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Surface Layer Integrals and Conservation Laws

In this chapter, we introduce surface layer integrals as an adaptation of surface
integrals to causal fermion systems and causal variational principles. The mathe-
matical structure of a surface layer integral fits nicely with the analytic structures
(namely, the EL equations and the linearized field equations as introduced in
Chapters 7 and 8). This will become apparent in conservation laws, which gener-
alize Noether’s theorem and the symplectic form to the setting of causal variational
principles. Moreover, we shall introduce a so-called nonlinear surface layer inte-
gral, which makes it possible to compare two measures ρ and ρ̃ at a given time.
Finally, we will explain how two-dimensional surface integrals can be described by
surface layer integrals.

9.1 The Concept of a Surface Layer Integral

In daily life, we experience space and objects therein. These objects are usually
described by densities, and integrating these densities over space gives particle
numbers, charges, the total energy, etc. In mathematical terms, the densities are
typically described as the normal components of vector fields on a Cauchy surface,
and conservation laws express that the values of these integrals do not depend on
the choice of the Cauchy surface, that is,ˆ

N1

Jkνk dμN1(x) =
ˆ

N2

Jkνk dμN2(x) , (9.1)

where N1 and N2 are two Cauchy surfaces, ν is the future-directed normal
and dμN1/2 is the induced volume measure.

In the setting of causal variational principles, surface integrals like (9.1) are
undefined. Instead, one considers so-called surface layer integrals, which we now
introduce. In general terms, a surface layer integral is a double integral of the formˆ

Ω

(ˆ
M\Ω

(· · · ) L(x, y) dρ(y)
)

dρ(x) , (9.2)

where one variable is integrated over a subset Ω ⊂ M , and the other variable is
integrated over the complement of Ω. Here, (· · · ), stands for a differential operator
acting on the Lagrangian to be specified later. In order to explain the basic idea, we
begin with the additional assumption that the Lagrangian is of short range in the
following sense. We let d ∈ C0(M ×M,R+

0 ) be a suitably chosen distance function
on M . Then, the assumption of short range can be quantified by demanding that L
should vanish on distances larger than δ, that is,
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172 9 Surface Layer Integrals and Conservation Laws

Figure 9.1 A surface integral and a corresponding surface layer integral. From
[61]. Reproduced with permission from Springer Nature.

d(x, y) > δ =⇒ L(x, y) = 0 . (9.3)

Under this assumption, in the surface layer integral (9.2), only pairs (x, y) of dis-
tance at most δ contribute, with x lying in Ω and y lying in the complement M \Ω.
As a consequence, the integral only involves points in a layer around the boundary
of Ω of width δ, that is,

x, y ∈ Bδ

(
∂Ω

)
. (9.4)

Therefore, a double integral of the form (9.2) can be regarded as an approximation
of a surface integral on the length scale δ, as shown in Figure 9.1. In the setting
of causal variational principles, such surface layer integrals take the role of surface
integrals.

We point out that the causal Lagrangian is not of short range in the sense (9.3).
But it decays on a length scale that typically coincides with the Compton scale 1/m

(where m denotes the rest mass of the Dirac particles). With this in mind, the
above consideration and the qualitative picture of a surface layer integral in
Figure 9.1 apply to the causal action principle as well.

9.2 A Noether-Like Theorem

In modern physics, the connection between symmetries and conservation laws
is of central importance. For continuous symmetries, this connection is made
mathematically precise by Noether’s theorem (see [122] or the textbooks [95,
Section 13.7] and [7, Chapter III]). As shown in [61], the connection between
symmetries and conservation laws can be extended to the setting of causal vari-
ational principles. As we shall see, both the statement and the proof are quite
different from the classical Noether theorem; this is why we refer to our result as
a Noether-like theorem.

The first step is to formulate a symmetry condition for the Lagrangian of a
causal variational principle. Similar to the procedure in Section 7.3, one could
describe the symmetry by a group of diffeomorphisms. For our purposes, the cor-
rect setting would be to consider a one-parameter group of diffeomorphisms Φτ

on F, that is,
Φ : R× F → F with Φτ Φτ ′ = Φτ+τ ′ (9.5)
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9.2 A Noether-Like Theorem 173

(we usually write the first argument as a subscript, that is, Φτ (x) ≡ Φ(τ, x)).
The symmetry condition could be imposed by demanding that the Lagrangian be
invariant under this one-parameter group in the sense that

L(x, y) = L
(
Φτ (x), Φτ (y)

)
for all τ ∈ R and x, y ∈ F . (9.6)

It turns out that this condition is unnecessarily strong for two reasons. First, it
suffices to consider families that are defined locally for τ ∈ (−τmax, τmax). Second,
the mapping Φ does not need to be defined on all of F. Instead, it is more appro-
priate to impose the symmetry condition only on spacetime M ⊂ F. This leads us
to consider instead of (9.5) a mapping

Φ : (−τmax, τmax) × M → F with Φ0 = idM . (9.7)

We refer to Φτ as a variation of M in F. Next, we need to specify what we mean by
“smoothness” of this variation. This is a subtle point because, as explained in the
example of the causal variational principle on the sphere in Section 6.1, the support
of a minimizing measure will, in general, be singular. Moreover, the function �

defined by (7.3), in general, will only be Lipschitz continuous. Our Noether-like
theorems only require that this function be differentiable in the direction of the
variations:

Definition 9.2.1 A variation Φτ of the form (9.7) is continuously differen-
tiable if the composition

� ◦ Φ : (−τmax, τmax) × M → R, (9.8)

is continuous and if its partial derivative ∂τ (� ◦ Φ) exists and is continuous.

The next question is how to adapt the symmetry condition (9.6) to the mapping Φ
defined only on (−τmax, τmax)×M . This is not obvious because setting x̃ = Φτ (x)
and using the group property, the condition (9.6) can be written equivalently as

L
(
Φ−τ (x̃), y

)
= L

(
x̃, Φτ (y)

)
for all τ ∈ R and x̃, y ∈ F . (9.9)

But if we restrict attention to pairs x, y ∈ M , the equations in (9.6) and (9.9) are
different. For the general mathematical formulation, it is preferable to weaken the
condition (9.6) starting from the expression in (9.9).

Definition 9.2.2 A variation Φτ of the form (9.7) is a symmetry of the
Lagrangian if

L
(
x, Φτ (y)

)
= L

(
Φ−τ (x), y

)
for all τ ∈ (−τmax, τmax) and x, y ∈ M . (9.10)

We now state and prove our Noether-like theorem.

Theorem 9.2.3 Let ρ be a critical measure and Φτ a continuously differentiable
symmetry of the Lagrangian. Then, for any compact subset Ω ⊂ M ,

d
dτ

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

(
L
(
Φτ (x), y

)− L
(
Φ−τ (x), y

))∣∣
∣
τ=0

= 0 . (9.11)
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174 9 Surface Layer Integrals and Conservation Laws

Proof Integrating (9.10) over Ω × Ω gives

0 =
¨

Ω×Ω

(
L
(
x, Φτ (y)

)− L
(
Φ−τ (x), y

))
dρ(x) dρ(y)

=
¨

Ω×Ω

(
L
(
Φτ (x), y

)− L
(
Φ−τ (x), y

)))
dρ(x) dρ(y)

=
ˆ

Ω
dρ(x)

ˆ
M

dρ(y) χΩ(y)
(
L
(
Φτ (x), y

)− L
(
Φ−τ (x), y

)))
, (9.12)

where, in the first step, we used the Lagrangian is symmetric in its two arguments
and that the integration range is symmetric in x and y. We rewrite the character-
istic function χΩ(y) as 1 − (1 − χΩ(y)), multiply out and use the definition of �,
(7.3). We thus obtain

0 =
ˆ

Ω

(
�
(
Φτ (x)

)− �
(
Φ−τ (x))

)
dρ(x)

−
ˆ

Ω
dρ(x)

ˆ
M

dρ(y) χM\Ω(y)
(
L
(
Φτ (x), y

)− L
(
Φ−τ (x), y

))
. (9.13)

We thus obtain the identityˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

(
L
(
Φτ (x), y

)− L
(
Φ−τ (x), y

))

=
ˆ

Ω

(
�
(
Φτ (x)

)− �
(
Φ−τ (x)

))
dρ(x) .

(9.14)

Using that �(Φτ (x)) is continuously differentiable (see Definition 9.2.1) and that Ω
is compact, we conclude that the right-hand side of this equation is differen-
tiable at τ = 0. Moreover, we are allowed to interchange the τ -differentiation
with integration. The EL equations (7.9) imply that

d
dτ

�
(
Φτ (x)

)∣∣
∣
τ=0

= 0 = d
dτ

�
(
Φ−τ (x)

)∣∣
∣
τ=0

. (9.15)

Hence, the right-hand side of (9.14) is differentiable at τ = 0, and the derivative
vanishes. This gives the result.

This theorem requires a detailed explanation. We first clarify the connection to
surface layer integrals. To this end, let us assume for technical simplicity that Φτ

and the Lagrangian are differentiable in the sense that the derivatives
d
dτ

Φτ (x)
∣
∣
τ=0 =: u(x) and d

dτ
L
(
Φτ (x), y

)∣∣
τ=0, (9.16)

exist for all x, y ∈ M and are continuous on M , respectively, M × M . Then, one
may exchange differentiation and integration in (9.11) and apply the chain rule to
obtain ˆ

Ω
dρ(x)

ˆ
M\Ω

dρ(y) D1,uL(x, y) = 0 , (9.17)
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9.3 A Class of Conservation Laws in the Smooth Setting 175

Figure 9.2 Choices of spacetime regions: Lens-shaped region (a), the region
between two Cauchy surfaces (b) and the past of a Cauchy surface (c).

where D1,u is the partial derivative at x in the direction of the vector
field u(x). This expression is a surface layer integral as in (9.2). In general, the
derivatives in (9.16) need not exist because we merely imposed the weaker differen-
tiability assumption of Definition 9.2.1. In this case, the statement of the theorem
implies that the derivative of the integral in (9.11) exists and vanishes.

We next explain the connection to conservation laws. Let us assume that M

admits a sensible notion of “spatial infinity” and that the vector field ∂τ Φ ∈
Γ(M, TF) has suitable decay properties at spatial infinity. Then, one can
choose a sequence Ωn ⊂ M of compact sets that form an exhaustion of a
set Ω that extends up to spatial infinity (see Figure 9.2 (a) and (b)). Con-
sidering the surface layer integrals for Ωn and passing to the limit, one also
concludes that the surface layer integral corresponding to Ω vanishes. Let
us assume that the boundary ∂Ω has two components N1 and N2 (as in
Figure 9.2 (b)). Then, Theorem 9.2.3 implies that the surface layer integrals
over N1 and N2 coincide (where the surface layer integral over N is defined as
the surface layer integral corresponding to a set ΩN with ∂ΩN = N as shown in
Figure 9.2 (c)). In other words, the quantity

d
dτ

ˆ
ΩN

dρ(x)
ˆ

M\ΩN

dρ(y)
(
L
(
Φτ (x), y

)− L
(
Φ−τ (x), y

))∣∣
∣
τ=0

, (9.18)

is well defined and independent of the choice of N . In this setting, the surfaces N

can be interpreted as Cauchy surfaces, and the conservation law of Theorem 9.2.3
means that the surface layer integral is preserved under the time evolution.

As a concrete example, the unitary invariance of the causal action principle gives
rise to a conservation law, which corresponds to current conservation. This example
will be considered in detail in Section 9.4. We finally remark that the conservation
laws for energy-momentum can also be obtained from Theorem 9.2.3, assuming
that the causal fermion system has symmetries as described by generalized Killing
symmetries. We refer the interested reader to [61, Section 6].

9.3 A Class of Conservation Laws in the Smooth Setting

In the previous section, we saw that surface layer integrals can be used to for-
mulate a Noether-like theorem, which relates symmetries to conservation laws. In
this section, we shall derive conservation laws even in the absence of symmetries.
Instead, these conservation laws are closely tied to the structure of the linearized
field equations as derived in Section 8.1. In order to focus on the essence of the
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176 9 Surface Layer Integrals and Conservation Laws

construction, we again restrict attention to the smooth setting (6.10). The basic
idea of the construction is explained in the following proposition:

Proposition 9.3.1 Let ρ be a critical measure and Ω ⊂ M be compact. Then
for any solution v ∈ Jlin of the linearized field equations (8.15),

γΩ
ρ (v) :=

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

(∇1,v −∇2,v

)
L(x, y) =

ˆ
Ω
∇v s dρ . (9.19)

Proof In view of the anti-symmetry of the integrand,ˆ
Ω

dρ(x)
ˆ

Ω
dρ(y)

(∇1,v −∇2,v

)
L(x, y) = 0 . (9.20)

Adding this equation to the left-hand side of (9.19), we obtain

γΩ
ρ (v) =

ˆ
Ω

dρ(x)
ˆ

M

dρ(y)
(∇1,v −∇2,v

)
L(x, y)

= 2
ˆ

Ω
dρ(x)

ˆ
M

dρ(y)
(∇1,v

)
L(x, y)

−
ˆ

Ω
dρ(x)

ˆ
M

dρ(y)
(∇1,v + ∇2,v

)
L(x, y)

=
ˆ

Ω
dρ(x)

(
2∇v

(
�(x) + s

)
−
((

Δv
)
(x) + ∇v s

))
, (9.21)

where in the last line we used the definitions of � and Δ (see (7.3) and (8.15)).
Applying the restricted EL equations (7.13) and the linearized field equa-
tions (8.15) gives the result.

Viewing γΩ
ρ as a linear functional on the linearized solutions, we also refer to γΩ

ρ (v)
as the conserved one-form. We remark that the identity (9.19) has a similar struc-
ture as the conservation law in the Noether-like theorem (9.11). In order to make
the connection precise, one describes the symmetry Φτ infinitesimally by a jet v

with a vanishing scalar component,

v(x) := d
dτ

(
0, Φτ (x)

)∣∣
∣
τ=0

. (9.22)

Using the symmetry property (9.10), one verifies similarly to the proof of
Lemma 8.2.1 that this jet satisfies the linearized field equations (8.15). There-
fore, Proposition 9.3.1 applies, and the right-hand side vanishes because v has
no scalar component. We thus recover the identity obtained by carrying out the
τ -derivative in (9.11).

We conclude that Proposition 9.19 is a generalization of Theorem 9.2.3. Instead
of imposing symmetries, the identity (9.19) is a consequence of the linearized
field equations. Again choosing Ω as the region between two Cauchy surfaces (see
Figure 9.2), one obtains a relation between the surface layer integrals around N1
and N2. If the scalar component of v vanishes, we obtain a conservation law.
Otherwise, the right-hand side of (9.19) tells us how the surface layer integral
changes in time.
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9.3 A Class of Conservation Laws in the Smooth Setting 177

We now generalize Proposition 9.3.1. The basic idea is to integrate
anti-symmetric expressions in x and y that involve higher derivatives of the
Lagrangian. We again restrict attention to the smooth setting (for the general
proof, see [63]). Let ρ̃s,t with s, t ∈ (−δ, δ) be a two-parameter family of measures
that are solutions of the restricted EL equations. We assume that these measures
are of the form

ρ̃s,t = (Fs,t)∗
(
fs,t ρ

)
, (9.23)

where fs,t and Fs,t are smooth,

f ∈ C∞(
(−δ, δ)2 × F,R+) and F ∈ C∞(

(−δ, δ)2 × F,F
)

, (9.24)

and are trivial in the case s = t = 0 (6.22). Moreover, we need the following
technical assumption:

(ta) For all x ∈ M , p, q ≥ 0 and r ∈ {0, 1}, the following partial derivatives exist
and may be interchanged with integration,

ˆ
M

∂r
s′∂p

s ∂q
t L

(
Fs+s′,t(x), Fs,t(y)

)∣∣
∣
s′=s=t=0

dρ(y)

= ∂r
s′∂p

s ∂q
t

ˆ
M

L
(
Fs+s′,t(x), Fs,t(y)

)
dρ(y)

∣
∣
∣
∣
s′=s=t=0

. (9.25)

We now state a general identity between a surface layer integral and a volume inte-
gral, which was first obtained in [63]. It generalizes the result of Proposition 9.3.1
and gives rise to additional conservation laws for surface layer integrals, which will
be analyzed subsequently (in Section 9.5). The proof of the following theorem also
works out the mathematical essence of our conservation laws.

Theorem 9.3.2 Let f and F be as in (9.24) and (6.22) which satisfy the above
assumption (ta). Moreover, assume that the measures ρ̃s,t given by (9.23) satisfy
the restricted EL equations for all s and t. Then for every compact Ω ⊂ M and
every k ∈ N,

IΩ
k+1 :=

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

× (
∂1,s − ∂2,s

)(
∂1,t + ∂2,t

)k
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣
∣
∣
s=t=0

= s

ˆ
Ω

∂s∂k
t fs,t(x)

∣
∣
∣
s=t=0

dρ(x) . (9.26)

Proof Introducing the short notation

L
(
xs,t, ys,t

)
= fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y) , (9.27)

the restricted EL equations (7.13) read

∇u

(ˆ
M

L
(
xs,t, ys,t

)
dρ(y) − s fs,t(x)

)
= 0 for all u ∈ J . (9.28)
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178 9 Surface Layer Integrals and Conservation Laws

In particular, for any k ≥ 0 and any vector v = vs∂s + vt∂s, we obtainˆ
M

∂1,s

(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
dρ(y)

∣
∣
∣
s=t=0

= s ∂s∂k
v fs,t(x)

∣
∣
s=t=0 (9.29)

ˆ
M

(
∂1,v + ∂2,v

)k+1
L
(
xs,t, ys,t

)
dρ(y)

∣
∣
∣
s=t=0

= s ∂k+1
v fs,t(x)

∣
∣
s=t=0, (9.30)

(the derivatives exist and can be exchanged with the integration according to the
above assumption (ta)). Differentiating the last equation with respect to vs and
dividing by k + 1, we obtainˆ

M

(
∂1,s + ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
dρ(y) = s ∂s∂k

v fs,t(x) . (9.31)

Subtracting twice the identity (9.29), we obtain for any k ≥ 0 the equationˆ
M

(
∂1,s − ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
dρ(y) = s ∂s∂k

v fs,t(x) . (9.32)

Integrating the last equation over Ω givesˆ
Ω

dρ(x)
ˆ

M

dρ(y)
(
∂1,s − ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)

= s

ˆ
Ω

∂s∂k
v fs,t(x) dρ(x) .

(9.33)

On the other hand, since the integrand is anti-symmetric in its arguments x and y,
we also know thatˆ

Ω
dρ(x)

ˆ
Ω

dρ(y)
(
∂1,s − ∂2,s

)(
∂1,v + ∂2,v

)k
L
(
xs,t, ys,t

)
= 0 . (9.34)

Subtracting this equation from (9.33) and evaluating at s = t = 0 gives the
result.

Specializing the statement of this theorem to the case k = 0 and setting

v = d
ds

(
fs,t, Fs,t

)∣∣
∣
s=t=0

, (9.35)

we recover the statement of Proposition 9.3.1. The case k = 1 will be studied in
more detail in Section 9.5.

We conclude this section by discussing the conservation law of Proposition 9.3.1
for inner solutions as considered in Section 8.3 (commutator jets will be considered
afterward in Section 9.4). To this end, we need to assume again that spacetime
has a smooth manifold structure. We first define an integration measure on the
boundary of Ω.

Definition 9.3.3 Let v = (div v, v) ∈ Jin
ρ be an inner solution and Ω ⊂ M closed

with smooth boundary ∂Ω. On the boundary, we define the measure dμ(v, x) as the
contraction of the volume form on M with v, that is, in local charts

dμ(v, x) = h εijkl vi dxj dxk dxl , (9.36)

where εijkl is the totally anti-symmetric symbol (normalized by ε0123 = 1).
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9.4 The Commutator Inner Product for Causal Fermion Systems 179

We now let v = (div v, v) be an inner solution. Then, the integral on the right-hand
side of (9.19) reduces the integral over the divergence of the vector field v,

ˆ
Ω
∇v s dρ = s

ˆ
Ω

div v dρ . (9.37)

On the left-hand side of (9.19), on the other hand, as in Lemma 8.3.3 we can
integrate by parts. But now boundary terms remain,

γΩ
ρ (v) =

ˆ
∂Ω

dμ(v, x)
ˆ

M\Ω
dρ(y) L(x, y) +

ˆ
Ω

dρ(x)
ˆ

∂Ω
dμ(v, y) L(x, y)

=
ˆ

∂Ω
dμ(v, x)

ˆ
M

dρ(y) L(x, y) = s

ˆ
∂Ω

dμ(v, x) , (9.38)

where in the last line we used the symmetry of L and employed the EL equations.
In this way, the surface layer integral in (9.19) reduces to a usual surface integral
over the hypersurface ∂Ω. Moreover, combining (9.19) with (9.38) and (9.37), we
get back the Gauss divergence theorem

s

ˆ
∂Ω

dμ(v, x) = s

ˆ
Ω

div v dρ . (9.39)

This illustrates that Proposition 9.3.1 is a generalization of the Gauss divergence
theorem where the vector field is replaced with a general solution of the linearized
field equations. The formulation with surface layer integrals has the further advan-
tage that the result can be generalized in a straightforward way to non-smooth
(e.g., discrete) spacetimes.

9.4 The Commutator Inner Product for Causal Fermion Systems

As a concrete example of a conservation law, we now consider current conservation.
To this end, we consider the setting of causal fermion systems. As in Section 8.2,
we again let A be a symmetric operator of finite rank on H and Uτ be the
corresponding one-parameter family of unitary transformations (8.22). Infinites-
imally, this one-parameter family is described by the commutator jet v (8.24).
The unitary invariance of the causal action implies that the commutator jets sat-
isfy the linearized field equations (see Lemma 8.2.1). Moreover, using that the
scalar component of commutator jets vanishes, Proposition 9.3.1 gives for any
compact Ω ⊂ M the conservation law

γΩ
ρ (v) :=

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

(∇1,v −∇2,v

)
L(x, y) = 0 . (9.40)

In order to understand the significance of this conservation law, it is useful to
choose A more specifically as an operator of rank one. More precisely, given a
nonzero vector ψ ∈ H, we form the symmetric linear operator A ∈ L(H) of rank
one by

Au := 〈u|ψ〉H ψ, (9.41)
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180 9 Surface Layer Integrals and Conservation Laws

(thus in bra/ket notation, A = |ψ〉〈ψ|). We now form the corresponding
commutator jet (8.24). Varying the vector ψ, we obtain a mapping

j : H → Jlin , ψ �→ v . (9.42)

Moreover, we choose Ω again as the past of a Cauchy surface (as shown in Fig-
ure 9.2 (c)). We write the corresponding conserved surface layer integral in (9.40)
as

CΩ
ρ (u) :=

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

(
D1,j(u) − D2,j(u)

)
L(x, y) with u ∈ H , (9.43)

where for technical simplicity we assume smoothness in order to interchange dif-
ferentiation with integration. Clearly, the mapping j in (9.42), and consequently
also the mapping CΩ

ρ , are homogeneous of degree two, that is,

CΩ
ρ

(
λu

)
= |λ|2 CΩ

ρ (u) for all u ∈ H and λ ∈ C . (9.44)

Therefore, we can use the polarization formula to define a sesquilinear form on
the Hilbert space H,

〈u|v〉Ω
ρ := 1

4

(
CΩ

ρ (u + v) − CΩ
ρ (u − v)

)
− i

4

(
CΩ

ρ (u + iv) − CΩ
ρ (u − iv)

)
. (9.45)

This sesquilinear form is referred to as the commutator inner product (for details,
see [82, Section 3]). In [61, Section 5.2], it is shown that for Dirac systems describ-
ing the Minkowski vacuum, the commutator inner product coincides (up to an
irrelevant prefactor) with the scalar product on Dirac solutions (1.37). In this
way, the conservation law for the commutator inner product gives back the con-
servation of the Dirac current (1.36). We thus recover current conservation as a
special case of a more general conservation law for causal fermion systems. Since
in examples of physical interest, the conserved surface layer integral CΩ

ρ (u, v) gives
back the Hilbert space scalar product, we give this property a name:

Definition 9.4.1 Given a critical measure ρ and a subset Ω ⊂ M , the surface
layer integral CΩ

ρ is said to represent the scalar product on the subspace Hf ⊂
H if there is a nonzero real constant c such that the sesquilinear form 〈.|.〉Ω

ρ defined
by (9.45) has the property

〈u|u〉Ω
ρ = c ‖u‖2

H for all u ∈ Hf . (9.46)

In view of the conservation law of Proposition 9.3.1, this property remains valid if Ω
is changed by a compact subset of M . We point out that the representation (9.46)
cannot hold on the whole Hilbert space, that is, for all u ∈ H; for details, see
Exercise 9.5 and [53, Appendix A].

At present, there is no general argument why the surface layer integral CΩ
ρ should

represent the scalar product on a nontrivial subspace Hf ⊂ H. Therefore, in this
book, we shall not assume that this property holds. Instead, we make the following
weaker assumption. We assume that the sesquilinear form CΩ

ρ is equivalent to the
scalar product in the sense that

〈u|v〉Ω
ρ = 〈u |Cρ v〉H for all u, v ∈ Hf , (9.47)
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9.5 The Symplectic Form and the Surface Layer Inner Product 181

where Cρ is a bounded linear operator on H with bounded inverse. Under this
assumption, the Hilbert space scalar product can be expressed by

〈u | v〉H = 〈u |C−1
ρ v〉Ω

ρ for all u, v ∈ Hf . (9.48)

In this way, the Hilbert space scalar product can be represented by a surface layer
integral involving the physical wave functions in spacetime.

We conclude this section with a remark on the connection between the com-
mutator inner product and the scalar product on solutions of the Dirac equation.
As already mentioned after (9.45), for Dirac systems describing the Minkowski
vacuum, the commutator inner product (9.45) coincides with the scalar prod-
uct (1.37). Since both inner products are conserved, the same is true for any
Dirac system that evolved from the vacuum (e.g., by “turning on” an interac-
tion). The basic shortcoming of this correspondence is that it holds only for the
physical wave functions, that is, for all occupied one-particle states of the system.
Thus, in the example of the Minkowski vacuum, the connection between (9.45)
and (1.37) can be made only for the negative-energy solutions of the Dirac equa-
tion. The positive-energy solutions, however, do not correspond to physical wave
functions, so that the commutator inner product is undefined. In order to improve
the situation, one would like to extend the commutator inner product to more
general wave functions, in such a way that it still agrees with (1.37). This con-
struction is carried out in [82, 53]. Current conservation continues to hold for the
extension, provided that the wave functions satisfy the so-called dynamical wave
equation ˆ

M

Qdyn(x, y) ψ(y) dρ(y) = 0 . (9.49)

Here, the integral kernel Qdyn is constructed from first variations of the
causal Lagrangian. In this formulation, the commutator inner product takes the
form

〈ψ|φ〉Ω
ρ := −2i

(ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y) −

ˆ
M\Ω

dρ(x)
ˆ

Ω
dρ(y)

)

×≺ψ(x) | Qdyn(x, y) φ(y)
x .

(9.50)

For some more details on these connections, see Exercises 9.3 and 9.4.
After these extensions have been made, the dynamical wave equation (9.49) can

be regarded as the generalization of the Dirac equation to causal fermion systems.
Moreover, the commutator inner product (9.50) generalizes the scalar product on
Dirac solutions (1.37), thereby also extending current conservation to dynamical
waves.

9.5 The Symplectic Form and the Surface Layer Inner Product

For the applications, the most important surface layer integrals are IΩ
1 (also

denoted by γΩ
ρ ; see Proposition 9.3.1 and Theorem 9.3.2 in the case k = 0) and IΩ

2
(see Theorem 9.3.2 in the case k = 1). We now have a closer look at the surface
layer integral IΩ

2 . It is defined by

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.184, on 18 Nov 2025 at 05:45:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.013
https://www.cambridge.org/core


182 9 Surface Layer Integrals and Conservation Laws

IΩ
2 =

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

× (
∂1,s − ∂2,s

)(
∂1,t + ∂2,t

)
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣
∣
∣
s=t=0

,

(9.51)

and satisfies for any compact subset Ω ⊂ M the identity

IΩ
2 = s

ˆ
Ω

∂s∂tfs,t(x)
∣
∣
∣
s=t=0

dρ(x) . (9.52)

These formulas simplify considerably if we anti-symmetrize in the parameters s

and t. Namely, the formula for IΩ
2 reduces to the surface layer integralˆ

Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(
∂1,s∂2,t − ∂1,s∂2,t

)
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣
∣
∣
s=t=0

.

(9.53)

Since this expression involves only first partial derivatives, it can be rewritten with
jet derivatives as

σΩ
ρ (u, v) :=

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

(∇1,u∇2,v −∇1,v∇2,u

)
L(x, y) , (9.54)

where the jets u and v are the linearized solutions

u = ∂s

(
fs,t, Fs,t

)∣∣
s=t=0 and v = ∂t

(
fs,t, Fs,t

)∣∣
s=t=0 . (9.55)

Moreover, the right-hand side of (9.52) vanishes when anti-symmetrizing in s and t.
We conclude that

σΩ
ρ (u, v) = 0 for every compact Ω ⊂ M . (9.56)

Choosing Ω again as explained in Figure 9.2, we obtain a conservation law for
a surface layer integral over a neighborhood of a hypersurface N that extends to
spatial infinity. We refer to σΩ

ρ as the symplectic form (the connection to symplectic
geometry will be explained after (9.59)).

Symmetrizing IΩ
2 in the parameters s and t gives the surface layer integralˆ

Ω
dρ(x)

ˆ
M\Ω

dρ(y)

× (
∂1,s∂1,t − ∂2,s∂2,t

)
fs,t(x) L

(
Fs,t(x), Fs,t(y)

)
fs,t(y)

∣
∣
∣
s=t=0

.

(9.57)

This expression has a more difficult structure because it involves second partial
derivatives. Such second partial derivatives cannot be expressed directly in terms of
second jet derivatives because the derivatives of the jets also need to be taken into
account. In a differential geometric language, defining second derivatives would
make it necessary to introduce a connection on F. As explained before Definition
8.1.2, we here use the simpler method of taking second partial derivatives in dis-
tinguished charts (e.g., symmetric wave charts for causal fermion systems; see the
remark after Proposition 3.1.3 and [60, Section 6.1] or [67, Section 3]). Then, it
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9.5 The Symplectic Form and the Surface Layer Inner Product 183

is useful to introduce the surface layer inner product (., .)Ω
ρ as the contribution

to (9.57) involving second derivatives of the Lagrangian, that is,

(u, v)Ω
ρ :=

ˆ
Ω

dρ(x)
ˆ

M\Ω
dρ(y)

(∇1,u∇1,v −∇2,u∇2,v

)
L(x, y) , (9.58)

where the jets u and v are again the linearized solutions (9.55). We point out
that, in contrast to the symplectic form, the surface layer inner product does
not correspond to a conservation law. This has two reasons: First because the
right-hand side of (9.52) gives rise to a volume term, and second because the
derivatives of the jets u and v give additional correction terms. For the details and
the interpretation of these correction terms, we refer to [63]. Here, we only remark
that the significance of the surface layer inner product is that it is an approximate
conservation law. In particular, it can be used for estimating solutions of the
linearized field equations and for proving existence results. We will come back to
these applications in Chapter 14.

We finally comment on the name symplectic form. Clearly, this name is taken
from symplectic geometry, where it refers to a closed and nondegenerate two-
form σ on a manifold which we denote by B. The connection to the surface layer
integral (9.54) is obtained if we assume that the set of all critical measures of
the form (8.4) forms a smooth manifold B (which may be an infinite-dimensional
Banach manifold). In this case, a jet v describing the first variations of a mea-
sure (8.11) is a tangent vector in TρB. Consequently, the jet space J can be
identified with the tangent space TρB. The surface layer integral (9.54) can be
regarded as a mapping

σΩ
ρ : TρB × TρB → R . (9.59)

Being anti-symmetric, it can be regarded as a two-form. Similarly, the conserved
surface layer integral γΩ

ρ in (9.19) can be regarded as a one-form. Moreover, the
t-derivative in (9.51) can be regarded as a directional derivative acting on IΩ

1 = γΩ
ρ .

Anti-symmetrizing in s and t corresponds to taking the outer derivative. We thus
obtain

σΩ
ρ = dγΩ

ρ , (9.60)
which also shows again that σΩ

ρ is closed. Thus, exactly as in symplectic geometry,
the symplectic form defined as the surface layer integral (9.59) is a closed two-form.
In contrast to symplectic geometry, it does not need to be nondegenerate. But this
can be arranged by restricting attention to a more specific class of measures of the
form (9.23). We refer to [62] for a more general discussion of this point.

We finally note that the relation (9.60) resembles the representation of the
symplectic potential as the derivative of the symplectic potential (sometimes also
referred to as the tautological one-form or canonical one-form). It is a major differ-
ence to classical mechanics and classical field theory that, in the setting of causal
variational principles, the one-form γΩ

ρ is canonically defined and represented by
a conserved surface layer integral in spacetime.
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184 9 Surface Layer Integrals and Conservation Laws

9.6 The Nonlinear Surface Layer Integral

We now introduce a different type of surface layer integral, which can be regarded
as a generalization of the surface layer integrals considered so far. In order to
explain the basic concept, we return to the general structure of a surface layer
integral (9.2). The differential operator (· · · ) in the integrand can be regarded as
describing the first or second variations of the measure ρ. As we saw in the preced-
ing Sections 9.4 and 9.6, the resulting surface layer integrals give rise to conserved
currents, the symplectic form and inner products. Instead of considering the first
or second variations of a measure ρ, we now consider an additional measure ρ̃ that
can be thought of as a finite perturbation of the measure ρ. Consequently, we also
have two spacetimes

M := supp ρ and M̃ := supp ρ̃ . (9.61)

Choosing two compact subsets Ω ⊂ M and Ω̃ ⊂ M̃ of the corresponding
spacetimes, we form the nonlinear surface layer integral by

γΩ̃,Ω(ρ̃, ρ) :=
ˆ

Ω̃
dρ̃(x)

ˆ
M\Ω

dρ(y) L(x, y)

−
ˆ

Ω
dρ(x)

ˆ
M̃\Ω̃

dρ̃(y) L(x, y) .

(9.62)

Note that one argument of the Lagrangian is in M , whereas the other is in M̃ .
Moreover, one argument lies inside the set Ω respectively Ω̃, whereas the other
argument lies outside. In this way, the nonlinear surface layer integral “compares”
the two spacetimes near the boundaries of Ω and Ω̃, as is illustrated in Figure 9.3.

If ρ̃ is a first or second variation of ρ, one recovers surface layer integrals of
the form (9.2). In this way, the nonlinear surface layer integral can be regarded
as a generating functional for the previous surface layer integrals. Moreover, it
has the advantage that it does not rely on continuous variations or a perturbative
treatment. Instead, it can be used for comparing two arbitrary measures ρ and ρ̃.
This nonlinear surface layer integral was introduced in [57]. It plays a central role in
getting the connection to quantum field theory (as will be outlined in Chapter 22).

The nonlinear surface layer integral comes with a corresponding conservation
law, as we now explain. For technical simplicity, we assume that the measure ρ̃ can
be obtained from ρ by multiplication with a weight function and a push-forward,
that is,

Figure 9.3 The nonlinear surface layer integral. From [58].
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9.6 The Nonlinear Surface Layer Integral 185

ρ̃ = F∗(fρ), (9.63)
with smooth functions f ∈ C∞(M,R+) and F ∈ C∞(M,F

)
. We use the

mapping F in order to identify M with M̃ . In particular, we choose

Ω̃ = F (Ω) . (9.64)

Then, using the definition of the push-forward measure, the nonlinear surface layer
integral can be written alternatively as

γΩ̃,Ω(ρ̃, ρ) =
ˆ

Ω
dρ(x)

ˆ
M\Ω

dρ(y)
(

f(x)L
(
F (x), y

)− L
(
x, F (y)

)
f(y)

)
. (9.65)

As explained in Section 9.2 in the connection of Noether-like theorems, by a “con-
servation law,” we mean that the nonlinear surface layer integral should vanish
for all compact Ω. In preparation for analyzing how to satisfy this condition,
we rewrite the nonlinear surface layer integral as a volume integral by using the
anti-symmetry of the integrand in (9.65),

γΩ̃,Ω(ρ̃, ρ) =
ˆ

Ω
dρ(x)

ˆ
M

dρ(y)
(

f(x)L
(
F (x), y

)− L
(
x, F (y)

)
f(y)

)
. (9.66)

In order to write this equation in a simpler form, we introduce a measure ν on M

and a measure ν̃ on M̃ by

dν(x) :=
(ˆ

M̃

L(x, y) dρ̃(y)
)

dρ(x) , (9.67)

dν̃(x) :=
(ˆ

M

L(x, y) dρ(y)
)

dρ̃(x) . (9.68)

Intuitively speaking, these measures describe how the measures ρ and ρ̃ are con-
nected to each other by the Lagrangian. We refer to them as the correlation
measures. Then, we can rewrite (9.66) as

γΩ̃,Ω(ρ̃, ρ) = ν̃
(
F (Ω)

)− ν(Ω) . (9.69)

In order to obtain a conservation law, this expression should vanish for all com-
pact Ω. In other words, the measure ν should be the push-forward of the measure ν̃

under the mapping F ,
ν = F∗ν̃ . (9.70)

In this way, the task of finding a conservation law is reduced to the following
abstract problem: Given two measures ν on M and ν̃ on M̃ , under which assump-
tions can one measure be realized as the push-forward of the other? If ν and ν̃

are volume forms on compact manifolds, such a push-forward mapping is obtained
from a classical theorem of Jürgen Moser (see, e.g., [113, Section XVIII, §2]). In
the non-compact case, the existence of F has been proven under general assump-
tions in [97]. In this way, the conservation law for the nonlinear surface layer
integral can be arranged by adjusting the identification of the spacetimes M

and M̃ .
We finally remark how the nonlinear surface layer integral can be used to “com-

pare” two causal fermion systems (H,F, ρ) and (H̃, F̃, ρ̃). In this setting, one must
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186 9 Surface Layer Integrals and Conservation Laws

keep in mind that the causal fermion systems are defined on different Hilbert
spaces. Therefore, before forming the nonlinear surface layer integral, we must
identify the Hilbert space H and H̃ by a unitary transformation V : H → H̃.
Since this identification is not unique, we are left with the freedom to transform V

according to
V → V U with U ∈ L(H) unitary . (9.71)

A possible strategy for getting information independent of this freedom is to inte-
grate over the unitary group. For example, this leads to the so-called partition
function

ZΩ̃,Ω(ρ̃, ρ) :=
ˆ
G

eβγΩ̃,Ω(ρ̃,Uρ) dμG(U) , (9.72)

where β is a real parameter, and G is a compact subgroup of the unitary group
on H with Haar measure dμG. Here, the name “partition function” stems from an
analogy to the path integral formulation of quantum field theory. For more details,
we refer to Chapter 22 or the research papers [58, 84].

9.7 Two-Dimensional Surface Layer Integrals

The surface layer integrals considered so far were intended to generalize inte-
grals over hypersurfaces. We now explain how lower-dimensional integrals can
be described by surface layer integrals. We restrict attention to two-dimensional
integrals, noting that the methods can be applied similarly to one-dimensional
integrals (i.e., integrals along a curve). It is most convenient to describe a
two-dimensional surface S ⊂ M as

S = ∂Ω ∩ ∂V , (9.73)

where Ω can be thought of as being the past of a Cauchy surface, and V describes
a spacetime cylinder. This description has the advantage that the resulting sur-
face layer integrals will be well defined even in cases when spacetime is singular
or discrete, in which case the boundaries ∂Ω and ∂V are no longer a sensible con-
cept. The most obvious way of introducing a surface layer integral localized in a
neighborhood of S is a double integral of the formˆ

Ω∩V

(ˆ
M\(Ω∪V )

(· · · ) L(x, y) dρ(y)
)

dρ(x), (9.74)

(where (· · · ) again stands for a differential operator acting on the Lagrangian).
If the Lagrangian has a short range, we only get contributions to this surface
layer integral if both x and y are close to the two-dimensional surface S (see
Figure 9.4).

The disadvantage of this method is that the surface layer integral (9.74) does
not seem to fit together with the EL equations and the linearized field equations.
Therefore, at present there is no corresponding conservation law. If one considers
the flows of two surfaces, it seems preferable to use the following method intro-
duced in [21]. We need to assume that M has a smooth manifold structure and is
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9.8 Exercises 187

Figure 9.4 A two-dimensional surface layer integral.

four-dimensional (see Definition 8.3.1) and that v is a vector field that is transverse
to the hypersurface ∂Ω and tangential to ∂V . Following Definition 9.3.3, the inner
solution corresponding to v gives rise to a volume measure μ on ∂Ω. Thus, we can
introduce a two-dimensional surface layer integral by

A :=
ˆ

∂Ω∩V

dμ(v, x)
ˆ

M\V

dρ(y) (· · · )L(x, y) . (9.75)

Applying the Gauss divergence theorem, this surface layer integral can also be
written in the usual way as a double spacetime integral involving jet derivatives
of the inner solution,

A =
ˆ

Ω∩V

dρ(x) ∇v

ˆ
M\V

dρ(y) (· · · )L(x, y)

=
ˆ

Ω∩V

dρ(x)
ˆ

M\V

dρ(y)
(∇1,v ±∇2,v

)
(· · · )L(x, y) , (9.76)

where the notation ± means that the formula holds for either choice of the
sign (this is because the corresponding term vanishes, as one sees after inte-
grating by parts as in the proof of Lemma 8.3.3 and using that v is tan-
gential to ∂V ). The obtained surface layer integral (9.76) harmonizes with
the structures of the EL equations and the linearized field equations, as is
exemplified in [21] by a simple connection between area change and matter
flux.

9.8 Exercises

Exercise 9.1 (Noether-like theorems) The goal of this exercise is to illustrate
the Noether-like theorems. In order to simplify the problem as far as possible,
we consider the compact setting and assume furthermore that the Lagrangian is
smooth, that is, L ∈ C∞(F × F,R+

0 ). Let ρ be a minimizer of the action under
variations of ρ in the class of (positive) normalized regular Borel measures. Let u ∈
TF be a vector field on F. Assume that u is a symmetry of the Lagrangian in the
sense that

(
u(x)j ∂

∂xj
+ u(y)j ∂

∂yj

)
L(x, y) = 0 for all x, y ∈ F. (9.77)
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188 9 Surface Layer Integrals and Conservation Laws

Prove that for any measurable set Ω ⊂ F,ˆ
Ω

dρ(x)
ˆ
F\Ω

dρ(y) u(x)j ∂

∂xj
L(x, y) = 0. (9.78)

Hint: Integrate (9.77) over Ω × Ω. Transform the integral using the symme-
try L(x, y) = L(y, x). Finally make use of the Euler–Lagrange equations.

Exercise 9.2 (Commutator jets and conserved surface layer integrals)
Let (H,F, ρ) be a causal fermion system on a finite-dimensional Hilbert space. For
any symmetric operator S ∈ L(H), we define the corresponding commutator jet
by

CS := (0, CS), with CS(x) := i[S, x] for all x ∈ F. (9.79)
Prove the following identity between the conserved one-form and the conserved
symplectic form:

γΩ
ρ

(
(0, [CA, CB ])

)
= −1

2 σΩ
ρ (CA,CB), (9.80)

where [CA, CB ] denotes the commutator of vector fields on F.

Exercise 9.3 (Representation of the commutator inner product) The goal of this
exercise is to represent the commutator inner product in a form similar to (9.50).

(a) Show that the first variations of the Lagrangian can be written as

δL(x, y) = 2 Re TrSxM

(
Q(x, y) δP (y, x)

)
, (9.81)

with a suitable kernel Q(x, y) : Sy → Sx. Show that this kernel can be chosen
to be symmetric, that is, Q(x, y)∗ = Q(y, x).

(b) Show that the variation described by the commutator jet in (9.42) and (9.41)
corresponds to the variation of the integrand in (9.43)

(
D1,j(u) − D2,j(u)

)
L(x, y)

= −2i
(≺ψ(x) | Q(x, y) ψ(y)
x −≺ψ(y) | Q(y, x) ψ(x)
y

)
. (9.82)

(c) Use the polarization formula (9.45) to conclude that 〈u|v〉Ω
ρ has the represen-

tation (9.50) with ψ = ψu and φ = ψv.

Hint: Details on this construction can be found in [82, Section 3].

Exercise 9.4 (Extending the commutator inner product) The goal of this exer-
cise is to illustrate how the commutator inner product can be extended to more
general wave functions. To this end, assume that we are given a space of wave
function W which all satisfy the dynamical wave equation (9.49) with a suitable
kernel Qdyn(x, y). Prove that, under these assumptions, the inner product (9.50)
is conserved for any ψ, φ ∈ W.
Hint: In a first step, it seems a good idea to choose Ω = Ωt as the past of an
equal time hypersurface and to differentiate with respect to t. More generally,
one can consider the difference of (9.50) for two sets Ω and Ω′, which differ by a
compact set.
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Exercise 9.5 (Representing the Hilbert space scalar product in a surface layer)
The goal of this exercise is to explain why the sesquilinear form 〈.|.〉Ω

ρ cannot
represent the scalar product on the whole Hilbert space. To this end, let us assume
conversely that

〈u|u〉Ω
ρ = c 〈u|u〉H for all u ∈ H and c �= 0 (9.83)

and derive a contradiction. For technical simplicity, we assume that H is finite-
dimensional and disregard all issues of convergence of integrals.

(a) Show that the surface layer integral can be written as

〈u|u〉Ω
ρ = i

ˆ
M

〈
u
∣
∣ [x, B(x)] u

〉
H

dρ(x), (9.84)

with B(x) a suitable family of operators on the Hilbert space.
(b) Carry out the x-integral formally to obtain the representation

〈u|u〉Ω
ρ = 〈u |Cu〉H dρ(x), (9.85)

with a trace-free operator C. Hint: Make use of the commutator structure of
the integrand in (9.84).

(c) Conclude from (9.83) that C is a multiple of the identity operator. Why is
this a contradiction?

Hint: More details on this argument can be found in [53, Appendix A].

Exercise 9.6 (On the surface layer inner product) The goal of this exercise is
to show that, under a suitable restriction of the jet space, the surface-layer inner
product is indeed positive. On F = R

2, we define the Lagrangian

L(x, y) = 1
2 η(x1 − y1) (x2 − y2)2, where η ∈ C∞

0 (R,R+). (9.86)

Let M = R ⊂ F equipped with the canonical one-dimensional Lebesgue measure
and consider the set of jets

J :=
{

(0, u)
∣
∣
∣
∣ u =

2∑

i=1
ui∂i ∈ TF

with u1(t, 0) = 0 and ∂1u2(t, 0) ≤ 0 for all t ∈ R

}
. (9.87)

Let Ωt := (−∞, t) ⊂ M . Show that the corresponding surface-layer inner prod-
uct ( · , · )Ωt |J×J is positive semi-definite. Hint: Remember that jets are never
differentiated in expressions like ∇i,v∇j,u.
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