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Abstract

Precision weed detection and mapping in vegetable crops are beneficial for improving the
effectiveness of weed control. This study proposes a novel method for indirect weed detection
and mapping using a detection network based on the You-Only-Look-Once-v8 (YOLOVS)
architecture. This approach detects weeds by first identifying vegetables and then segmenting
weeds from the background using image processing techniques. Subsequently, weed mapping
was established and innovative path planning algorithms were implemented to optimize
actuator trajectories along the shortest possible path. Experimental results demonstrated
significant improvements in both precision and computational efficiency compared with the
original YOLOvV8 network. The mean average precision at 0.5 (mAP50) increased by 0.2,
while the number of parameters, giga floating-point operations per second (GFLOPS), and
model size decreased by 0.57 million, 1.8 GFLOPS, and 1.1 MB, respectively, highlighting
enhanced accuracy and reduced computational costs. Among the analyzed path planning
algorithms, including Christofides, Dijkstra, and dynamic programming (DP), the Dijkstra
algorithm was the most efficient, producing the shortest path for guiding the weeding system.
This method enhances the robustness and adaptability of weed detection by eliminating the
need to detect diverse weed species. By integrating precision weed mapping and efficient path
planning, mechanical actuators can target weed-infested areas with optimal precision. This
approach offers a scalable solution that can be adapted to other precision weeding
applications.

Introduction

Vegetables are recognized as nutrient-dense foods, rich in essential vitamins, minerals, and
antioxidants (Kumar et al. 2020). Vegetables account for approximately 35% of per capita
dietary intake in China, making it the world’s largest consumer of vegetables (Dong et al.
2022). Weeds pose a significant challenge by competing with vegetables for sunlight, water,
and nutrients (Berge et al. 2008; Hamuda et al. 2016). Manual weeding, while effective, is
both labor-intensive and time-consuming (Slaughter et al. 2008). The development of
automated weeding technologies offers a promising solution to these challenges (Memon
et al. 2025).

Extensive research has been conducted on machine vision technologies for weed detection
(Bakhshipour et al. 2017; Gerhards et al. 2022; Pantazi et al. 2016; Perez et al. 2020). These
technologies typically classify weed and crop features into four categories: color, shape, texture,
and spectra (Chen et al. 2024; Kong et al. 2024). While these methods perform well under
controlled conditions, their effectiveness often diminishes in field environments due to
challenges such as leaf overlap and occlusion (Jin et al. 2022¢; Tao and Wei 2024). Furthermore,
vision-based approaches rely heavily on manually designed features, which introduces
subjectivity and limits robustness, especially given the high similarity between weeds and crops
(Hasan et al. 2021; Jin et al. 2023).

The rapid advancements in graphics processing units (GPUs) have significantly accelerated
the evolution of deep learning (Jordan and Mitchell 2015; Mahesh 2020). With powerful
learning and generalization capabilities, deep learning has been widely adopted for image
identification (LeCun et al. 2015; Pak and Kim 2017), speech recognition (Zhang et al. 2018),
natural language processing (Otter et al. 2020), and autonomous driving (Grigorescu et al.
2020). The capacity to process massive datasets and leverage high-performance computing
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makes deep learning particularly well suited for deciphering,
measuring, and understanding data-intensive agricultural proc-
esses (Liakos et al. 2018). In agriculture, deep learning has been
applied to a wide range of tasks, including yield prediction (Liu
et al. 2021), disease detection (Chung et al. 2016), weed detection
(Grinblat et al. 2016), crop quality (Peng et al. 2022), species
recognition (Jin et al. 2022b), and more (Pantazi et al. 2016;
Sengupta and Lee 2014). These advancements highlight the
transformative potential of deep learning in modern agriculture,
offering innovative solutions to complex challenges.

Numerous studies have been conducted on the use of deep
convolutional neural networks (DCNNs) for precise weed
detection (Rai et al. 2023; Xu et al. 2023). For instance, Modi
et al. (2023) trained six models with varying hyperparameters to
identify weeds in actively growing sugarcane (Saccharum
officinarum L.) crops. Among these, DarkNet53 outperformed
the other models with a high F, score greater than 99%. Dyrmann
etal. (2016) proposed a new network, which was trained and tested
on images from various datasets under different lighting
conditions and soil types. This network achieved an 82% accuracy
rate in classifying 22 species of weeds. The capability of deep
learning for precision weed detection in turf was first reported by
Yu et al. (2019¢). Three DCNNs were trained to detect broadleaf
weeds in turfgrass, with VGGNet emerging as the best-performing
model, achieving both an F; score and overall accuracy exceeding
0.99, and a recall value of 1.00. A series of additional studies have
further compared and analyzed weed detection using DCNNs from
various perspectives (Jin et al. 2022a, 2022b; Yu et al. 2019a, 2020),
consistently demonstrating the potential of DCNNs in precision
weed detection.

Despite significant advancements in deep learning methods
for weed detection, several challenges remain. Natural environ-
ments often contain diverse weed species, ecotypes, densities, and
growth stages, making it difficult to establish comprehensive
weed datasets (Pei et al. 2022; Zhuang et al. 2022). Additionally,
weeds exhibit distinct appearance characteristics at different
growth stages and densities, even within the same field. Direct
weed detection requires the collection of a massive number of
weed images, which often results in reduced robustness and
generalization capabilities in detection systems. To address these
challenges, this research proposes a novel deep learning method
for weed detection and mapping. Vegetables are first detected
using an innovative network based on the YOLOVS architecture,
and the remaining green vegetation (weeds) is subsequently
segmented using image processing techniques. The objectives of
this research were to (1) evaluate the performance of the
improved vegetable detection network (IVD), (2) segment weeds
from the background images and establish a weed mapping
system for precision weeding application, and (3) evaluate the
effectiveness of path planning algorithms to guide the operation
of weeding actuators.

Materials and Methods
Overview

This study focuses on developing and applying the IVD network
based on the YOLOV8 architecture to detect bok choy [Brassica
rapa ssp. chinensis (L.) Hanelt]. Bok choy is a fast-growing leafy
vegetable that is widely cultivated in Asia, particularly in China.
It is valued for its short growth cycle, high nutritional content,
and significant contribution to local diets. Typically, bok choy
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Figure 1. The workflow illustrating the detection and mapping process for bok choy
(Brassica rapa ssp. chinensis) using the improved vegetable detection (IVD) model.
Target vegetables are first identified, and the remaining green vegetation is
segmented as weeds through image processing and area filtering. The processed
images are divided into grid cells, with weed-containing cells marked in red to
generate a distribution map. A path planning algorithm is then applied to optimize the
route for weed control operations.

reaches maturity within 25 to 35 d after planting. In this study,
bok choy plants at the 2- to 4-true leaf stage, with an average
height of approximately 5 to 10 cm, were selected for image
acquisition. Once bok choy was accurately detected, the
remaining green vegetation in the background was identified
as weeds. Image processing techniques were then employed to
segment weeds from the background, with area filtering applied
to eliminate potential random noise. The original images were
subsequently divided into grid cells, and cells containing weeds
were labeled in red to create a weed mapping system. Finally, a
path planning algorithm was implemented to guide the
mechanical actuators along the most efficient and shortest
path for operation. The entire procedure is illustrated in
Figure 1.
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Image Acquisition

The images of bok choy and weeds were captured from multiple
vegetable fields located in Jiangning District (approximately
31.95°N, 118.90°E) and Qixia District (approximately 32.15°N,
118.95°E) of Nanjing, Jiangsu Province, China, during May and
October 2022. These fields were selected to represent diverse
planting conditions and growth stages. Images were taken by a
digital camera (HV1300FC, DaHeng Image, Beijing, China) with
an aspect ratio of 4:3 and a resolution of 1,792 X 1,344 pixels. The
camera was positioned approximately 0.6 m above the vegetable
ground, operating in automatic mode for focus, exposure, and
white balance settings. To ensure the diversity of the training
dataset, images were collected under various lighting conditions,
such as sunny, cloudy, and partly cloudy.

Training and Testing

A total of 1,500 images were annotated using the Labellmg (https://
github.com/HumanSignal/labellmg) ~ software. ~ Rectangular
bounding boxes were drawn around bok choy to generate
corresponding XML label files for the dataset. The annotated
images were then divided into training, validation, and testing
datasets comprising 1,200 images (80%), 150 images (10%), and
150 images (10%), respectively.

Improved Vegetable Detector

The IVD network was developed by enhancing the YOLOvV8
architecture. As a leading example of one-stage deep learning
frameworks, YOLO architectures are widely used in real-time
object detection due to their exceptional efficiency and precision
(Terven et al. 2023). YOLOVS8 introduces significant advance-
ments, making it versatile for instance segmentation, key point
detection, object detection, and classification  tasks
(Kashyap 2024).

In the YOLO architecture, the backbone is responsible for
extracting key features from input images, while the neck
aggregates and refines these features before passing them to the
detection head (Deng et al. 2025). A slim-neck design further
improves computational efficiency while preserving essential
feature information. Optimizing these components is critical for
enhancing both detection accuracy and speed, which are
essential for real-time weed detection in agricultural
environments.

Although YOLOVS performs well in general object detection
tasks, its feature extraction and detection speed require further
optimization for bok choy detection, particularly to distinguish
fine-grained features within cluttered field environments. To
address these challenges, a novel vegetable detection network was
developed with two key improvements:

1. The previous feature fusion layer was modified with a
slimmed neck (slim-neck) module in the neck layer.

2. In the backbone layer, Attention Mechanism and FasterNet
were referred to with the convolution to fully connected (C2f)
layer replaced by the C2f-Faster-EMA module.

YOLOv8-C2f-Faster-EMA

The YOLOvV8-C2f-Faster-EMA network is an enhancement of the
YOLOVS deep learning architecture (Zhu et al. 2024), and two
principal items for improvement were introduced:
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1. Efficient multi-scale attention (EMA): This component
integrates multiscale feature fusion and attention mecha-
nisms to enhance the network’s identification capabilities.

2. Faster Block of FasterNet: invested the Faster Block of
FasterNet, which employs parallel processing, into the neck
of YOLOVS to improve the detection precision.

Figure 2 describes the optimized architecture of the network. In
this research, the conception of C2f-Faster-EMA was adopted at
the backbone stage based on the primitive YOLOV8 network,
substituted for the original C2f module. This enhanced archi-
tecture is referred to as YOLOv8-C2f-Faster-EMA.

Slim-Neck

The neck of a network is regularly configured between the head
and backbone, serving to enhance the expressive potential of
features and deliver more impactful feature information to the
head part for image classification and object detection.
The slim-neck module was designed to modify the neck of
the network for greater efficiency. The depthwise separable
convolutions (DSC) were introduced to alleviate the high
computational cost associated with large-scale processing.
However, this approach comes with a trade-off, leading to
reduced effectiveness in feature extraction and fusion compared
with standard convolutions (SC). The fusion of the SC, DSC,
and the shuffle strategy, named group shuffle convolution
(GSConv), was tactfully devised, uniformly exchanging local
features between different channels by utilizing the shuffle
convolution to transfuse information generated by the SC into
DSC (Chollet 2017). Therefore, it is recommended that the
slimmed neck be combined with the general backbone. The
architecture of GSConv is illustrated in Figure 3.

While the computational cost was reduced by 50% or more
compared with SC, the model’s learning ability remains limited. To
further enhance performance, a single-stage aggregation module
based on VoVNet (VoV-GSCSP) was used to replace the neck of
the model, with GSbottleneck introduced into GSConv. The
slimmed neck design significantly improves inference efficiency.

The IVD network was meticulously designed with an optimized
neck and backbone, implementing a targeted design based on the
primary YOLOVS architecture. The whole flowchart of this
architecture is presented in Figure 4.

Experiment Setup

The training and testing platform was the PyTorch v. 1.8.1 deep
learning environment (https://pytorch.org; Facebook, San Jose,
CA, USA) with the GPU of NVIDIA (GeForce RTX 2080 Ti).
Transfer learning is usually employed to apply the knowledge
gained from data in related fields to address novel, yet analogous
challenges in the present domain (Weiss et al. 2016). In this
research, the IVD network was pretrained on ImageNet, a large-
scale dataset with more than 14 million labeled images (Deng et al.
2009). During training, all layers of the network were fine-tuned on
the bok choy detection dataset without freezing any backbone or
neck parameters, allowing full adaptation of feature representa-
tions to the target domain. The following hyperparameters were
used, in accordance with YOLOV8 default settings: a batch size of
16, momentum of 0.937, an initial learning rate of 0.01, Stochastic
Gradient Descent (SGD) as the optimizer, a weight decay of 0.0005,
and a training duration of 100 epochs.
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Figure 2. The architecture of YOLOv8-C2f-Faster-EMA. The original convolution to fully connected (C2f) modules are replaced with C2f-Faster-EMA modules to improve feature
extraction and computational efficiency. Additionally, in the backbone network, the bottleneck operators in the C2f modules at stages 3, 5, 7, and 9 were hierarchically substituted
with the proposed C2f-Faster-EMA units to enhance feature extraction and information flow. SPPF in the model is the abbreviation of Spatial Pyramid Pooling Fast, which is a

module used for pooling operations at different scales.

Figure 3. Architecture of the group shuffle convolution (GSConv) module. The standard convolution operators in the neck module were systematically replaced with GSConv
units, which are specifically designed to enhance cross-level feature fusion through a lightweight channel-spatial attention mechanism.

Evaluation Metrics

Accuracy and efficiency are crucial for real-time applications.
This research employed precision, recall, mean average
precision (mAP), and giga floating-point operations per
second (GFLOPS) as metrics to evaluate the model’s
performance.
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The network’s training and testing results were organized into a
binary confusion matrix with four outcomes: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN)
(Baldi et al. 2000).

Precision represents the ratio of correctly predicted positive
instances to the total number of instances predicted as positive by
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Figure 4. Overall architecture of the improved vegetable detection (IVD) model. The group shuffle convolution (GSConv) units were introduced for Slim-neck construction, and
VoV-GSCSP modules were integrated into the You-Only-Look-Once-v8 (YOLOV8) framework. During inference, multiscale feature maps undergo channel compression via GSConv,
followed by bilinear upsampling and concatenation to establish cross-resolution connections. These features are further refined through secondary GSConv filtering and final
consolidation via a single-stage aggregation module based on VoVNet Volumetric Grid Spatial Cross Stage Partial (VoV-GSCSP) fusion gates. In the backbone, computational
redundancy is reduced by replacing conventional bottlenecks in the convolution to fully connected (C2f) modules with Faster-EMA blocks, which apply the efficient multiscale

attention (EMA) mechanisms to enhance salient spatial-frequency feature extraction.

the model (Prati et al. 2011; Sokolova and Lapalme 2009). It was
calculated as:

TP

TP TP (1]
+ FP

Precision =

Recall represents the proportion of correctly predicted positive
instances out of all actual positive instances (Grandini et al. 2020).
It was calculated as:

TP

Recall = ——
= TP I EN

(2]

Intersection over union (IoU) measures the ratio of the overlap
between the predicted bounding box and the actual bounding box.
A higher IoU indicates a more accurate prediction. It was

calculated as:

Area of overlap

IoU = (3]

Area of union
While precision and recall represent distinct evaluation criteria,
average precision (AP) provides a comprehensive index that
considers both metrics (Everingham et al. 2015). It was calculated as:

AP = / 1 p(R)dR (4]
0

where p(R) is the precision-recall curve, with precision plotted on
the vertical axis and recall on the horizontal axis. mAP, a
commonly used metric in object detection, is the average AP value
across all categories. It was calculated as:

https://doi.org/10.1017/wsc.2025.10036 Published online by Cambridge University Press

N APi
N

mAP = (5]
The values of mAP50 and mAP50-95 are commonly utilized as the
evaluation metrics of the detection performance. The mAp50 value
is defined as the value of mAP when the threshold of IoU is set to
50%, while mAP50-95 value is the average value of mAP when the
IoU threshold varies from 50% to 95%. It is obvious that mAP50-
95 is a more precise metric, as it considers multiple IoU thresholds.

GFLOPs is a metric that quantifies the computational resources
required by a processor during the inference period. Smaller
GFLOPs values indicate lower computational demands and faster
inference. GFLOPs is a standard metric for evaluating the
efficiency of YOLO networks.

Image Processing

Both vegetables and weeds are green, while the soil has a distinct
color. Once the network detects the vegetables, the remaining
pixels in the background are weeds, straw, or soil. Vegetable pixels
are removed first, and the remaining green vegetation in the
background is identified as weeds.

The excess green (ExG) index (Morid et al. 2021), previously
explored for weed identification (Jin et al. 2022¢; Sun et al. 2024),
was optimized in this research to enhance weed segmentation
performance. The modified ExG index is defined as:

0,
ExG = { 1.875x

if(g<rorg<b) (6]
g —r — b, otherwise

To reduce sensitivity to varying illumination, the modified ExG
index uses normalized RGB values:
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Table 1. Ablation study results evaluating the impact of C2f-Faster-EMA and Slim-neck modules on detection performance and model complexity.?

Model mAP50 mAP50-95 Precision Recall Parameters GFLOPS Model size
% G M
YOLOv8 98.1 75.6 94.0 96.0 3,005,863 8.1 6.3
+C2f-Faster-EMA 98.1 75.1 94.9 94.1 2,309,155 6.5 4.9
+slimneck 98.1 75.6 94.2 94.4 2,795,859 73 5.9
+C2f-Faster-EMA&slimneck 98.3 75.3 94.3 94.1 2,439,027 6.3 5.2

2mAP50, the mean average precision at 0.5; mAP50-95, the mean average precision varies from 50% to 95%; GFLOPS, giga floating-point operations per second; YOLOvS8, You-Only-Look-Once-v8;

G, Giga; M, Megabyte.

B
r:L g:L b= ————  [7]

R+G+B’ R+G+B’ R+G+B
The Otsu method (Otsu 1975) was applied to convert grayscale
images into binary images. This was followed by area filtering to
eliminate random noise in the background. As a result, weeds were
effectively segmented from the original images.

Weed Mapping

A custom program was developed to divide the original images
(1,792 x 1,344 pixels) into 48 equal grid cells measuring 224 x 224
pixels, arranged in 6 rows and 8 columns. Once the positions of the
weeds were determined, the corresponding grid cell(s) were labeled
as weeding area(s), and a weed map was generated.

For a weeding system equipped with a mechanical weeding
machine, each grid cell represents a unit of weeding area,
facilitating the integration of weed detection results with field
application. In actual applications, the size of each grid cell should
be equal to or slightly smaller than the mechanical actuator’s
footprint. This configuration ensures that the mechanical actuators
are directed only toward grid cells marked as weed infested,
thereby achieving precise and efficient weeding.

Path Planning

As the weed mapping was constructed, path planning algorithms
were elaborately designed to guide the mechanical actuators to cross
over the grid cells to ensure the optimum route for real-time
weeding. The performances of three path planning algorithms were
compared and analyzed, including the Christofides algorithm
(Papadimitriou and Vazirani 1984), the Dijkstra algorithm
(Xu et al. 2007), and DP (Bellman 1954).

1. The Christofides algorithm is an approximate algorithm for
the traveling salesman problem on a metric space that is
distance symmetric and satisfies the triangle inequality. It
strikes a delicate balance between resolution quality and
computational time.

2. The Dijkstra algorithm is targeted on the shortest path of
weighted graphs by computing the nearest way between two
points. The process will finally be terminated when all of the
points have been visited.

3. DP is a method to solve the optimization problem of a
multistage decision-making process, and the key point is to
disassemble the entire problem into smaller ones, storing
what has been computed in the procedure to reduce the
computation cost (Bellman 1954).

For field application, the mechanical actuators are aligned with
the grid cells and follow the optimal path determined by the
selected path planning algorithm. To assess the performance of the
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path planning algorithms, execution time and the length of the
planning path (measured by pixels) were analyzed and compared.

Results and Discussion
Vegetable Detection

The ablation experiment was adopted to validate the efficiency of the
IVD network. The C2f-Faster-EMA module, the slim-neck module,
and the complete network were evaluated against the baseline
YOLOV8 network. The results of the ablation experiment are
summarized in Table 1. When only the C2f-Faster-EMA module was
implemented at the backbone stage to replace the original C2f
module, precision increased by 0.9%, and computational costs were
significantly reduced. The number of parameters, GFLOPS, and
model size decreased by 23.2%, 19.7%, and 22.2%, respectively. These
results demonstrate that the C2f-Faster-EMA module significantly
improved computational efficiency. However, there was a slight
reduction in the mAP50-95 and recall values, which decreased by
0.5% and 1.9%, respectively. This reduction can be attributed to the
simplified feature extraction inherent in the lightweight backbone
design. Nevertheless, given the increased precision and substantial
efficiency gains, this trade-off remains acceptable for real-time field
applications with limited computational resources.

The results showed that the slim-neck module, designed to
achieve lightweight optimization while enhancing computational
performance, also demonstrated reductions in parameters,
GFLOPS, and model size. Notably, the mAP50-95 value was
maintained, further validating the module’s efficiency. When both
the C2f-Faster-EMA and slim-neck modules were integrated into
the YOLOVS8 network, a well-balanced outcome was achieved. The
mAP50 value was preserved, while computational costs were
effectively reduced, highlighting the synergy of these modules in
improving performance.

Figure 5 illustrates the performance of the IVD model in
vegetable detection under complex field conditions, including
cluttered backgrounds, dense weed-vegetable overlap, and strong
illumination. The model demonstrated accurate localization, high
precision, and strong robustness across these challenging
scenarios, confirming its suitability for real-world deployment.
These qualitative results are complemented by the training
performance shown in Figure 6, where the IVD model exhibits
a steeper loss curve with faster convergence compared with
YOLOVS, indicating more efficient optimization during training.

To clearly illustrate the processing results at each stage, the
original images, along with those processed through DCNN
detection, image processing, and weed mapping, are presented in
Figure 7 for comparison. The images in the first row represent the
original images, while those in the second row display the detection
results from the IVD network, with each detected vegetable framed
within a bounding box. Pixels within these bounding boxes
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Figure 5. Detection results of the improved vegetable detection (IVD) model on vegetables under challenging conditions, including complex backgrounds and dense weed-

vegetable clusters.
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Figure 6. Training loss curve of the improved vegetable detection (IVD) model over 100 epochs. The IVD model exhibits a steeper loss curve with faster convergence compared
with You-Only-Look-Once-v8 (YOLOVS), indicating more efficient optimization during training.

represent vegetables and were removed, allowing the remaining
green vegetation to be identified as weeds. The subsequent step
involved segmentation, performed using image processing
techniques, including the ExG index and area filtering algorithm,
to isolate weeds from the background. The third row in Figure 7
depicts the preprocessing stage for segmentation, while the fourth
row displays the segmentation approach. Weeds within vegetable
crops were indirectly identified through the integration of DCNNs
and image processing methods.
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Weed Mapping

A precise weed map was established based on the weed detection
results. The original images were divided into smaller, equally sized
grid cells. Cells containing weeds were marked in red, representing the
designated weeding areas, while the remaining grid cells were
identified as requiring no weeding. The weed mapping results are
displayed in the fifth row of Figure 7. With the weeding regions clearly
highlighted, this approach enhances the feasibility of practical

weeding applications.
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Figure 7. Weed mapping workflow from original images to trajectory planning. The first row shows the original images of vegetable fields. The second row displays the detection
results from the improved vegetable detection (IVD) network, with vegetables highlighted by bounding boxes. The third row presents binary segmentation images generated
through excess green (ExG)-based vegetation enhancement followed by Otsu thresholding. The fourth row shows the results after vegetable removal and area filtering to isolate
true weed regions. The fifth row displays the generated weeding trajectories used to guide precision weed control operations.

Path Planning

The path planning strategy was executed based on weed mapping
results. Three path planning algorithms were carefully designed
and tested for comparison and analysis. The path planning results
of the four previously cited images are shown in Figure 8, while the
evaluation metrics for efficiency and effectiveness are depicted in
Table 2. The blue line in Figure 8 represents the weeding trajectory
for a smart machine. The Dijkstra algorithm exhibited a significant

https://doi.org/10.1017/wsc.2025.10036 Published online by Cambridge University Press

advantage in computation efficiency in this experiment. For the
four given images, the Dijkstra algorithm consistently produced
the shortest path and required the least computation time for the
weeding operation. In contrast, the Christofides algorithm
performed poorly, with longer computation times and path
lengths. Notably, for the third image (Figure 8C), the Christofides
algorithm took 13 times longer to compute and required 216 more
pixels for the weeding path compared with the Dijkstra algorithm.
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Christofides

Dijkstra

DP

Figure 8. Path planning results for precision weeding based on weed mapping. The blue lines represent the optimized weeding trajectories generated by different path planning
algorithms (Christofides, Dijkstra, and dynamic programming [DP]) across four sample images. These results illustrate the application of trajectory optimization for efficient weed

control operations.

It is worth noting that DP showed inconsistent performance; while
it required less time than the Christofides algorithm for images in
Figure 8A and 8B, it took relatively more time for images in
Figure 8C and 8D. In general, the Dijkstra algorithm performed
exceptionally well in terms of both computing efficiency and
optimal path planning.

Direct detection of different weed species, morphologies,
densities, and growth stages is a challenging task, as it requires
labeling a large volume of weed image data, which is both labor-
intensive and time-consuming (Yu et al. 2019c). Additionally,
collecting and labeling weed datasets is tedious, and such datasets
are often nontransferable across different crops. This study
proposes an efficient deep learning network based on YOLOvS
trained to detect vegetables instead of weeds. By focusing on
vegetables, the approach bypasses the complexities associated with
managing diverse weed characteristics.

With rising living standards, there is increasing demand for
green, organic vegetables, which are grown without the use of
synthetic herbicides (Rahman et al. 2021; Reganold and Wachter
2016). In this context, smart mechanical weeding machines
equipped with accurate weed detection systems offer an ideal
solution for performing weeding tasks in organic vegetable crops.
Effective weed detection systems aim to eliminate weeds while
avoiding damage to crops. The proposed method achieved this by
accurately detecting vegetable crops and excluding them from the
weeding process, ensuring precision in weed control.

The YOLO series of deep learning architectures is widely
recognized for its efficiency in object detection and adaptability to
diverse tasks (Badgujar et al. 2024). The IVD was developed based
on the YOLOVS architecture, with enhancements such as the C2f-
Faster-EMA module in the backbone stage and an improved
feature fusion with a slim-neck at the neck stage. Ablation
experiment results showed reduced computation costs, with
parameters reduced by 0.57 million, model size by 1.1 MB, and
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GFLOPs by 1.8 compared with the original YOLOV8 network. This
optimization makes the network more lightweight while main-
taining excellent detection precision, making it highly suitable for
real-time weeding applications.

Some bounding boxes generated by the trained network were
observed to partially or completely overlap, as clearly illustrated in
row 3 of Figure 7. This overlap often occurs when vegetables are
closely spaced, potentially reducing the recall value. However, this
issue has minimal impact on final weed detection, because the
vegetables are accurately identified within the bounding boxes and
excluded before weed segmentation through image processing
methods.

The attention mechanism is commonly employed to enhance
the processing of sequential data (Hassanin et al. 2024). EMA, a
novel and highly efficient attention mechanism, captures both
channel and spatial information simultaneously, improving
feature representation without increasing computational costs
(Marsella and Gratch 2009). FasterNet is recognized for its high
processing speed, owing to its use of partial convolution to reduce
redundant computations and memory access (Chen et al. 2023).
When EMA and the Faster Block of FasterNet are combined,
overall efficiency is significantly boosted. This improvement was
clearly demonstrated in the ablation experiment, where only the
C2F-Faster-EMA module was integrated.

Extensive research has been conducted on detecting weeds
across various crop categories, achieving outstanding detection
accuracy and significantly advancing the development of
precision agriculture (Peng et al. 2022; Wang et al. 2019; Yu
et al. 2019b). To further utilize the detection results, weed
mapping was constructed after detecting vegetables, followed by
weed segmentation through image processing. The original
images were systematically divided into grid cells, with only those
containing weeds marked as weeding areas. The size of the grid
cells can be tailored to the operational area of weeding actuators
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Table 2. Performance comparison of three path planning algorithms on four
sample weed maps, with execution time and shortest path length (in pixels)
reported for each algorithm across four images labeled A, B, C, and D

Image Algorithm?® Execution time Shortest path
us pixels
A Christofides 25.417 672
Dijkstra 5.817 672
DP 14.686 672
B Christofides 36.430 224
Dijkstra 5.698 224
DP 9.775 224
C Christofides 26.271 1,436
Dijkstra 2.026 1,220
DP 49.901 1,220
D Christofides 25.866 1,344
Dijkstra 24.104 1,212
DP 52.619 1,212

2DP, dynamic programming.

using weed mapping. This adaptability is crucial, as the size of
weeding actuators can vary, thereby enhancing the applicability
and efficiency of weeding applications.

Path planning algorithms were integrated with weed mapping
to guide the mechanical actuators exclusively to the grid cells
containing weeds. In this study, three path planning algorithms
were evaluated, with the Dijkstra algorithm emerging as the most
effective by balancing computational costs with the shortest path
length. Interestingly, the performance of the DP algorithm varied
across different images in terms of time consumption, likely due to
its memory allocation requirements, which warrants further
investigation. In contrast, the Christofides algorithm consistently
generated longer paths and required more computation time than
the other two algorithms. As a heuristic method based on the
Hamiltonian circuit, the Christofides algorithm provides an
approximate solution that, while not optimal, ensures that the
loop length never exceeds 1.5 times the optimal length, even in the
worst-case scenario.

In this study, path planning was creatively applied to vegetable
weeding, enabling precise machine-guided weed control. These
algorithms, based on weed mapping, can also be adapted for other
precision weeding applications. For instance, a smart sprayer can
be integrated with path planning algorithms to accurately and
efficiently apply herbicides only to the grid cells containing weeds.
Further investigation is required to assess the feasibility of
integrating path planning and weed mapping for weed control
in other cropping systems.

This research proposed an innovative system integrating weed
detection, weed mapping, and path planning into a unified
approach for precise weeding. Weed detection was performed
indirectly by first identifying vegetables through the IVD, with the
remaining green vegetation classified as weeds. The IVD
demonstrated significant improvements in both precision and
efficiency, achieving a 0.2 increase in mAP50 while reducing
parameters, GFLOPS, and model size compared with the original
YOLOVS8 network. Weed mapping serves as a bridge between weed
detection and precise weeding applications, effectively defining
operational areas for targeted weed control. Among the three path
planning algorithms evaluated, the Dijkstra algorithm emerged as
the most efficient, offering the shortest weeding path with optimal
computational efficiency. This proposed method provides a robust
solution for precise weeding and introduces a novel approach with
significant potential for broader applications in weed management.
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