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RATE OF CONVERGENCE OF COMPUTABLE PREDICTIONS

KENSHI MIYABE

Abstract. We consider the problem of predicting the next bit in an infinite binary sequence sampled
from the Cantor space with an unknown computable measure. We propose a new theoretical framework to
investigate the properties of good computable predictions, focusing on such predictions’ convergence rate.

Since no computable prediction can be the best, we first define a better prediction as one that dominates
the other measure. We then prove that this is equivalent to the condition that the sum of the KL divergence
errors of its predictions is smaller than that of the other prediction for more computable measures. We call
that such a computable prediction is more general than the other.

We further show that the sum of any sufficiently general prediction errors is a finite left-c.e. Martin-Löf
random real. This means the errors converge to zero more slowly than any computable function.

§1. Introduction. Machine learning has recently become one of the hottest topics,
with many real-world applications transforming society. Since the Dartmouth
Conference in 1956, there have been efforts to develop a deeper theoretical
understanding of learning. Several frameworks, such as PAC learning and Gold-
style limit learning, have been proposed to define learning, explain it, and explore
its capabilities and limits.

This article explores the theoretical limits of learning based on Solomonoff’s
universal induction or algorithmic probability theory.

We consider the following problem. We predict the next bit in an infinite binary
sequence. We know the infinite binary sequence is sampled from the Cantor space
with an unknown computable probability measure.

In the standard setting of the theory of universal induction, the measure used
for prediction is c.e., that is, it is computably approximable from below but not
computable in general. The reason for considering this broader class of measures
than that of computable measures is that there exists an optimal prediction
for c.e., while no computable prediction is optimal. The theory of universal
induction concerns the properties of optimal predictions. This theory is elegant
from a theoretical standpoint and has succeeded in deepening our understanding
of learning. However, optimal predictions cannot be implemented directly in a
computer, and its claims about machine learning algorithms used in practice are
quite limited.
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2 KENSHI MIYABE

Even though there is no optimal computable prediction, can we prove any
sufficiently good one that approximates the optimal one has specific properties?
This article gives a positive answer to this question by introducing the concept of
generality.

We call a measure more general than another measure if it dominates the other.
We then prove the prediction induced from a more general measure performs well
for sample points of more computable measures. In other words, a more general
prediction can solve more tasks. More precisely, the prediction induced from a
more general measure has smaller error sums when measured by KL divergence
(Theorem 3.2).

Furthermore, if we fix a computable measure to take samples, the error sum
of sufficiently general predictions is always a finite Martin-Löf random real
(Theorem 4.1). This means the errors converge to zero more slowly than any
monotone computable function. A sufficiently general prediction cannot converge
quickly, and its convergence rate is uniquely determined up to a multiplicative
constant (Theorem 4.2). While simple intuition suggests that good predictions
should have small errors, general-purpose algorithms that can solve many tasks
will converge slower than specialized algorithms.

As special cases, we analyse the convergence speed using the Lp-norm when the
model measure � is either a Dirac measure (Proposition 4.9) or a separated measure
(Proposition 4.16).

This article is a sequel to [17]. While the notion of generality has already been
defined in [17], we consider this notion more carefully in this article. In particular, we
give a necessary and sufficient condition of domination in Theorem 3.2. Theorem 4.1
strengthens [17, Theorem 3.1] and Proposition 4.13 strengthens [17, Theorems 4.3
and 4.4].

§2. Preliminaries. In this section, we fix the notation and review notions from
some theories.

2.1. Notations. The sets of all positive integers, rational numbers, and reals are
denoted by N = {1, 2, 3, ... }, Q, and R, respectively.

The set of all finite binary strings is denoted by {0, 1}∗. We denote finite binary
strings using � and �. The length of a string � is denoted by |�|. For �, � ∈ {0, 1}∗,
the concatenation of � and � is denoted by ��.

The set of all infinite binary sequences is denoted by {0, 1}N. We use X,Y,Z
to denote infinite binary sequences. We write X = X1X2X3 ... and let X<n =
X1X2 ... Xn–1 and X≤n = X1X2 ... Xn for n ∈ N.

The Cantor space, also denoted by {0, 1}N, is the space of all infinite binary
sequences equipped with the topology generated from the cylinder sets [�] = {X ∈
{0, 1}N : � ≺ X} for � ∈ {0, 1}∗ where ≺ is the prefix relation.

2.2. Computability theory. We follow the standard notation and terminology
in computability theory and computable analysis. For details, see, for instance,
[6, 23, 28].

A partial function f :⊆ {0, 1}∗ → {0, 1}∗ is a partial computable function if it can
be computed using a Turing machine. A real x ∈ R is called computable if there
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RATE OF CONVERGENCE 3

exists a computable sequence (qn)n∈N of rationals such that |x – qn| < 2–n for all n.
A real x ∈ R is called left-c.e. if there exists an increasing computable sequence (qn)n
converging to x. A real x ∈ R is called right-c.e. if – x is left-c.e.

A function f : {0, 1}∗ → R is called computable if f(�) is uniformly computable
in � ∈ {0, 1}∗. A (probabilistic) measure � on {0, 1}N is computable if the function
� �→ �([�]) =: �(�) is computable. For details on computable measure theory, see,
for instance, [3, 27, 29].

2.3. Theory of inductive inference. Now, we review the theory of inductive
inference initiated by Solomonoff. The primary references for this are [13, 15].
For a more philosophical discussion, see [20].

We use � to denote a computable measure on the Cantor space {0, 1}N. This �
represents an unknown model. We call this measure � a model measure.

Suppose an infinite binary sequence is sampled from the Cantor space with this
�. When given the first n – 1 bitsX<n of X, the next bit follows the conditional model
measure on {0, 1} represented by

k �→ �(k|X<n) =
�(X<nk)
�(X<n)

. (1)

Our ultimate goal is to construct a computable measure � such that the prediction
�(·|X<n) is close to �(·|X<n). We call this measure � a prediction measure and call
the measure �(·|·) a conditional prediction.

Solomonoff’s celebrated result states that every optimal prediction behaves rather
well. A semi-measure is a function � : {0, 1}∗ → [0, 1] such that �(�) ≤ 1 and
�(�) ≥ �(�0) + �(�1) for every � ∈ {0, 1}∗ where � is the empty string. A function
f : {0, 1}∗ → R is called c.e. or lower semi-computable if f(�) is left-c.e. uniformly
in � ∈ {0, 1}∗.

Let �, � be semi-measures on {0, 1}N. We say that � (multiplicatively) dominates �
if, there exists c ∈ N such that�(�) ≤ c · �(�) for all� ∈ {0, 1}∗. A c.e. semi-measure
� is called optimal if � dominates every c.e. semi-measure. An optimal c.e. semi-
measure exists while no computable measure is optimal. The conditional prediction
�(·|·) induced by this optimal c.e. semi-measure is sometimes called algorithmic
probability.

Theorem 2.1 [24], see also [13, Theorem 3.19]. Let � be a computable measure on
{0, 1}N. Let � be an optimal c.e. semi-measure. Then, for both k ∈ {0, 1} we have

�(k|X<n) – �(k|X<n) → 0

as n → ∞ almost surely when X follows �.

The prediction semi-measure � is arbitrary and lacks information about the
model measures �. The prediction by � investigates X<n, which contains some
information of �, and predicts the next bit X (n). The theorem above states that
the conditional predictions �(·|X<n) are getting close to the true conditional model
measures �(·|X<n) almost surely.

The rate of the convergence has been briefly discussed in [14] but has yet to be
established.
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4 KENSHI MIYABE

§3. Generality. In this section, we introduce the concept of generality. Generality
is a tool for comparing the well-behavedness of two measures. Just as optimality is
defined by domination, generality is defined by domination. We expect that when
one measure dominates another measure, the induced prediction also behaves better
than the other. The question here is: what does it mean for one prediction to
behave better than another? We answer this question by considering the sum of the
prediction errors.

3.1. Definition of generality. Let �, � be two measures on {0, 1}N. We say that
� is more general than � if � dominates �; that is, there exists c ∈ N such that
�(�) ≤ c · �(�) for all � ∈ {0, 1}∗.

The intuition is as follows. We are sequentially given a sequence X ∈ {0, 1}N.
The sequence X ∈ {0, 1}N may be a binary expansion of e or �, or a random
sequence of P(Xn = 0) = P(Xn = 1) = 1

2 independently. The task is to find such
regularity and make a good prediction. The regularity is expressed as (or identified
with) the measure � such that X is random with respect to �. The measure is a
Dirac computable measure in the deterministic case, such as e or �. In general, the
measure need not be deterministic; it can be an arbitrary computable measure.

Essentially, a prediction � is more general than another prediction � if the
prediction � behaves well for � such that � behaves well for �. Thus, � performs
better for a larger class of � than �. As we will see in Theorem 3.2, this relation is
formalized by domination. This is the reason for using the terminology ‘general’ for
domination.

We are interested in the property of sufficiently general computable predictions.
We often say that a property P holds for all sufficiently large natural numbers if
there exists N such that P(n) holds for all natural numbers n ≥ N . As an analogy,
we say that a property P holds for all sufficiently general computable prediction
measures if there exists a computable prediction measure � such that the property
P(�) holds for all computable prediction measure � dominating �. The author
came up with the idea inspired by the study of Solovay functions, such as [2]. In
particular, the computational complexity of computing such functions may be very
low [12, Theorem 2].

In the inductive inference theory, we discuss the properties of an optimal c.e.
semi-measure and its induced prediction. Similarly, we will see some properties of a
sufficiently general computable measure and its induced prediction.

3.2. Domination and convergence. We claim that domination means better
behavior by giving a necessary and sufficient condition for the convergence of the sum
of the prediction errors. Here, the error is measured by Kullback–Leibler divergence.

The Kullback–Liebler divergence is the primary tool for discussing the conver-
gence of the predictions. For details, see any standard text on information theory,
such as [7].

Let �, � be measures on the discrete space {0, 1}. The KL divergence of � with
respect to � is defined by

d (�||�) =
∑
k∈{0,1}

�(k) ln
�(k)
�(k)

,

where 0 · log 0
z = 0 for z ≥ 0, y log y0 = ∞ for y > 0, and ln is the natural logarithm.
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RATE OF CONVERGENCE 5

Next, let�, � be measures on the continuous space {0, 1}N. We use the notation:

• d�(�||�) = d (�(·|�)||�(·|�)),
• Dn(�||�) =

∑n
k=1E�[dX<k (�||�)],

• D∞(�||�) = limn→∞Dn(�||�),

where �(·|�), �(·|�) are the measures on {0, 1} defined in (1). Thus, d�(�||�) is the
prediction error conditioning on �, Dn(�||�) is the expected sum of the prediction
errors until the nth round when X follows�, andD∞ is its limit. Since KL divergence
is non-negative,Dn is non-decreasing in n. Note that the finiteness of the sum of the
prediction errors is a condition stronger than the convergence of the errors to 0.

Remark 3.1. The chain rule for KL divergence states that

Dn(�||�) = E�[ln
�(X≤n)
�(X≤n)

].

See such as Hutter [13, (3.18)] and Cover and Thomas [7, Theorem 2.5.3].

Theorem 3.2. For two measures �, � on {0, 1}N, the following are equivalent.

(i) � dominates �.
(ii) There exists a constant c ∈ N such that for every measure � on {0, 1}N, we have
D∞(�||�) ≤ D∞(�||�) + c.

From this, domination means rapid convergence of a larger class of model
measures. If � dominates � and � behaves well for � (the error sum is finite),
then � also behaves well for � (the error sum is finite). Furthermore, the difference
of the sums of the errors is, at most, a constant uniformly in �. Thus, the error sum
of � is small, so is that of �.

Note that KL divergence can be infinity, and the finiteness of KL divergence is
an essential aspect in the formulation of Theorem 3.2. Some other distances are
discussed in [13, Section 3.2.5]. One example is the Hellinger distance, which plays
a vital role in the proof of Theorem 2.1, but is bounded by 1. Thus, KL divergence
seems helpful in the formulation.

Proof. (i)⇒(ii). Suppose that

� ≤ c � (2)

for some c ∈ N.
Suppose that there exists a string � ∈ {0, 1}∗ such that �(�) > 0 and �(�) = 0.

Then, there exist a string � ∈ {0, 1}∗ and a bit k ∈ {0, 1} such that �(�0) > 0,
�(�1) > 0, �(�) > 0 and �(�k) = 0. For this �, we have d�(�||�) = ∞ and
D∞(�||�) = ∞. Thus, the condition (ii) holds.

Now assume that

�(�) > 0 ⇒ �(�) > 0 (3)

for all � ∈ {0, 1}∗. Fix an arbitrary n ∈ N. For all � ∈ {0, 1}n such that �(�) > 0,
we have

ln
�(�)
�(�)

≤ ln
�(�)
�(�)

+ ln c (4)
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6 KENSHI MIYABE

by (2). Here note that �(�) > 0 by (3) and (2). By taking the integral of (4) with
respect to �, we have

Dn(�||�) ≤ Dn(�||�) + ln c

by Remark 3.1. Since both Dn are non-decreasing, this implies the condition (ii).
(ii)⇒(i). Let � ∈ {0, 1}∗ be an arbitrary string. We construct a measure � such

that the condition (ii) for this � implies �(�) ≤ ec�(�). We define the measure � by

�(�) =

⎧⎪⎨
⎪⎩
�(�)/�(�), if � � �,
1, if � � �,
0, otherwise.

In other words, � is zero outside the cylinder [�] and is proportional to � inside
[�]. Note that for any string 	 ∈ {0, 1}∗ such that |	| = |�|, the ratio �(	�)/�(	�) is
constant for all � ∈ {0, 1}∗. Thus, D|�|(�||�) = D∞(�||�). Hence,

c ≥ D∞(�||�) – D∞(�||�) ≥ D|�|(�||�) – D|�|(�||�) = ln
�(�)
�(�)

– ln
�(�)
�(�)

,

where the last equality follows by Remark 3.1. Hence we have �(�) ≤ ec�(�).
Since � is arbitrary, the condition (i) holds. �

3.3. Infinite chain rule for KL divergence. Here, with independent interest, we
show that D∞(�||�) is nothing but the usual KL divergence.

Let us recall the KL divergence on a non-discrete space. Let �, � be measures on
{0, 1}N. Then, the KL divergence of � with respect to � is defined by

D(�||�) =
∫
d�

d�
ln
d�

d�
d� =

∫
ln
d�

d�
d�

where 0 · log 0 = 0 and ln is the natural logarithm, and d�
d� is the Radon–Nikodym

derivative of � with respect to �. If � is the derivative d�d� does not exist, then let
D(�||�) = ∞.

Proposition 3.3. Let �, � be measures on {0, 1}N. Then,

D∞(�||�) = D(�||�).

This is an infinite version of the chain rule for KL divergence in Remark 3.1.
The essential reason for this is that the Radon–Nikodym derivative d�

d� can be

approximated by
�(X≤n)
�(X≤n) . For proof, we use the following facts.

Lemma 3.4 (Theorem 5.3.3 in [11] in our terminology). Suppose that �(�) = 0 ⇒
�(�) = 0 for all � ∈ {0, 1}∗. Let f(X ) = lim supn

�(X≤n)
�(X≤n) . Then,

�(A) =
∫
A

f d� + �(A ∩ {f(X ) = ∞})

for all measurable sets A.
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RATE OF CONVERGENCE 7

Remark 3.5.

(i) The sequence (
�(X≤n)
�(X≤n) )n is a non-negative martingale with respect to � (see

[11, Theorem 5.3.4]).
(ii) Hence, �({f(X ) = ∞}) = 0 by Doob’s martingale maximal inequality.

(iii) If �� �, then f = limn
�(X≤n)
�(X≤n) = d�

d� , �-almost surely.

Proposition 3.3. We divide the proof into four cases.

Case 1. d�d� exists and D(�||�) <∞.

We will show that (
�(X≤n)
�(X≤n) ln

�(X≤n)
�(X≤n) )n is uniformly integrable with respect to �. For

K ∈ N, let

UKn = {X ∈ {0, 1}N :
�(X≤n)
�(X≤n)

> K}.

It suffices to show that

sup
n

∫
UKn

∣∣∣∣�(X≤n)
�(X≤n)

ln
�(X≤n)
�(X≤n)

∣∣∣∣ d� → 0 as K → ∞.

Let AKn = {� ∈ {0, 1}n : �(�)/�(�) > K}. For K > 1, we have ln(�(�)/�(�)) >
lnK > 0. Thus,∫

UKn

∣∣∣∣�(X≤n)
�(X≤n)

ln
�(X≤n)
�(X≤n)

∣∣∣∣ d� =
∑
�∈AKn

�(�)
�(�)
�(�)

ln
�(�)
�(�)

≤
∑
�∈AKn

∫
[�]

d�

d�
ln
d�

d�
d� =

∫
UKn

d�

d�
ln
d�

d�
d� (5)

Here, we used Jensen’s inequality on [�] with the convex function g(x) = x lnx:

g(
1
�(�)

∫
[�]

d�

d�
d�) ≤ 1

�(�)

∫
[�]
g(
d�

d�
)d�. (6)

Since �(X≤n)/�(X≤n) is a non-negative martingale by Remark 3.5, we have
�(UKn ) < 1

K . From the epsilon-delta type characterization of absolute continuity (see
[18, Proposition 15.5] for a general measure space and [5, Theorem 2.5.7] for the
Lebesgue integral ), the supremum of the last term in (5) goes to 0 as K → ∞. This
shows uniform integrability.

Finally, we use the Vitali convergence theorem to deduce

D∞(�||�) = lim
n
E[
�(X≤n)
�(X≤n)

ln
�(X≤n)
�(X≤n)

] = E[
d�

d�
ln
d�

d�
] = D(�||�)

by Remark 3.5(iii).

Case 2. d�d� exists and D(�||�) = ∞.
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8 KENSHI MIYABE

Then, D∞(�||�) = ∞ because, by the finite chain rule for KL divergence, we have

D∞(�||�) = lim
n
E�[ln

�(X≤n)
�(X≤n)

] ≥ E�[ln
d�

d�
] = D(�||�),

where we have used Fatou’s lemma in deducing the inequality.

Case 3. d�d� does not exist and �(�) = 0 ⇒ �(�) = 0 for all � ∈ {0, 1}∗.
By Lemma 3.4, �({f(X ) = ∞}) = � > 0. Then, for each K > 0, we have

�({limn
�(X≤n)
�(X≤n) > K}) ≥ �, and thus, there exists n ∈ N such that �({�(X≤n)

�(X≤n) > K})

> �/2, which impliesDn(�||�) ≥ � lnK
2 . Since K is arbitrary, we haveD∞(�||�) = ∞.

Case 4. �(�) = 0 and �(�) > 0 for some � ∈ {0, 1}∗.
In this case, we have D|�|(�||�) ≥ �(�) ln �(�)

�(�) = ∞. Thus, D∞(�||�) = ∞. Since
� �� �, we also have D(�||�) = ∞.

§4. Rate of convergence. Let � be a computable model measure on {0, 1}N.
Then, for any computable measure � that dominates �, we have D∞(�||�) <∞ by
Theorem 3.2. Hence, any sufficiently general prediction converges to the conditional
model measure, almost surely. In this section, we discuss its rate of convergence.
The main result here is Martin-Löf randomness of the KL divergence, from which
we show that the convergence rate is almost the same for any sufficiently general
prediction.

4.1. Martin-Löf randomness of KL divergence. We review Martin-Löf random
left-c.e. reals to analyze the convergence rate. For details, see such as [9, Chapter 9].

A set U ⊆ R is a c.e. open set if there exists a computable sequence (an, bn)n∈N

of open intervals with rational endpoints such that U =
⋃
n(an, bn). Let 
 be the

Lebesgue measure onR. A ML-test with respect to 
 is a sequence (Un)n of uniformly
c.e. open sets with 
(Un) ≤ 2–n for all n ∈ N. A real α ∈ R is called ML-random if
α �∈

⋂
n Un for every ML-test (Un)n.

An example of left-c.e. ML-random reals is the halting probability. The
halting probability ΩU of a prefix-free Turing machine U is defined by
ΩU =

∑
�∈dom(U) 2–|�|. Then, ΩU is a left-c.e. ML-random real for each universal

prefix-free Turing machine U. This ΩU is known as Chaitin’s omega. Conversely,
any left-c.e. ML-random real in (0, 1) is the halting probability of some universal
machine (see [9, Theorems 9.2.2 and 9.2.3]).

Theorem 4.1. Let � be a computable model measure on {0, 1}N. Then, D∞(�||�)
is a finite left-c.e. ML-random real for all sufficiently general computable measures �.

We can discuss the convergence rate from this Martin-Löf randomness. This is
because all ML-random reals have almost the same rate of convergence, as follows:

Theorem 4.2 [1], see also [16]. Let α, � be left-c.e. reals with their increasing
computable approximations (αs), (�s). If � is ML-random, then

lim
s→∞

α – αs
� – �s

exists
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RATE OF CONVERGENCE 9

and is independent from the approximation. Furthermore, the limit is zero if and only
if α is not ML-random.

This theorem means that the convergence rate of ML-random left-c.e. reals is the
same up to a multiplicative constant and much slower than that of non-ML-random
left-c.e. reals.

Now we give a proof of Theorem 4.1. First we construct a computable measure
� such that D∞(�||�) is ML-random. Then, we claim that if a computable
measure � dominates �, then D∞(�||�) – D∞(�||�) is a left-c.e. real, which implies
ML-randomness of D∞(�||�) by a result of Solovay reducibility.

Lemma 4.3. Let � be a computable measure. Then, there exists a computable
measure � such that:

• the Radon–Nikodym derivative d�d� exists,

• d�d� is a constant function on a �-measure 1 set and 0 outside it,
• the constant value is a finite left-c.e. ML-random real.

In particular, D∞(�||�) is a finite left-c.e. ML-random real.

Proof. First, we define the computable measure �. Let (zn)n∈N be a sequence of
uniformly computable positive reals such that s =

∑
n∈N
zn < 1 is a ML-random

real. Let Z� ∈ {0, 1}N be a computable sequence uniformly in � such that � ≺ Z�
and �(Z�) = 0, whose existence will be shown in Lemma 4.4.

Define measures �n, � by

�n(�) =

⎧⎪⎨
⎪⎩
�(�), if |�| ≤ n,
�(�), if |�| > n, � = �≤n, � ≺ Z�,
0, if |�| > n, � = �≤n, � �≺ Z�,

for all � ∈ {0, 1}∗ and

� =
∑
n

zn�n + (1 – s)�. (7)

The measure �n coincides with � up to depth n, but beyond that point it collapses
the distribution onto a single predetermined infinite path Z� extending each prefix
� of length n; in other words, all of the mass that � assigns to � is concentrated
along one chosen branch, and every other continuation gets zero. The measure �
mixes the collapsed measures �n with weights zn together with a portion of the
original measure �, so it combines � with versions that eventually follow a single
deterministic path.

Now, we claim that the measure � is computable. This is because

�(�) =
∑
n<|�|
zn�n(�) +

∑
n≥|�|

zn�n(�) + (1 – s)�(�)

=
∑
n<|�|
zn�n(�) + (1 –

∑
n<|�|
zn)�(�).

Next we find d�
d� . Because �� �, by Remark 3.5(iii), d�d� = limn

�(X≤n)
�(X≤n) �-almost

surely.
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10 KENSHI MIYABE

Consider X ∈ {0, 1}N such that �(X≤n) > 0 for all n. Then, �-almost such
sequences satisfy X ��= Z� for any � ∈ {0, 1}∗. For each n and sufficiently large

k depending on n, we have �n(X≤k) = 0. Thus, limk
�(X≤k )
�(X≤k ) = 1

1–s .

If X = Z� for some � ∈ {0, 1}∗, then

�(X≤n) → �(X ) = �(Z�) = 0,

�(X≤n) → �(X ) =
∑

{zn�n(�) : Z� = X} > 0,

as n → ∞. Hence, limk
�(X≤k )
�(X≤k ) = 0.

We also observe that the set of X such that�(X≤n) = 0 for some n has�-measure 0.
Because s is a left-c.e. ML-random, so is 1

1–s . Hence, the first half of the claim follows.
Finally,

D(�||�) =
∫

ln
d�

d�
d� = ln

1
1 – s

,

which is ML-random by Proposition 4.5. �

Lemma 4.4. For each � ∈ {0, 1}∗, we can compute a sequence Z� ∈ {0, 1}N such
that � ≺ Z� and �(Z�) = 0. Furthermore, the construction is uniform in �.

We construct Z� as the limit of extending sequences � = �0 ≺ �1 ≺ �2 ... .
One might attempt to define �k+1 from �k with the following properties:

• �k ≺ �k+1,
• |�k+1| = |�k | + 1,
• �(�k+1) < 2

3 · �(�k).

Roughly saying, one computes the conditional probability and takes the smaller
one.

However, this simple idea does not work. Since �(�) may be 0 for some
� ∈ {0, 1}∗, the conditional probability may not be computable.

To make the construction uniform, we need the following modified strategy to
construct it.

Proof. Let p, q ∈ (0, 1) be rational numbers such that

0 < p < q < 1, pq >
1
2
,

for example, p = 3
4 and q = 4

5 .
Let �0 = �.
Suppose �k is already defined and satisfies

�(�k) ≤ qk max
{
�(�), pk

}
. (8)

Notice that (8) holds for k = 0.
Now we define �k+1 so that �k ≺ �k+1, |�k+1| = |�k | + 1,

�(�k+1) < qk+1 max
{
�(�), pk+1

}
. (9)
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RATE OF CONVERGENCE 11

We claim that �k+1 computationally can be found. If neither of the strings extending
�k satisfies (9), then

�(�k) ≥ 2qk+1 max
{
�(�), pk+1

}
> qk max

{
�(�), pk

}
,

which contradicts (8). Hence, one of the two strings extending �k satisfies (9), which
can be found computably.

Finally, the claim follows by letting k tend to infinity in (8). �

Proposition 4.5. Let I be an open interval in the real line and f : I → R be
a computable function in C 1. If z ∈ I is ML-random and f′(z) �= 0, then f(z) is
ML-random. Here f′ is the derivative of f.

This fact follows from the more advanced fact called randomness preservation or
conservation of randomness [4, Theorem 3.2]. However, we give a direct proof here.

Proof. Without loss of generality, we can assume f′(z) > 0. Because f′ is
continuous, there exists a closed interval [a, b] with rational endpoints such that
z ∈ [a, b] ⊆ I and f′(x) > 0 for every x ∈ [a, b]. Because f′ is continuous and
[a, b] is a bounded closed set, by the extreme value theorem, we have a positive
rational m < infx∈[a,b] f

′(x).
Suppose f(z) is not ML-random. Then there exists a ML-test (Un)n such that

f(z) ∈
⋂
n Un. Let Vn = {x : f(x) ∈ Un} ∩ [a, b]. Then, (Vn)n is a sequence of

uniformly c.e. open sets. We also have z ∈
⋂
n Vn because f(z) ∈ Un for all n.

We claim that �(Vn) ≤ 2–n/m for all n. When some interval (c, d ) ⊆ [f(a), f(b)]
is enumerated into Un, the corresponding interval (f–1(c), f–1(d )) ⊆ [a, b] is
enumerated into Vn. By the mean-value theorem, there exists w ∈ (f–1(c), f–1(d ))
such that

(d – c) = f′(w)(f–1(d ) – f–1(c)) ≥ m(f–1(d ) – f–1(c)).

Hence, the claim follows. �

The last piece for the proof is the following result on Solovay reducibility. For a
proof, see [9, Theorem 9.1.4] or [19, Proposition 3.2.27].

Proposition 4.6. The sum of a left-c.e. ML-random real and a left-c.e. real is
ML-random.

Theorem 4.1. Let � be the measure constructed in Lemma 4.3. Let � be a measure
dominating �. Then,

D(�||�) =
∫

ln
d�

d�
d� =

∫
ln
d�

d�
d�+

∫
d�

d�
ln
d�

d�
d� = D(�||�) + αD(�||�),

where α is the left-c.e. real such that d�d� = α �-a.s. Here, D(�||�) is ML-random
by Lemma 4.3 and D(�||�) and D(�||�) are left-c.e., as in Proposition 3.3. Thus, by
Proposition 4.6, D∞(�||�) is ML-random.

4.2. Lp-norm of measures. We begin by introducing distances between measures
on the finite alphabet {0, 1}. These distances will later be applied to conditional
distributions arising from measures on the infinite sequence space {0, 1}N.
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12 KENSHI MIYABE

Let �, � be measures on the discrete space {0, 1}. For p ≥ 1, the distance between
� and � by the Lp-norm is

||� – �||p = (
∑
k∈{0,1}

|�(k) – �(k)|p)1/p.

Let


p(�, �) = ||� – �||pp.
Some closely related distances are:

• 
1(�, �) = ||� – �||1 is the Manhattan distance.
• 
2(�, �) = ||� – �||22 is the squared Euclidian distance.
• 1

2
1(�, �) = 1
2 ||� – �||1 is the total variation distance.

We now extend these notions to measures on the sequence space {0, 1}N, in the
same way as was previously done for the KL divergence. For measures �, � on
{0, 1}N, we write:

• 
p,�(�, �) = 
p(�(·|�), �(·|�)),
• Lp,n(�, �) =

∑n
k=1EX∼�[
p,X<k (�, �)],

• Lp,∞(�, �) = limn→∞ Lp,n(�, �).

If �, �, and p are computable and Lp,∞(�, �) is finite, then Lp,∞(�, �) is left-c.e.
Let � be a computable measure on {0, 1}N. We ask at which p the left-c.e. reals

D∞(�, �) and Lp,∞(�, �) have the same rate of convergence, which mainly depends
on �.

In the theory of algorithmic randomness, Solovay reducibility measures the
convergence rate of left-c.e. reals. Instead of the original definition by Solovay, we
use the following characterization by Downey, Hirschfeldt, and Nies [10] (see also
[9, Theorem 9.1.8]). For two left-c.e. reals α, � , we say that α is Solovay reducible
to � , denoted by α ≤S � , if there exists a constant c ∈ N and a left-c.e. real � such
that c� = α + �. Roughly saying, α ≤S � means that the convergence rate of � is
not faster than α. The induced equivalence relation, denoted by ≡S , is defined by
α ≡S � ⇐⇒ (α ≤S � and � ≤S α). If α is ML-random and α ≤S � , then � is
ML-random by Proposition 4.6.

Definition 4.7. We define R(�) to be the set of positive computable reals p such
that Lp,∞(�, �) <∞ and D∞(�, �) ≡S Lp,∞(�, �) for all computable measures �
dominating �.

In what follows, we determine R(�) for Dirac measures � and separated
measures �. If R(�) is a single point set, we write R(�) = p for R(�) = {p}.

The rough rate of convergence of left-c.e. reals can be represented by the effective
Hausdorff dimension. Let K be the prefix-free Kolmogorov complexity, that is,
K(�) = min{|�| : U (�) = �} where U is a fixed universal prefix-free Turing
machine. The Levin–Schnorr theorem states that X ∈ {0, 1}N is ML-random if
and only ifK(X � n) > n – O(1) where we identify a real in the unit interval with its
binary expansion. The effective Hausdorff dimension of X ∈ {0, 1}N is defined by

dim(X ) = lim inf
n

K(X � n)
n

.
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RATE OF CONVERGENCE 13

In particular, dim(X ) = 1 for each ML-random sequence X. See [9, Chapter 13] for
details.

Theorem 4.8 (Theorem 3.2 in [25]). Let (an)n be a sequence of uniformly
computable positive reals such that

∑
n an is finite and is ML-random. Then, the

following holds:

(i) dim(
∑
n(an)

p) = 1/p for each computable p ≥ 1.
(ii)

∑
n(an)

p = ∞ for each p ∈ (0, 1).

The original statement by Tadaki is about the halting probability but the statement
also holds for any sequence of uniformly computable positive reals whose sum is
finite and ML-random by almost the same proof.

4.3. Case of Dirac measures. From now on, we discuss the rate of convergence
more concretely. First, we consider the case in which the model measure � is a Dirac
measure, which means that the model is deterministic.

Let � be a computable Dirac measure; that is, � = 1A for some A ∈ {0, 1}N.
Because A is an atom of the computable measure �, the sequence A is computable
(see, for example, [9, Lemma 6.12.7]). The goal is to evaluate the error of �

1 – �(An|A<n)

for each n ∈ N for general computable prediction measures �.

Proposition 4.9. Let A ∈ {0, 1}N be a computable sequence and � = 1A. Then,
R(�) = 1. In particular, L1,∞(�, �) is finite and is a left-c.e. ML-random real for all
sufficiently general computable prediction measures �.

Lemma 4.10. Let A ∈ {0, 1}N be a computable sequence and � = 1A. Let � be a
computable measure dominating �. Then,

L1,∞(�, �) = 2
∞∑
n=1

(1 – �(An|A<n)).

Proof. For each � ∈ {0, 1}∗, we have


1,� = |�(0|�) – �(0|�)| + |�(1|�) – �(1|�)|.

Since � = 1A, we have

EX∼�[
1,X<n (�, �)] = |�(0|A<n) – �(0|A<n)| + |�(1|A<n) – �(1|A<n)|

for each n ∈ N. Since �(An|A<n) = 1 and �(An|A<n) = 0 where k = 1 – k, we have

L1,∞(�, �) =
∞∑
n=1

EX∼�[
1,X<n (�, �)] =
∞∑
n=1

(1 – �(An|A<n) + �(An|A<n)).

Finally, notice that �(An|A<n) = 1 – �(An|A<n). Hence, the claim follows. �

Lemma 4.11. Let A ∈ {0, 1}N be a computable sequence and � = 1A. Then,
1 ∈ R(�).

Proof. Let � be a computable measure dominating �.
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14 KENSHI MIYABE

First, we demonstrate that L1,∞(�, �) <∞. By the inequality

ln(1 – x) ≤– x

for all x ∈ R, we have

1 – �(An|A<n) ≤– ln �(An|A<n) = dA<n (�||�). (10)

From this and by Lemma 4.10, we have

L1,∞(�, �) ≤ 2D∞(�||�) <∞,

where the last inequality follows from Theorem 3.2.
Let f(n) be a computable function from N to R such that


1,A<n (�, �) + f(n) = 2dA<n (�||�).

Then, f(n) ≥ 0 for all n by (10). Hence,

L1,∞(�, �) +
∑
n

f(n) = 2D∞(�||�),

which implies L1,∞(�, �) ≤S D∞(�||�).
Next, we prove the converse relation. For sufficiently large n, we have


1,A<n (�||�) > 2(ln 2)(1 – �(An|A<n)) ≥– ln �(An|A<n) = dA<n (�||�),

where we used 0 < ln 2 < 1 for the first inequality and ln(1 – x) ≥– 2(ln 2)x for
all x ∈ [0, 1/2] for the second inequality. Also note that, since L1,∞(�, �) <∞ by
above, we have 1 – �(An|A<n) → 0 as n → ∞. Thus, there exists a left-c.e. real α
such that L1,∞(�, �) = D∞(�||�) + α. Hence, D∞(�||�) ≤S L1,∞(�, �). �

Lemma 4.12. Let A ∈ {0, 1}N be a computable sequence and � = 1A. Then,
p �∈ R(�) for each positive computable real p �= 1.

Proof. Let � be a computable measure on {0, 1}N dominating � constructed in
Lemma 4.3. Then, L1,∞(�, �) is ML-random by Lemma 4.11. We also have

Lp,∞(�, �) =
∞∑
n=1


p,A<n (�, �) =
∞∑
n=1

∑
a∈{0,1}

|�(a|A<n) – �(a|A<n)|p

= 2
∞∑
n=1

|�(An|A<n) – �(An|A<n)|p.

Now, by Theorem 4.8(ii),Lp,∞(�, �) = ∞ for each computablep ∈ (0, 1). Similarly,
by Theorem 4.8(i), Lp,∞(�, �) <∞ is not ML-random for each computable p > 1,
which is not Solovay equivalent to a left-c.e. ML-random real D∞(�, �). Hence,
p �∈ R(�) for each positive computable real p �= 1. �

Proof of Proposition 4.9. The claim R(�) = 1 follows from Lemmas 4.11
and 4.12. Since 1 ∈ R(�), we have L1,∞(�, �) <∞ and D∞(�||�) ≡S L1,∞(�, �)
for all computable measures � dominating �. By Theorem 4.1, there exists a
computable measure � such that D∞(�||�) is a left-c.e. ML-random real for
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RATE OF CONVERGENCE 15

all computable measures � dominating �. Thus, L1,∞(�, �) is ML-random for
all computable measures � dominating � and �. �

When the model measure is a Dirac measure, the rate of convergence can be
expressed more concretely by time-bounded Kolmogorov complexity. Let h : N → N

be a computable function, and letM :⊆ {0, 1}∗ → N be a prefix-free machine. The
Kolmogorov complexity relative to M with time bound h is

KhM (�) = min{|�| : M (�) = � in at most h(|�|) steps }.

Here, h : N → N is a total computable function. We writeKh(�) as the meanKhU (�)
for a fixed universal prefix-free machine U.

Proposition 4.13. Let A ∈ {0, 1}N be a computable sequence.

(i) For every total computable prediction � dominating � = 1A, there exists a
computable function h : N → N such that

Kh(n) ≤– log(1 – �(An|A<n)) +O(1).

(ii) For every total computable function h : N → N, we have

– log(1 – �(An|A<n)) ≤ Kh(n) +O(1)

for all sufficiently general computable prediction measure �.

Here, log is the logarithm with base 2.

From this theorem, we know that the error 1 – �(An|A<n) is essentially the same
as 2–Kh (n) up to a multiplicative constant. We use this formulation because of the
non-optimality of the time-bounded Kolmogorov complexity.

Proof. (i) By Proposition 4.9, we have∑
n

(1 – �(An|A<n)) <∞.

By the KC-theorem [9, Theorem 3.6.1], there exists a prefix-free machine
M :⊆ {0, 1}∗ → N and a computable sequence (�n)n of strings such that

M (�n) = n, |�n| ≤– log(1 – �(An|A<n)) +O(1).

Let � ∈ {0, 1}∗ be a string such that U (��) �M (�) for all � ∈ {0, 1}∗. Then, the
function n �→ U (��n) is a total computable function. Therefore, there exists a total
computable function h : N → N such that, for every n ∈ N, the computation of
U (��n) halts within at most h(n) steps. By this definition of h, we obtain

Kh(n) ≤ |�| + |�n| .

(ii) We define a computable prediction measure � by

� =
∑
n

2–Kh (n)1A<nAn0N + (1 – s)1A,

where s =
∑
n 2–Kh (n) < 1 and k = 1 – k for k ∈ {0, 1}.
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16 KENSHI MIYABE

We claim that this measure � is computable. We show that �(�) is computable
uniformly in � ∈ {0, 1}∗. If � ≺ A, then

�(�) =
∑
n>|�|

2–Kh (n) + (1 – s) = 1 –
∑
n≤|�|

2–Kh (n).

If � = A<kAk0i for some k, i ∈ N, then

�(�) = 2–Kh (k).

If � = A<kAk0i1� for some k, i ∈ N and � ∈ {0, 1}∗, then

�(�) = 0.

In any case, �(�) is computable from n. Furthermore, these relations are decidable.
Let � be a computable measure dominating �. Then, there exists c ∈ N such that

�(�) ≤ c�(�) for all � ∈ {0, 1}∗. Then,

1 – �(An|A<n) = 1 –
�(A≤n)
�(A<n)

=
�(A<nAn)
�(A<n)

≥ �(A<nAn)
c

=
2–Kh (n)

c
. �

4.4. Case of separated measures. Now, we discuss the convergence rate of general
computable predictions when the computable model measure is separated. In this
case, the convergence rate is much slower than that for the Dirac measures.

We call a measure to be separated if the conditional probabilities are far away
from 0 and 1. A formal definition is as follows.

Definition 4.14 (See before Theorem 196 in [22]). A measure � on {0, 1}N is
called separated (from 0 to 1), if

inf
�∈{0,1}∗, k∈{0,1}

�(k|�) > 0.

Remark 4.15. Li–Vitányi’s book called this notion “conditionally bounded away
from zero” [15, Definition 5.2.3].

Proposition 4.16. Let � be a computable separated measure. Then, R(�) = 2.
In particular, L2,∞(�, �) <∞ and is a left-c.e. ML-random real for all sufficiently
general computable prediction measure �.

Lemma 4.17. Let � be a computable separated measure. Then, 2 ∈ R(�).

In the following proof, we use a version of Pinsker’s inequality and a reverse
Pinsker inequality. A Pinsker inequality bounds the squared total variation from
above by the KL divergence (see, for example, Verdú [26, (51)]). A reverse inequality
does not hold in general, but it does under separation assumptions (see, for instance,
[8, Lemma 6.3]). For a more comprehensive survey, see the work of Sason [21].

Proof. Let � be a computable measure dominating �. By Pinsker’s inequality
and a reverse Pinsker inequality, there are a, b ∈ N such that

(
1,�(�, �))2 ≤ a · d�(�||�) ≤ b · (
1,�(�, �))2.

Now we look at the relation between (
1,�(�, �))2 and 
2,�(�, �). We use the
inequalities
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x2 + y2 ≤ (x + y)2 ≤ 2(x2 + y2)

for x, y ≥ 0 to deduce


2,�(�, �) ≤ a · d�(�||�) ≤ 2b · 
2,�(�, �). (11)

The first inequality implies

L2,∞(�, �) ≤ aD∞(�||�) <∞
by Theorem 4.1, and thus 2 ∈ R(�). The first inequality in (11) also implies the
existence of a computable function f : {0, 1}∗ → R such that


2,�(�, �) + f(�) = ad�(�||�),
and thus the existence of a left-c.e. real � such that

L2,�(�, �) + � = aD∞(�||�).
Hence, L2,∞(�, �) ≤S D∞(�, �). Similarly, the second inequality in (11) implies
D∞(�, �) ≤S L2,∞(�, �). Hence, we have L2,∞(�, �) ≡S D∞(�, �). �

Lemma 4.18. Let � be a computable separated measure. Then, p �∈ R(�) for each
positive computable real p �= 2.

Proof. By Theorem 4.1, there exists a computable � such that � dominates �
and D∞(�||�) is a finite left-c.e. ML-random real. By Lemma 4.17, D∞(�||�) ≡S
L2,∞(�, �), which implies L2,∞(�, �) is a finite left-c.e. ML-random real by
Proposition 4.6. By (ii) of Theorem 4.8, we haveLp,∞(�, �) = ∞ for each p ∈ (0, 2).
In particular, p �∈ R(�) for each p ∈ (0, 2).

Let p > 2 be a computable real. We construct a computable measure � such that:

(i) � dominates �,
(ii) dim(L2,∞(�, �)) = 1

2 ,
(iii) dim(Lp,∞(�, �)) = 1

p .

Suppose such a measure � exists and p ∈ R(�). By 2 ∈ R(�) and (i), we have
D∞(�, �) ≡S L2,∞(�, �). By p ∈ R(�) and (i), we have D∞(�, �) ≡S Lp,∞(�, �).
Since Solovay equivalence implies the same effective Hausdorff dimension, we have
dim(L2,∞(�, �)) = dim(Lp,∞(�, �)), which contradicts with (ii) and (iii). Thus,
p �∈ R(�).

The construction of � is as follows. Let α be a rational such that 0 < α <
inf{�(a|�) : a ∈ {0, 1}, � ∈ {0, 1}∗}. Since � is separated, such α exists. Let
(zn)n be a computable sequence of positive rationals such that zn < α

2 and
∑∞
n=0 zn

is a finite left-c.e. ML-random real. Fix a sufficiently small rational � > 0. Consider
a computable function � ∈ {0, 1}∗ �→ a� ∈ {0, 1} such that �(a� |�) > 1

2 – �. We
define a computable measure � as follows:

�(a|�) =

{
�(a|�) – z|�|, if a = a�,
�(a|�) + z|�|, if a �= a�.

(i). First we evaluate �(a|�)/�(a|�). If a = a� , then

�(a|�)
�(a|�)

= 1 –
z|�|

�(a� |�)
≥ 1 –

z|�|
1/2 – �

.
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If a �= �, then

�(a|�)
�(a|�)

= 1 +
z|�|

�(a|�)
≥ 1.

Thus, we have

�(�) =
|�|∏
n=1

�(�n|�<n) ≥
|�|∏
n=1

�(�n|�<n)(1 –
zn–1

1/2 – �
) ≥ �(�)

c

for some constant c ∈ N.
(ii)(iii). Notice that

L1,∞(�, �) =
∞∑
n=0

zn

is a finite left-c.e. ML-random real, and that

Lq,∞(�, �) =
∞∑
n=0

zqn

for any q ≥ 1. Thus, the claims follow by Theorem 4.8. �
Proof of Proposition 4.16. The claim R(�) = 2 follows by Lemmas 4.17

and 4.18. Since 2 ∈ R(�), we have L2,∞(�, �) <∞ and D∞(�||�) ≡S L2,∞(�, �)
for all computable measures � dominating �. By Theorem 4.1, there exists a
computable measure � such that D∞(�||�) is a left-c.e. ML-random real for
all computable measures � dominating �. Thus, L2,∞(�, �) is ML-random for
all computable measures � dominating � and �. �
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