
“PAN_Driver” — 2025/8/21 — 12:22 — page 1 — #1

Political Analysis (2025), 0, 1–20
doi:10.1017/pan.2025.10013

ART ICLE

Decomposing Network Influence: Social Influence
Regression

Shahryar Minhas1 and Peter D. Hoff2

1Department of Political Science, Michigan State University, East Lansing, MI, USA; 2Department of Statistics, Duke
University, Durham, NC, USA

Corresponding author: Shahryar Minhas; Email: minhassh@msu.edu

(Received 27 August 2024; revised 9 April 2025; accepted 13 April 2025)

Abstract

Understanding network influence and its determinants are key challenges in political science and net-
work analysis. Traditional latent variable models position actors within a social space based on network
dependencies but often do not elucidate the underlying factors driving these interactions. To overcome this
limitation, we propose the social influence regression (SIR) model, an extension of vector autoregression
tailored for relational data that incorporates exogenous covariates into the estimation of influence patterns.
The SIR model captures influence dynamics via a pair of n×n matrices that quantify how the actions of
one actor affect the future actions of another.This framework not only provides a statistical mechanism for
explaining actor influence based on observable traits but also improves computational efficiency through
an iterative block coordinate descent method. We showcase the SIR model’s capabilities by applying it to
monthly conflict events between countries, using data from the Integrated Crisis Early Warning System
(ICEWS). Our findings demonstrate the SIR model’s ability to elucidate complex influence patterns within
networks by linking them to specific covariates. This paper’s main contributions are: (1) introducing a
model that explains third-order dependencies through exogenous covariates and (2) offering an efficient
estimation approach that scales effectively with large, complex networks.
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1. Motivation

Network influence shapes political outcomes across diverse domains, yet precisely measuring and
explaining these patterns of influence remains a challenge. We define network influence broadly as
the impact that one actor’s actions or decisions have on the behavior of others within a network,
whether through direct or indirect connections. Numerous studies have demonstrated the critical role
of network influences in explaining a wide range of political phenomena, from subnational policy
diffusion to interstate conflict dynamics (Beardsley et al. 2020; Cranmer, Desmarais, and Menninga
2012; Edgerton 2024; Nieman et al. 2021). A prominent approach tomeasuring influence relies on latent
variablemodels, which position actors in a social space based onmechanisms, such as transitivity and/or
stochastic equivalence (Edgerton 2024; Gade, Hafez, and Gabbay 2019; Huhe, Gallop, and Minhas
2021). However, while these models can effectively describe the overall structure of a network, they
frequently fall short in providing detailed explanations for the specific influence that actors exert on
one another. This limitation arises because these models typically attribute influence to broad network
features, without accounting for the exogenous factors that might drive such influence, leaving the
mechanisms behind these interactions underexplored and poorly understood.

©The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/
by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
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To address this limitation, we propose a novel approach: the social influence regression (SIR) model.
This model extends vector autoregression techniques to relational data, allowing us to capture the
influence of one actor on another over time while simultaneously incorporating exogenous covariates.
The SIR model operates by estimating a pair of n×n matrices that measure sender- and receiver-level
influence patterns, taking the form:

yi,j,t = n∑
i′=1

n∑
j′=1

ai,i′ bj,j′ xi′,j′,t−1 + ei,j,t,

where ai,i′ describes how actor i′’s past actions (at time t−1) help predict actor i’s actions at the current
time t.1 Similarly, bj,j′ indicates how prior actions directed at j′ shape the actions now directed at j. The
term xi′,j′,t−1 represents lagged predictors of the interaction, and ei,j,t is an error term.

Thekey innovation of the SIRmodel is its ability to explicitly account for the role of exogenous covari-
ates in shaping these influence patterns.While traditional models in this vein are effective at uncovering
patterns within the network, they often fall short of explaining these patterns in terms of observable
actor-level or dyad-level attributes. The SIR model bridges this gap by linking actor positioning in the
latent social space directly to exogenous covariates, thus providing amore interpretable and theoretically
grounded understanding of network dynamics.

Similarly, popular network approaches, such as ERGMs and SAOMs, while adept at capturing struc-
tural dependencies (e.g., transitivity and reciprocity), often leave open questions about the exogenous
drivers underlying evolving patterns of influence. In most ERGM specifications, for example, explana-
tory variables enter as global effects that apply uniformly across all nodes, rather than revealing how
these factors might differentially shape specific actors’ relational patterns. In contrast, SIR specifically
centers on identifying how measured actor- or dyad-level attributes explain who influences whom,
and to what extent. By embedding bilinear terms in a regression framework, it offers a means of
mapping exogenous covariates—such as alliances or proximity—onto dynamic, node-specific influence
processes, enabling researchers to investigate why certain actors wield disproportionate control or how
conflict may cluster among particular sets of states. SIR thus focuses on exogenous triggers that guide
or constrain influence, providing answers to a different set of questions about how external conditions
catalyze or moderate these relationships over time. This emphasis on covariate-driven explanation
broadens the analytic toolkit for network research and offers a direct avenue to see how observable
traits guide influence within the network.

We apply this approach to data from the Integrated Crisis Early Warning System (ICEWS) event
data project. Using the SIR model, we estimate the extent to which actors within the material conflict
network influence one another and, crucially, explore how characteristics such as alliances or economic
relationships explain the observed influence patterns. Our findings demonstrate that the SIR model
significantly improves out-of-sample performance compared to existing methods. This improvement
underscores the model’s effectiveness and offers new insights into the drivers of influence in interna-
tional relations. By providing a more precise and interpretable representation of network dynamics,
this work advances both the methodology of network analysis and the substantive understanding of
international conflict processes.

The rest of the paper proceeds as follows. In Section 2, we introduce the model in detail, describing
its theoretical foundations and estimation procedure. Section 3 presents our empirical application to
the ICEWS data, including a description of the data, model specification, and results. We pay particular
attention to how alliance relationships and trade flows influence conflict behavior. Section 4 provides a
performance comparison of the SIR model against alternative approaches, demonstrating its superior
out-of-sample predictive power. Finally, Section 5 concludes with a discussion of the implications of
our findings for international relations theory and suggestions for future research directions in network
analysis within political science.

1Here, (i,j) identifies the dyad of interest at time t, while (i′,j′) indexes every dyad from time t−1. This means (i,j) itself
is part of the summation, which allows yi,j,t to depend on its own lag yi,j,t−1.
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2. Methods

2.1. Bilinear Network Autoregression Model
The bilinear network autoregression model provides a framework for understanding how interactions
between actors in a network can bemodeled over time (Minhas, Hoff, andWard 2016). In this paper, we
extend this framework by presenting the SIRmodel, which not only offers a novel method to explain the
factors driving the influence parameters in the bilinear autoregressionmodel but also introduces amore
efficient estimation scheme. Our iterative block coordinate descent method dramatically accelerates the
estimation process compared to the Bayesian approach originally used in the bilinear autoregression
framework, making it much faster and more scalable for large networks.

Many studies examine the flows or linkages among actors, such as whether two countries are in
conflict with one another. These interactions are often represented as an n× n matrix, as shown in
Figure 1, where n denotes the total number of actors in the network. We label the rows by i and the
columns by j, with i,j ∈ {1,2, . . . ,n}. The off-diagonal elements yij denote the interaction that actor i
directs to actor j. In undirected data, yij may indicate, for example, whether i and j are allied. In directed
data, the rows represent senders and the columns represent receivers, so yij would indicate an action
sent from i to j. The diagonal elements yii are typically undefined, indicating that actors do not interact
with themselves. Although we will introduce time later (with t = 1, . . . ,T), this figure illustrates a single
snapshot of interactions at one point in time.

Figure 1 captures interactions between actors at a single point in time.However, interactions are often
observed over a series of time points. To represent longitudinal network data, we stack these adjacency
matrices into an array, as shown in Figure 2. Specifically, let Y = {Yt ∶ t = 1, . . . ,T} be a time series
of relational data, where T represents the number of time points. The resulting array has dimensions
n×n×T. The bilinear autoregression model is designed to estimate dependencies in such structures
by regressing the network at one time point on its lag. The relationship between these time points is
captured by a pair of matrices that reflect sender and receiver dependence patterns for each dyad.

Yt =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i . . . j . . . k
i NA . . . yji . . . yik⋮ ⋮ ⋱ ⋮ ⋱ ⋮
j yji . . . NA . . . yjk⋮ ⋮ ⋱ ⋮ ⋱ ⋮
k yki . . . ykj . . . NA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 1.Matrix representation of a dyadic, relational measure for one time point.

Figure 2. Array representation of a longitudinal dyadic measure. Darker shading indicates later time periods.
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A generalized bilinear autoregression model for Y is given by

E[yi,j,t] = g(μi,j,t),{μi,j,t} =Mt = AXtB⊺,{μi,j,t} = a⊺i Xtbj,

where xi,j,t is a function of the lagged outcome yi,j,t−1. For instance, we might define x̃i,j,t = log(yi,j,t−1+
1), indicating that each dyad’s interaction at time t−1 helps predict its behavior at time t.

In the application, we explore an example involving count data, where Y is a time series of matrices
defining count-based events between actors. For instance, we model yi,j,t ∼ Poisson(eμi,j,t), with x̃i,j,t =
log(yi,j,t−1 + 1). This framework is extendable to other distributions, as it is based on a generalized
bilinear model. The matrices A and B are n×n “influence parameters.” For any pair of actors (i,i′), the
element aii′ in A captures how predictive the actions of country i′ at time t − 1 are of the actions of
country i at time t. bjj′ in B captures how predictive the actions directed at country j′ at time t−1 are of
the actions directed toward country j at time t.

For example, in a bilinear autoregression model on conflict involving the United Kingdom (GBR)
and the United States of America (USA), if aGBR,USA is greater than zero, it implies that countries with
which the USA initiated or continued a conflict in period t−1 are likely to also face conflict from GBR
in period t. This suggests that GBR’s future actions are influenced by the USA, or more concretely, the
USA’s actions are predictive of GBR’s.

While the bilinear autoregression model provides a robust framework for capturing dependence
patterns within network data, it falls short in its ability to explain the underlying mechanisms driving
these influence patterns. Specifically, the model does not incorporate exogenous factors that may
account for why certain actors exert influence within the network, limiting its interpretability and
theoretical grounding. The SIR model, introduced in the next section, addresses this gap by incor-
porating exogenous covariates, offering a more detailed and interpretable understanding of what
drives the influence parameters, a and b, within the network. This innovation not only enhances the
explanatory power of the model but also enables greather theoretical insight into the dynamics of
network interactions.

2.2. SIR
TheSIRmodel explains influence in terms of covariates by specifying a linear regression for the influence
parameters aii′ and bjj′ . Specifically, to determine which characteristics of actor i or i′ are associated with
the influence parameter aii′ , we write

aii′ = α⊺wii′ and bjj′ = β⊺wjj′,

wherewii′ andwjj′ are vectors of nodal and dyadic covariates describing the relationship between actors i
and i′, and between j and j′, respectively.The parameter vectorsα andβ then capture how each covariate
contributes to sender- or receiver-level influence. In our application below, these covariates vary over
time, so the model extends naturally to

aii′,t = α⊺wii′,t and bjj′,t = β⊺wjj′,t,

allowing exogenous attributes to change at each time point and thus shape evolving influence dynamics.
The network autoregression model can be expressed as:

μi,j,t = n∑
i′=1

n∑
j′=1

ai,i′,t xi′,j′,t bj,j′,t = n∑
i′=1

n∑
j′=1
α⊺wi,i′,t xi′,j′,t w⊺j,j′,tβ

= α⊺( n∑
i′=1

n∑
j′=1

xi′,j′,t wi,i′,t w⊺j,j′,t)β = α⊺X̃i,j,t β.
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Typically, yi,j,t also has covariates. For example, we might want to condition the estimation of the
parameters on a lagged version of the dependent variable, yi,j,t−1, a measure of reciprocity, yj,i,t−1, and
other exogenous variables. In the case of estimating a model on material conflict between a pair of
countries, this might include other exogenous aspects such as the geographical distance between a pair
of countries. These additional exogeneous parameters can be accommodated with a model of the form:

μi,j,t = θ⊺zi,j,t +α⊺X̃ijtβ,

where zi,j,t is a vector of exogenous covariates (e.g., distance or alliance status) associated with dyad (i,j)
at time t, representing parameters that may have a direct effect on the dependent variable. The model
presented here is a type of low-rank matrix regression, where yij,t is regressed on Xij,t , which typically
encodes relational-level predictors or prior network interactions relevant to dyad (i,j) at time t. An
unconstrained (linear) regression would be expressed as

μij,t = θ⊺zij,t +⟨C,Xij,t⟩,
where C is an arbitrary p×pmatrix of regression coefficients to be estimated. In contrast, the regression
specified above restricts C to be rank one, expressible as C = αβ⊺. This follows from the identity⟨αβ⊺,Xij,t⟩ = α⊺Xij,tβ. Low-rank matrix regression models of this form have been considered by Li,
Kim, and Altman (2010) and Zhou, Li, and Zhu (2013).

2.3. Estimation
The estimation of the parameters {θ,α,β} in the bilinear network autoregression model is challenging
due to the bilinear nature of the model. To address this, we employ an iterative block coordinate descent
method, which alternately optimizes the parameters by treating one set of parameters as fixed while
optimizing over the others. Specifically, the estimation process capitalizes on the fact that for fixed β,
the model is linear in θ andα, and for fixedα, it is linear in θ and β.The conditional likelihood function
for each of these cases can thus be optimized using standard techniques for generalized linear models
(GLMs), specifically through iterative weighted least squares (IWLS).

The model can be expressed as follows:

μi,j,t = (θ⊺ α⊺)( zi,j,t
X̃ijtβ

)
= (θ⊺ β⊺)( zi,j,t

X̃⊺ijtα
)

where μi,j,t represents the expected value of the interaction between actors i and j at time t, zi,j,t denotes
the vector of covariates associated with the dyad (i,j) at time t, and X̃ijt is the matrix of explanatory
variables.

Given this setup, the parameters θ, α, and β are estimated through the following iterative block
coordinate descent procedure:

(1) Initialize: Start with an initial guess for β.
(2) Iterate:

(a) Optimize θ and α: With β fixed, estimate θ and α by maximizing the conditional log-
likelihood function using IWLS. This is equivalent to fitting a GLM with the response
variable y regressed on the design matrix X̃, which is constructed by concatenating zij,t and
Xij,tβ for each dyad (i,j) and time t.

(b) Optimize θ and β: With α fixed, estimate θ and β by maximizing the conditional log-
likelihood function using IWLS.This step is analogous to step (a) but with the designmatrix
X̃ constructed by concatenating zij,t and X⊺ij,tα.
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(3) Convergence: Repeat steps (a) and (b) until the parameters converge, i.e., until the changes in
the parameter estimates between iterations fall below a specified tolerance level.

The iterative process leverages the fact that for each subproblem, the estimation reduces to a series
of low-dimensional GLM optimizations. By solving these smaller problems iteratively, the overall
estimation problem, which is bilinear and thus non-trivial, becomes manageable.

To implement the above steps, consider the following detailed process for step 1 (optimizing θ andα):

(1) Construct the Design Matrix:
(a) Let x̃ij,t be a vector of length p+q obtained by concatenating zij,t and Xij,tβ. Here, p is the

length of the vector wii′ , and q is the length of zij,t .
(b) Construct the design matrix X̃ with dimensions n×(n− 1)×T by p+ q, where each row

corresponds to a specific dyad (i,j) at time t and is equal to x̃ij,t .
(2) Create the Response Vector:

(a) Let y be a vector of length n×(n−1)×T consisting of the entries ofY ={Y1, . . . ,YT}, ordered
to correspond with the rows of X̃.

(3) Perform Poisson Regression:
(a) Obtain theMLEs for the Poisson regression of y on X̃, which yields the conditional estimates

of θ and α.
(4) Repeat for θ and β:

(a) In step 2 of the iterative algorithm, repeat the process by constructing the design matrix X̃
with X⊺ij,tα replacing Xij,tβ in step 1(a).

The block coordinate descent method is particularly suited to this estimation problem because it
effectively decomposes a high-dimensional optimization problem into more manageable subproblems.
Each iteration refines the parameter estimates by focusing on a lower-dimensional subset of the
parameters, thereby reducing the complexity of the problem.

Convergence is assessed by monitoring the change in parameter estimates across iterations. The
process is typically stopped when the relative change in the log-likelihood or the parameter estimates
between successive iterations falls below a predetermined threshold.2

The iterative nature of the estimation process ensures that the resulting parameter estimates are as
close as possible to the true maximum likelihood estimates, given the bilinear structure of the model.
This method provides a robust and efficient means of estimating the parameters in complex network
models where direct optimization would be infeasible.

2.4. Inference
After estimating the parameters of the SIR model, we assess the precision of these estimates by
computing the standard errors.These standard errors are derived from the variance–covariance matrix,
which is obtained from the inverse of the Hessian matrix of the log-likelihood function. Computing the
standard errors, however, requires a consideration of the identifiability of the multiplicative parameters
α and β.

The log-likelihood function for the SIR model, assuming a Poisson distribution for the count data,
is given by

�(θ,α,β) =∑
i≠j
(yij,t log(μij,t)−μij,t),

2The choice of convergence criteria and initial values for β can impact the speed and stability of convergence, and these
factors are considered in the implementation of the algorithm.We provide an R package to implement these models, available
at https://github.com/netify-dev/sir.
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where μij,t = exp(ηij,t) and ηij,t = Z⊺ij,tθ+α⊺Xij,tβ represents the linear predictor incorporating both the
fixed effects Zij,t and the multiplicative terms involving the influence parameters α and β.

The parameters α and β are not inherently identifiable because the term α⊺Xβ is equivalent to(αc )⊺X (cβ) for any scalar c. To obtain meaningful derivative-based standard errors, we must first
establish an identifiable parameterization of the model. This can be achieved by imposing a scale
restriction on either α or β, or by fixing one element of either vector. The identifiable parameterization
employed here restricts the first element ofα to be one, ensuring that themodel parameters are uniquely
determined.

The Hessian matrix H(θ,α,β) is composed of the second-order partial derivatives of the log-
likelihood function with respect to the parameters θ, α, and β, considering the identifiable parame-
terization:

H(θ,α,β) = −∂2�(θ,α,β)
∂ψ2 ,

whereψ = (θ,α−1,β) represents the identifiable parameter vector, excluding the fixed element ofα. For
the identifiable parameterization, the Hessian matrix specifically consists of:

H(θ,α,β) = ⎛⎜⎝
Hθθ Hθα−1 Hθβ

Hα−1θ Hα−1α−1 Hα−1β

Hβθ Hβα−1 Hββ

⎞⎟⎠,
where each block is defined by the second derivatives:

Hθkθl = −∑
i≠j
(μij,tZij,kZij,l),

Hαii′αii′′ = −∑
i≠j
(μij,tXi′j,t−1βjj′Xi′′j,t−1βjj′),

Hβjj′βjj′′ = −∑
i≠j
(μij,tαii′Xi′j,t−1αii′Xi′j′′,t−1) .

Themixed partial derivatives are

Hθkαii′ = −∑
i≠j
(μij,tZij,kXi′j,t−1βjj′),

Hθkβjj′ = −∑
i≠j
(μij,tZij,kαii′Xi′j,t−1),

Hαii′βjj′ = −∑
i≠j
(μij,tXi′j,t−1Xi′j,t−1) .

These expressions involve the expected counts μij,t = exp(ηij,t), which depend on the current
estimates of θ, α, and β, and the design matrices Z and X.

Given the identifiable parameterization, the standard errors for the parameters are derived from the
inverse of the Hessian matrix:

Cov(θ̂,α̂,β̂) = −H−1(θ̂,α̂,β̂),
where the standard errors are the square roots of the diagonal elements of this variance–covariance
matrix:

SE(θ̂k) =√[Cov(θ̂,α̂,β̂)]
kk
.
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Figure 3. Visual summary of SIR model.

To obtain model-robust standard errors that are less sensitive to model misspecification, we employ
a sandwich variance estimate:

V̂ar(ψ̂) =H−1SH−1,
where S is the empirical information matrix, computed as

S =∑
i,j,t
(yi,j,t −μi,j,t) L̇ij,t L̇⊺ij,t,

and L̇ij,t denotes the gradient (derivative) of the log-likelihoodwith respect to the parameters for a single
observation yij,t . The robust standard errors are then given by

Robust SE(ψ̂k) =√[V̂ar(ψ̂)]
kk
.

This robust variance–covariance matrix accounts for the variability in the score functions across
observations, providing standard errors that are valid under a broader set of conditions.

Approximate standard errors and confidence intervals for the parameters are obtained from the
derivatives of the log-likelihood function at the MLE. The asymptotic validity of these standard errors
relies upon the assumption that the model is correctly specified. However, by using robust standard
errors derived from the sandwich estimator, we ensure that the inferences drawn from the model are
reliable even in the presence of potential model violations. In the application that follows in the next
section, we utilize model-robust standard errors.

Figure 3 provides a visual summary of this model. The array in the far left represents the network
being modeled, the design array in green represents explanatory variables used to directly model
linkages between dyads, and the θ vector includes the estimates of the effect those variables have on
the network. To capture dependence patterns, a logged and lagged version of dependent variable are
included, along with a design array containing a set of influence covariates, W; α and β are vectors
that capture parameter estimates for the effects of those influence covariates. By framing influence in
a bilinear regression structure, SIR moves beyond the “black box” of simply noting that actors who
resemble one another tend to form ties, and instead estimates how prior dyadic interactions (sender-
and receiver-level) affect current interactions. A benefit of this framework is that once estimated, linear
combinations of the influence regression parameters permit visualizing the resulting sender and receiver
dependence patterns in the network.
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3. Empirical Application

3.1. ICEWS Material Conflict
Anumber of projects have arisen seeking to create large data sets of dyadic events through the automatic
extraction of information from on-line news archives. This has made it empirically easier to study
interactions among countries, as well as among actors such as NGOs within countries.3

The two most well-known developments include the ICEWS event data project (Boschee et al.
2015a) and the Phoenix pipeline (OEDA 2016). For the purposes of this project, we focus on uti-
lizing the ICEWS database as it extends back farther in time. ICEWS draws from over 300 different
international and national focused publishers (Boschee et al. 2015b). The ICEWS event data are
based on a continuous monitoring of over 250 news sources and other open-source material cover-
ing 177 countries worldwide. ICEWS consists of several components, including a database of over
38 million multilingual news stories going back to 1990 and present to last week. The ICEWS data
along with extensive documentation have been made publicly available (with a one-year embargo) on
dataverse.org (Boschee et al. 2015a; Lautenschlager, Shellman, andWard 2015). To classify news stories
into socio-political topics, ICEWS relies on an augmented and expanded version of the CAMEO coding
scheme (Schrodt, Gerner, and Yilmaz 2009). The dictionaries, aggregations, ground truth data, and
actor and verb dictionaries are publicly available with a one-year lag at the ICEWS data repository
https://dataverse.harvard.edu/dataverse/icews. In addition, the event coder has been made available
publicly by the Office of the Director of National Intelligence.4 This event coder, known as ACCENT,
searches for the following information: a sender, a receiver, an action type, and a time stamp. The set
of action types covered include activities between dyads, such as “Occupy territory,” “Use conventional
force,” and “Impose embargo, boycott, or sanctions.” Then, the ontology provides rules through which
the parsed story is coded. An example of a coded news story fitting this last category is:

“President Bill Clinton has imposed sanctions on the Taliban religious faction that controls
Afghanistan for its support of suspected terrorist Osama bin Laden, the White House said Tuesday.”

In this example, the actor designated as sending the action is theUnited States and the actor receiving
it is Afghanistan. Dyadic measurements such as these are available for 249 countries, and the dataset is
updated regularly. Currently, data up until March 2016 has been made publicly available on the ICEWS
dataverse.

Our sample for this analysis focuses on monthly level interactions between countries in the inter-
national system from 2005 to 2012.5 To measure conflict from this database, we focus on what is often
referred to as the “material conflict” variable.This variable is taken from the “quad variable” framework
developed byDuval andThompson (1980). Schrodt and Yonamine (2013) defines the type of events that
get drawn into this category as those involving, “Physical acts of a conflictual nature, including armed
attacks, destruction of property, assassination, etc.”.

Figure 4 visualizes the material conflict variable as a network, specifically, we provide snapshots of
events between dyads along this relational dimension in January 2005 and December 2012. The size
of the nodes corresponds to how active countries are in the network, and each node is colored by its
geographic position. An edge between two nodes designates that at least one material conflict event has
taken place between that dyad, and arrows indicate the sender and receiver. Thicker edges indicate a
greater count of material conflict events between a dyad.

In both snapshots, the United States is highly involved in conflict events occurring in the system
both in 2005 and 2012. Additionally, other major powers, such as Russia and the Great Britain, are also

3All replication materials for the empirical analysis, including data and code, are available at https://github.com/
s7minhas/sir_paper.

4Details at http://bit.ly/2nS4nBU.
5The ICEWS data extends to 2016 but we end at 2012 due to temporal coverage constraints among other covariates that we

have incorporated into the model.
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Figure 4. Network depiction of ICEWS Material Conflict events for January 2005 (top) and December 2012 (bottom).

frequently involved. Some notable changes are visible in the network. While in 2005 Iraq was highly
involved inmaterial conflict events by 2012 Syria becamemore active. Last, there is a significant amount
of clustering by geography in this network. Conflict involving Latin American countries is relatively
infrequent but when it does occur, it seems to primarily involve countries within the region.

3.2. Parameters With Direct Effect
We first parameterize the model by identifying variables that we hypothesize have a direct impact on
material conflict patterns between countries.There are a number of the standard explanations provided
in the conflict literature. Inertia and reprocity top the list. Conflict in period t is affected by what
occurred previously in period t− 1. This is autoregressive dependence. The expectation is that a dyad
engaged in conflict in the previous period is more likely to be engaged in conflict in the next.

A lagged reciprocity parameter embodies the common argument that if country j receives conflict
from i in period t, that in period t + 1 j may retaliate by sending conflict to i. The argument that
reciprocity is likely to occur in conflict networks is certainly not novel, and has its roots in well known
theories involving cooperation and conflict between states (Choucri and North 1972; Goldstein 1992;
Richardson 1960).
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Anumber of exogenous explanations have often been used to explain conflicts between dyads.One of
the most common relates to the role of geography. Apart from conflict involving major powers, conflict
between countries that are geographically proximate is typical (Bremer 1992; Carter andGoemans 2011;
Diehl and Goertz 2000). Figure 4 demonstrates evidence of regional conflict patterns, as indicated by
the clustering of similarly colored nodes, which represent countries within the same geographic region.
This clustering suggests that conflicts are more likely to occur between countries in the same region.We
use the minimum, logged distance between the dyads to operationalize this explanation.6

One of the most well-developed arguments linking conflict between dyads to domestic institutions
involves the idea of the democratic peace. The specific vein of this argument that has found the most
support is the idea that democracies are unlikely to go to war with one another (Maoz and Abdolali
1989; Russett and Oneal 2001; Small and David Singer 1976). Arguments for why democracies may
have more peaceful relations between themselves range from how they share certain norms that make
them less likely to engage in conflict to others hypothesizing that democratic leaders are better able to
demonstrate resolve thus reducing conflict resulting from incomplete information (Fearon 1995; Maoz
and Russett 1993). To operationalize this argument, we construct a binary indicator that is one when
both countries in the dyad are democratic.7

We also control for whether or not a pair of countries are allied to one another using data from
the Correlates of War (Gibler and Sarkees 2004).8 Typically, one would expect that states allied to one
another are less likely to engage in conflict. Another common control in the conflict literature is the level
of trade between a pair of countries. We estimate trade flows between countries using the International
Monetary Fund (IMF) Direction of Trade Statistics (International Monetary Fund 2012). Incorporating
the level of trade between countries speaks to a long debate on the role that economic interdependencies
may play in mitigating the risk of conflict between states (Barbieri 1996; Gartzke, Li, and Boehmer
2001).9

The last set of measures we use to predict dyadic conflict are derived from another ICEWS quad
variable. Verbal cooperation counts the occurrence of statements expressing a desire to cooperate from
one country to another.10 We include a lagged and reciprocal version of this variable to our specification.
This monthly level measure of cooperation between states provides us with a thermometer measure of
the relations between states that is measured at a low level of temporal aggregation.

3.3. Parameters Defining Influence Patterns
We next add covariates to the model to explain the influence patterns observed in the network. The
SIR model introduces the ability to explain these patterns using an underlying regression model, which
is jointly estimated with the parameters modeling yij through the iterative procedure described earlier.
Using the SIR model, we can answer the following types of questions:

• Do the actions of one country at time t−1 influence the actions directed toward another country
at time t within the network, as reflected in the influence parameters aii′ and bjj′?

• Which factors explain the network effects embedded in the influence parameters aii′ and bjj′ ,
determining the impact of one country’s actions at time t − 1 on the subsequent actions toward
another country at time t?

6Minimum distance estimation was conducted using the CShapes package (Weidmann, Kuse, and Gleditsch 2010).
7We define a country as democratic if its polity score is greater than or equal to seven according to the Polity IV project

(Marshall and Jaggers 2002).
8We consider a pair of countries allied to one another if they share a mutual defense treaty, neutrality pact, or entente.
9The extant literature has employed a variety of parameterizations to test this hypothesis. At times, a measure of trade

dependence is calculated and at others just a simple measure of the trade flows between a pair of countries. We show results
for the latter parameterization but results are consistent if we utilize a measure of trade dependence.

10An example of a verbal cooperation event sent from Turkey to Portugal is the following: “Portugal will support Turkey’s
efforts to become a full member of the European Community, Portuguese President Mario Soares said on Tuesday.”
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Table 1. Model specification summary for SIR.

Zijt

Material Conflictij,t−1 Allyij,t−1

Material Conflictji,t−1 Log(Trade)ij,t−1

Distanceij,t−1 Verbal Cooperationij,t−1

Joint Democracyij,t−1 Verbal Cooperationji,t−1

Wijt

Distanceij,t−1

Allyij,t−1

Log(Trade)ij,t−1

Verbal Cooperationij,t−1

Note: Top row shows covariates used to estimate direct effects and bottom sender and receiver
influence.

The first covariate added to the influence specification is simply a control for the distance between
countries.11 A negative effect for the distance parameter in the case of sender influence would indicate
that countries are likely to send conflictual actions to the same countries that their neighbors are sending
conflictual actions too. In the case of receiver influence, a negative effect would indicate that countries
are likely to be targeted by the same set of countries that their neighbors are receiving conflictual
interactions from.

An argument that has received continuing attention in the political science literature is the role that
alliances play in either mitigating or exacerbating the level of conflict in the international system. Some
have argued that in the case of a conflict, a country’s allies will join in to honor their commitments thus
increasing the risks for a multiparty interstate conflict (Leeds 2003; Snyder 1984; Vasquez and Rundlett
2016).Wewould find evidence for this argument if the ally parameter in the case of sender influence was
positive, as that would indicate that countries are more likely to initiate or increase the level of conflict
with countries that their allies are in conflict with.

Thenext covariate we consider is the volume of trade between countries. Trade relationships are often
seen as a stabilizing factor in international relations, under the premise that economic interdependence
reduces the likelihood of conflict by raising the costs of disruption (Keohane and Nye 1977; Oneal
and Russett 1999). In the context of sender influence, a negative effect for the trade parameter would
suggest that countries are less likely to initiate conflict with the same targets as their trading partners,
supporting the idea that trade can act as a deterrent to conflict. Conversely, in the case of receiver
influence, a positive effect would indicate that countries receiving conflict from others may also be the
targets of those same countries’ trading partners, potentially due to tensions arising from competitive
trade dynamics.

The final covariate we examine is the level of verbal cooperation between countries, as indicated
by diplomatic communications or public statements of support. Verbal cooperation can signal strong
diplomatic ties or shared interests, potentially influencing patterns of conflict and cooperation in the
network (Dorussen and Ward 2008). In the case of sender influence, a positive effect for the verbal
cooperation parameter would imply that countries are more likely to align their conflictual actions with
those of countries with whom they have a high degree of verbal cooperation, possibly as a show of
solidarity or shared strategy. For receiver influence, a positive effect would suggest that countries facing
conflict from one statemay also find themselves targeted by that state’s verbal allies, indicating a broader
alignment in the international system.

Table 1 summarizes each of the covariates used to estimate the SIR on the material conflict variable
from ICEWS.

11This is operationalized similarly as above using data from CShapes.
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Figure 5. Left-most plot shows results for thedirect effect parameters and the top-right plot represents results for the sender influence,

and bottom-right receiver influence parameters. Points in each of the plots represent the average effect for the parameter and the

width the90%and95%confidence intervals. Dark shadesof blueand red indicate that theparameter is significant at a 95%confidence

interval and lighter shades a 90% confidence interval. Parameters that are not significant are shaded in gray.

3.4. Parameter Estimates
Figure 5 depicts the parameter estimates using a set of coefficient plots.12 On the left, we summarize the
estimates of the direct effect parameters. As expected, greater levels of conflict between a dyad in the last
period are associated with greater levels of conflict in the present. This speaks to a finding common in
the conflict literature regarding the persistence of conflicts between dyads (Brandt et al. 2000). We also
find evidence that countries retaliate to conflict aggressively, though this effect is imprecisely measured.
In terms of our exogenous parameters, the level of conflict between a dyad is negatively associated with
the distance between them, a finding that aligns well with the extant literature.

Additionally, as is typical in the extant literature, we find that jointly democratic dyads are unlikely
to engage in conflict with one another. Specifically, a coefficient of −0.53 here indicates that, holding
other variables constant, dyads composed of two democracies experience about a 41% lower expected
level of conflict compared to dyads that are not jointly democractic.13 Surprisingly, however, the level of

12Convergence diagnostics are presented in Figure A1 in the Supplementary Material.
13For joint democracy, a coefficient of −0.53 in a log-linked model (e.g., Poisson) implies that the expected count is

multiplied by exp(−0.53) ≈ 0.59. Put differently, the expected outcome is roughly 59% of what it would be absent this effect,
representing a 1−0.59= 0.41 (or 41%) reduction. See the SupplementaryMaterial for additional discussion onhow to interpret
the exogenous covariate coefficients in the SIR model.
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trade between countries is positively associated with the level of conflict. The divergence of this finding
with some of the extant literature may be a result of a variety of factors, such as our use of a measure of
conflict that has much greater variance than the militarized interstate disputes measurement from the
Correlates of War dataset. At the same time, the effect is relatively small: moving from 0 to 16.49 units
of logged trade (the interquartile range) increases predicted conflict by only about 22%.14

The right-most plots focuses on sender (top) and receiver (bottom) influence patterns. Notably, the
alliance sender influence parameter has a positive effect, indicating that countries tend to initiate greater
levels of conflict with countries that their allies were fighting in the previous period. This finding is in
line with arguments in the extant literature about the role that alliance relationships may play in leading
to more conflict in the international system (Leeds 2005; Siverson and King 1980).

Additionally, countries are likely to send conflict to those with whom their verbal cooperation
partners are initiating or increasing conflict with.This finding is interesting as it highlights that countries
making cooperative statements regarding a particular country i, actually go beyond those statements in
later periods to supporting i by initiating conflict with those that i was in conflict with. Trade flows, on
the other hand, are associated with having a negative effect, implying that countries are not likely, and
in fact somewhat unlikely, to follow their trading partners into conflict.

Receiver influence patterns are similarly determined. Trade flows and verbal cooperation have
similar effects, though the interpretation here for trade is that countries are unlikely to be targeted by
those that target their trading partners. Interestingly, the distance effect on the receiver influence side is
more precisely measured, implying that geographically proximate countries are more likely to receive
conflict from a similar set of countries.

3.5. Visualizing Dependence Patterns
Based on the sender and receiver influence parameter estimates, Figure 6 provides a visual summary of
the type of dependence patterns that are implied in the context of the material conflict model estimated
in the previous section.

The linear combination of our influence parameter estimates (α), and the design array containing
sender influence variables (wijt) are used to visualize the sender dependence patterns between a pair of
countries (aijt): aijt =α⊺wijt .The resulting sender and receiver dependence pattern are shown in Figure 6
for June 2007.15 For the visualization on the left [right], edges between countries indicate that greater
likelihood to send [receive] conflictual events to [from] the same countries. Countries are colored by
their relative geographic position and node size corresponds to the number of influence relationships
the country shares.

Since these dependence patterns are estimated directly from the model results that are presented
in Figure 5, the patterns implied by that model are manifest in these visualizations. One of the more
notable findings from the sender influence model is the role that alliance relationships play, and this
effect is striking. For example, the USA shares sender influence ties with a number ofWestern European
countries, such as Germany and the United Kingdom, the USA also is more likely to send conflict to
actors that Australia, South Korea, and Japan have engaged in material conflict with, and many of these
countries are likely to do the same.

A predictor of receiver influence patterns is the distance between countries. Countries are more
likely to be targeted by the same set of countries as their neighbors. This pattern manifests itself in
the bottom visualization of Figure 6, where we find clumps of countries, such as Iraq, Lebanon, and
Jordan, clustering together.

14In the Poisson specification, we transform trade by log(Trade+ 1). The difference from 0 to 16.49 in the original scale
corresponds to log(16.49+1)≈ 2.86.Multiplying 2.86 by the estimated coefficient, 0.0695, yields 0.20, and taking exp(0.20)≈
1.22 indicates roughly a 22% rise in the predicted conflict count.

15A lengthier table of visualizations for additional time periods is shown in Figure A2 of the Supplementary Material.
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Figure 6.Network visualization of influence patterns as estimated by the SIRmodel for June 2007. Nodes are colored by their relative

geographic position and are sized by the number of influence relationships that they receive and send.

3.6. Performance Comparison
A common and important argument for employing a network-based approach is that it aids in better
accounting for the data generating process underlying relational data structures. Thus, in this case,
the network approach should actually better predict conflict in an out-of sample test.16 To put the
performance of this model in context, we compare it to a standard GLM that does not account for

16For more details on how one can develop predictions from the SIR model, see the Supplementary Material.
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Figure 7. Performance comparison based on randomly excluding time slices from the material conflict array. Colors designate the

differentmodels, and the average score across the 10-fold cross validation is designated by a circle and the range by a horizontal line.

dependence patterns in the network, but is similarly parameterized. Additionally, given the recent
interest in machine learning methods as tools for prediction within the social sciences, we compare
the performance against a generalized boosted model (GBM).

Boosting methods have become a popular approach in the machine learning to ensemble over
decision tree models in a sequential manner. At each iteration, a new model is trained with respect
to the error of the ensemble at that point. Friedman (2001) greatly extended the learning procedure
underlying boosting algorithms, by modifying the approach to choose newmodels at every iteration so
that they would be maximally correlated with the negative gradient of some loss function relevant to
the ensemble. In the case of a squared-error loss function, this would correspond to sequentially fitting
the residuals. We use a generalized version of this model developed by Ridgeway (2012) that extends
this framework to the estimation of a variety of distribution types—in our case, a Poisson regression
model. In general, these types of models have been shown to give substantial predictive advantage over
alternative methods, such as GLM, and should provide a useful point of comparison.17

To compare these approaches, we first utilize a cross-validation procedure. This involves first
randomly dividing T time points in our relational array into k = 10 sets and within each set we
set randomly exclude five time slices from our material conflict array. We then run our models and
predict the five missing slices from the estimated parameters. Proper scoring rules are used to compare
predictions. Scoring rules evaluate forecasts through the assignment of a numerical score based on
the predictive distribution and on the actual value of the dependent variable. Czado, Gneiting, and

17The Rgbm package on CRAN implements this estimator (Ridgeway 2012).
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Figure 8. Performance comparison based on randomly excluding the last two to five periods of thematerial conflict array. Colors and

shapes designate the different models, and the score when excluding x number of periods is shown.

Held (2009) discuss a number of such rules that can be used for count data: Brier, Dawid-Sebastiani,
Logarithmic, and Spherical scores.18 For each of these rules, lower values on the metric indicate better
performance.

Figure 7 illustrates differences in the performance between the social influence model, GLM, and
GBM across the scoring rules mentioned above and a more standard metric, the RMSE. In the case of
each of these metrics, we find GLM performs the worst and that the social influence model performs
the best.

We also assess the predictive accuracy of our models in a forecasting context. We perform such an
exercise as well by dividing up our sample into a training and test set, where the test set corresponds
to the last x periods in the data that we have available. We vary x from 2 to 5. For instance, when x = 5
we are leaving the last five years of data for validation. Results for this analysis are shown in Figure 8
and there again we find that the social influence model has better out of sample predictive performance
than the alternatives we test here.

4. Conclusion

In this paper, we introduced the SIR model, which represents an important extension of the bilinear
network autoregression framework, designed to more effectively capture and explain influence dynam-
ics within networks. The SIR model addresses a key limitation of existing models by incorporating

18Details are provided in the Supplementary Material.
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exogenous covariates into the estimation process, allowing us to directly model and interpret the factors
driving influence within a network. This approach not only enhances the explanatory power of the
model but also provides a more rigorous and theoretically grounded framework for understanding
complex relational data. A key contribution of ourwork is the development of amore efficient estimation
scheme for the SIR model. Using an iterative block coordinate descent method, we enhance the model’s
computational feasibility, especially for large-scale networks.

The application of the SIRmodel to the study of material conflict between countries provided several
important insights that underscore the model’s practical utility. By incorporating covariates, such as
geographic proximity, alliances, trade, and verbal cooperation, the SIRmodel revealed nuanced patterns
of influence within the international conflict network. For example, the model identified that countries
tend to initiate conflicts against the same targets as their allies, a finding that aligns with established
theories in international relations about the role of alliances in escalating conflicts. Additionally, the
negative influence of trade flows on conflict initiation suggested that countries are less likely to follow
their trading partners into conflict, highlighting the stabilizing effect of economic interdependence.
Verbal cooperation was shown to have a reinforcing effect, where countries that publicly support each
other are more likely to align their conflictual actions. These findings not only validate the robustness
of the SIR model but also demonstrate its ability to generate new theoretical and empirical insights into
the dynamics of international conflict, providing a clearer understanding of the factors driving influence
within complex networks.

Looking forward, the SIRmodel opens up numerous avenues for future research, both in terms of its
applications andmethodological developments.Themodel’s flexibility allows it to be adapted to various
network contexts beyond international conflict. Methodologically, there are several promising direc-
tions for refinement and extension. One area for development is the further optimization of the block
coordinate descent method, particularly for handling even larger and more complex networks. This
could involve parallelizing the estimation process or incorporating advanced optimization techniques,
such as stochastic gradient descent to improve scalability and convergence speed.
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