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Direct numerical simulations of a uniform flow past a fixed spherical droplet are performed
to determine the parameter range within which the axisymmetric flow becomes unstable.
The problem is governed by three dimensionless parameters: the drop-to-fluid dynamic
viscosity ratio, μ∗, and the external and internal Reynolds numbers, Ree and Rei , which
are defined using the kinematic viscosities of the external and internal fluids, respectively.
The present study confirms the existence of a regime at low-to-moderate viscosity ratio
where the axisymmetric flow breaks down due to an internal flow instability. In the initial
stages of this bifurcation, the external flow remains axisymmetric, while the asymmetry
is generated and grows only inside the droplet. As the disturbance propagates outward,
the entire flow first transits to a biplanar-symmetric flow, characterised by two pairs of
counter-rotating streamwise vortices in the wake. A detailed examination of the flow field
reveals that the vorticity on the internal side of the droplet interface is driving the flow
instability. Specifically, the bifurcation sets in once the maximum internal vorticity exceeds
a critical value that decreases with increasing Rei . For sufficiently large Rei , internal flow
bifurcation may occur at viscosity ratios of μ∗ =O(10), an order of magnitude higher
than previously reported values. Finally, we demonstrate that the internal flow bifurcation
in the configuration of a fixed droplet in a uniform fluid stream is closely related to the
first path instability experienced by a buoyant, deformable droplet of low-to-moderate μ∗
freely rising in a stagnant liquid.
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1. Introduction
Single bubbles, droplets and particles can experience complex paths when moving
freely under the influence of gravity in an otherwise quiescent fluid (Magnaudet &
Eames 2000; Clift, Grace & Weber 2005; Ern et al. 2012; Mathai, Lohse & Sun 2020;
Bonnefis et al. 2024). Understanding the origin and nature of these irregular paths has
been a longstanding concern in multiple disciplines, including mechanical and chemical
engineering, aerodynamics and meteorology. To a large extent, the onset of the first
non-vertical path is closely related to the primary wake instability that occurs beyond a
critical Reynolds number even if the body moves at a constant speed and orientation (Ern
et al. 2012). The first step in understanding path instability is to examine the conditions
under which the axisymmetric wake of a fixed body with different boundary conditions
(e.g. no-slip for particles and free-slip for bubbles) first becomes unstable (Dandy &
Leal 1989; Natarajan & Acrivos 1993; Johnson & Patel 1999; Ghidersa & Dušek 2000;
Magnaudet & Mougin 2007; Yang & Prosperetti 2007; Tchoufag, Magnaudet & Fabre
2013; Chiarini, Gauthier & Boujo 2025). In this context, Magnaudet & Mougin (2007)
demonstrated that, regardless of the boundary conditions at the surface of the body, the
axisymmetric wake becomes unstable when the maximum vorticity generated on the
external side of the body surface exceeds a critical Reynolds-number-dependent threshold.
Beyond this threshold, the steady wake exhibits a pair of counter-rotating trailing vortices
generating a non-zero transverse lift force. Once the body is free to move, this force induces
an oblique motion in the symmetry plane of the wake, ultimately leading to a non-vertical
path (Mougin & Magnaudet 2002, 2006; Horowitz & Williamson 2010).

The close connection between the primary wake instability behind a fixed body and
the onset of the first non-vertical path when such a body is free to move has been
well established for bubbles and particles, as well as droplets with a dynamic viscosity
significantly higher than that of the surrounding fluid. For example, in the case of a high-
Reynolds-number bubble whose surface is free of surfactants, the threshold for wake
instability corresponds to a critical aspect ratio χ ≈ 2.1 (where χ is the ratio of major
and minor axes of the body) (Yang & Prosperetti 2007), which is close to the threshold for
path instability (≈ 2.0) of a bubble that freely rises (Duineveld 1995; Zenit & Magnaudet
2008; Bonnefis et al. 2024; Shi et al. 2025c). Similarly, for a solid sphere, where the no-
slip boundary condition applies at the surface, the threshold for wake instability occurs
at a critical Reynolds number of approximately 210, in good agreement with the range
of the first path instability (∈ [210, 260]) of a freely rising light sphere (Jenny, Dušek
& Bouchet 2004; Horowitz & Williamson 2010; Auguste & Magnaudet 2018). Lastly,
for highly viscous droplets (i.e. those with μ∗ � 1, where μ∗ denotes the drop-to-fluid
viscosity ratio) that behave similarly to solid particles, the relationship between wake and
path instabilities appears evident. Specifically, Albert et al. (2015) used direct numerical
simulations (DNS) to investigate the path of corn oil droplets rising in pure water (for
which μ∗ ≈ 46) and found that the path transition (from vertical to steady oblique)
occurs at a critical Reynolds number equal to approximately 198, close to the primary
wake instability threshold for a solid sphere (≈ 210). The slightly lower critical Reynolds
number observed is expected, as the droplet undergoes slight deformation (χ ≈ 1.05 at the
threshold), leading to an increase of the external surface vorticity (Magnaudet & Mougin
2007) and, consequently, a reduction of the critical Reynolds number for wake instability.

The relationship between wake and path instabilities differs for droplets with low-to-
moderate viscosity ratios (i.e. those with μ∗ =O(0.1−1)). For such droplets, the onset of
the first path instability occurs at a significantly lower external surface vorticity (and thus
a lower Reynolds number at a fixed aspect ratio, or vice versa) than that predicted for the
primary wake instability using the criterion proposed by Magnaudet & Mougin (2007).
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A representative example of this phenomenon is the experiment by Wegener (2009)
(see also Wegener, Kraume & Paschedag 2010), which investigated the motion of single
toluene droplets of various sizes rising in water. The corresponding drop-to-fluid viscosity
ratio was μ∗ = 0.62 (see table 2 of Wegener et al. (2010) for detailed physical properties).
For droplets with an equivalent radius exceeding R ≈ 1.1 mm, the rising speed initially
increased but then experienced a sudden decrease of approximately 30 %, followed by
pronounced oscillations around this reduced mean value. Furthermore, after several cycles
of rising-speed oscillations, the path evolved from rectilinear to oblique (see figure 5.4
of Wegener (2009)). Notably, at this threshold radius, the surface vorticity generated at
the external side of the droplet in a fixed-droplet configuration (based on present DNS
results, to be outlined in § 5.2) is only one-third of that associated with the primary
wake instability (Magnaudet & Mougin 2007; Shi et al. 2025b). Similar observations for
droplets with μ∗ =O(0.1−1) – particularly the presence of a critical droplet size beyond
which the (mean) terminal rising velocity undergoes a sudden reduction – have been
reported in earlier experiments (Klee & Treybal 1956; Thorsen, Stordalen & Terjesen
1968). A comprehensive review of related studies can be found in Abdelouahab &
Gatignol (2011) and, more recently, in Zhang et al. (2019) and Godé et al. (2025).

Since the detailed experiments of Wegener (2009), several attempts have been made
using DNS to replicate the first path instability of toluene droplets rising freely in water.
Early studies in this direction (Bäumler et al. 2011; Engberg & Kenig 2014; Wegener
2014) carried out simulations in a two-dimensional axisymmetric configuration, assuming
that the flow remains axisymmetric during the initial stage of the first path instability
(i.e. before the path transitions to an oblique trajectory). In this constrained flow set-up,
the only possible cause of oscillations in the rising speed is the onset of axisymmetric
deformations about the droplet’s minor axis. Indeed, once such shape oscillation modes
become unstable, the rising speed oscillates as well, since both the vertical drag and
the vertical added mass depend on the droplet cross-section and, consequently, on its
shape (Magnaudet 2011; Lalanne, Tanguy & Risso 2013; Shi et al. 2025c). However,
predictions from these axisymmetric simulations indicated that the first unstable shape
oscillation mode occurs beyond a critical size of R ≈ 2.2 mm (Bäumler et al. 2011),
which is twice the size of the first path instability reported by Wegener (2009). This
discrepancy motivated subsequent studies to perform fully resolved three-dimensional
simulations to better capture the first path instability (Bertakis et al. 2010; Eiswirth et al.
2011). However, due to the slow development of axisymmetry-breaking processes (and
thus the long physical time required), it was not possible until the recent works of Engberg
& Kenig (2015) and Charin et al. (2019) for the first path instability at the threshold
droplet size (R ≈ 1.1 mm) to be reasonably replicated. Specifically, DNS results in the
fully developed regime from Charin et al. (2019; figure 11 therein) revealed that for
droplets with R � 1 mm, two pairs of counter-rotating streamwise vortices form in the
wake, as inferred from the three-dimensional velocity field at the rear of the droplet. This
indicates that the axisymmetric wake has already broken down for R ≈ 1 mm. However, it
is important to note that beyond this threshold, the rising path may still remain rectilinear,
since the transverse force remains zero because the wake, consisting of two pairs of vortex
threads, retains its biplanar symmetry, an observation confirmed by the DNS results of
Charin et al. (2019).

The biplanar-symmetric wake structure revealed by the DNS of Charin et al. (2019)
intuitively suggests that the instability responsible for the symmetry breaking of the
flow around a droplet with a low-to-moderate viscosity ratio is associated with the
azimuthal wavenumber m = 2 (Ghidersa & Dušek 2000; Yang & Prosperetti 2007). The
mathematical nature of this symmetry breaking differs fundamentally from that observed
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in cases involving rising bubbles and settling or rising particles. In these cases, the first
non-straight path is typically triggered by a mode with azimuthal wavenumber m = 1,
leading to a transition from an axisymmetric to a uniplanar-symmetric flow state (Jenny
et al. 2004; Yang & Prosperetti 2007; Tchoufag et al. 2013; Bonnefis et al. 2024). Given
this distinction, it is not surprising that the criterion for the primary wake instability
established for the latter case by Magnaudet & Mougin (2007) fails to predict the first
path instability of toluene droplets rising in water.

For a better understanding of the underlying physical mechanisms driving the first path
instability of droplets with low-to-moderate viscosity ratios, it is first necessary to examine
more systematically a simplified configuration – the wake instability of the flow past a fixed
droplet over a wide range of viscosity ratio and Reynolds number. The first attempt in this
direction appears to be the study by Edelmann, Le Clercq & Noll (2017), which reported
on three-dimensional simulations of uniform flow past a spherical droplet at Reynolds
numbers of O(100). Interestingly, those authors reported that at a viscosity ratio of 0.5,
the wake exhibited a biplanar-symmetric structure, a feature that was later identified in
the wake of freely rising droplets (Charin et al. 2019). Subsequent and more systematic
numerical investigations have been reported (Rachih 2019; Godé 2024; Shi et al. 2024a).
Specifically, Godé (2024) highlighted the significant role of the internal flow (i.e. the flow
inside the droplet) in triggering the primary wake instability. In that work, the author
observed an internal flow bifurcation for μ∗ up to two under the constraint that the external
flow remained axisymmetric. In fact, when the external flow was allowed to respond
to this internal flow bifurcation, as shown in Shi et al. (2024a), the axisymmetric wake
broke down, and the entire flow transitioned into a biplanar-symmetric flow similar to that
reported in Edelmann et al. (2017). However, the critical viscosity ratio below which this
internal bifurcation occurs is not fixed; rather, it varies within the range of 1–10 depending
on the external and internal Reynolds numbers (definitions provided in the next section)
(Shi et al. 2024a).

Based on the previous studies mentioned above, two key issues remain open regarding
the primary wake and path instabilities of droplets with low-to-moderate viscosity ratios:

(i) Fixed droplet in a uniform flow. The physical mechanisms driving the internal flow
bifurcation (Godé 2024; Shi et al. 2024a) remain unclear. Moreover, a criterion is
still lacking for determining whether the axisymmetric flow is stable for a given set of
parameters (in terms of Reynolds numbers and viscosity ratio). This criterion cannot
be based solely on a fixed viscosity ratio, as demonstrated in Shi et al. (2024a).

(ii) Freely rising/settling case. The direct relationship between the wake instability
caused by the internal flow bifurcation in the fixed-droplet case and the first path
instability of a freely rising/settling droplet has yet to be established. Specifically, for
the well-documented first path instability of toluene droplets freely rising in water,
can we reasonably predict the critical droplet size using a criterion for the primary
wake instability derived from studying fixed-droplet cases?

In this work, our aim is to address these two open issues, with a particular focus on the
first – namely the primary wake instability induced by internal flow bifurcation. To this
end, we revisit the problem of flow instability past a spherical droplet and conduct DNS
over a wide range of dimensionless numbers using the JADIM code developed at IMFT
(Legendre et al. 2019; Rachih 2019; Rachih et al. 2020; Godé et al. 2023; Godé 2024). The
paper is organised as follows. In § 2, we formulate the problem and outline the numerical
approach. Section 3 provides an overview of the results, highlighting the connection
between the internal flow bifurcation and the vorticity generated on the internal side of the
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droplet surface. A typical transition sequence with increasing internal Reynolds number
for fixed external Reynolds number and viscosity ratio is discussed in § 4. In § 5.1, we
present a physical explanation for the mechanism driving the internal flow bifurcation. The
relationship between the primary wake instability of a fixed droplet and the first path insta-
bility when the droplet is free to move is explored in § 5.2, with a particular focus on the
case of toluene droplets rising in water. Based on the confirmed relationship, § 5.3 presents
the threshold droplet size for the internal bifurcation of a nearly spherical droplet moving
freely in water, using the criterion for internal bifurcation proposed in the present work.
Conclusions, along with the perspectives arising from this study, are presented in § 6.

2. Problem statement and numerical approach
We consider a spherical droplet of radius R, density ρi , and dynamic viscosity μi that is
fixed in a Newtonian fluid of density ρe and dynamic viscosity μe. Far from the droplet
interface, the external flow is a uniform stream along ex , described by u∞ = urelex , where
urel represents the slip velocity of the external fluid relative to the droplet. The entire flow
field is governed by the incompressible Navier–Stokes equations:

∇ · uk = 0, ρk
(

∂uk

∂t
+ uk · ∇uk

)
= −∇ pk + ∇ · τk, (2.1)

where τk = μk(∇uk + T ∇uk) is the viscous part of the stress tensor Σk = −pk I + τk and
uk and pk denote the disturbed velocity and pressure, respectively. Here, k = i (likewise,
k = e) refers to the fluid inside (outside) the droplet.

The boundary conditions are outlined below. At the surface of the droplet, the normal
velocity must vanish due to the non-penetration condition, whereas the tangential velocity
and shear stress must be continuous. These constraints yield the following boundary
conditions at the droplet surface r = R:

ui · n = ue · n = 0 , n × ui = n × ue , n × (τi · n) = n × (τe · n), (2.2a,b,c)

where r = (x2 + y2 + z2)1/2 is the distance from the droplet centre and n is the outward
unit normal to the droplet surface. In the far field, we assume that the disturbance induced
by the droplet vanishes, implying that uk = u∞ as r → ∞. Unless otherwise stated, the
initial velocity field throughout the domain corresponds to the undisturbed state; that is, we
set uk = u∞ everywhere (i.e. both inside and outside the droplet) at t = 0. The boundary
conditions on the droplet interface defined by (2.2a–c) are satisfied starting from the first
time step of the simulation.

The steady-state solution of the problem is characterised by three dimensionless
numbers: the viscosity ratio μ∗ = μi/μe, the external Reynolds number Ree and the
internal Reynolds number Rei . The latter two are defined as

Ree = ρeurel(2R)

μe
, Rei = ρi urel(2R)

μi
. (2.3)

The drop-to-fluid density ratio can be expressed in terms of these three parameters as
ρ∗ = μ∗ Rei/Ree. In what follows, the viscosity ratio is varied from 0.01 to 100, allowing
us to examine the evolution of the flow structure from the clean-bubble limit (μ∗ → 0)
to the solid-sphere limit (μ∗ → ∞). At a given μ∗, the two Reynolds numbers are varied
independently, whereas in a real drop–liquid system, only one of them is independent
once the drop-to-liquid density ratio ρ∗ is specified. Thus, arbitrarily varying Rei and Ree
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implies artificially changing the density ratio while keeping the viscosity ratio μ∗ fixed
(see § 5 to relate this analysis to experiments).

The three-dimensional time-dependent simulations were performed using the JADIM
code developed at IMFT. This code has been previously applied to simulate the three-
dimensional flow around spherical bubbles and particles, as well as the associated
hydrodynamic forces (Legendre & Magnaudet 1998; Adoua, Legendre & Magnaudet
2009; Shi et al. 2020, 2021) and has been extended to compute three-dimensional flows
around and inside spherical droplets (Legendre et al. 2019; Rachih et al. 2020; Godé et al.
2023; Shi et al. 2024a, 2025a). The reader is referred to Shi et al. (2024a) for details
regarding the numerical implementation, including the mesh grid, boundary conditions
and validation tests confirming the reliability of the numerical approach. Of particular
note is the numerical implementation of the boundary conditions on the droplet interface
defined by (2.2a–c). Using finite-difference discretisation, the tangential condition that
simultaneously enforces the continuity of viscous shear stress and tangential velocity is
implemented with second-order accuracy (Legendre et al. 2019). The pressure fields inside
and outside the droplet are solved separately via a pseudo-Poisson equation, with reference
pressures imposed in both domains. These reference values are in fact linked to the Laplace
pressure jump because the droplet is spherical. The only difference between the present
study and that considered in Shi et al. (2024a) is the type of undisturbed flow (the linear
shear flow now being a uniform flow). It is worth noting that the mesh grid used in Shi
et al. (2024a), which is also used in the present work, features highly refined grid cells near
the droplet interface, with at least five nodes located within both the internal and external
boundary layers for Reynolds numbers of up to 1000. This refinement ensures that both the
internal and external flows are accurately resolved at high Reynolds numbers, particularly
within the boundary layers on both sides of the droplet interface.

3. Overview of the results

3.1. Identification of internal and external flow bifurcations
The breaking of axisymmetry can be tracked by examining the perturbation energy,
for which a convenient measure is the mean kinetic energy of the azimuthal velocity
component (hereafter referred to as the azimuthal energy) (Thompson, Leweke &
Provansal 2001; Magnaudet & Mougin 2007):

Ek = 1
ρeVsu2

rel

∫
V k

ρk ||uk
ϕ||2dV k, (3.1)

where Vs = 4πR3/3 is the volume of the droplet and uk
ϕ is the azimuthal component

of the local velocity. Here, Ek (respectively V k) with k = i or e denotes the azimuthal
energy (respectively the domain) inside or outside the droplet. The azimuthal energy of
the entire flow field is then given by E = Ei + Ee, which becomes positive as soon as the
axisymmetry of the base flow breaks down.

Two different types of bifurcation can be identified based on the behaviour of Ei and
Ee. To illustrate this, we consider a series of cases with (Ree, Rei ) = (300, 1000) but
with varying μ∗. Figure 1(a) presents the time evolution of the three azimuthal energy
components for a low-viscosity-ratio droplet (μ∗ = 0.5). The axisymmetry of the base
flow breaks down at t ≈ 60 R/urel, as indicated by the onset of growth in the total
azimuthal energy E , which peaks at t ≈ 80 R/urel before stabilising at a slightly lower
value beyond t ≈ 140 R/urel. During this transition, Ei maintains a substantial magnitude
relative to E , while Ee remains negligibly small in the initial stages (approximately for
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(a) (b)

500 100 150

t (urel/R)

66 70 140
E
Ei

Ee

Figure 1. Characteristics of an internal flow bifurcation for (μ∗, Ree, Rei ) = (0.5, 300, 1000). (a) Total,
internal and external azimuthal energy as a function of time. (b) Isosurfaces of the streamwise vorticity,
ωx R/urel = ±0.2, at three selected time instants (indicated by numbers in b and marked as circles in a). Grey
and black threads correspond to positive and negative ωx , respectively.

0.08

0.04

0

(a) (b)

500 100 250150 200

t (urel/R)

40

225

E Ei Ee

Figure 2. Same as figure 1, but for an external flow bifurcation in the case (μ∗, Ree, Rei ) = (20, 300, 1000).
In (b), the isosurfaces correspond to ωx R/urel = ±0.1. The left part displays the vortical structure only inside
the droplet and in the downstream half-space where the sign of ωx in the wake is positive.

turel/R increasing from 60 to about 70). Figure 1(b) displays isosurfaces of the streamwise
vorticity ωx at selected times during the transient. This vortical component becomes non-
zero as soon as the bifurcation occurs. In the early stages of the bifurcation (t = 66 R/urel),
ωx is significant only inside the droplet, consistent with the initially negligible Ee observed
in figure 1(a). As time progresses, the disturbance, represented by ωx isocontours, grows
and spreads outside the droplet at t ≈ 70 R/urel, leading to the formation of four vortex
threads in the droplet wake. For the case under consideration, this wake structure remains
stable in the fully three-dimensional developed state.

For comparison, figure 2 presents the corresponding evolution for a droplet with a
viscosity ratio of μ∗ = 20, which is 40 times larger than in the previous case. Compared
with the low-μ∗ case, the key difference in the evolution lies in the internal energy Ei ,
which now remains vanishingly small throughout the transition (figure 2a). Additionally,
the wake structure during the transition differs between the two cases. As shown in
figure 2(b), the wake now comprises only one pair of streamwise vortices, in contrast
to the two pairs observed in the low-μ∗ case. From the perspective of linear dynamical
systems theory (Ghidersa & Dušek 2000; Yang & Prosperetti 2007), this wake structure
indicates a symmetry breaking driven by a mode with azimuthal wavenumber m = 1. In
contrast, in the low-μ∗ case, the presence of four vortex threads in the wake suggests that
the symmetry breaking is caused instead by a mode with an azimuthal wavenumber m = 2.

Hereafter, we denote by an internal bifurcation the type of bifurcation that occurs in
the low-μ∗ case, where the internal azimuthal energy Ei remains significant throughout
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μ∗
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μ∗

0.4

0.3
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Ei

Ee

15
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5

0

(b)

ω
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/
u r

el ωi
s

ωe
s

Figure 3. Results for (a) the azimuthal energies Ei and Ee in the fully developed state and (b) the maximum
surface vorticity as a function of viscosity ratio μ∗ obtained at steady state at (Ree, Rei ) = (300, 1000). In
both panels, filled symbols in red (green) denote the onset of an internal (external) flow bifurcation.

the transition. Conversely, we refer to as an external bifurcation the instability occurring
in the high-μ∗ case, where Ei remains vanishingly small throughout the transition.
Figure 3(a) summarises the results for Ei and Ee in the fully developed state obtained at
(Ree, Rei ) = (300, 1000) over a wide range of μ∗. Based on this classification, the internal
bifurcation occurs for μ∗ smaller than approximately 12, while the external bifurcation
occurs for μ∗ larger than about 15. (Note that, due to the distinct physical origins of the
internal and external flow bifurcations, there is no reason to expect the critical viscosity
ratio below which internal bifurcation occurs and that beyond which wake instability arises
to coincide. The fact that, at (Ree, Rei ) = (300, 1000), both transitions appear to take place
within the interval 12 �μ∗ � 15 is a coincidence rather than a general result.)

For a uniform flow past a solid particle or a clean bubble, the axisymmetry of the flow
breaks down via the external bifurcation when the maximum vorticity generated on the
external side of the body surface exceeds a critical Ree-dependent value (Magnaudet &
Mougin 2007). To determine whether this empirical criterion also applies to a droplet,
we examine the evolution of the maximum surface vorticity with the viscosity ratio.
Following Magnaudet & Mougin (2007), we decompose the vorticity ωk = ∇ × uk into a
normal component (ωk · n)n and an azimuthal component ωk − (ωk · n)n. Since the base
flow is axisymmetric, the primary vorticity field contains only an azimuthal component.
Moreover, due to the viscosity contrast (except when μ∗ = 1), the surface vorticity (and
in particular, its azimuthal component) is discontinuous across the interface. We therefore
define two distinct azimuthal surface vorticities:

ωi
S = lim

r→R− ωi − (ωi · n)n, ωe
S = lim

r→R+ ωe − (ωe · n)n, (3.2)

where ωi
S (ωe

S) denotes the azimuthal surface vorticity on the internal (external) side of
the droplet surface. The maximum values of these quantities are denoted as ωi

s and ωe
s ,

respectively, where ωk
s = max (||ωk

S||). Unless stated otherwise, the results for ωi
s and

ωe
s hereafter correspond to values obtained in the fully developed state of an imposed

axisymmetric configuration, which are representative of the flow just prior to the onset
of bifurcation. Besides, we refer to ωe

s (ωi
s) as the maximum external (internal) surface

vorticity since ωk = ωk
S in an axisymmetric configuration.

Figure 3(b) (green symbols) presents the maximum external surface vorticity ωe
s as

a function of μ∗. Clearly, ωe
s increases with increasing μ∗ and exceeds approximately
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Figure 4. (a) Internal azimuthal energy, Ei , in the fully developed state as a function of the viscosity ratio, μ∗,
for various Rei at Ree = 200. (b) Maximum internal surface vorticity as a function of Rei . In (b), in addition
to the data at selected Rei values shown in (a), an additional data series with increasing Rei for (μ∗, Ree) =
(0.5, 200) is also included (denoted by a thin dashed line and star symbols). In both panels, filled symbols
indicate the onset of internal flow bifurcation. In (b), for each iso-Rei data series, μ∗ increases from top to
bottom, and the thick black line represents the prediction from (3.3).

13.5urel/R (corresponding to the value at μ∗ = 15), beyond which the external bifurcation
occurs. This threshold is close to the critical value (13.8urel/R for Ree = 300) predicted by
Magnaudet & Mougin (2007; see (4.1) therein). Also shown in figure 3(b) (red symbols) is
the corresponding maximum internal surface vorticity ωi

s . In contrast to ωe
s , ωi

s decreases
with increasing μ∗. The absence of an internal bifurcation for μ∗ � 12 can be attributed to
ωi

s falling below a critical threshold. We discuss this threshold in more detail in the next
section.

3.2. The internal flow bifurcation
In the previous section, we observed that for the series of cases with (Ree, Rei ) =
(300, 1000), an internal bifurcation sets in when the viscosity ratio μ∗ is smaller than
approximately 12. However, the threshold μ∗ can vary significantly with Ree and Rei

(Edelmann et al. 2017; Godé 2024; Shi et al. 2024a), making it difficult to determine
the internal bifurcation regime based solely on μ∗. In this section, we demonstrate that the
internal bifurcation is closely related to the maximum internal surface vorticity ωi

s in the
base flow and occurs when ωi

s exceeds a critical value, which can be satisfactorily fitted
using only the internal Reynolds number Rei .

We begin by examining the regime of internal bifurcation in the parameter space
(μ∗, Rei ). To this end, we fix Ree at 200, ensuring that no external bifurcation occurs even
in the solid-sphere limit μ∗ → ∞ (Johnson & Patel 1999; Citro et al. 2016). Figure 4(a)
presents the internal azimuthal energy Ei in the fully developed state as a function of
the viscosity ratio μ∗ for various values of Rei . Under the selected Ree, no internal
bifurcation occurs for Rei � 300. However, at higher Rei , the threshold μ∗ – below which
the bifurcation sets in – increases from 3 at Rei = 400 to 15 at Rei = 1500. Figure 4(b)
shows the corresponding maximum internal surface vorticity, ωi

s . Unlike figure 4(a), the
results are plotted against Rei to highlight the dependence of the critical ωi

s on Rei .
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Figure 5. Maximum internal surface vorticity as a function of viscosity ratio μ∗ for various Ree (distinguished
by coloured symbols) at (a) Rei = 500 and (b) Rei = 1000. In both panels, filled symbols denote cases where
internal bifurcation occurs, and the horizontal dashed line represents the corresponding ωi

c(Rei ) according
to (3.3).

For each iso-Rei data series, ωi
s decreases with increasing μ∗, following a trend similar

to that observed in figure 3(b). These results indicate that the critical ωi
s decreases as

Rei increases. To evaluate the consistency of this trend, we carried out an additional
series of simulations with increasing Rei while keeping (μ∗, Ree) fixed at (0.5, 200).
The corresponding results for ωi

s are shown in figure 4(b) (dashed line and star symbols).
Under this condition, the internal bifurcation takes place as Rei exceeds approximately
326, corresponding to a critical ωi

s of about 6.56 urel/R.
We collect the critical values of ωi

s , denoted as ωi
c, for the four data series with Rei > 300

and fit them to a power-law relation in Rei . The resulting empirical relation is

ωi
c R/urel ≈ 1 + 0.33(Rei/1000)−2.5. (3.3)

Although (3.3) is obtained for Ree = 200, the predicted ωi
c is generally applicable to

different values of Ree. To verify this, we formed two additional series of simulations:
one at Rei = 500 and the other at Rei = 1000, varying Ree from 50 to 500 in both
cases. Figure 5 presents the resulting ωi

s as a function of the viscosity ratio, with
cases involving the onset of internal bifurcation marked by filled symbols. According
to (3.3), the critical ωi

s for the internal bifurcation is approximately 2.9 at Rei = 500 and
1.3 at Rei = 1000. These two predictions are represented by horizontal dashed lines in
figure 5(a,b), satisfactorily distinguishing the cases with internal bifurcation from those
without.

Based on the discussion above, we may state that correlation (3.3) can serve as an
empirical criterion to determine whether the internal flow corresponding to a given set
(μ∗, Ree, Rei ) is stable or not. Specifically, given the maximum internal surface vorticity
ωi

s at the internal Reynolds number Rei under consideration, the internal flow is unstable
(stable) if ωi

s(μ
∗, Ree, Rei ) is greater (smaller) than ωi

c(Rei ). This correlation helps to
explain the significant variation in the threshold viscosity ratio, μ∗

c , for the internal
bifurcation. In particular, since ωi

c decreases with increasing Rei , internal bifurcation is
more likely to occur for droplets with larger Rei . This explains why, in all previous studies
(Edelmann et al. 2017; Rachih 2019; Godé 2024; Shi et al. 2024a), internal bifurcation
has generally been observed at relatively large Rei (typically, Rei � 300). On the other
hand, since ωi

c according to (3.3) is independent of Ree, while ωi
s increases with Ree,
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(a) (b)

Rei = 50:

urel

Rei = 325:

Figure 6. (a) Streamlines and (b) isocontours of the azimuthal vorticity ωφ around the droplet for Rei = 50
(top panels) and Rei = 325 (bottom panels). For both cases, (μ∗, Ree) = (0.5, 200). In (a), the vertical red
line denotes x = 0. In (b), coloured lines represent −ωφ R/urel = 1 (red), 2 (green), 3 (blue), 4 (magenta) and
5 (navy).

the threshold viscosity ratio μ∗
c at a given Rei increases with increasing Ree, as shown in

figure 5.

4. Transition sequence
In this section, we focus on the series of cases with (μ∗, Ree) = (0.5, 200) and examine
how the flow structure evolves with increasing Rei . This corresponds to varying the density
ratio. In § 5.2, we show that the phenomena described below can indeed be observed for
realistic physical properties of liquid–liquid systems. Since the whole problem depends on
(μ∗, Ree, Rei ), similar asymmetric flow structures can also arise with increasing Ree at a
fixed (μ∗, Rei ) or with decreasing μ∗ at fixed (Ree, Rei ). We did not explore in detail the
bifurcation sequence under the latter two conditions, as doing so would require significant
computational resources. However, it should be noted that while the critical Ree or μ∗
for the first internal flow bifurcation can be reasonably predicted using the criterion (3.3),
the sequence of higher-order bifurcations with increasing Ree or decreasing μ∗ may differ
from that observed with increasing Rei .

4.1. Axisymmetric flow regime
For the series of cases with (μ∗, Ree) = (0.5, 200), our three-dimensional simulations
indicate that the axisymmetry of the flow breaks down through an internal bifurcation
as Rei exceeds a critical value approximately equal to 326 (see the star symbols in the
inset of figure 4b).

Figure 6(a) illustrates the streamlines around the droplet for Rei = 50 (top panel) and
Rei = 325 (bottom panel), with the latter corresponding to the case just before the onset
of bifurcation. In both cases, the external streamlines at the rear remain attached to the
droplet, indicating the absence of a standing eddy in the wake prior to the onset of internal
bifurcation. The internal flow structure resembles a Hill (spherical) vortex (Hill 1894),
although a fore–aft asymmetry with respect to x = 0 (marked by the red vertical line in
figure 6a) can be inferred from the results at Rei = 50. This fore–aft asymmetry becomes
more evident when examining the isocontours of the azimuthal vorticity ωφ , as shown in
figure 6(b). Near the front of the droplet, the internal isocontours tilt towards the stagnation
point, instead of aligning horizontally along the symmetry axis as in a Hill vortex. This
tilting is more pronounced at higher Rei : close to the stagnation point, the edges of the
internal isocontours align almost parallel to the droplet surface. This strong tilting of
azimuthal vorticity has also been observed in the wake of an oblate spheroidal bubble
(Magnaudet & Mougin 2007; Yang & Prosperetti 2007), where the external ωφ isocontours
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Figure 7. (a) Variation of the total azimuthal energy of the steady state, E , with the internal Reynolds number
Rei close to the threshold. (b) Plot of E as a function of time for Rei = 345. In both panels, the straight dashed
line highlights the linear scaling. In (b), the dashed line represents a normalised energy growth rate of 0.025.

tilt so that they align nearly perpendicular to the symmetry axis at the threshold of the
external bifurcation.

4.2. Biplanar-symmetric flow regime
The internal flow bifurcation sets in beyond Rei ≈ 326 for (μ∗, Ree) = (0.5, 200).
Following this bifurcation, the flow transits from an axisymmetric to a biplanar-symmetric
structure (figure 1b). Once the axisymmetry breaking has saturated, the flow in all cases
within this regime remains steady, indicating that the bifurcation is regular. Figure 7(a)
presents the total azimuthal energy in the final state as a function of Rei . The results clearly
indicate that the bifurcation is supercritical. Figure 7(b) shows the time evolution of the
total azimuthal energy at Rei = 345. After linear transient growth at a normalised growth
rate of approximately 0.025 (indicated by a dashed straight line), the initial deviation
from linearity levels off with a decreasing growth rate, further confirming the supercritical
nature of the bifurcation (Strogatz 2018, p. 82).

Figure 8 presents the streamwise vorticity structure in the fully developed state for
Rei = 345. The resulting configuration, consisting of four vortex threads of equal intensity,
closely resembles that observed in figure 1(b). Due to the entrainment of fluid elements
by these vortex threads, two distinct symmetry planes exist. The first, denoted as the y = 0
plane (coloured blue), is characterised by the inward motion of fluid elements towards the
symmetry axis. The second plane, denoted as the z = 0 plane (coloured green), is associat-
ed with an outward motion away from the symmetry axis. Note that the positions of the two
symmetry planes are determined by the initial disturbance. In our numerical set-up, a weak
streamwise linear shear flow of 10−4 y(urel/R) ex is imposed to trigger the bifurcation,
thereby prescribing the locations of the two symmetry planes. The velocity variation across
the droplet scale is 10−4urel, negligibly small compared with the ambient flow.

To further illustrate the biplanar symmetry of the flow structure, figure 9 presents
the two-dimensional streamlines of the disturbance in selected cross-stream planes. The
disturbance is obtained by subtracting the streamwise velocity component from the full
velocity field, i.e. the plotted streamlines correspond to uk − uk

x ex . At a distance of 2R
upstream of the droplet (figure 9a), all streamlines radiate outward from the symmetry
axis connected to the front stagnation point, indicating that the flow remains axisymmetric
at this location. At the cross-stream plane passing through the droplet centre (figure 9b),
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y

x

z

Figure 8. Isosurfaces of the streamwise vorticity, ωx R/urel = ±0.05, past a droplet at Rei = 345 (grey and
black threads correspond to positive and negative values, respectively). The flat surface in green (blue)
highlights the symmetry plane in which the flow diverges (converges).

y

z

(a) (b) (c)

Figure 9. Two-dimensional streamlines of the disturbance uk − uk
x ex in selected cross-stream planes for Rei =

345 with x/R = (a) −2, (b) 0 and (c) 5. In each panel, the red circle represents the boundary of a cylindrical
surface (y2 + z2)1/2 = R. The thick horizontal blue line (vertical green line) denotes the symmetry plane y = 0
(z = 0), as shown in figure 8.

the axisymmetry of the inside base flow effectively breaks into four energetic vortices. The
internal flow structure closely resembles that associated with the azimuthal wavenumber
m = 2 in the wake of a solid sphere (see figure 13c in Ghidersa & Dušek (2000)). As this
asymmetric internal disturbance influences downstream flows (figure 9c), vortex pairs at
the same y level gradually deviate from the symmetry plane y = 0 while simultaneously
converging towards each other.

4.3. Uniplanar-symmetric flow regime
A secondary bifurcation occurs as Rei exceeds ≈ 370 for (μ∗, Ree) = (0.5, 200). This new
bifurcation disrupts the biplanar-symmetric flow structure, resulting in a flow with a single
plane of symmetry in the fully developed state.

Taking the case at Rei = 375 as an example, figure 10(a) shows the time evolution of
the total energy E during this transition. The primary bifurcation sets in at turel/R ≈ 300,
from which E initially exhibits linear growth before decreasing and temporarily reaching
a first plateau value as turel/R exceeds ≈ 400. Figure 11(a) illustrates the vortical
structure at this time. The flow remains biplanar-symmetric, similar to that observed in
the fully developed state for Rei = 345 (see figure 8). Supplementary movie 1 available
at https://doi.org/10.1017/jfm.2025.10565 provides more detail on the time evolution of
the vortical structure for this case. The evolution clearly shows that, during the primary
bifurcation, the vortical perturbations are propagated outward, i.e. from the droplet interior
to the exterior. Also, the vortical structures on the internal and external sides of the
interface do not perfectly align, owing to the viscosity contrast, which influences the
transfer of vorticity across the interface. Until turel/R ≈ 400, the evolution of energy
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Figure 10. (a) The azimuthal energy, E , and the lift coefficient, CL , as functions of time for Rei = 375. (b)
Variation of E and CL in the fully developed state with the internal Reynolds number Rei for Rei ranging
from 350 to 400. In (a), the two circles mark turel/R = 400 and 530, respectively. The dashed black line near
E(t) shows that the initial deviation from linearity levels off with a decreasing growth rate, indicating the
supercritical nature of the primary bifurcation. The dashed black line near CL (t) indicates that the deviation
levels off with an increasing growth rate, highlighting the subcritical nature of the secondary bifurcation.

(a)

(b) (c)

y

x

z

Figure 11. Isosurfaces of the streamwise vorticity, ωx R/urel = ±0.05, past a droplet at selected time instants
for Rei = 375 with turel/R = (a) 400, (b) 530 and (c) 2000. More details about the time evolution of the vortical
structure can be found in supplementary movie 1.

and flow structure closely resembles that of the biplanar flow regime, confirming that the
primary bifurcation remains supercritical. However, at Rei = 375, the biplanar-symmetric
flow structure is unstable. As shown in figure 10(a), shortly after stabilising at the first
plateau, E again increases and when turel/R exceeds 650 it re-stabilises at a second
plateau value approximately twice as high as the first one. Figure 11(b,c) depicts the
vortical structures at two instants: one during the secondary transition (turel/R = 530;
figure 11b) and the other in the fully developed state (turel/R = 2000; figure 11c). These
results reveal that during the transition, the flow symmetry with respect to y = 0 breaks
down. Specifically, one of the vortex pairs at the same y level (the pair with y > 0 in
figure 11) shrinks while the other grows over time. Throughout this evolution, the flow
symmetry with respect to z = 0 persists. More details on the evolution of the vortical
structure during the secondary bifurcation can be found in supplementary movie 1.
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The flow asymmetry with respect to y = 0 during the second transition results in a non-
zero lift force FL along the y axis, directed from the primary vortex pair towards the
shrinking one. We define this direction as the positive y axis. The resulting lift force can
be quantified using a lift coefficient, defined as FL = CLπ R2ρeu2

rel/2. Figure 10(a) (red
line) shows the time evolution of the lift coefficient. The growth of the lift force begins
at turel/R ≈ 375 (not shown), well before E reaches its first plateau. This indicates that
the secondary bifurcation sets in before the primary bifurcation fully saturates. However,
the initial growth rate of CL remains small. Beyond turel/R ≈ 450, CL starts to increase
progressively, reaching approximately 0.065 in the fully developed state. Note that this
value is close to that induced by the external flow bifurcation in the case of a solid sphere
moving at Ree = 250 (Johnson & Patel 1999; Shi et al. 2021). The evolution of the lift
coefficient also provides insight into the nature of the secondary bifurcation (Citro et al.
2016). Specifically, in figure 10(a), the dashed line near CL(t) clearly shows that the initial
deviation from linearity is followed by an increasing growth rate of CL(t). Hence, unlike
the primary bifurcation, which is supercritical, the secondary bifurcation is subcritical –
similar to, for example, the secondary bifurcation observed in the wake of a circular
cylinder (Henderson & Barkley 1996).

Figure 10(b) shows the values of the total azimuthal energy and the lift coefficient
in the fully developed state for Rei up to 400. Notably, both quantities exhibit a sharp
increase as Rei exceeds approximately 370. This further supports the subcritical nature
of the secondary bifurcation, which allows for the presence of jumps and hysteresis as
the control parameter (here, Rei ) is varied (Strogatz 2018, p. 61). This latter aspect is
discussed in the next section, where we examine the stability of the dynamical system
under finite-amplitude initial disturbances.

4.4. Bistable flow regime
As Rei increases further while keeping (μ∗, Ree) = (0.5, 200), the primary bifurcation
occurs earlier in time. For instance, at Rei = 450, the azimuthal energy E starts to increase
at approximately 150 R/urel (not shown), compared with about 300 R/urel for Rei = 375
(see figure 10a). In contrast, the secondary bifurcation becomes progressively slower
and eventually ceases to occur for Rei > 468. This latter behaviour is highlighted in
figure 12(a), which shows the time evolution of CL for cases near this transition. For
Rei � 468, CL initially rises slowly to a plateau before gradually increasing to its final
value. However, for larger Rei cases, CL settles at a plateau that decreases with increasing
Rei and remains at this level as turel/R → ∞. The CL(t) evolutions resemble systems
close to a saddle-node bottleneck (Strogatz 2018, § 4.3), where a saddle-node remnant
or ghost induces slow passage. To better illustrate this, figure 12(b) presents the rate of
change of the lift coefficient, dCL(t)/d(turel/R), as a function of CL(t) during the interval
where CL varies slowly over time. A bottleneck causing slow passage is clearly visible at
Rei = 466, shrinking as Rei increases. For Rei > 468, the ‘path’ originating from CL = 0
terminates at a stable fixed point with a small but finite lift coefficient (indicated by filled
symbols in figure 12b).

Figure 13 illustrates the streamwise vorticity structure in the fully developed state for
Rei = 469. Given the small CL in this case, the flow structure remains nearly biplanar-
symmetric, albeit with a slight up–down asymmetry. Figure 14 presents the azimuthal
energy and lift coefficient in the fully developed state for Rei increasing from 450 to 500.
Due to the bottleneck effects mentioned above, both E and CL undergo an abrupt decrease
as Rei exceeds approximately 468.
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Figure 12. (a) Time evolution of the lift coefficient for internal Reynolds numbers near the transition to the
bistable regime. (b) Variation of dCL (t)/d(turel/R) as a function of CL (t) over the time interval where CL (t)
evolves slowly (results for turel/R � 300 are omitted). For all considered Rei , the simulation starts from an
initially unperturbed state. For Rei = 469, an additional simulation (labelled as ‘perturbed’) was performed,
starting from an initially asymmetric state based on a result from Rei = 467 at turel/R = 675 (denoted by an
open blue circle in both panels). In (b), the two cases with Rei > 468 approach stable fixed points with small
but finite CL (denoted by filled symbols), whereas in the remaining cases, CL after escaping the bottleneck
continues to increase with time (as indicated by the arrows).

(a)

(b)

Figure 13. Isosurfaces of the streamwise vorticity, ωx R/urel = ±0.05, in the fully developed state for Rei =
469 corresponding to different initial conditions. (a) Simulation starting from an initially axisymmetric state.
(b) Simulation starting from a slightly asymmetric state derived from the transient result for Rei = 467, where
CL = 0.0102 (denoted by an open circle in figure 12).
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Figure 14. Variation of azimuthal energy E and lift coefficient CL in the fully developed state for Rei

increasing from 450 to 500. All simulations started with an initially axisymmetric flow.
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We are now in a position to examine the response of the flow in the presence of a
finite-amplitude initial disturbance. This is necessary because, as mentioned in the last
part of § 4.3, the secondary bifurcation is not supercritical, and multiple stable states
may coexist depending on the initial conditions. To begin with, we revisit the cases
near Rei = 468. All cases were initialised from an axisymmetric state where CL = 0. To
investigate the possible existence of an additional stable state, we performed the simulation
with Rei = 469 again starting from a slightly asymmetric initial state with CL = 0.0102.
This ‘initial’ state was derived from the transient result for Rei = 467 at the instant when
the system had just passed the bottleneck (denoted by an open symbol in figure 12b).
As seen in figure 12(b) (thick line), even with such a small initial disturbance, the system
was able to ‘escape’ the bottleneck. Following this escape, CL increased sharply to its final
level, nearly identical to the values reached at slightly smaller Rei (thick line in figure 12a).
Figure 13(b) shows the structure of the streamwise vorticity in the fully developed state.
The flow exhibits a strong up–down asymmetry, significantly different from the flow
structure obtained when starting from an initially axisymmetric state (figure13a), but
similar to that shown in figure 11(c).

The test above indicates that for Rei > 468, the flow may evolve towards at least two
distinct asymmetric branches. One, in which the flow remains nearly biplanar-symmetric,
appears to be stable only to small disturbances. The other, in which the flow exhibits
a uniplanar-symmetric structure, may be triggered by larger amplitude of ‘up–down’
disturbances (hence CL > 0). Hereafter, these two asymmetric branches are referred to
as the biplanar and uniplanar branches, respectively. So far, all cases discussed (except
one) started from an initially axisymmetric state, corresponding to a vanishingly small
initial disturbance. To examine the response of the flow system to ‘large’ disturbances, we
carried out these cases again starting from a uniplanar-symmetric state reached in the fully
developed stage of Rei = 450. For this new ‘initial’ state, the up–down asymmetry of the
flow leads to a lift coefficient equal to CL = 0.088, providing an initial disturbance that we
believe is large enough to trigger the transition to the uniplanar branch.

Figure 15(a) (cross symbols) presents the total energy and lift coefficient in the fully
developed state for Rei increasing from 300 to 550. To obtain these results, the simulations
were initiated from a uniplanar-symmetric flow corresponding to the fully developed
state at Rei = 450. The corresponding results obtained from an initially axisymmetric
state (open circles) are shown as well. Based on these results, the following picture
of the transition sequence emerges. For Rei < 326, the flow remains axisymmetric. For
Rei ∈ [326, 366] and Rei ∈ [370, 468], axisymmetry breaks down, but the system evolves
towards a unique asymmetric branch depending on Rei . Specifically, regardless of the
amplitude of initial disturbance, the stable asymmetric branch is always biplanar within
the first interval and uniplanar within the second. In the narrow range Rei ∈ (366, 370)

and for Rei > 468, both asymmetric branches coexist, and the selected branch depends on
the initial disturbance amplitude. In particular, the biplanar branch is stable only to small
disturbances, while the uniplanar branch is more likely to emerge when larger disturbances
are present. A detailed discussion on the evolution of the lift coefficient in the first bistable
regime, where Rei ∈ (366, 370), is provided in Appendix A. Determining a quantitative
threshold for the disturbance required to promote a transition between the two branches
is not straightforward. Nevertheless, we believe that in the regime where Rei > 468, this
threshold increases with increasing Rei . Indeed, in our restarted simulations, the uniplanar
branch is no longer stable when Rei exceeds approximately 1500, whereas it remains stable
for Rei up to 3000 if the simulations start from the fully developed uniplanar state at
Rei = 1000, where the initial disturbance is larger (CL = 0.16 at Rei = 1000, compared
with CL = 0.088 at Rei = 450). Of particular note is that for the uniplanar branch, the
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Figure 15. Azimuthal energy E (green symbols), lift coefficient CL (red symbols) and drag coefficient CD
(blue symbols) in the fully developed state for Rei increasing from 300 to 550 with (μ∗, Ree) = (0.5, 200).
Circles: simulations starting with an initially axisymmetric flow; crosses: simulations starting with a uniplanar-
symmetric flow corresponding to the fully developed state at Rei = 450. Vertical dashed lines highlight the
critical Rei values marking regime transitions. In (a), the two shaded grey regions correspond to the two bistable
regimes. In (b), the horizontal dashed line denotes the drag coefficient obtained by enforcing axisymmetry
regardless of Rei .

wake becomes unsteady when Rei exceeds about 1000. In these high-Rei cases, the wake
oscillates in time – leading to temporal fluctuations in the drag and lift coefficients – while
the flow retains its uniplanar symmetry.

Figure 15(b) presents the evolution of the drag coefficient CD , defined as FD =
CDπ R2ρeu2

rel/2, in the considered Rei range. The drag remains virtually unchanged for
Rei up to 326, where the flow remains axisymmetric. This behaviour is consistent with
previous findings (Feng & Michaelides 2001; Edelmann et al. 2017; Shi et al. 2024a),
which demonstrated that the drag coefficient CD depends only weakly on the internal
Reynolds number when the flow is constrained to be axisymmetric. Thus, the horizontal
dashed line in figure 15(b), representing CD at Rei = 325, can be regarded as the reference
drag coefficient for the corresponding axisymmetric configuration (hereafter referred to
as Caxi

D ) at higher Rei for (μ∗, Ree) = (0.5, 200). Using this reference value, it becomes
clear that the transition from the axisymmetric to the asymmetric branch (whether biplanar
or uniplanar) is always accompanied by an increase in drag. The magnitude of this
increase, denoted as �CD = CD − Caxi

D , initially rises smoothly as Rei surpasses 326,
where the bifurcation is supercritical. As Rei increases further, �CD shows a jump for
the three critical Rei values (366, 370 and 468), where the flow system transits between
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asymmetric branches. Specifically, at Rei = 366 and 370, the switch from biplanar to
uniplanar symmetry leads to an increase in �CD of approximately 0.02, whereas at
Rei = 468, the transition results in a decrease of approximately 0.03. This distinction
highlights the fundamental difference between the flow regime transition at the last critical
Rei and those at the first two.

5. Discussion

5.1. Mechanism of the primary wake instability
We have shown in § 3.2 and further corroborated in § 4.1 that the rotational symmetry
of the base flow breaks down when the maximum internal surface vorticity ωi

s exceeds a
Rei -dependent threshold ωi

c. Since the whole problem is governed by three dimensionless
parameters, namely the viscosity ratio μ∗, the external Reynolds number Ree and the
internal Reynolds number Rei , the threshold ωi

c may also be interpreted as a critical
internal Reynolds number when considering a series of cases with fixed μ∗ and Ree.
This scenario has been explored in detail in § 4, where we set (μ∗, Ree) = (0.5, 200) and
determined the response of the flow as Rei (hence ωi

s) increased. The axisymmetric base
flow was found to become unstable at Rei ≈ 326, beyond which it first transits to a steady,
biplanar-symmetric flow through a supercritical bifurcation. The biplanar flow structure
post-bifurcation suggests that the steady mode with azimuthal wavenumber m = 2 is
responsible for breaking the axisymmetry. In the following, we elaborate in more detail on
the mechanism by which, once produced into the base axisymmetric flow, the azimuthal
vorticity may lead to its destabilisation.

As internal vorticity plays a key role in the onset of instability, it is relevant to examine its
distribution within the droplet in the base flow, particularly near the instability threshold.
As seen in figure 6(b), for cases with fixed μ∗ and Ree, the isocontours of the azimuthal
vorticity ωφ tilt towards the front stagnation point as Rei increases. By analysing additional
results, we observed the same trend when increasing Ree (for fixed μ∗ and Rei ) or
decreasing μ∗ (for fixed Ree and Rei ) (not shown). These findings, combined with the
fact that the maximum internal vorticity ωi

s increases with increasing Ree and Rei and
decreasing μ∗, indicate that a higher ωi

s is associated with a more pronounced tilting of
the ωφ isocontours inside the droplet.

The tilting of the internal ωφ isocontours towards the front stagnation point as ωi
s

increases is an insightful observation, as a similar topological change has been reported for
the external ωφ isocontours in the near wake of oblate spheroidal bubbles (Magnaudet &
Mougin 2007; Yang & Prosperetti 2007). In that configuration, the external ωφ isocontours
tend to align nearly perpendicular to the symmetry axis as Ree or the aspect ratio χ
(the ratio of the major to minor axes) increases. As this trend progresses, the streamwise
gradient of ωφ must become increasingly pronounced for the viscous term νe∂2ωφ/∂x2

to counterbalance the inertial terms. Such a scenario is inherently unstable, leading to the
breakdown of axisymmetry in the base flow when Ree exceeds a critical value for a given
χ (or vice versa).

In analogy to the argument above, the tilting of the internal ωφ isocontours observed
in figure 6(b) should correspond to a gradual increase in the streamwise gradient of ωφ

as Rei increases. To confirm this, we present in figure 16(a–c) the isocontours of ∂ωφ/∂x
for increasing Rei . Clearly, the maximum ∂ωφ/∂x (normalised by urel/R2) near the front
of the droplet increases from 4.6 to 35.4 as Rei rises from 50 to 325. A similar trend is
observed with increasing Ree (see figure 16d–f , where (μ∗, Rei ) = (0.5, 500)) and with
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(a) (b) (c)

(g) (h) (i)

(d ) (e) ( f )

(0.5, 200, 50) (0.5, 200, 200) (0.5, 200, 325)

(0.5, 5, 500) (0.5, 10, 500) (0.5, 25, 500)

(10, 200, 500) (6, 200, 500) (4, 200, 500)

0 35

Figure 16. Isocontours of the normalised streamwise gradient of the azimuthal vorticity, ∂ωφ/∂x (R2/urel),
inside the droplet. The three numbers in parentheses at the bottom of each panel correspond to (μ∗, Ree, Rei ).
Specifically, Rei increases from 50 to 325 from (a) to (c), Ree increases from 5 to 25 from (d) to (f ) and μ∗
decreases from 10 to 4 from (g) to (i). In each row, the last panel corresponds to the case closest to the onset of
instability. In all panels, the ambient flow is directed from left to right.

decreasing μ∗ (see figure 16g–i, where (Ree, Rei ) = (200, 500)). These results confirm
that, as ωi

s increases, both the tilting of the ωφ isocontours and the streamwise gradient
of the azimuthal vorticity within the droplet become more pronounced. Following the
argument by Magnaudet & Mougin (2007), the internal flow can no longer remain stable
if this gradient becomes sufficiently large. Indeed, although not explicitly shown, an
inspection of the flow field at the onset of internal bifurcation reveals that the region where
disturbances initially grow is closely aligned with the axial and meridional coordinates of
the maximum ∂ωφ/∂x in the corresponding axisymmetric configuration (see, for instance,
the vortical threads near the front part of the droplet surface in the first inset of figure 1b).
This serves as indirect evidence supporting the proposed relation between internal flow
instability and the maximum streamwise gradient of the azimuthal vorticity.

While the relationship between internal flow instability and the presence of a sufficiently
large ∂ωφ/∂x proposed here is specific to axisymmetric flows (relevant to the first
instability), we suspect that ∂ωφ/∂x may still play a role in subsequent flow bifurcations,
where the flow is already three-dimensional. Figure 17 shows the evolution of the maxima
of both ωφ and ∂ωφ/∂x inside the droplet as a function of Rei for the series of cases
with (μ∗, Ree) = (0.5, 200). Clearly, ∂ωφ/∂x continues to increase significantly with
Rei throughout the considered range, even when the flow is imposed as axisymmetric.
In contrast, the maximum azimuthal vorticity remains nearly constant once the flow first
transits from the biplanar to the uniplanar branch. These different behaviours are likely
related to variations in CD as the flow transits at the two larger critical Rei values (see
discussion in the last paragraph of the previous section) and highlight the consistent role
of ∂ωφ/∂x in triggering subsequent flow instabilities. Of course, once the flow becomes
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Figure 17. Maximum values of (a) the normalised azimuthal vorticity ωφ (R/urel) and (b) its streamwise
gradient ∂ωφ/∂x (R2/urel) inside the droplet as a function of the internal Reynolds number for (μ∗, Ree) =
(0.5, 200). In both panels, coloured dashed lines denote results from an axisymmetric flow configuration.
Circles: simulations starting from an initially axisymmetric flow; crosses: simulations starting from a
uniplanar-symmetric flow corresponding to the fully developed state at Rei = 450.

three-dimensional, both the streamwise and polar vorticity components become non-zero,
and for a comprehensive understanding of flow instability, it may not be sufficient to
examine only the azimuthal vorticity component. A rigorous stability analysis of the
internal flow field, such as those conducted by Yang & Prosperetti (2007) and Tchoufag
et al. (2013), would be required to fully elucidate the mechanisms at play. Such an analysis
would also help verify whether, at the first bifurcation, it is indeed the steady azimuthal
mode with wavenumber m = 2 that is amplified, leading to a non-axisymmetric but still
steady flow. Conducting such an analysis, though beyond the scope of the present study,
would be a valuable endeavour for future research.

5.2. Relation between wake and path instabilities of a freely moving droplet of
low-to-moderate μ∗

In the previous sections, the droplet was considered to be spherical, with its centroid
assumed to remain fixed. However, under physically realistic conditions, droplets can
deform while moving freely under the effect of buoyancy and gravity. A key question
is whether the internal flow bifurcation persists in this more general configuration and
whether it plays a role in triggering the first path instability.

To provide insights into this question, we carry out three-dimensional time-dependent
simulations of a buoyant, deformable droplet rising freely in an immiscible liquid that is
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otherwise at rest. The physical properties of the liquid–liquid system are selected to match
those of a toluene droplet rising in water, as investigated experimentally by Wegener et al.
(2010). The droplet radius is set to R = 1.2 mm, which is slightly larger than the threshold
reported in the experiment. Unlike all simulations discussed so far, which were performed
using the JADIM code, the simulations discussed below are carried out using the open-
source flow solver Basilisk (Popinet 2009, 2015). This choice allows us to take advantage
of the adaptive mesh refinement technique built into the solver (van Hooft et al. 2018) and
to maintain a resolution at the interface comparable to that provided by the boundary-fitted
mesh used earlier.

The one-fluid approach, combined with the geometric volume-of-fluid method, is
used to track and evolve the liquid–liquid interface. At the interface, the local density
(dynamic viscosity) of the fluid medium is approximated using the arithmetic (harmonic)
averaging rule. Note that the harmonic model for the dynamic viscosity does not
guarantee a continuous variation of the shear stresses across the interface (Kothe 1998;
Magnaudet et al. 2025), and a sufficiently high resolution is therefore required to eliminate
this numerical artefact. To model surface tension, the balanced-force surface-tension
formulation is used (Francois et al. 2006), which is based on the continuum surface force
approach originally proposed by Brackbill, Kothe & Zemach (1992). In addition, a second-
order-accurate calculation of curvature is performed using the height-function technique
developed by Popinet (2009). Details of the numerical schemes can be found in Popinet
(2018). The computational domain is a cubic box with an edge length of 240R. A free-
slip condition is imposed on all four lateral boundaries, while a periodic condition is
applied to the top and bottom boundaries (Zhang, Ni & Magnaudet 2021). The droplet
is initially spherical and is released from rest at a position midway between the four lateral
boundaries and 15R above the bottom of the simulation domain. The spatial resolution
is refined to approximately 1/68R near the interface and to about 1/17R in the far wake
(starting approximately 10R downstream of the droplet). Illustration of the grid structure
in the vicinity of the droplet as well as in the far wake may be found in figure 18 of
Shi et al. (2024b). The accuracy provided by the above grid resolution is confirmed
through a grid-independence study detailed in Appendix A of Shi et al. (2025c), where the
path oscillations of a bubble rising near a wall at Reynolds numbers (both Ree and Rei )
up to approximately 1000 have been considered. To ensure that the resolution remains
sufficient for the present case of a freely rising droplet, a corresponding grid study in
a two-dimensional axisymmetric configuration has been conducted. There, reducing the
minimum grid size from approximately 1/68 R to 1/136 R produces negligible changes
in both the time evolution and the terminal value of the droplet rising velocity, for
toluene droplets with radii ranging from 0.5 to 2.1 mm. This confirms the reliability of
the numerical approach for the current problem.

Figure 18(a) compares the time evolution of the vertical velocity of the droplet, Vv ,
obtained from our three-dimensional simulation (solid line in red) with the corresponding
experimental data (red symbols) from Wegener et al. (2010). In both cases, the rising speed
initially increases to a maximum at t/(R/g)1/2 ≈ 75 before decreasing and oscillating
around a mean value of approximately 1.0(gR)1/2 for t/(R/g)1/2 � 250. The first
maximum of the rising speed and the reduced frequency (or Strouhal number, St =
2 f R/Vm , where Vm is the mean rising speed over the first two oscillation cycles and
f is the corresponding mean oscillation frequency) are V max

v = 1.34(gR)1/2 and St =
0.043 in the simulation, closely consistent with the experimental values of V max

v =
1.39(gR)1/2 and St = 0.037. The slight difference in the oscillation frequency is likely
due to confinement effects in the experiment. There, the droplet initially rises along the
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Figure 18. Time evolution of (a) the vertical velocity (Vv , red line, left axis) and droplet aspect ratio (χ, green
line, right axis) as well as (b) the horizontal velocity (Vh) for a single toluene droplet of radius R = 1.2 mm
rising in quiescent water (for detailed physical parameters, see table 2 of Wegener et al. (2010)). Both Vv and
Vh are normalised by (gR)1/2. In both panels, solid lines represent the present simulation results. In (a), red
open symbols denote experimental data of Vv from Wegener et al. (2010) for t/(R/g)1/2 up to 300, beyond
which wall effects in the experiment significantly influenced the rising speed. The insets display the isosurfaces
of the vertical component of the vorticity, ωv(R/g)1/2 = ±0.5 (grey and black threads denote positive and
negative values, respectively), at selected time instants (indicated at the top of each panel; values normalised
by (R/g)1/2). In all insets, the gravitational acceleration points vertically downwards, such that the droplet
initially rises vertically upwards until approximately t/(R/g)1/2 = 200.

axis of a cylindrical domain of radius approximately 21R (Wegener 2009, p. 89), compared
with 120R in the simulation. As a result of this difference, the subsequent rising behaviour
of the droplet in the experiment differs significantly from that observed in the simulation.
In the experiment, the droplet begins to migrate laterally at t/(R/g)1/2 ≈ 225 and collides
with the wall at t/(R/g)1/2 ≈ 360 (Wegener 2009; see figure 5.4 therein) (experimental
data near the collision are omitted from figure 18a). As expected, the wall imposes
a retarding effect on the rise speed, which causes a damping of velocity oscillations
(Magnaudet, Takagi & Legendre 2003; Zeng, Balachandar & Fischer 2005; Shi 2024).
In contrast, the lateral migration in the simulation begins earlier, at t/(R/g)1/2 ≈ 200, as
seen in figure 18(b). Beyond this point, the horizontal velocity, Vh , grows in time while the
rising velocity undergoes damped oscillations. Both velocity components stabilise beyond
t/(R/g)1/2 ≈ 600, with the droplet rising steadily along an oblique path at an angle of
approximately tan−1(Vh/Vv) ≈ 15◦. Notably, in this terminal state, the external Reynolds
number is approximately Ree = 256, and the force balance among drag, lift, buoyancy and
gravity yields drag and lift coefficients of CD = 0.374 and CL = 0.10, respectively. These
coefficients agree well with their counterparts in the corresponding spherical fixed-drop
configuration, where we obtain CD = 0.372 and CL = 0.093.
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From the fully resolved three-dimensional simulation results, it is also possible to
examine the time evolution of the droplet shape. Assuming that the droplet remains almost
oblate spheroidal during its rise, its shape can be characterised using the aspect ratio χ,
which represents the ratio of major and minor axes. The evolution of χ(t) according
to our numerical results is shown in figure 18(a) (green line and right vertical axis).
Throughout the evolution, the level of deformation remains marginal. Specifically, the
maximum aspect ratio is approximately 1.16 and is reached shortly after the onset of the
internal bifurcation. Thereafter, χ oscillates around 1.1 before stabilising at 1.08. Prior to
stabilisation, the radian frequency of the shape oscillations is about 0.132(g/R)1/2. On
the other hand, for the same liquid–liquid system, the radian frequency associated with the
fundamental shape mode (i.e. the mode associated with the polar wavenumber l = 2) of a
nearly spherical droplet is (Lamb 1932; Lalanne et al. 2013)

ωs(l) =
√

(l − 1)l(l + 1)(l + 2)γ

[ρ∗(l + 1) + l]ρe R3 ≈ 6.6(g/R)1/2, (5.1)

which is about 50 times higher than the oscillation frequency observed in the aspect ratio.
Hence, deformation instability is unlikely to be responsible for the observed oscillations.
Rather, we suspect that the shape oscillations observed during the transient stage are pri-
marily driven by variations in the rise velocity. This is consistent with the small amplitude
of droplet deformation, which scales linearly with the Weber number and thus primarily
with the square of the rising speed. As a result, χ reaches a local maximum shortly after
Vv peaks, and the same correspondence holds for the local minima of χ and Vv .

We now elaborate, based on the numerical results from Basilisk, the relationship
between the internal flow bifurcation and the evolution of the droplet motion. By
examining the time evolution of the internal and external azimuthal energies (not shown),
we found that the axisymmetry of the flow breaks down due to an internal flow bifurcation
at t/(R/g)1/2 ≈ 60, i.e. before the abrupt decrease in Vv(t). This feature is highlighted
by the insets in figure 18(a), which illustrate the evolution of the streamwise vorticity
during the interval 60 � t/(R/g)1/2 � 70. Note that since the initial configuration is
axisymmetric, the transition to a non-axisymmetric state is triggered by the amplification
of random numerical disturbances (Zhang et al. 2021). Similar to what was observed in
figure 1(b), the disturbance associated with the asymmetry initially develops and grows
only inside the droplet. Moreover, this disturbance is constrained within four vortex threads
of equal intensity, maintaining a biplanar-symmetric structure during the transition. The
insets on the left-hand side of figure 18(b) show the vortical structure during the time
oscillations of Vv . These results indicate that the velocity oscillations are closely related
to the unsteady development of the wake. Specifically, Vv reaches a local maximum at, for
example, t/(R/g)1/2 = 125 and 172, where the vortices shrink to their minimum extent,
and the reverse occurs when Vv reaches a local minimum, such as at t/(R/g)1/2 = 96 and
143. The flow transits from biplanar-symmetric to uniplanar-symmetric at t/(R/g)1/2 ≈
200. As seen in the three rightmost insets of figure 18(b), during this secondary transition,
the left–right asymmetry grows over time, similar to the up–down asymmetry observed
for a fixed droplet in figures 11 and 13(b). This asymmetry leads to a lift force that drives
the lateral migration of the droplet.

Based on the confirmed relationship between the internal flow bifurcation and the first
path instability, we now assess the applicability of the empirical criterion proposed in § 3.2
(i.e. (3.3)) for predicting the threshold droplet size at which path instability occurs first. To
apply criterion (3.3), data on the maximum internal vorticity, ωi

s , and the internal Reynolds
number, Rei – both of which depend on the droplet radius, R – are required. To obtain these
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Figure 19. Characteristic parameters obtained in an axisymmetric configuration for toluene droplets of sizes
close to the threshold of the first path instability. Variation of the (a) internal and (b) external Reynolds number
(horizontal axis) as a function of droplet radius R (vertical axis). Maximum (c) internal and (d) external)
surface vorticity (red line) as a function of Rei and Ree, respectively. In (a), the tick labels at the bottom match
those in (c), and the same correspondence holds between (b) and (d). In (c), the black solid line represents the
criterion for internal flow bifurcation (3.3), while in (d), the black solid line corresponds to the criterion for
external flow bifurcation from Magnaudet & Mougin (2007).

data, we conducted an additional series of simulations using Basilisk, considering the same
liquid–liquid system while imposing axisymmetry on the flow field. The droplet radius was
varied from 0.5 to 1.5 mm in increments of 0.05 mm. Figure 19(a) shows the variation
of Rei (horizontal axis) as a function of the droplet radius (vertical axis) for R near the
path instability threshold. The corresponding results for ωi

s are shown in figure 19(c) (red
line) as a function of Rei . The intersection of the curve ωi

s(Rei ) with the criterion (3.3)
(black solid line in figure 19c) corresponds to a critical internal Reynolds number of 330,
which translates to a critical radius of R = 0.97 mm, as indicated in figure 19(a). This
closely matches the experimentally observed threshold of R ≈ 1.1 mm (Wegener et al.
2010). Furthermore, we recall that the critical radius for the onset of path instability was
found to be R ≈ 1.0 mm in recent DNS by Charin et al. (2019).

The numerical results for ωe
s (R) and Ree(R), also obtained from these axisymmetric

simulations, allow us to examine whether the external flow remains stable. Figure 19(b)
presents the external Reynolds number as a function of R near the threshold of the
internal flow bifurcation, with the critical radius corresponding to Ree = 236. Figure 19(d)
compares the maximum external surface vorticity (red line) with the threshold predicted by
Magnaudet & Mougin (2007) for external flow bifurcation (black solid line). At Ree = 236,
the normalised maximum external surface vorticity, ωe

s/(urel/R), is approximately 4.7,
which is only one-third of the threshold value (13.5). Hence, the external flow remains
stable at the critical droplet size of path instability.

5.3. Threshold droplet radius for internal bifurcation of a nearly spherical droplet
moving in water

Based on the key findings above, reference values for the critical droplet size required for
the onset of internal flow bifurcation in a fluid–fluid system can be estimated. Specifically,
for an immiscible liquid droplet freely moving in water, the critical radius, denoted as
Rc, beyond which internal bifurcation may occur, can be determined by evaluating the
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Figure 20. Threshold droplet radius Rc (in mm) in the (μ∗, ρ∗) phase plane for internal bifurcation in the case
of a nearly spherical droplet rising (dashed lines) or settling (solid lines) in water. (a) Results for μ∗ and ρ∗
varying from 0.1 to 10. (b) Same as (a) but for μ∗, ρ∗ ∈ [0.5, 2]. In both panels, coloured lines denote iso-Rc
contours, with values (in mm) indicated in the figure. The filled circle, located at (μ∗, ρ∗) = (0.62, 0.86),
corresponds to the case of toluene droplets in water, for which the critical Rc is approximately 1.05 mm,
as determined from the present regime map. In (a), the dotted line in black corresponds to Ree = 100 (or
equivalently Rei = 350), indicating that to the right (left) of this line, a sufficiently large Rei (Ree) is required
for internal flow bifurcation to occur. For details on the constraint of internal bifurcation in terms of Ree and
Rei , see (B1) in Appendix B.

maximum internal surface vorticity at steady state, where buoyancy, gravity and drag
forces are in equilibrium. A relatively coarse estimate of Rc can also be obtained by
considering the internal and external Reynolds numbers at steady state. Specifically, our
fixed-droplet simulations indicate that internal bifurcation occurs typically for Rei � 350,
provided that Ree =O(100). Using these observations, we determined Rc for various
viscosity and density ratios (for details, see Appendix B), with both μ∗ and ρ∗ ranging
from 0.1 to 10, a parameter range commonly encountered for real liquid–liquid systems
(Balla et al. 2020). These results are summarised in figure 20(a), which applies to droplets
with small deformation, say, for χ� 1.1. Together with the prerequisite Ree =O(100), the
range of validity may be further interpreted as an upper bound on the Morton number, Mo,
up to approximately 3 × 10−9, based on the empirical correlation by Myint, Hosokawa &
Tomiyama (2007; see (14) therein), where Mo = g(μe)4|1 − ρ∗|/(ρeγ 3) with γ denoting
the interfacial tension. Notably, within the considered range of μ∗ and ρ∗, the critical
Rc varies from approximately 0.2 to 2 mm, which is well within the typical size range
of most practical systems (Clift et al. 2005). Figure 20(b) provides a zoomed-in view
for μ∗, ρ∗ ∈ [0.5, 2]. Within this refined parameter range, the minimum Rc at a given
μ∗ is generally larger for a light droplet (ρ∗ < 1) than for a heavy one (ρ∗ > 1). For
example, at μ∗ = 1, the minimum Rc is approximately 0.95 mm for a light droplet (attained
at ρ∗ = 0.5), while it is only about 0.5 mm for a heavy droplet (attained at ρ∗ = 2.0).
Furthermore, for a toluene droplet rising in water, a case with (μ∗, ρ∗) = (0.62, 0.86),
figure 20(b) indicates a critical radius Rc of approximately 1.05 mm, which closely agrees
with the experimental threshold reported by Wegener et al. (2010).

6. Summary
We carried out three-dimensional numerical simulations of a uniform flow past a fixed
spherical droplet over a wide range of governing parameters, namely the viscosity ratio μ∗,
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the external Reynolds number Ree and the internal Reynolds number Rei . Our results show
that for droplets with low-to-moderate viscosity ratios, the axisymmetric wake becomes
unstable because of an internal flow bifurcation. This behaviour is absent for bubbles,
particles and droplets with large viscosity ratios, where the internal flow does not influence
wake instability. The internal flow bifurcation is linked with the surface vorticity produced
at the external side of the droplet interface. By varying μ∗, Ree and Rei independently, we
found that the critical condition for the onset of internal bifurcation can be characterised
in terms of the maximum vorticity on the internal side of the droplet surface, ωi

s . This
leads to an empirical criterion based on a threshold ωi

s , denoted as ωi
c, which was found to

depend solely on Rei , to determine whether the axisymmetric flow remains stable.
Then, we selected a particular series of cases where (μ∗, Ree) = (0.5, 200) to study

the flow evolution with an increasing internal Reynolds number. Starting from an initially
axisymmetric velocity field, the flow first undergoes a supercritical bifurcation at Rei =
326, yielding a steady non-axisymmetric flow that retains biplanar symmetry. In this
configuration, the wake consists of two pairs of counter-rotating vortex threads of equal
intensity, suggesting that symmetry breaking is associated with an azimuthal mode
with wavenumber m = 2 (Ghidersa & Dušek 2000; Yang & Prosperetti 2007). With an
additional increase in Rei beyond 370, a secondary bifurcation occurs, which is found
to be subcritical. Following this transition, the flow loses its biplanar symmetry and
becomes uniplanar-symmetric, characterised by a single pair of counter-rotating vortices
in the wake. Consequently, the droplet experiences a sizeable lift force, with CL showing
an abrupt increase from a vanishingly small value to approximately 0.06 as Rei reaches
370. The secondary bifurcation persists up to Rei = 468, where CL further increases from
0.06 to about 0.09. For Rei > 468, the flow reverts to a biplanar-symmetric configuration.
However, due to the subcritical nature of the secondary bifurcation, the final-state flow
also depends on the initial disturbance amplitude. Specifically, by restarting all simulations
from an asymmetric initial condition using the fully developed flow at Rei = 450 (where
CL = 0.088), we identified two bistable regimes: a narrow range where Rei ∈ (366, 370)

and another for Rei > 468. In both bistable regimes, the final-state flow transits from
biplanar- to uniplanar-symmetric when the initial disturbance exceeds a certain threshold.

Based on these findings, we proposed a physical explanation for the mechanism driving
the primary wake instability. Examination of the azimuthal vorticity field in the base flow
close to the threshold revealed that the isocontours inside the droplet tilt significantly
towards the front, particularly when ωi

s is large. This tilting is accompanied by a marked
increase in the streamwise gradient of the internal azimuthal vorticity. Drawing an
analogy with the argument proposed by Magnaudet & Mougin (2007) for an external
flow bifurcation, we suggested that if this streamwise gradient becomes sufficiently large,
the internal flow cannot remain stable, leading to axisymmetry breakdown. Although this
criterion probably provides only a sufficient condition for the primary wake instability, it
aligns quantitatively with our numerical observations. A detailed stability analysis of the
base flow in this regime is of course required to confirm the above scenario and obtain a
more accurate criterion.

Finally, we examine the relationship between the primary wake instability observed
for a fixed droplet and the first path instability when the droplet is free to move. To
this end, we conducted additional simulations of freely rising droplets, selecting physical
parameters corresponding to those of a toluene droplet rising in quiescent water (Wegener
et al. 2010). Results from the three-dimensional simulations of a droplet with a radius of
R = 1.2 mm confirmed the onset of an internal flow bifurcation prior to the emergence
of the first path instability, thereby establishing a direct connection between wake and
path instabilities. Using the data for (ωi

s, Rei ) obtained from constrained axisymmetric
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simulations over a wide range of droplet radii, along with the empirical criterion ωi
c(Rei )

derived from the fixed-droplet simulations, we found that the predicted threshold droplet
size for the primary wake instability closely matches the experimental and numerical
thresholds for the onset of the first path instability (Wegener et al. 2010; Charin et al.
2019). This further validates the proposed criterion for the internal flow bifurcation.
Building on this confirmed relationship, we also estimated the threshold droplet size for
the internal bifurcation of a nearly spherical droplet moving freely in water, using the
criterion proposed in the present work.

One key aspect not addressed in this study is the mathematical nature of the secondary
bifurcation that drives the transition from biplanar to uniplanar symmetry. Understanding
this bifurcation is particularly important, as it leads to a lift force that, for a freely moving
droplet, causes the transition from a vertical to an oblique path. Addressing this issue
requires the development of a suitable global linear stability approach. Recent numerical
techniques have made it possible to determine the threshold and nature of bifurcations in
freely rising bubbles (Bonnefis et al. 2024). Extending this approach to systems where
the internal and external flow fields are coupled through kinematic and dynamic boundary
conditions appears to be a promising next step to gain deeper insight into this fundamental
problem. In this context, a systematic azimuthal mode decomposition of the DNS results,
which we have deliberately omitted here, would also help to rigorously characterise the
primary and secondary bifurcation modes, and will be pursued in future work.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10565.
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Appendix A. The first bistable regime encountered with increasing Rei for
(μ∗, Ree) = (0.5, 200)

For the transition sequence discussed in § 4, a bistable regime exists within the narrow
interval Rei ∈ (366, 370), where the final-state flow structure can be either biplanar-
symmetric or uniplanar-symmetric, depending on the amplitude of the initial disturbance.

Figure 21 shows the lift coefficient obtained from different initial states for Rei

increasing from 360 to 375. For cases starting from an axisymmetric flow, the final-state
flow remains weakly biplanar-symmetric up to Rei = 369, where CL is merely equal to
0.01. As Rei increases further, CL undergoes an abrupt rise to approximately 0.06 at
Rei = 370, beyond which it shows a weak increase. Now, the above cases were carried
out again but starting from an initially asymmetric velocity field. Using the final-state
result from Rei = 450 (where CL = 0.088), we find that the abrupt increase starts at
Rei ≈ 367, slightly lower than in the previous scenario. However, for both Rei � 366 and
Rei � 370, the resulting CL in the final state (and hence the corresponding flow structure)
is independent of the initial conditions.

Figures 22(a) and 22(b) show the time evolution of CL and its rate of change (as a
function of CL ), respectively, obtained from the series of simulations starting from an
axisymmetric flow. The evolution of CL(t) highlights a bottleneck effect as Rei decreases
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Figure 21. Lift coefficient obtained from different initial conditions for Rei increasing from 360 to 375. Circles
correspond to cases initialised from an axisymmetric flow, while crosses denote cases starting from an initially
asymmetric flow based on the final-state result for Rei = 450 (where CL = 0.088).
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Figure 22. Same as figure 12 but for Rei increasing from 367 to 375. (a) The time evolution of the lift coefficient
CL for cases starting from an initially axisymmetric velocity field. (b) The variation of dCL (t)/d(turel/R) as a
function of CL (t), illustrating the emergence of a local fixed point near CL ≈ 0.01 for Rei = 369.

to 370, similar to that observed in § 4.4 for Rei increasing beyond 465 (see figure 12).
As Rei decreases slightly to 369, a local fixed point with small CL (approximately 0.01)
emerges (figure 22b). According to figure 22(b), this local fixed point shifts rapidly towards
CL = 0 as Rei is decreased further. For Rei � 366, this local fixed point becomes globally
stable, meaning that it cannot be eliminated even if the simulations are initialised from a
highly asymmetric flow corresponding to the final stage of Rei = 450 (where CL = 0.088).

Appendix B. Regime map of internal bifurcation of a nearly spherical freely rising or
settling droplet in water
The discussion in § 5.2 confirmed the close relationship between internal bifurcation and
the first path instability of a freely rising droplet with a low-to-moderate viscosity ratio.
Moreover, the criterion (3.3), based on the maximum internal surface vorticity, was found
to predict reasonably well the threshold droplet size reported in experiments for a toluene
droplet rising in water. This agreement motivates us to construct a regime map for internal
bifurcation in a general liquid–liquid system. To narrow the scope, we focus on the case
of a freely rising or settling droplet in water under gravity. The key question we seek to
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address is: given the viscosity and density of the droplet (hence μ∗ and ρ∗) a priori, what
is the threshold droplet radius corresponding to the onset of internal bifurcation?

To answer this question, one could first establish an empirical correlation to estimate
the maximum internal surface vorticity, ωi

s , in the parameter space (μ∗, Ree, Rei ).
The corresponding external and internal Reynolds numbers, (Ree, Rei ), could then be
determined for a droplet moving in water with radius R with given viscosity and density
ratios (μ∗, ρ∗). By equating ωi

s , now expressed as a function of (R, μ∗, ρ∗), with the
critical vorticity threshold ωi

c – which itself depends on (R, μ∗, ρ∗) through Ree and Rei –
one would obtain the critical droplet radius, Rc. While this approach is essential for
practical applications, it requires substantial effort to derive a reliable empirical correlation
for ωi

s over the three-parameter space (μ∗, Ree, Rei ). Given this complexity, we opt instead
for a simplified estimate of Rc based on the fixed-droplet DNS results available from the
present study.

We begin by examining the dependence of the critical internal surface vorticity, ωi
c, on

the internal Reynolds number, Rei . Inspection of (3.3) reveals that the most rapid variation
occurs for Rei � 300. At Rei = 350, ωi

c decreases to approximately 5.5 urel/R, which is
generally lower than the resulting ωi

s for droplets with μ∗ =O(0.1−1) moving at Ree =
O(100). Thus, as a rule of thumb, internal bifurcation is likely to occur when Rei exceeds
approximately 350. Given this, the next step is to determine the critical droplet radius,
Rc, required for Rei to exceed this threshold. More specifically, since Rei = Reeρ∗/μ∗, the
problem reduces to finding Rc such that⎧⎨

⎩
Reeρ∗/μ∗ ≈ 350 for Ree � 100,

or
Reeρ∗/μ∗ � 350 for Ree ≈ 100.

(B1)

We now examine the relationship between Ree and the droplet radius R. Assuming that
the flow remains axisymmetric in the terminal state and that no shape oscillations occur,
the balance among the drag, gravity and buoyancy forces reads

ρe|ρ∗ − 1|4
3
π R3g = 1

2
π R2ρeCD u2

rel. (B2)

Rearranging this expression, we obtain

R = 3

√
3
32

(μe)2

(ρe)2 |ρ∗ − 1|g CD (Ree)2. (B3)

To employ (B3), an appropriate correlation for the drag coefficient, CD , is required, as it
generally depends on (μ∗, ρ∗, Ree). Assuming weak deformation, a reliable correlation for
CD can be found in our recent work (Shi et al. 2024a), where the hydrodynamic force on
spherical droplets was examined. It was shown that, in the absence of internal bifurcation,
CD depends only weakly on ρ∗ and can be approximated as

CD = C B
D + (Rm

μ − 1)
C S

D − C B
D

(3/2)m − 1
, (B4)

where Rμ = (2 + 3μ∗)/(2 + 2μ∗) represents the intensity of the Stokeslet and C B
D and

C S
D denote the drag coefficients in the clean-bubble (μ∗ → 0) and solid-sphere (μ∗ → ∞)

limits, respectively. The exponent m is a fitted function of Ree and, along with C B
D and
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C S
D , takes the following expressions:

C B
D = 16

Ree

{
1 +

[
8

Ree + 1
2

(
1 + 3.315

(
Ree)−1/2

)]−1
}

, (B5a)

C S
D = 24

Ree

[
1 + 0.15

(
Ree)0.687

]
, (B5b)

m = 1 + 0.01
(
Ree)1.1

. (B5c)

Now, substituting the expression for the critical Ree (given by (B1)) and the drag
coefficient correlation ((B4) together with (B5)) into (B3), and noting that the viscosity
and density of water under standard conditions are μe ≈ 10−3 Pa s and ρe ≈ 1000 kg m−3,
respectively, we obtain solutions for Rc over a broad range of viscosity and density ratios,
(μ∗, ρ∗), with the results summarised in figure 20.
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