposed by Ziegler and Nichols, summarizes empirical parameter 

ratios that are broadly applicable. Using these ratios can shorten rise time and reduce overshoot. 

However, the parameters derived from the Z-N table are not necessarily optimal and require 

further adjustment to meet specific performance requirements.  

The tuned parameter values were input into the PID model for simulation. As shown in Figure 13, 

the response curve reaches a peak value of 1.22 at 0.35 s, with an overshoot of 22% and a 

response time of 1.38 s. The overshoot mainly results from the large proportional gain causing 

response inertia. Previous studies have indicated a correlation between proportional gain and 

overshoot (Tsavnin et al. 2022). This PID tuning method is suitable for scenarios prioritizing fast 

response but produces relatively high overshoot, necessitating further PID parameter adjustment 

to reduce overshoot.  

Fuzzy PID Control Model Construction 

The fuzzy PID model was established in Simulink by integrating a fuzzy logic controller into the 

original PID model, setting the quantization factors Ke , Kec and proportional factors K , K2, and 

K3. The input variables e and de were defined over the domains [-4, 4] and [-3, 3], respectively; 

the output variables  K ,  Ki, and  Kd were assigned domains of [-24, 24], [-18, 18], and [-1.5, 

1.5]. As mentioned previously, the linguistic variables E and EC are defined over the fuzzy 

domain [-6, 6], and the output linguistic variables   K ,  Ki , and  Kd  over [-3, 3]. Linear 

scaling from the real domain to the fuzzy domain yields quantization and proportional factors of 
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Ke = 2/3, Kec = 2, K  = 8, K2 = 6, and K3    . . This approach ensures that the fuzzy controller’s 

internal rules and membership functions remain universal while the input and output values 

correspond appropriately to the actual system magnitudes. The PID parameters obtained from the 

previous section were adjusted and updated into the fuzzy PID controller (Chen et al. 2017). The 

fuzzy rule table and membership functions were loaded into the fuzzy logic controller to 

complete the fuzzy PID control model construction, as shown in Figure14.  

Simulation Results Analysis 

The IBAS algorithm was implemented in MATLAB and integrated with the Simulink control 

model for simulation. The IBAS code and key parameters have been provided in the 

supplementary materials. The main parameters of IBAS were set as follows: maximum iteration 

number of 100, dimensionality of 5, and an initial step size of 0.5. After 100 iterations, the 

algorithm outputs the optimal parameter set. Since five parameters require optimization, the 

dimensionality is set to five. The initial step size was chosen as 0.5 based on prior studies to 

balance search precision and avoid premature convergence; a step size too large reduces 

accuracy, while too small increases the risk of getting trapped in local optima. 

The previously tuned PID parameters were further optimized, resulting in initial PID values of 

KP = 8, Ki = 27, and Kd = 0.13. These optimized parameters were updated in the PID module, 

while the five parameter values obtained from the IBAS algorithm were incorporated into the 

IBAS-fuzzy PID model for simulation and fitness evaluation. The IBAS-fuzzy PID model is 

shown in Figure 15.  

The convergence curves of the fuzzy PID quantization factors and proportional factors 

during the IBAS optimization iterations are shown in Figure16. The data reveal clear 

convergence characteristics throughout the optimization process. 

In the initial stage (iterations 0-20), the quantization factors  Ke , Kec  and proportional 

factors K , K2 , and K3  fluctuate significantly. Ke  rapidly decreases from 0.9 to 0.15, then 

gradually rises to 0.42, indicating strong global search capability in the early phase. This allows 

exploration of the parameter space with larger step sizes to avoid premature convergence to local 

optima. Previous studies have shown that increasing the initial step size in BAS algorithms 
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enhances global search ability and effectively prevents early trapping in local optima (Yan et al. 

2024). 

During the middle stage (iterations 20-35), the parameters gradually approach optimal 

values and their variation diminishes, indicating that the IBAS algorithm has entered a local 

search phase with a more stable optimization direction. Notably, parameter K2  continues to 

increase from a lower value, which can be attributed to the simulated annealing mechanism 

introducing random jumps. This enables the algorithm to escape local optima and explore better 

solutions. Prior research (Ding et al. 2025) confirms that simulated annealing, by accepting 

solutions of certain inferior quality with some probability, significantly enhances global search 

capabilities, further validating the  B S algorithm’s advantage in escaping local minima. 

In the later stage (iterations 35-100), the five parameters stabilize, demonstrating that the 

algorithm has converged and found an approximate global optimum. This result not only 

confirms the effectiveness of IBAS in parameter optimization but also provides a reliable 

parameter basis for subsequent field experiments. The final optimized parameter values after 

iteration completion are Ke = 0.85, Kec = 0.1, K  = 3.57, K2 = 4.45, and K3 = 0.32.  

To verify the control accuracy of the IBAS-fuzzy PID, simulations were conducted 

comparing it with BAS-fuzzy PID, fuzzy PID, and classical PID controllers. A unit step signal 

was used as the system input, with a runtime of 5 seconds and a sampling interval of 0.01 

seconds. The overshoot, steady-state error, and response time of different control algorithms 

were compared. The simulation results are shown in Figure 17. 

Based on Figure 13, all four algorithms eventually reach a steady state, demonstrating their 

effectiveness. Both PID and fuzzy PID control algorithms exhibit relatively large overshoot and 

longer response times during the startup phase. However, fuzzy PID reaches its peak faster than 

the traditional PID, as the fuzzy PID dynamically adjusts control parameters in response to error 

variations, enabling a more flexible system response and improved speed. This finding is 

supported by previous studies (Li et al. 2023). Compared with the BAS algorithm, the IBAS 

control algorithm shows significant improvements in both response time and absolute error. This 

advantage arises from the  B S algorithm’s fitness function, which combines multiple weighted 

objectives including time-weighted integral of absolute error (ITAE), overshoot, and response 
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time, balancing both speed and control accuracy. The effective integration of global and local 

search capabilities in IBAS ensures that the algorithm finds optimal solutions within the 

parameter space. 

As shown in Table 3, the BAS-fuzzy PID algorithm’s ma imum response value does not 

exceed the set target, resulting in zero overshoot; however, this does not indicate superior 

performance compared to  B S. The  B S algorithm’s overshoot is  .  2 L min
-1

, which is 

closer to the target value. The response time of the IBAS-fuzzy PID controller is 0.56 s, 

representing reductions of 54%, 38%, and 14% compared to traditional PID, fuzzy PID, and 

BAS-fuzzy PID controllers, respectively. Similarly, the absolute error decreases by 76%, 57%, 

and 95%, and the overshoot is reduced by 97% and 96% compared to traditional PID and fuzzy 

PID, respectively. In summary, the IBAS-fuzzy PID algorithm exhibits stronger dynamic 

adjustment capabilities than the other three methods. With well-tuned parameters, it effectively 

reduces system overshoot, shortens settling time, and enhances both steady-state and dynamic 

performance, thereby contributing to more precise variable-rate spraying.  

System Modeling and Simulation under Disturbance Signals 

In practical pesticide application operations, the field environment is complex, often resulting in 

significant control deviations or oscillations. Simulation analysis can be used to evaluate the 

robustness of the BAS-fuzzy PID control algorithm under disturbance signals, assessing the 

algorithm's resistance to system parameter variations, thereby verifying its practicality and 

stability. The IBAS-fuzzy PID control model under disturbance conditions is constructed as 

shown in Figure 18. 

The PID, fuzzy PID, BAS-fuzzy PID, and IBAS-fuzzy PID models were simulated jointly. 

During the simulation, a unit step input signal was applied at = 0 s. At = 3 s, a disturbance 

signal—generated by the Signal Generator as a sawtooth wave with amplitude 0.15 and 

frequency 15 Hz—was introduced, which stopped at = 3.3 s. The resulting control response 

curves are shown in Figure 19. 

After the system stabilized, the disturbance caused all four control curves to exhibit varying 

degrees of overshoot. The PID control curve reached its peak at point B with an overshoot of 
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5.3%, returning to stability at B1 (t = 3.75 s). The fuzzy PID curve peaked at point A with an 8.6% 

overshoot, stabilizing at A1 (t = 3.7 s). The BAS-fuzzy PID curve peaked at point C with 5.6% 

overshoot, stabilizing at C1 (t = 3.68 s). The IBAS-fuzzy PID curve peaked at point D with the 

lowest overshoot of 3.3%, stabilizing earliest at D1 (t = 3.6 s). The IBAS-fuzzy PID algorithm’s 

response time improved by 33%, 25%, and 21% compared to PID, fuzzy PID, and BAS-fuzzy 

PID, respectively. 

The figure also shows that in the initial stage, fuzzy PID had a lower overshoot than 

traditional PID. However, after the disturbance, fuzzy PID’s overshoot e ceeded that of PID, 

illustrating the typical trade-off between response speed and overshoot. In control system design, 

enhancing response speed often sacrifices overshoot performance—this classic trade-off means 

faster systems risk “overshooting” aggressively, whereas slower systems have smaller overshoot 

but longer settling times. 

In summary, during disturbance, the IBAS-fuzzy PID control algorithm demonstrates stronger 

robustness and faster response speed compared to the other three algorithms, making it more 

suitable for field operation scenarios.  

Evaluation of Spray Volume Control Accuracy under Different Vehicle Speeds 

Field tests on control accuracy were conducted under different driving speeds. Based on the 

anti-drift nozzle parameters and prescription values, the spraying range was set between 0.6 and 

1.0 L min
-1

, divided into three levels with an increment of 0.2 L min
-1

. To verify the practical 

performance of the IBAS-fuzzy PID algorithm, experiments were conducted comparing IBAS-

fuzzy PID, BAS-fuzzy PID, fuzzy PID, and traditional PID algorithms. The sprayer speed was 

set 3,4, and 5 km h
-1

 respectively. The code implementations of these four algorithms are 

provided in the supplementary materials. For each speed, the relative error between the 

theoretical flow rate and the actual flow rate for each algorithm was measured. The relative error 

was calculated as follows: 

  
  

target
  

actual
 

 
actual

      [28] 

where, 
target

 is the prescribed application rate;  
actual

 is the actual application rate. 
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The experimental data are presented in Table 4.  

According to Table 4, the average relative errors for PID, fuzzy PID, BAS-fuzzy PID, and IBAS-

fuzzy PID are 9.66%, 8.17%, 6.04%, and 2.77%, respectively. 

Under different preset application rates for the same algorithm, the relative error is smallest 

at the intermediate value of 0.8 L min
-1

. This is mainly because the actual flow rate is adjusted by 

controlling the duty cycle of the solenoid valve. The solenoid valves used in this study exhibit 

dead zone effects at low duty cycles and saturation effects at high duty cycles. The dead zone 

effect refers to a nonlinear region caused by mechanical structure and valve characteristics, 

where small changes in duty cycle do not produce significant flow changes due to insufficient 

energy to drive valve movement. Saturation occurs when the valve opening reaches or 

approaches its maximum, and further increases in duty cycle do not significantly affect flow. 

These effects cause decreased control performance at the extremes of the duty cycle range, while 

the middle range (e.g., 0.8 L min
-1

) shows better control accuracy. Related studies have 

confirmed this conclusion (Jiang et al. 2015). Future work will focus on selecting higher-

sensitivity high-speed solenoid valves. 

Under all four control algorithms, the relative error tends to increase with increasing speed. 

This is because higher speeds cause increased pressure in the pipeline system, which raises 

control difficulty, leading to larger relative errors at higher speeds. However, the maximum error 

of the IBAS-fuzzy PID algorithm is 3.61%, which meets experimental requirements, verifying 

the algorithm’s stability and reliability. Similar phenomena of increased control error with 

system speed have been reported in the literature (Wang et al. 2022). Further research will focus 

on stabilizing pipeline pressure. 

  

https://doi.org/10.1017/wsc.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10071


Conclusions 

A variable rate spraying control system for soybean was proposed, which regulates the duty 

cycle of the solenoid valve based on the real-time flow rate measured at the nozzle, as well as the 

error and error change rate relative to the target flow rate, thereby controlling the flow to reach 

the desired value. 

Simulation results of PID, fuzzy PID, BAS-fuzzy PID, and IBAS-fuzzy PID demonstrated 

that the IBAS-fuzzy PID algorithm exhibits faster response and lower overshoot. The IBAS 

algorithm incorporates chaotic disturbance and simulated annealing strategies to optimize the 

fuzzy PID parameters, yielding Ke= 0.85, Kec  = 0.1, K  = 3.57, K2  = 4.45, and K3  = 0.32, 

significantly reducing flow errors. Compared to PID, fuzzy PID, and BAS-fuzzy PID, the IBAS-

fuzzy PID control algorithm reduced response time by 54%, 38%, and 14%, respectively, and 

decreased absolute error by 76%, 57%, and 95%, respectively. When a disturbance signal was 

introduced at 3 seconds, the IBAS-fuzzy PID algorithm restored stability 33%, 25%, and 21% 

faster than the other three methods, validating the superiority of the proposed algorithm. 

Field test results indicated that the designed system improves control accuracy of the 

spraying volume and reduces pesticide waste. The average relative errors under PID, fuzzy PID, 

BAS-fuzzy PID, and IBAS-fuzzy PID controls were 9.66%, 8.17%, 6.04%, and 2.77%, 

respectively. The IBAS-fuzzy PID algorithm achieved the lowest average relative error among 

the four, enabling precise variable rate spraying control and demonstrating superior stability in 

practical operations. 

However, some limitations remain. The designed hardware circuit lacks anti-interference 

designs in A/D conversion, crystal oscillator, and microcontroller circuits, leading to unstable 

sensor signal reception during field tests. Future work will focus on designing dedicated anti-

interference and lightning protection circuits for sensitive electronic components. Currently, crop 

leaf area index data are pre-collected and stored on an SD card for microcontroller reading, 

without real-time crop growth data acquisition to enable precision variable-rate spraying. 

Integrating deep learning, artificial intelligence, and other technologies to continuously optimize 

and improve the variable rate spraying control algorithm, achieving smarter and more efficient 

field management, will be the focus of future research. 
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(a) (b) 

Figure 1. (a) Soybean-Corn strip intercropping sprayer; (b) Schematic diagram of the variable 

rate spraying system. 
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Figure 2. Structure and components of the soybean-maize variable-rate spraying system: (1) 

water tank(1000L); (2) maize pesticide tank(7L); (3) peristaltic pump; (4) jet mixer; (5) chemical 

mixer; (6) pressure sensor; (7) flow sensor; (8) anti-drift nozzle; (9) high-speed solenoid valve; 

(10) check valve; (11) pressure regulating valve; (12) water pump; (13) protective cover; (14) 

soybean pesticide tank(7L); (15) variable-rate controller; (16) speed sensor. 
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Figure 3. Composition of variable-rate spraying system hardware structure. RX, TX, ADC, I/O, 

and IC are respectively Receive, Transmit, Analog to Digital Converter, Input/Output, and Input 

Capture. 
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Figure 4. Schematic diagram of the speed encoder. 
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Figure 5. Schematic diagram of the pressure sensor. 
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Figure 6. Schematic of the flow sensor installation. 
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Figure 7. Structure diagram of the fuzzy PID controller.  K ,  Ki , and  Kd  represent the 

incremental adjustments to the proportional, integral, and derivative coefficients of the PID 

controller. Ke  and Kec  are the input scaling factors for the error and error change rate, 

respectively, while  K , K2, and K3 are the output scaling factors for the proportional, integral, 

and derivative parameters. E and EC are input linguistic variables. 

  

https://doi.org/10.1017/wsc.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10071


 

 

  

(a) (b) 

Figure 8. (a) Membership functions of input variables e and ec; (b) Membership functions of 

output variables  K ,  Ki, and  Kd. NB, NM, NS, ZO, PS, PM, and PB represent the linguistic 

variables Negative Big, Negative Medium, Negative Small, Zero, Positive Small, Positive 

Medium, and Positive Big, respectively. 
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Figure 9. Design of membership functions using a triangular shape. E and EC are input 

linguistic variables. Kp denotes the proportional gain. Ki denotes the integral gain. Kd denotes the 

derivative gain. 
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Figure 10. Algorithm flowchart. Ke and Kec are the input scaling factors for the error and error 

change rate, respectively, while  K , K2 , and K3  are the output scaling factors for the 

proportional, integral, and derivative parameters. 
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Figure 11. PID controller model. Kp denotes the proportional gain. Ki denotes the integral gain. 

Kd denotes the derivative gain. 
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Figure 12. The continuous oscillation response curve under proportional integral derivative (PID) 

control. 
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Figure 13. The response curve after proportional integral derivative (PID) parameter tuning. 
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Figure 14. Fuzzy PID controller model.   and  C are input linguistic variables, while K₁, K₂, 

and K₃ are the output scaling factors corresponding to the proportional, integral, and derivative 

parameters, respectively. 
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Figure 15. IBAS-fuzzy PID model. Ke and Kec are the input scaling factors for the error and 

error change rate, respectively, while  K , K2 , and K3  are the output scaling factors for the 

proportional, integral, and derivative parameters. 
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Figure 16. Iteration curves of parameters optimized by the IBAS algorithm. Ke and Kec are the 

input scaling factors for the error and error change rate, respectively, while  K , K2, and K3 are 

the output scaling factors for the proportional, integral, and derivative parameters. 
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Figure 17. Curves obtained by simulation using four different proportional integral derivative 

(PID) control algorithms, the BAS algorithm is the Beetle Antennae Search algorithm, while the 

IBAS algorithm is an improved version of the BAS algorithm. 

  

https://doi.org/10.1017/wsc.2025.10071 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2025.10071


 

 

 

Figure 18. Simulation model of control system with added disturbance. Ke and Kec are the input 

scaling factors for the error and error change rate, respectively, while  K , K2, and K3 are the 

output scaling factors for the proportional, integral, and derivative parameters. 
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Figure 19. The time required for four different proportional integral derivative (PID) control 

algorithms to regain stability under disturbance conditions, the BAS algorithm is the Beetle 

Antennae Search algorithm, while the IBAS algorithm is an improved version of the BAS 

algorithm. 
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Table 1. Fuzzy control rule table.
a 

a
NB, NM, NS, ZO, PS, PM, and PB represent the linguistic variables Negative Big, Negative 

Medium, Negative Small, Zero, Positive Small, Positive Medium, and Positive Big, respectively. 

E and EC are input linguistic variables. 

  

E 
EC 

NB NM NS ZO PS PM PB 

NB 
PB / NB / 

PM 

PB / NB / 

NS 

PM / NM / 

NB 

PS / NS / 

NB 

ZO / ZO / 

NM 

ZO / ZO / 

PM 

ZO / NM / 

NB 

NM 
PB / NB / 

PM 

PB / NB / 

NS 

PM / NM / 

NB 

PS / NS / 

NM 

PS / NS / 

NM 

ZO / ZO / 

NS 

NS / ZO / 

ZO 

NS 
PM / NB 

/ PM 

PM / NM / 

NS 

PS / NS / 

NM 

ZO / NS / 

NM 

NS / ZO / 

NS 

NM / PS / 

NS 

NM / PS / 

ZO 

ZO 
PS / NM 

/ ZO 

PS / NS / 

NS 

ZO / NS / 

NS 

NS / ZO / 

NS 

ZO / PS / 

NS 

NS / PM / 

NS 

NM / PM / 

ZO 

PS 
PS / NM 

/ ZO 

ZO / NS / 

ZO 

ZO / ZO / 

ZO 

NS / PS / 

ZO 

NS / PS / 

ZO 

NM / PM / 

ZO 

NM / NM / 

ZO 

PM 
PS / ZO / 

PM 

ZO / ZO / 

PM 

NS / PS / 

PS 

NM / PS / 

PS 

NM / PM / 

PS 

NM / PB / 

PS 

NB / PB / 

PM 

PB 
ZO / ZO 

/ PB 

ZO / ZO / 

PM 

NM / PS / 

PM 

NM / PM / 

PM 

NM / PM / 

PS 

NB / PB / 

PS 

NB / PB / 

PM 
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Table 2. Proportional integral derivative (PID) Parameter tuning table.
a 

Control 

Model 

Proportional 

gain/ Kp  

Points time/ 

Ti
b 

Differential 

time/ Td
c 

Point gain/ Ki 
Differential 

gain/Kd 

PID 0.6Ku
d 

0.5Tu
e 

0.125Tu Kp /Ti Kp *Td 

a
Tuning PID parameters by empirical method. Kp denotes the proportional gain. Ki denotes the 

integral gain. Kd denotes the derivative gain. 

b
Ti denotes the integral time constant. 

c
Td denotes the derivative time constant. 

d
Ku is the ultimate gain at which continuous oscillations occur. 

e
Tu is the corresponding oscillation period.  
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Table 3. Simulation results of four different proportional integral derivative (PID) control 

algorithms. 

Control Algorithm Response Time/s
 

Overshoot Quantity/(L min
-1

) Absolute Error (L min
-1

) 

PID
 

1.23 0.075 0.0042 

Fuzzy PID 0.9 0.057 0.0023 

BAS
a
- fuzzy PID 0.65 0 0.024 

IBAS
b
- fuzzy PID 0.56 0.002 0.001 

a
The BAS algorithm is the Beetle Antenna System algorithm. 

b
The IBAS algorithm is an improved BAS algorithm. 
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Table 4. Flow accuracy test results under different proportional integral derivative (PID) control 

algorithms. 

a
The BAS algorithm is the Beetle Antenna System algorithm. 

b
The IBAS algorithm is an improved version of the BAS algorithm. 

Speed/km h
-1

 Control Algorithm 
Target value 

/L min
-1

 

Actual value  /L 

min
-1

 

Relative error 

/% 

3 

PID 

0.6 0.66 9.09 

0.8 0.87 8.04 

1.0 0.92 8.69 

Fuzzy PID 

0.6 0.65 7.69 

0.8 0.75 6.67 

1.0 0.93 7.52 

BAS
a
-fuzzy PID 

0.6 0.57 5.26 

0.8 0.84 4.76 

1.0 0.95 5.26 

IBAS
b
-fuzzy PID 

0.6 0.59 1.69 

0.8 0.78 2.56 

1.0 1.02 1.96 

4 

PID 

0.6 0.55 9.09 

0.8 0.73 9.58 

1.0 1.11 9.90 

Fuzzy PID 

0.6 0.66 9.09 

0.8 0.86 6.97 

1.0 0.92 8.69 

BAS-fuzzy PID 

0.6 0.64 6.25 

0.8 0.76 5.26 

1.0 0.94 6.38 

IBAS-fuzzy PID 

0.6 0.62 3.22 

0.8 0.82 2.43 

1.0 1.03 2.91 

5 

PID 

0.6 0.67 10.44 

0.8 0.72 11.11 

1.0 0.89 11.0 

Fuzzy PID 

0.6 0.66 9.09 

0.8 0.73 9.58 

1.0 1.09 8.25 

BAS-fuzzy PID 

0.6 0.56 7.14 

0.8 0.75 6.67 

1.0 1.08 7.40 

IBAS-fuzzy PID 

0.6 0.58 3.44 

0.8 0.83 3.61 

1.0 0.97 3.09 
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