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Abstract

Accurate estimation of finger joint stiffness is important in assessing the hand condition of stroke patients and
developing effective rehabilitation plans. Recent technological advances have enabled the efficient performance of
hand therapy and assessment by estimating joint stiffness using soft actuators.While joint modular soft actuators have
enabled cost-effective and personalized stiffness estimation, existing approaches face limitations. A corrective
approach based on an analytical model suffers from actuator–finger and inter-actuator interactions, particularly in
multi-joint systems. In contrast, a data-driven approach struggles with generalization due to limited availability of
labeled data. In this study, we proposed a method for energy conservation-based online tuning of the analytical model
using an artificial neural network (ANN) to address these challenges. By analyzing each term in the analytical model,
we identified causes of estimation error and introduced correction parameters that satisfy energy balance within the
actuator–finger complex. The ANN enhances the analytical model’s adaptability to measurement data, thereby
improving estimation accuracy. The results show that our method outperforms the conventional corrective approach
and exhibits better generalization potential than the purely data-driven approach. In addition, the method also proved
effective in estimating stiffness in human subjects, where errors tend to be larger than in prototype experiments. This
study is an essential step toward the realization of personalized rehabilitation.

1. Introduction

The number of stroke patients is increasing every year, and 65% of them suffer from hand disability as an
aftereffect (Kwakkel et al., 2003; Feigin et al., 2022). Hand dysfunction is a significant burden for patients
since the hands play an essential role in daily life and labor (Mouri et al., 2009; Proietti et al., 2024). Finger
flexor spasticity is one of themost commonmotor impairments after stroke. Spasticity affects the recovery
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of hand motor function by increasing the stiffness of the finger joints and decreasing the range of motion
(Sadarangani et al., 2017). Therefore, in the hand rehabilitation of stroke patients, determining the optimal
therapy based on the spasticity condition is important to enhance the effectiveness of therapy (Heung
et al., 2020).

In clinical practice, healthcare providers assess spasticity by palpation based on an ordinal scale (e.g.,
Modified Ashworth Scale [MAS]) (Bohannon and Smith, 1987; Harb and Kishner, 2023). However, this
method lacks objectivity because it relies on the evaluator’s experience. In addition, in an environment
where palpation is not available, such as in telerehabilitation, it is not easy to ascertain the daily condition
of spasticity (Auger et al., 2023). As spasticity conditions fluctuate daily, depending on physical and
emotional stimuli (TSUJI et al., 2002), it is difficult to provide optimal therapy to patients if spasticity
cannot be assessed daily. In order to provide effective therapy to patients in any environment, a simple and
objective method to quantify spasticity is needed.

It has been suggested that spasticity conditions can be quantified by measuring finger joint stiffness
values (Shi et al., 2020). Various devices have been developed tomeasure finger joint stiffness after stroke
(Kuo and Deshpande, 2012; Peperoni et al., 2023; Ranzani et al., 2023). However, most of them were
developed to measure the stiffness of specific finger joints. Therefore, it is challenging to measure joint
stiffness of multiple joints (e.g., the metacarpophalangeal [MCP] and proximal interphalangeal [PIP]
joints) or different fingers (e.g., index and middle fingers) simultaneously or separately. Changing the
devices’ settings is necessary when measuring different joints or fingers. Thus, it increases the measure-
ment time and makes it difficult to use the device conveniently.

Recently, an analytical model-based stiffness estimation method was proposed using flexible and
lightweight soft elastic composite actuators (SECAs) (Heung et al., 2019, 2020). Unlike conventional
stiffness measurement devices, the stiffness of all fingers and joints can bemeasured simultaneously if the
bending angle of each joint can bemeasured. The joint stiffness values estimated by thismethod have been
compared to theMAS scores, which have shown potential as an indicator to quantify spasticity (Shi et al.,
2020). However, whole-finger soft actuators, such as the SECA, which support the entire finger with a
single actuator, have several problems, including high drive cost, limitations in supporting individual
joints, and difficulty in customization (Kokubu et al., 2022; Kokubu et al., 2024a, 2024b; Matsunaga
et al., 2024).

Joint modular soft actuators were developed to address these issues (Yun et al., 2017; Kokubu et al.,
2024b; Tortós-Vinocour et al., 2024). This actuator is more energy efficient than a whole-finger type
because each joint is divided into individual actuators, and each joint can be controlled independently by
air pressure (Kokubu et al., 2022; Matsunaga et al., 2024). In addition, the actuators can be easily
customized to the individual by simply changing the size of the connectors that connect the actuators. This
soft actuator will enable us to provide an inexpensive and rapid rehabilitation system that can be adapted
to many patients.

In our previous study, we newly designed a joint modular version of the SECA (Modular-SECA) and
proposed a stiffness estimation method for joints using it (Matsunaga et al., 2023). By adding correction
parameters to the analytical model of the SECA, we constructed an analytical model for stiffness
estimation according to the behavior of the Modular-SECAs. This analytical model is defined as the
modular-analytical model. However, when estimating the stiffness values of multiple joints simulta-
neously, it was found that themodular-analyticalmodel’s accuracy became unstable because the influence
of the interactions between the finger and the Modular-SECA, as well as between the Modular-SECAs,
changed for each joint and measurement (Matsunaga et al., 2024). It was also suggested that these
influencing factors are complex and mixed up, making it difficult to incorporate them individually as
correction terms in the modular-analytical model. Therefore, we proposed a method to directly estimate
joint stiffness from the trend of joint angle changes using an artificial neural network (ANN) (Matsunaga
et al., 2024). By using ANNs, we were able to improve the estimation accuracy by learning the effects of
nonlinear interactions and incorporating elements that the modular-analytical model cannot capture. The
ANNmodel also showed good estimation performance for different finger sizes and high stiffness values,
which the modular-analytical model could not estimate.
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Although theANN-basedmodel consistently outperformed themodular-analytical and othermachine-
learning models, its generalization performance remained limited. Machine-learning models generally
require the test data to follow the same distribution as the training data to maintain prediction accuracy
(Krueger et al., 2021; Yuan et al., 2022; Zhou et al., 2022). However, in our previous study, when
estimating stiffness for fingers with sizes different from those included in the training data, the ANN
model’s performance declined (Matsunaga et al., 2024). This result was due to shifts in data distribution
caused by differences in finger size, which the ANN could not fully adapt to. In human finger joint
stiffness estimation, the data distribution of the patient’s finger joints is unknown. Therefore, a large
amount of training data covering the range of possible situations in finger joint stiffness estimation is
required to make amodel that can accurately estimate joint stiffness values for various patients. However,
it is difficult to reproduce various situations that may occur in stiffness estimation using dummy fingers,
and much effort is required for data measurement.

One way to improve the generalization of machine-learning models is to use physical information
(Yuan et al., 2022). Physical information is not affected by changes in the data distribution.
Therefore, it may construct models with high generalization and robustness, even with small
training data, by using it as an input or output variable for models or as a constraint during training
(Kalina et al., 2023). In our previous study, the ANN models incorporated information from the
modular-analytical model as an output variable (Matsunaga et al., 2024). However, because
the prediction accuracy of the ANN depends on the accuracy of the modular-analytical model,
the model with the modular-analytical model’s information resulted in lower accuracy. On the
other hand, this result could be taken to mean that the ANN with the modular-analytical model
information could learn invariant information independent of the data distribution. Therefore, the
modular-analytical model information may lead to improved generalization in estimating joint
stiffness, which makes it difficult to identify data distribution and collect data.

It is essential to improve the accuracy of themodular-analytical model to take advantage of the stiffness
estimation’s physical information. Doing so should enable more accurate and stable stiffness estimation,
either by the analytical model alone or combinedwithmachine learning. Our previous study has identified
factors that affect the stiffness estimation accuracy with the Modular-SECAs (Matsunaga et al., 2024).
However, we have yet to comprehensively analyze the specific effects of these factors on each term of the
modular-analytical model. The modular-analytical model for stiffness estimation is derived from the
conservation of energy in the Modular-SECA and finger complex. Consequently, their energy conser-
vation relationship does not hold if the stiffness estimation accuracy is low. Therefore, the stiffness
estimation accuracy may be improved by correcting the energy balance of the modular-analytical model.

In this study, we aimed to improve the stiffness estimation accuracy by applying data-driven tuning
to the modular-analytical model. By analyzing the effect of each term of the modular-analytical model
due to the variation of the stiffness estimation results, the cause of the failure of energy conservation in
the Modular-SECA and finger complex was clarified. Then, correction parameters were added to the
modular-analytical model to adjust the modular-analytical model’s energy balance defects so that the
complex’s energy conservation is established. After that, the modular-analytical model was corrected to
fit the measurement data by predicting the correction parameters using an ANN. The proposed method
was compared with the original modular-analytical model and our previously proposed ANN-based
model. In addition, subject experiments were also conducted on healthy subjects to verify the performance
of the proposed method in the stiffness estimation of human finger joints.

2. Methods

This section first explains the modular-analytical model-based joint stiffness estimation. Next, each term
of the modular-analytical model is analyzed in detail based on the stiffness estimation results of previous
studies to identify the cause of the error in stiffness estimates. After that, the method to identify correction
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parameters to improve the accuracy of the modular-analytical model and to estimate these parameters
using anANNbased on themeasurement data is explained. Finally, an experiment to estimate human joint
stiffness to verify the performance of the proposed method is described.

2.1. Joint stiffness estimation based on the modular-analytical model

The process of deriving the modular-analytical model and the flow of stiffness estimation will be briefly
presented.

2.1.1. Analytical model for stiffness estimation with the Modular-SECA
More details regarding the analytical model can be seen in Heung et al. (2020) and Matsunaga et al.
(2023).

First, the analytical model for free bending of the SECA (Heung et al., 2020) is shown in
Equation (2.1).

P¼WA +WL

ΔV
(2.1)

where P,WA,WL, and ΔV are the input air pressure, the bending strain energy stored in the soft actuator
body, the bending strain energy stored in the torque-compensating layer, and the increase in the chamber’s
volume, respectively. Free bending is the bending behavior of an actuator in a measurement environment
where nothing but gravity is applied to the actuator. The SECA’s bending angle is the angle at which the
work done by the air pressure input to the soft actuator (PΔV ), is balanced by the energy required to bend
the actuator and torque-compensating layer (WA and WL).

However, Equation (2.1) cannot be used for the Modular-SECA’s bending analysis because the SECA
and the Modular-SECA have different bending performance (Matsunaga et al., 2024). Therefore, we
identified correction parameters to add to Equation (2.1) to match the free bending angles of theModular-
SECA to obtain the modular-analytical model (Matsunaga et al., 2023) shown in Equation (2.2).
Specifically, the free bending angles of the Modular-SECA were measured, and correction parameters
were identified by the least-squares method to minimize the difference from the theoretical bending angle
derived from the SECA model.

P¼WA + 0:5WL

1:15ΔV
: (2.2)

Next, the energy stored in the joints at different positions, Wjoint , is as follows:

W joint ¼ 1
2
k θ�θ0ð Þ2 (2.3)

where k, θ, and θ0 are the joint stiffness value, the finger joint angle, and the resting angle, respectively.
The stiffness value is the stiffness value in the flexion direction when θ > θ0 and in the extension direction
when θ < θ0. In this study, we set the range of change in joint angle as θ < θ0 because we want to measure
the stiffness value in the extension direction in a stroke patient. It is noteworthy that Wjoint is the energy
that does not vary with the type of actuator.

Themodular-analytical model for stiffness estimation is derived from energy conservation in the finger
and the Modular-SECA complex and is obtained by incorporating Equation (2.3) into Equation (2.2).
When the joint is in the extension direction from the resting angle (θ < θ0),Wjoint is treated similarly to the
energy stored by bending in the Modular-SECA. Thus, from Equations (2.2) and (2.3), the modular-
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analytical model for stiffness estimation can be expressed by the displacement direction of the joint as
follows:

1:15PΔV ¼WA + 0:5WL�W joint, 0≤ θ < θ0: (2.4)

In θ < θ0, the finger joint rests in the position where the energy generated by the air pressure input to the
Modular-SECA (PΔV ) and the energy stored in the joint (Wjoint) are balanced by the energy required to
bend the Modular-SECA (WA and WL). Transforming Equation (2.4), the joint stiffness value can be
calculated using Equation (2.5):

k¼ 2 WA + 0:5WL�1:15PΔVð Þ
θ�θ0ð Þ2 , 0≤ θ≤ 0:7θ0: (2.5)

It is noteworthy that the stiffness estimation range is changed from 0≤ θ < θ0 to 0≤ θ≤ 0:7θ0 to avoid
singularity (θ¼ θ0) effects (Heung et al., 2020).

2.1.2. Stiffness estimation of three joints
The procedure for estimating the joint stiffness using the Modular-SECAs follows the same protocol as
proposed in our previous work (Matsunaga et al., 2024). The flow of stiffness measurement is shown in
Figure 1(a). First, the resting joint angles are measured before attaching theModular-SECAs to the joints.

Figure 1. The flow of the modular-analytical model-based stiffness estimation with the Modular-SECAs.
(a) Measurement flow and (b) estimation flow.
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Then, the actuators are pressurized from 0 to 80 kPa and depressurized to 0 kPa, with joint angles recorded
every 10 kPa during one pressurization–depressurization cycle (denoted as REP). Following the recom-
mendation by Shi et al. (2020), three REPs are conducted per measurement to account for short-term
effects of repeated joint motion.

The flow of the stiffness estimation is shown in Figure 1(b). The stiffness value is estimated for each
REP. That is, up to three stiffness values are estimated in one measurement. The joint stiffness values are
calculated by substituting the joint angle values (among the 17 included in one REP), that fall within the
stiffness estimation range 0≤ θ≤ 0:7θ0, into Equation (2.5). No stiffness value is calculated for values
where the joint angle is not inside the estimation range. Finally, the stiffness values that could be
calculated for each air pressure value for one REP are averaged by Equation (2.6), in order to obtain
the final stiffness value (kanalytic).

kanalytic ¼ 1
n

Xn
i¼1

ki, 1≤ n≤ 17 (2.6)

where n is the number of joint angles that are included in the stiffness estimation range among the 17 joint
angle valuesmeasured from theREP. The accuracy of the final stiffness value is affected by every stiffness
value obtained in the REP. In other words, if the estimation accuracy of one part of the REP is high, but the
accuracy of the other parts is low, the final stiffness value may be low. Also, if all 17 joint angle values
included in one REP are not included in the stiffness estimation range, no stiffness value can be estimated
by Equation (2.5).

Previously, we simultaneously estimated the stiffness values of three joints (the distal interphalangeal
[DIP], PIP, andMCP joints). The stiffness values of the finger joints were varied by placing torsion springs
at each joint of dummy fingers made with three different sizes (small, medium, and large). These dummy
fingers were designed based on the sizes of the Japanese index fingers (Kokubu et al., 2022). We set the
stiffness values of the finger joints based on the stiffness value of MAS score ≤ 1+. The connectors’
lengths between the Modular-SECAs were adjusted according to the size of each dummy finger. We
estimated the stiffness aftermeasuring the angles at each joint according to the flow shown in Figure 1. It is
noteworthy that all Modular-SECAs attached to each of the three joints had the same pneumatic control.
The data from the medium-sized dummy finger were used to train the ANNmodel that estimates stiffness
values directly, and the data from the small- and large-sized dummy fingers were used to verify the
generalization performance of the ANNmodel. In addition, for the medium-sized dummy finger, we also
estimated stiffness values equivalent to the stiffness of MAS score ≥ 2. It is noteworthy that these high
stiffness values could not be estimated by Equation (2.5) because all 17 joint angles obtained by 1 REP
were not included in the estimation range 0≤ θ≤ 0:7θ0 (Matsunaga et al., 2023). More details regarding
this experimental data can be seen in Matsunaga et al. (2024).

This study used the data measured in our previous study (Matsunaga et al., 2024). The data were also
divided into the same five datasets as before, as follows:

• The medium-sized dummy finger data for a model’s training (M-Training data).
• The medium-sized dummy finger data for a model’s test (M-Test data).
• The small-sized dummy finger data (S-Prediction data).
• The large-sized dummy finger data (L-Prediction data).
• The medium-sized dummy finger data with high stiffness values (H-Prediction data).

2.2. Correction of the modular-analytical model

2.2.1. Reasons behind the failure of energy conservation in the modular-analytical model
First, each term of the modular-analytical model is analyzed in detail based on previous stiffness
estimation results to identify the causes of errors in stiffness estimates.
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From our previous study (Matsunaga et al., 2024), it is clear that the accuracy of themodular-analytical
model is mainly influenced by the following two factors:

• Interaction between the Modular-SECA and the finger: This interaction is affected by differences in
the force used to attach the soft actuator to the finger and the type of fixture. The assumption in
Equation (2.5) is that the bending angles of the Modular-SECA and the finger joint are the same
(Heung et al., 2019, (2020); thus, if those differences cause non-negligible differences in the bending
angles of the soft actuator and the finger joint, the estimation accuracy will be low.

• Interaction between the Modular-SECAs: The Modular-SECA is affected by the deformation due
to the expansion of actuators in the other joints. Therefore, the Modular-SECA’s bending perfor-
mance during stiffness estimation differs from that of the free bending. As shown in Equation (2.5),
the model is the energy conservation equation for the free bending of the Modular-SECA plus the
energy stored in the joints; thus, this assumes that the Modular-SECA’s bending performance is
the same during stiffness estimation and free bending. However, when the bending performance
changes, the behavior of the Modular-SECA during stiffness estimation is no longer accurately
represented by Equation (2.5), resulting in low estimation accuracy.

We know that the stiffness estimation accuracy is reducedmainly due to the influence of these two factors,
which results in the energy conservation in Equation (2.5) no longer being valid. However, since the two
influences are mixed, it is difficult to partition and express the influence of each factor in terms of the
extent to which each factor affects each measurement.

In θ < θ0, each term in Equation (2.4) is divided into two types of energy:WA andWL, which are the
energies required for the Modular-SECA and finger to bend to θ (bending energy: Ebend). PΔV andWjoint

are the energies stored by the Modular-SECA and the finger to reach θ (stored energy: Estored). The finger
is held at the angle where these two types of energy are balanced. If the stiffness estimation results are low,
there is a possibility that Ebend and Estored are not balanced due to the inflow and outflow of energy.
Therefore, comparing the stiffness estimation results with the values of these energies may reveal the
cause of the errors in the stiffness estimation results. Therefore, k, WA, WL, PΔV , and Wjoint were
calculated from the set of joint angles (θexp) and input air pressure values (Pexp) measured in one REP of
the stiffness measurement, respectively. Figure 2 illustrates Δk, WA + 0:5WL, and 1:15PΔV +Wjoint ,
separately. Δk is the difference between joint stiffness estimates (kanalytic) and actual target values (ktarget),
calculated by the following:

Δk¼ kanalytic� ktarget: (2.7)

FromFigure 2, in the caseswhere the stiffness estimation results are not accurate (i.e.,Δk ≠ 0), the bending
energy (Ebend) and the stored energy (Estored) calculated from the experimental joint angle (θexp) are not
balanced. This imbalance indicates that the energy conservation in Equation (2.4) is broken. In the range
θ > 0:7θ0, even a small difference between Ebend and Estored results in a large error in the stiffness
estimation (Figure 2c). The relationship between Δk and two energies (Ebend and Estored) can be divided
into two types:

(i) WA + 0:5WL > 1:15PΔV +Wjoint : kanalytic > ktarget
(ii) WA + 0:5WL < 1:15PΔV +Wjoint : kanalytic < ktarget

In the case of type (i), the finger is at rest even though the Ebend is larger in the analysis results. This
discrepancy could be because the actual Ebend was less than the analysis values (i.e., the values in
Figure 2), or there could have been additional energy in the Estored due to the fixation conditions of the
actuator and the Modular-SECA of other joints. On the other hand, in the case of type (ii), the finger is at
rest even though Ebend is smaller in the analysis results. This discrepancy could mean that the actual Ebend
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requiredmore than the analysis values. Alternatively, the energy from the input air pressurePΔV could have
been used in others due to several possibilities. For example, the PIP joint is affected by the two Modular-
SECAsbecause theModular-SECAs of theDIP andMCP joints are adjacent on both sides. The energy from
the input air pressure of the PIP’s Modular-SECA may be used to counteract the influence of the adjacent
Modular-SECAs and the bending of the PIP joint. Thus, in the stiffness estimation with the Modular-
SECAs, although theEbend andEstored in the analysiswere not balanced, theModular-SECAand finger are at
rest. This is because the energy inflow and/or outflow changes the energy relationship in Equation (2.4), and
the energy conservation of the Modular-SECA and finger complex actually is maintained.

Therefore, if the energy balance is corrected so that the analytical values of Ebend and Estored are
balanced, the stiffness estimation results can be improved. The energy stored in the jointWjoint is invariant
regardless of the actuator type and the interaction effect; thus, adjusting the balance between Ebend and
Estored is equivalent to correcting the energy balance in theModular-SECA. Therefore, the energy balance
is adjusted by adding the correction parameters αbend and βstored to Equation (2.4) as follows:

βstored 1:15PΔVð Þ¼ αbend WA + 0:5WLð Þ�W joint , 0≤ θ < θ0: (2.8)

2.2.2. Identification of correction parameters to satisfy the energy conservation
The flow for identifying the correction parameters αbend and βstored in Equation (2.8) from the measure-
ment data of the stiffness experiment is shown in Figure 3(a). The modular-analytical model is corrected

Figure 2. Relationship between stiffness estimation error and energy. (a) Data for the MCP joint with
good stiffness estimation result. (b) Data for the PIP joint estimated to be lower than the actual stiffness

value. (c) Data for the DIP joint estimated to be higher than the actual stiffness value.
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for eachREP. In addition, only the depressurization data, carefully selected for their precision, are used for
the correction. Figure 3(b) shows the angle change of three REPs in onemeasurement. In the first REP, the
angle change trend during pressurization often differed from that during the second and third REPs’
pressurization. This difference is thought to be due to the fact that the effect of the force applied when the
soft actuator is attached is largest at the first 0 kPa, after which the effect is absorbed, and the change is
similar during the remaining process. Consequently, when the data during pressurization was used to
identify the correction parameters, the correction parameters for the first REP differed from those of the
other REPs. Therefore, only depressurization data were used for parameter identification because the
subsequent estimation of correction parameters by an ANN did not work.

The depressurization data included nine joint anglesmeasured at air pressure values ranging from 80 to
0 kPa. Next, among this depressurization data, those with θ≥ θ0 are removed; when θ≥ θ0, the modular-
analytical model of stiffness estimation is not Equation (2.5). Therefore, the energy balance differs from
θ < θ0, and the correction parameters may differ. In this study, we wanted to improve the stiffness
estimation accuracy at θ < θ0, so we did not use data for θ≥ θ0, which includes the possibility that the
parameter identification results may change. After filtering the angles of the depressurization data by θ0,
the remaining angle data are used to calculate the analytical value of air pressure, Panalytic, from
Equation (2.9).

Figure 3. (a) The flow of identifying correction parameters for themodular-analytical model to satisfy the
energy conservation. (b) Differences in angle values for the three REPs included in one measurement.
Especially in the PIP joint, differences in the trend during pressurization between the first REP and the
second/third REP are often observed. (c) Comparison of the relationship between the energy in the

modular-analytical model and between the air pressure experimental values (Pexp) and the air pressure
analytical values (Panalytic) in the stiffness estimation results (good, low, and high estimates). It is

noteworthy that only depressurization data is shown.
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Panalytic ¼ 2αbend WA + 0:5WLð Þ�k θ�θ0ð Þ2
2βstored �1:15ΔV

, 0≤ θ < θ0: (2.9)

Figure 3(c) compares the air pressure values used in the experiments (Pexp) with the analytical values
(Panalytic at αbend ¼ 1 and βstored ¼ 1) at the same measured joint angle values (θexp). The relationship
between Pexp and Panalytic is similar to that of Ebend and Estored, which may represent the energy imbalance
relationship in Equation (2.4). Therefore, Pexp and Panalytic were compared, and the correction parameters
(αbend and βstored) were identified by the least-squares method. αbend and βstored were searched in the range
of 0–10 real numbers. This range was empirically determined to limit the parameter values and improve
the accuracy of subsequent parameter estimation. It was set in consideration of the balance between the
ease of parameter estimation and the fitting accuracy of the identified parameters.

This methodwas used for all REPs in the stiffness experiment data to identify αbend and βstored such that
themodular-analytical model accurately represented themeasured data for eachREP. The effect of adding
correction parameters is evaluated by comparing the stiffness values estimated from the modular-
analytical model before and after correction. The mean absolute percentage error (MAPE) was used as
the evaluation indicator, and the acceptable error was set at 20%. The identified parameters are then
substituted into Equation (2.10) to estimate the joint stiffness values from the measured joint angles.

k¼ 2 αbend WA + 0:5WLð Þ�βstored �1:15PΔVð Þ
θ�θ0ð Þ2 , 0≤ θ < θ0: (2.10)

Finally, the corrected stiffness values are averaged in Equation (2.6) to obtain the final stiffness value kcorr.
The corrected modular-analytical model is denoted as the corrected modular-analytical model. It is
noteworthy that unlike Equation (2.5), the stiffness estimation range is 0≤ θ < θ0. This is because we
expected that the correction parameters would correct the modular-analytical model for θ < θ0, so that
stiffness estimation would be possible even for the range 0:7θ0 < θ < θ0.

2.2.3. Prediction of correction parameters using ANN
Suppose the correction parameters αbend and βstored identified in Subsection 2.2.2 can be estimated from
the measurement data. In that case, accurate stiffness estimation can be performed by online tuning the
modular-analytical model based on the measurement data.

Our previous study estimated stiffness values from 17 joint angle values obtained in 1 REP using the
ANN (Matsunaga et al., 2024). The relationship between joint angles and stiffness value is nonlinear and
complex. The ANN was suitable as a machine learning algorithm for stiffness estimation because it is
suitable for learning such a relationship. In this study, the values to be estimated are not stiffness values but
correction parameters of the modular-analytical model. As with estimating the stiffness values, the
relationship between the measurement data and the correction parameters is considered complex because
it is affected by multiple interactions. Therefore, we also employed an ANN to predict the correction
parameters.

However, just giving multiple joint angle values as input, as in stiffness value estimation, may not be
enough information to predict correction parameters. For example, in the case of Figure 3(c), we can know
the difference between the analytical values relative to the measured values and how to correct the
modular-analytical model. On the other hand, we do not know how to correct themodel without analytical
values. Themeasured joint anglesmay be consistent with the analytical values or completely different.We
cannot know these from the measured joint angle values alone.

This study estimates correction parameters using the stiffness values derived by substituting the
measured angles into Equation (2.5). However, the stiffness estimation range is not 0≤ θ≤ 0:7θ0 but
0≤ θ < θ0. These stiffness values contain information about themodular-analytical model and the positive
and negative difference between the measured and analytical values. Figure 4(a) shows that the sign of the
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difference in the stiffness values from 0 roughly reflects the difference between the two values of Pexp and
Panalytic, even if the signmay be reversedwhen the stiffness value is close to 0. Therefore, we expected that
the values of kanalytic have more suitable information for estimating correction parameters than joint
angles. However, as shown in Figure 2(c), the stiffness error becomes very large if the measured joint
angle value differs from the analytical value even slightly in 0:7θ0 < θ < θ0. As a result, when the stiffness
values calculated in Equation (2.5) were used as input values as they were, the range of stiffness values as
input variables was too wide, and learning did not work well even if the input data were standardized or
normalized. Therefore, we restrict the stiffness values as in the following:

k0 ¼ sgn kð Þ � log jkj+ 1ð Þ: (2.11)

Taking the logarithm of the stiffness value suppresses the effect of excessive errors in 0:7θ0 < θ < θ0. The
sign of the stiffness value is also essential information because it indicates the sign of the difference
between the measured and analytical values. Therefore, by adding a signal function, the sign of the
original stiffness value is left intact. k and k0 are shown in Figure 4(b). By transforming to k0, the effect of
estimates that are too large is suppressed.

The flow of correction parameters estimation with the ANN is shown in Figure 4(c). As in Figure 3(a);
first, the depressurization data are filtered by θ0. Although the identification of correction parameters can
be performed even if the number of input values varies, the ANN needs to unify the number of input
variables. Therefore, the angles removed by filtering were supplemented with the average of the data for
θ < θ0 so that the number of input variables for the ANN was equalized to 9. Next, after substituting the
measured joint angles and air pressure values into Equation (2.5) to calculate the stiffness values, they are

Figure 4. (a) Relationship between the sign of the stiffness values calculated from the modular-analytical
model and the difference between the measured and analytical values of air pressure. (b) The change in
value by transforming the stiffness values obtained from the modular-analytical model; three stiffness
results are shown as examples. (c) The flow of parameters estimation to correct the modular-analytical

model using the ANN.
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transformed into k0 by Equation (2.11). The nine stiffness values are input to the ANN, and the correction
parameters αbend and βstored are estimated as output. The correction parameters are then substituted into
Equation (2.10) to estimate the joint stiffness values from the measured joint angles. Finally, the corrected
stiffness values are averaged in Equation (2.6) to obtain the final stiffness value kcorr.

The ANN used was the multilayer perceptron (MLP), which contains three hidden layers, each with
nine neurons in the node. After each hidden layer, there is a Rectified Linear Unit (ReLU) as an activation
function and a dropout layer with a dropout rate of 0.1. Moreover, since the identification range of the
correction parameters is 0–10, the twooutput values of theMLPwere also clamped to the same range to limit
the estimation range. The mean squared error (MSE) was used as the loss function, and the average of the
two MSEs of αbend and βstored was trained as the loss. Adam is used as the optimization function, and the
ANNwas trained 2,000 epochs with a learning rate of 1e�4 and a weight decay of 1e�4. These parameters
were determined by using a threefold cross-validation to balance overfitting and underfitting. All models
were developed with Python 3.9.12 64 bits. PyTorch 2.1.2 + cu118 was used to build the neural networks.

In our previous study, stiffness values were estimated directly from joint angle sequences, making the
trend of angle change an important feature. Since the interaction effects differ by joint (DIP, PIP, and
MCP), separate models were constructed for each joint. In contrast, this study aims to estimate correction
parameters that align analytical valueswithmeasured ones. Here, the key feature is the difference between
the measured and analytical values, which is similar across joints. Therefore, a single model was
constructed for all three joints.

We used theM-Training data to train the ANN, with standardized input features. The test data included
M-Test, S-Prediction, L-Prediction, and H-Prediction datasets. Only depressurization data were used
for both training and evaluation, ensuring consistency and reliability. The same condition was applied
to the analytical model used for comparison. We also compared our method with the ANN-only model
proposed in our previous work (Matsunaga et al., 2024), which directly estimates stiffness values from
joint angles. It is noteworthy that the ANN-only model was trained using both pressurization and
depressurization data.

Evaluation metrics included the root mean squared percentage error (RMSPE) and mean absolute
percentage deviation (MAPD), as defined in our previous study. The RMSPE was also used to evaluate
correction parameter accuracy.

2.3. Subject stiffness estimation experiment

To verify the performance of the proposed method in the stiffness estimation of human finger joints, we
conducted stiffness estimation experiments on healthy subjects.

2.3.1. Subjects
Four subjects participated in this experiment (Table 1).

2.3.2. Experimental protocol
In this study, we measured the reference stiffness values of the MCP joint using the baseline method
(Figure 5(a)) and estimated the stiffness using the proposedmethod with theModular-SECA (Figure 5(b)).

Table 1. Subjects information

Subject Gender Measurement hand

H1 Female Left
H2 Female Right
H3 Male Right
H4 Male Left
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2.3.2.1. Subject’s posture. For all measurements, the subject’s elbowwas bent at 90°, the wrist was fixed
in the neutral position (no flexion or extension), and the forearm was held in the neutral position
(no supination or pronation) by the arm holder on the armrest. Furthermore, the subject sat parallel to
the desk with the armrest, and the chair’s height was adjusted so that the subject could relax during the
measurement.

2.3.2.2. Reference valuemeasurement by a baseline method. A standard MCP joint stiffness measure-
ment device was reproduced for a baseline method, and the stiffness values measured with this device
were used as the reference values of the subject experiment (Figure 5(a)). This standard stiffness
measurement device measures the joint angle and torque of the index finger MCP joint and has proven
effective in quantifying the stiffness of the MCP joint. A brief description of the baseline method is as
follows. An overview of this device and details on the stiffness measurement theory can be found in Kuo
and Deshpande (2012) and Shi et al. (2020).

The index finger of the subject’s hand was fixed to the reference value measurement device so that it
could freely rotate in the horizontal plane. The other fingers were kept in a relaxed position while grasping
the hand holder. Using a servo motor (RDS5160, Torque 65 kg.cm, DSservo Inc., China), the MCP joint
of the index finger was extended at a rotational speed of 2°/s from 90° to 0° and held every 10° for 30 s.
The MCP joint angle was then measured by a camera (C930eR, Logitech, Lausanne, Switzerland)-based
two-dimensional marker detection system for 5 s. Simultaneously, a load cell (USL06-H5 Load cell, max:
100N, TecGihan, Kyoto, Japan) was used tomeasure the passive force at the fingertip end. After reaching
0°, the joint was flexed at 2°/s to 90° and repeated three times.

By the following procedure, the measured data were analyzed. First, the torque was calculated by
multiplying the measured force by the distance from the load cell to the center of the MCP joint. Next,
using all the MCP joint angle and torque pair data measured during the three repetitions, the following
classic double exponential function-based model parameters were identified by a nonlinear least-squares
method.

τ¼A e�B θ�Eð Þ �1
� �

�C eD θ�Fð Þ �1
� �

(2.12)

where τ and θ are the torque andMCP joint angle, respectively, andA toF are the parameters of the double
exponential function-based model describing the relationship between the passive elastic moment and the

Figure 5. (a) MCP joint stiffness measurement device for index finger. (b) Stiffness estimation with the
Modular-SECA.
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MCP joint. Furthermore, the MCP joint stiffness kMCP was calculated by substituting the identified
parameters into the derivative of Equation (2.12) expressed as follows:

kMCP ¼ �ABe�B θ�Eð Þ �CDeD θ�Fð Þ�� �� (2.13)

For the joint angle θ of stiffness calculation, six angles were selected at regular intervals in the range from
theMCP joint angle when theModular-SECAwas attached to the finger in an unpressurized state (θinitial)
to the resting angle (θ0). Then, the stiffness at each angle was calculated. Finally, the average of these six
stiffness values was taken as the reference value of MCP joint stiffness.

2.3.2.3. Stiffness estimation with the Modular-SECA. After measuring the reference values using the
baseline method, the Modular-SECAs were attached to three joints (DIP, PIP, and MCP) of the subject’s
index finger to estimate the stiffness using the proposedmethod (Figure 5(b)). In this study, we verified the
accuracy of the proposed method in estimating stiffness at the MCP joint, considering that the baseline
method device is dedicated to measuring the MCP joint stiffness of the index finger.

In the proposedmethod, wemeasured according to the flow shown in Figure 1(a). However, unlike the
prototype experiment using dummy fingers, the air pressure steps were set at 20 kPa intervals in the
subject experiment. This step change shortened the measurement time and reduced the variation in
stiffness values due tomeasurement fatigue. Themodel was restructured because the pressure step change
varied the input variables to nine for the ANN-only model and to five for the correction parameters
predicting model. The reduction in input variables slightly decreased the models’ prediction accuracy for
the prototype experiment data. In addition, the air pressure was gradually changed at 2 kPa/s. After the
measurements, theMCP joint stiffness kuncorr 0:7θ0ð Þ, kANN , and kcorr 0:7θ0ð Þwere estimated according to
Figure 1(b), Matsunaga et al. (2024), and Figure 4(c).

3. Results

3.1. Identified correction parameters of the modular-analytical model

Figure 6 shows the results of identifying the correction parameters using the least-squares method based
on the measured and analytical air pressure values. The MAPE of the stiffness values estimated by the
modular-analytical model and the corrected-modular-analytical model are also shown in Table 2. In
addition, Figure 7 illustrates the relationship between each energy in the corrected-modular-analytical
model based on the three stiffness estimation data in Figure 2. From Figure 6, when the stiffness
estimation range in Equation (2.10) was set to 0≤ θ≤ 0:7θ0, the stiffness estimates were almost consistent
with the target stiffness values. The MAPEs were also within acceptable limits, <20% for all datasets
(Table 2). Figure 7 shows that adding the correction parameters into the modular-analytical model
improved the stiffness estimation results by bringing Ebend (bending energy) and Estored (stored energy)
into balance. On the other hand, for the stiffness estimation range that remains in Equation (2.10), some
stiffness values calculated from the corrected modular-analytical model remained in error with the target
stiffness values (e.g., the DIP for M-Training and the MCP joints for L-Prediction). This was especially
true for REPs of depressurization data that included joint angles close to θ0, as shown in Figure 7(c).

Although the two correction parameters differ slightly from joint to joint, the relationship is generally
linear for all joints. Figure 6 shows that the correction parameter values are higher in the PIP joint, where
the stiffness values were estimated to be smaller overall than in the other joints. In addition, the values of
αbend are higher than those of βstored . In the data where the stiffness value was estimated higher than the
target value, the correction parameter tends to be <1. In contrast, in the data where the stiffness value was
estimated as lower than the target value, the correction parameter tends to be higher than 1. Most of the
data for both αbend and βstored is concentrated in the range of 0–2.
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Figure 6. The identification results of the parameters that correct the modular-analytical model, and
comparison of stiffness values calculated from the modular-analytical models before and after adding
correction parameters. All data are plotted. kuncorr 0:7θ0ð Þ, kcorr 0:7θ0ð Þ, and kcorr θ0ð Þ are the stiffness
values calculated from the modular-analytical model in 0≤ θ≤ 0:7θ0, the corrected modular-analytical
model in 0≤ θ≤ 0:7θ0, and the corrected modular-analytical model in 0≤ θ < θ0, respectively. Only the
H-Prediction figure has the vertical axis of the stiffness value plot on a logarithmic scale. In the figures on
the right, the points on the black line indicate that the target stiffness values and the estimated stiffness
values coincide, and the stiffness estimation error rate is 0%. The thin black areas on either side of the line

indicate the range within 20% of the acceptable error rate.

Table 2. Accuracy of stiffness estimates calculated from the modular-analytical models before and after adding correction
parameters

Estimation type

MAPE (%)

M-Training M-Test S-Prediction L-Prediction H-Prediction

DIP PIP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP

kuncorr 0:7θ0ð Þa 154 195 47 163 208 45 138 287 66 180 379 197 - - -
kcorr 0:7θ0ð Þb 6 2 8 6 2 6 3 12 19 15 7 7 - - -
kcorr θ0ð Þc 15 2 8 12 2 6 25 12 24 25 7 29 1,047 39 689

Note. Bold type indicates the estimation type with the highest estimation accuracy.
aThe stiffness values calculated from the modular-analytical model in 0≤ θ≤ 0:7θ0.
bThe stiffness values calculated from the corrected modular-analytical model in 0≤ θ≤ 0:7θ0.
cThe stiffness values calculated from the corrected modular-analytical model in 0≤ θ≤ θ0.
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3.2. Estimation of correction parameters with the ANN

Figure 8 shows the results of estimating the correction parameters of the modular-analytical model from
depressurization data using the ANN and the stiffness estimation results using the estimated parameters.
Tables 3 and 4 show the correction parameters estimation accuracy and the stiffness estimation accuracy.
Also, the results of the previously proposed ANN-only model are included for comparison. From Table 3,
the estimation accuracies of αbend and βstored are almost the same, except for the MCP joints in the
L-Prediction and all joints in the H-Prediction. Since there is a strong positive correlation between the
actual αbend and βstored values (Figure 6), the predicted αbend and βstored change in tandem and monoton-
ically increase with actual αbend and βstored in such cases. On the other hand, the RMSPEs of the two
parameters are different for the MCP joints in the L-Prediction and all joints in the H-Prediction. In such
cases, the predicted changes in the values of αbend and βstored are not linked, or the predicted values do not
monotonically increase with the actual values. These data did not have good stiffness estimation results
either (kcorr 0:7θ0ð Þ and kcorr θ0ð Þ in Table 4). It can also be seen that values above αbend ¼ 5 were not
output.

In the stiffness estimation results, many data show that the corrected modular-analytical model’s
estimates are improved compared to the original modular-analytical model (Table 4). However, when the
stiffness estimation range was set to 0≤ θ < θ0, there were cases where the results were lower than the
modular-analytical model’s results. Compared to the ANN-only model, the results did not improve as

Figure 7. Relationship between stiffness estimation error and energy after the modular-analytical model
correction. ktarget, kuncorr, and kcorr are the target stiffness, the stiffness values calculated from the

modular-analytical model, and the corrected-modular-analytical model, respectively. (a) Data for the
MCP joint with good stiffness estimation result before correction. (b) Data for the PIP joint estimated to
be lower than the actual stiffness value before correction. (c) Data for the DIP joint estimated to be higher

than the actual stiffness value before correction.
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Figure 8. The correction parameters estimation results using the ANN, and comparison of stiffness values
estimated by the modular-analytical models before and after adding correction parameters and the ANN-
only model. kuncorr 0:7θ0ð Þ, kcorr 0:7θ0ð Þ, kcorr θ0ð Þ, and kANN are the stiffness values calculated from the
modular-analytical model in 0≤ θ≤ 0:7θ0, the corrected modular-analytical model in 0≤ θ≤ 0:7θ0, the

corrected modular-analytical model in 0≤ θ < θ0, and the ANN-only model, respectively. Only the
H-Prediction figure has the vertical axis of the stiffness value plot on a logarithmic scale. In the figures on
the right, the points on the black line indicate that the target stiffness values and the estimated stiffness
values coincide, and the stiffness estimation error rate is 0%. The thin black areas on either side of the line
indicate the rangewithin 20%of the acceptable error rate. (a) TheM-Test has one estimate for each target
stiffness value. (b) The S-Prediction and (c) the L-Prediction have nine estimates for each target stiffness
value, and their mean and standard deviation are shown. (d) The H-Prediction has nine estimates for a

target stiffness value and shows all nine estimates.

Table 3. Correction parameters estimation accuracy using the ANN

Correction parameters

RMSPE (%)

M-Test S-Prediction L-Prediction H-Prediction

DIP PIP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP

αbend 34 53 18 116 36 36 38 59 77 673 676 2,621
βstored 36 53 17 108 35 42 35 56 37 360 417 1,173
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much as the ANN-onlymodel, withmany cases not reaching the accuracy of the ANN-onlymodel in both
the RMSPE and MAPD.

3.3. Human joint stiffness estimation performance

The results of estimating the subject’s MCP joint stiffness are shown in Table 5 and Figure 9. Since the
reference stiffness values are generally consistent with the stiffness ranges of healthy subjects in a
previous study (Shi et al., 2020), it is reasonable to state that the baseline method device could accurately
measure the actual stiffness.

Table 5 and Figure 9(a) show that the correctedmodular-analytical model has a smaller estimation error
than the modular-analytical model. In particular, from Figure 9(b), the accuracy of the modular-analytical
model was greatly improved by adding the correction parameters in H2, where the correction parameter
αbend was around 1. On the other hand, H1, H3, andH4, where the actual value of the correction parameter
αbend was near 0, resulted in more significant estimation errors compared to the ANN-only model.

4. Discussion

4.1. Change in the modular-analytical model performance with additional correction parameters

Our analysis of the performance of the modular-analytical model with additional correction parameters
showed that when Ebend < Estored over the entire depressurization data range of REP (Figure 2(b)),
αbend > βstored . Also, when the energy is switched between large and small values during the depressur-
ization data range (Figure 2(a) and (c)), the relationship between αbend and βstored was confirmed to be
variable. SomeH-Prediction data showed that Ebend > Estored over the entire depressurization range, and in
such cases, αbend < βstored (e.g., the MCP joint in Figure 6(e)). Adding the correction parameters improves

Table 4. Stiffness estimation accuracy

Estimation type

RMSPE (%) RMSPE (%)/MAPD (%)

M-Test S-Prediction L-Prediction H-Prediction

DIP PIP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP

kANN
a 21 88 37 87/9 25/7 43/14 37/12 73/11 90/8 31/5 26/2 41/2

kuncorr 0:7θ0ð Þb 222 267 60 176/91 381/18 77/28 324/32 603/144 207/10 - / - - / - - / -
kcorr 0:7θ0ð Þc 49 62 83 161/9 61/33 59/5 103/12 85/22 202/7 - / - - / - - / -
kcorr θ0ð Þd 43 63 83 242/36 62/32 60/7 104/20 85/19 424/16 9e+4/14 5e+3/10 1e+5/90

Note. Bold type indicates the estimation type with the highest estimation accuracy.
aThe stiffness values estimated from the ANN-only model in 0≤ θ < θ0.
bThe stiffness values calculated from the modular-analytical model in 0≤ θ < 0:7θ0.
cThe stiffness values calculated from the corrected modular-analytical model in 0≤ θ < 0:7θ0.
dThe stiffness values calculated from the corrected modular-analytical model in 0≤ θ < θ0.

Table 5. Subjects’ joint stiffness estimation results

Subject
Reference stiffnessa

(Nmm/deg)

Estimated stiffness (Nmm/deg)b

kANN
c kuncorr 0:7θ0ð Þd kcorr 0:7θ0ð Þe

H1 0.53 (±0.15) 0.71 (±0.16) 2.47 (±0.59) 2.29 (±0.38)
H2 0.62 (±0.00) 0.57 (±0.06) �0.36 (±0.03) 0.47 (±0.00)
H3 1.08 (±0.29) 3.53 (±0.17) 4.94 (±0.80) 4.75 (±0.69)
H4 0.39 (±0.00) 0.86 (±0.13) 1.25 (±0.15) 1.25 (±0.14)

aMean (± mean absolute deviation) of six stiffness values (kMCP).
bMean (± mean absolute deviation) of the three stiffness values estimated from each of the three REPs.
cThe stiffness values estimated from the ANN-only model in 0≤ θ < θ0.
dThe stiffness values calculated from the modular-analytical model in 0≤ θ < 0:7θ0.
eThe stiffness values calculated from the corrected modular-analytical model in 0≤ θ < 0:7θ0.
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the stiffness estimation accuracy of the modular-analytical model (Figure 6) and confirms the effect of
adjusting the imbalance between Ebend and Estored. These results indicate that adjusting the energy balance
of the modular-analytical model based on the measurement data is effective in improving the analytical
model-based stiffness estimation accuracy. The linear relationship between the two correction parameters
is a natural consequence of the modular-analytical model being derived based on energy conservation in
the Modular-SECA.

We hypothesized that correcting the modular-analytical model would reduce the influence near the
singularity (θ¼ θ0) in the range 0:7θ0 < θ < θ0, thus extending the range of stiffness estimation. However,
at 0:7θ0 < θ < θ0 in Figure 7(c), the difference from the target stiffness value is still large, although the data
near θ0 are improved from the original estimate (kuncorr in Figure 7(c)). Due to this, even after correction,
these data should not be included in the average calculation (2.6) to calculate the final stiffness values. On
the other hand, the data close to 0:7θ0 showed considerable improvement in the estimated values due to
the correction. For example, in Figure 6(e), good estimation results (error rate < 10%)were obtained with
the corrected modular-analytical model for the REP that did not include angles close to θ0 even for the
H-Prediction data for which stiffness values cannot be calculated in 0≤ θ≤ 0:7θ0. Therefore, it was
shown that extending the stiffness estimation range beyond 0:7θ0 is possible. As a result, the range of
stiffness that the modular-analytical model could not estimate can be estimated by the correction.

4.2. Estimation performance of correction parameters using the ANN

The correction parameters estimation with the ANN performed well only in specific ranges, biasing the
estimation results (Figure 8 and Table 3). As a result, the stiffness estimation of the corrected modular-
analytical model, although improved over the modular-analytical model, was not as good as the ANN-
only model. Since the ANN-only model was constructed for each joint, it could learn the features of each
joint. This ability to learn joint-specific features may have a higher stiffness estimation accuracy than the
proposed model, which used one ANN model to estimate correction parameters for three joints.
Additionally, the proposed method uses only depressurization data, whereas the ANN-only model uses
both pressurization and depressurization data. Thus, fewer input variables in the proposed method may

Figure 9. (a) Subject’s joint stiffness reference values and results estimated by each model. (b) The
reference values and predicted results of the modular-analytical model’s correction parameters. REP is

simplified as R.
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also have contributed to its lower accuracy. Another possible reason for this could be the bias in the
training data. As can be seen from Figures 6 and 8, the model did not predict well for values outside the
range of correction parameters present in the M-Training data. For example, the parameter values for the
MCP joint in S-Prediction (Figure 6(c)) contain many values in the range that do not exist in the data for
any of the joints (DIP, PIP, and MCP) used in M-Training (Figure 6(a)). Therefore, the MCP joint in
S-Prediction (Figure 8(b)) can not estimate parameters in ranges that do not include the M-Training data.

This observation suggests that the training data did not cover the full range of parameters, which may
have reduced the prediction performance of the ANN. Since the stiffness estimates by the modular-
analytical model incorporating physical information were used as input variables for the ANN, gener-
alization could be achieved to some extent for a range of data not present in the training data. Nevertheless,
the reason for the lack of improvement in generalization is the imbalance in the training data. It has been
shown that when the training data distribution is not uniform, themodel’s performance is inhibited (Gavas
et al., 2023). When trained on imbalanced data, the model preferentially learns from areas where data are
concentrated and underestimates in other areas, thereby reducing prediction accuracy (Ghosh et al., 2022;
Scheepens et al., 2023). Figure 6(a) and (b) show that the values of the correction parameters for the
M-Test are within the range of the M-Training data. However, the PIP joint in the M-Test do not predict
values of αbend ≥ 5 (Figure 8(a)). Table 6 presents the percentage of data for each value of the correction
parameter αbend in theM-Training data. Data within the range of αbend from 0.5 to 2 accounts for more than
half of the total data, suggesting that this range is the center of the learning process. On the other hand,
there is little data near the upper and lower limits of αbend in the training data, which may have led to the
low prediction performance of this range (Table 6 and Figure 8). Therefore, even if the range of αbend is
increased in the S-Prediction and L-Prediction, the prediction accuracy is likely to have been lower
(i.e., generalization performance was lower) in the areas beyond the range of the training data. Measures,
such as data augmentation and weighting of the loss function, are needed to improve this.

In Figure 10, all data of correction parameters and estimated stiffness values are shown for the PIP joint
of the S-Prediction in Figure 8(b) and the MCP joint of the L-Prediction in Figure 8(c). In the S-Pre-
diction’s PIP joint, the stiffness estimation results are not so bad (Figure 8(b)), even though the correction
parameter αbend is not estimated to be more than 2. Also, for the L-Prediction’s MCP joint, there is a
twofold difference in the RMSPE of αbend and βstored (Table 3), and the error is more significant for
stiffness estimates with target stiffness values higher than 1 (Figure 8(c)). From Figure 10, it can be seen
that when the target stiffness value is small, the error in the correction parameter has a small effect on the
stiffness estimation. In contrast, when the target stiffness value is large, a small error in the correction
parameter has a large effect on the stiffness estimation. In the S-Prediction’s PIP joint, αbend was higher
than 2 in the data of low stiffness values, so even if the correction parameter estimation error was large, it
did not have much effect on the stiffness estimation results. In the L-Prediction’sMCP joint, the predicted
values of αbend and βstored did not vary much, even though the actual parameter values varied. As a result,
there was a difference in the estimation accuracy of these two parameters. In addition, theMCP joint of the
L-Prediction has many data where the actual value of the correction parameter αbend is <0.5. As shown in
Table 6, the small data below 0.5 in the training data may have contributed to lower parameter estimation
accuracy in this range. The cause of this issue is considered to be the same as that of the low accuracy in the
H-Prediction’s kcorr estimation (Figure 8(d) and Table 4).

Table 6. Distribution of data across the correction parameter αbend ranges

αbend range Proportion of data (%)

0–0.5 8
0.5–1 43
1–2 28
2–3 9
3–5 6
5–10 6
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Overall, when the target stiffness value is small, errors in the correction parameters do not significantly
affect stiffness estimation. However, the effect becomes more pronounced when the target stiffness value
is large. Future improvements are required to consider the impact of the bias in the dataset on the
correction parameters estimation accuracy.

4.3. Stiffness estimation performance of human finger joint

In all three subjects, except H2, the prediction accuracy of the correction parameters was low, and accurate
stiffness estimation was not possible (Figure 9). As shown in Figure 9(b), the correction parameters
predicted by the proposed method for all subjects, except H2, took values near 1. However, if one wants
the proposed method to output the reference value, the correction parameters should take values near
0. From the results of the prototype experiment, the percentage of data in the training data of the ANN to
predict the correction parameter that takes a value <0.5 is relatively small, which is <10% (Table 6). In
other words, the prediction performance is low when the correction parameter takes values <0.5 due to
bias in the training data. As a result, the effect of correcting the analytical model by adding the correction
parameters (change in estimated stiffness) was limited (Table 5 and Figure 9(a)). In contrast, the ANN-
only model directly predicts stiffness values, and the range of target stiffness values in the training data
includes the reference values from the subject experiments. Therefore, the training data obtained from the

Figure 10. Relationship between the correction parameters using the ANN and stiffness estimates by the
corrected modular-analytical model.
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prototype experiments were also more easily adapted to the subject experiments than the proposed
method.

In H3, the estimation error was particularly large, and similarly large errors occurred in the ANN-only
model, which achieved small estimation errors for the other subjects. This large error may be due to the
palm thickness, especially near the MCP joint (Figure 11). As shown in Table 7, H3’s palm thickness was
larger than the other subjects. When a palm thickness is larger, it is more difficult to fixate the Modular-
SECA to the hand, resulting in a looser fixation. As a result, the force transmission from the Modular-
SECA to the finger is weakened, resulting in a smaller amount of angular change in the REP. This smaller
angular change corresponded to a high stiffness in the prototype experiment (training data for the ANN
model), so it is assumed that the estimated stiffness in H3 was overestimated.

Therefore, the results suggest that palm thickness may be an influencing factor in estimation accuracy.
On the other hand, in the baseline method, force is applied only to the fingers, and rotation around the axis
is used, so errors in force transmission due to palm thickness are unlikely to occur. Consequently, the palm
thickness does not affect the accuracy of the measurement.

In order to remedy this problem that occurred in the real environment, it is necessary to review the
attachment method and improve the Modular-SECA or the model itself. Specifically, the following are
required:

• Development of soft gloves to facilitate robust force transmission: The stability of the contact surface
between the Modular-SECA and the hand should be improved by employing a nonslip finish or
elastic material to facilitatemore efficient force transmission. It is essential to design soft gloves with
a proper fit to compensate for loose fixation due to the palm thickness.

• Uniformity of force transmission performance: The current Modular-SECA is designed with a fixed
size. Hence, the efficiency of force transmission varies with the fixation conditions, which are
influenced by physical characteristics such as palm thickness. This effect causes the amount of
angular change to vary from subject to subject, which is a problem that degrades the performance of
the stiffness estimationmodel. To solve this problem, it is important to identify the optimal size of the
Modular-SECA, which is not affected by human physical characteristics and can obtain the same
amount of angle change for any subject. Once the appropriate size is determined, the stiffness
estimation model will no longer need to compensate for differences in the angular change due to
physical characteristics, and more stable estimation will be possible.

• Standardization of a glove wearing method: In this study, the Modular-SECAwas attached using a
fixture, and the strength of the fixture varied depending on the force applied by the experimenter.

Figure 11. Palm thickness (thickness of the MCP joint).

Table 7. Thickness of the subjects’ palm

Subject Gender Palm thickness (mm)

H1 Female 23.5
H2 Female 22.5
H3 Male 30.0
H4 Male 24.0
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Thus, it is always difficult to reproduce the same fixation condition. In addition, if the device is to be
applied in telerehabilitation, amethod that allows patients themselves to attach and detach the device
easily is also needed (Seim et al., 2022). Therefore, it is necessary to automate the application of the
device and introduce a mechanism to easily and appropriately adjust the fixation condition accord-
ing to each subject’s physical characteristics.

• Adaptation to human data: Expansion of training data and adaptation of simulation data to real-
world data are required (Zhou et al., 2024). In addition, it is necessary to improve the use of
information from the modular-analytical model so that the strengths of both the modular-analytical
model and machine-learning can be better utilized.

4.4. Feasibility of better stiffness estimation brought about by the correction parameters

Due to the difference between the prototype and the subject experiments, the prediction performance of
the subject data decreased. Therefore, in order to show the generality of the proposed method, we
attempted additional training to improve the adaptation of the subject data. Specifically, all parameters
were retrained (fine-tuning) for the ANN-onlymodel and the proposedmethod (the correction parameters
predictionmodel). Data from three REPs of H1 (three datasets) were used as training data, and eachmodel
was trained for 4,000 epochs.

The stiffness estimation results for the subject experiments after additional training are shown in
Table 8 and Figure 12. The fine-tuning of the proposed method improved the prediction accuracy in the
range of actual values of the correction parameters below 0.5 and also improved the stiffness estimation
results. On the other hand, unlike the other subjects, the actual values of the correction parameters in H2
are around 1. Therefore, the accuracy of H2 was reduced in the proposed method because the model
adapted too much to the correction parameters around 0 by fine-tuning the proposed method. The
accuracy of the ANN-only model was also improved by fine-tuning.

Moreover, the fine-tuning results revealed the performance difference between the two models (the
ANN-only model and the proposed method). The ANN-only model is a mechanism to predict stiffness
values based on the angular change trend of the REP. Therefore, since H3 had a larger palm thickness and
smaller angular change than the other subjects, additional training in the H1 data did not significantly
improve the accuracy. In contrast, the actual values of the correction parameters in the H3 data take values
around 0, which are similar to those of H1. As a result, fine-tuning the proposed method improved the
prediction performance of the correction parameters near 0, resulting in improved stiffness estimation
results for H3 (Figure 12).

Therefore, it is evident that the proposed method may be easier to adapt to subject data than the ANN-
only model by compensating for additional training and training data bias. In particular, the proposed
method may absorb variations in the physical characteristics of each subject that the ANN-only model
cannot correct. However, further study on the generality of the proposed method is needed in future
research.

Table 8. Subjects’ joint stiffness estimation results before and after additional training

Subject
Reference stiffnessa

(Nmm/deg)

Estimated stiffness (Nmm/deg)b

kANN
c kcorr 0:7θ0ð Þd kANN�FT

e kcorr�FT 0:7θ0ð Þf

H1 0.53 (±0.15) 0.71 (±0.16) 2.29 (±0.38) 0.62 (±0.03) 0.56 (±0.05)
H2 0.62 (±0.00) 0.57 (±0.06) 0.47 (±0.00) 0.59 (±0.01) 0.19 (±0.02)
H3 1.08 (±0.29) 3.53 (±0.17) 4.75 (±0.69) 2.24 (±0.10) 1.09 (±0.14)
H4 0.39 (±0.00) 0.86 (±0.13) 1.25 (±0.14) 0.68 (±0.05) 0.35 (±0.04)

aMean (± mean absolute deviation) of six stiffness values (kMCP).
bMean (± mean absolute deviation) of the three stiffness values estimated from each of the three REPs.
cThe stiffness values estimated from the ANN-only model in 0≤ θ < θ0.
dThe stiffness values calculated from the corrected modular-analytical model in 0≤ θ < 0:7θ0.
eThe stiffness values estimated from the fine-tuning ANN-only model in 0≤ θ < θ0.
fThe stiffness values calculated from the fine-tuning corrected modular-analytical model in 0≤ θ < 0:7θ0.
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Furthermore, the correction parameters of the modular-analytical model could potentially be used for
data augmentation. More diverse training data are needed to improve the performance of the stiffness
estimationmodel. However, in the stiffness estimation, adding data by conducting additional experiments
with dummy fingers or human fingers is not easy. Thus, the proposedmethod could be used to increase the
training data and eliminate bias. From Equation (2.10), the correction parameters αbend and βstored can be
calculated from θ0, k, P, and θ. Since air pressure (P) is fixed from 80 to 0 kPa, a new set of angles θ
(i.e., depressurization data for one REP) can be obtained from the modular-analytical model (αbend ¼ 1,
βstored ¼ 1) simply by changing the values of αbend and βstored .

In actual measurements, the angle change does not necessarily follow the analytical values because it
contains noise, such as blurring of the measuring hand and errors due to the joint angle measurement
method. However, it is possible to create data that roughly captures joint angle changes. Therefore, we
expect that the proposed method can generate various training data and construct a model with high
generalization.

4.5. Contribution and limitations

In this study, the analytical model-based stiffness estimation accuracy was improved by energy conservation-
basedonline tuning (correction) of themodular-analyticalmodel using theANN.To thebest of our knowledge,
this is the first time that the analytical model accuracy has been improved by correcting the stiffness estimation
analytical model online based on information from measurement data. An important aspect of the proposed
method is that through the prediction of correction parameters using ANN, it can absorb nonlinear and
complex effects that are difficult to dealwith by themodular-analyticalmodel-only estimationmethods.Due to
the bias of the training data, the estimation performance was not as good as the ANN-only estimationmethod.
However, if the training data are improved using the analytical model, it could be more generalizable than the
ANN-only estimation method. In addition, the correction of the analytical model allows for a wider range of
joint angles over which stiffness estimation can be performed and allows for the estimation of higher stiffness
values that could not be estimated with the previous analytical model.

This study also verified the effectiveness of the proposed method through the healthy subject
experiment. As a result, it was confirmed that the ANN-only model does not provide accurate stiffness

Figure 12. (a) Subject’s joint stiffness reference values and results estimated by each model before and
after additional training. (b) The reference values and predicted results of the modular-analytical model

correction parameters before and after additional training. REP is simplified as R. FT, estimated
parameters after additional training (fine-tuning).
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estimation for all subjects. However, applying the proposedmethod is expected to improve the estimation
accuracy. In particular, the proposed method may absorb variations in the physical characteristics of each
subject that cannot be corrected for by the ANN-only model. Therefore, using the proposed method is
crucial in further improving the performance of the stiffness estimation with the Modular-SECA.

However, this study has some limitations:

• The neural network cannot know if it outputs over- or underpredicted values because the certainty of
the predictions is unknown. Therefore, when the actual stiffness value is unknown, it is difficult to
determinewhether the value is reliable. Also, with the analytical model, the valuesmay changewhen
uncertain influencing factors are added to the analytical model. In such cases, it is essential to either
derive confidence intervals for the estimated stiffness values or find an index derived from the
measured data related to the stiffness value to determine the uncertainty of the estimates.

• The performance of the proposed method for spasticity patients with high stiffness has not been
evaluated in this study. As differences were observed between the prototype and healthy subject
experiments, new challenges may arise when estimating stiffness in spasticity patients, such as
issues related to the attachment method or model applicability. Therefore, future studies should
include patient experiments to verify the effectiveness of the proposed method.

• The effectiveness of the proposed stiffness estimation method was demonstrated under controlled
experimental conditions. However, further investigations are required for practical applications. In
particular, potential errors may arise due to actuator misalignment during repeated use or voluntary
movements and external disturbances during rehabilitation. To address these issues in real-world
environments, future work should focus on implementing real-time calibration techniques, improv-
ing angle-sensing accuracy, and enhancing the stiffness estimation model.

5. Conclusions

This study improves the analytical model-based stiffness estimation accuracy with theModular-SECAby
adding correction parameters to adjust the modular-analytical model to the measurement data. We found
that adding the correction parameters can improve the modular-analytical model’s performance by
adjusting the energy balance due to external inflow and outflow energy. Moreover, estimating the
correction parameters using the ANN could provide a more generalizable model for stiffness estimation
with the Modular-SECAs, which is prone to inaccuracy due to complex factors. In particular, using the
proposed method is extremely promising in estimating joint stiffness of human hands, which are
susceptible to the effects of hand shape and wearing conditions and have significant estimation errors.

In the future, we plan to verify the generalization of the approach using more subject data, including
patients, and to expand the scope of application of the proposed method. In addition, we will develop a
method that canmore adequately compensate for individual differences by further improving themodel to
consider the effects of palm thickness and wearing conditions and establishing a method for selecting the
Modular-SECA size.

Subscript notations

analytic value calculated from the analytical model
exp value calculated from the analytical model
target actual stiffness value
uncorr stiffness value calculated from the modular-analytical model before correction
corr stiffness value calculated from the corrected modular-analytical model
ANN stiffness value estimated by the ANN-only model
FT value after additional training (fine-tuning)
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