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Abstract
I study the optimal design ofmonetary incentives in experimentswhere incentives are a treatment variable. I
propose a novel framework called the BudgetMinimization problem inwhich a researcher chooses the level
of incentives that allows her to detect a predicted treatment effect while minimizing her expected budget.
The Budget Minimization problem builds upon the power analysis and structural modeling. It extends the
standard optimal design approach by explicitly incorporating the budget as a part of the objective function.
I prove theoretically that the problem has an interior solution under fairly mild conditions. To showcase
the practical applications of the BudgetMinimization problem, I provide examples of its implementation in
several well-known experiments. I also offer a practical guide to assist researchers in utilizing the proposed
framework. The Budget Minimization problem contributes to the experimental economists’ toolkit for an
optimal design, however, it also challenges some conventional design recommendations.
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1. Introduction
Incentives are a cornerstone of experimental economics. The two most common methodological
questions about the use of incentives are whether subjects should be paid and how subjects should
be paid. Over the years, the field has accumulated a voluminous empirical literature in an attempt to
inform the answers to these questions.1 The theoretical work, on the other hand, has been relatively
scarce. Following the early contributions to the question of whether to pay subjects (Smith, 1976;
1982), the recent literature has mostly been occupied with the question of how to pay subjects, or
incentive compatibility of different payoff mechanisms (Cox et al., 2014; Harrison and Swarthout,
2014; Azrieli et al., 2018, 2020; Li, 2021). However, there is another question about incentives that so
far has received no theoretical treatment, which is how much to pay subjects, or what should be the
level of incentives. I attempt to fill in this gap by offering three main contributions. First, I use a sim-
ple utility-based framework to formalize the question about the optimal level of incentives. Second,
I show theoretically that this question is well known under fairly mild conditions. Third, I illustrate
my approach using the data from several well-known experiments and offer a practical guide for
implementing it.

1For reviews, see Camerer and Hogarth 1999, Hertwig and Ortmann 2001, Gneezy et al. 2011, Cox and Sadiraj (2019), and
Voslinsky and Azar 2021. A related strand of literature examines the hypothetical bias in economics (Harrison, 2024; Harrison
and Rutström, 2008a; Harrison, 2007; Harrison, 2006; Nape et al., 2003; Cummings et al., 1997; Cummings et al., 1995).
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The current approach to howmuch to pay subjects is typically ad hoc. It usually amounts to setting
incentives at some conventional level based on past experiments, a target hourly wage, or lab policies.
None of these conventions, however, are standard within the field (Cloos et al., 2023). To put some
structure on the problem of choosing an optimal level of incentives, I focus on an important case
when incentives are a treatment variable.

Incentives are among the most commonly used treatment variables in economic experiments,
both field and lab. Researchers have been studying the effect of incentives on educational outcomes,
prosocial behavior, and lifestyle habits (Gneezy et al., 2011), on dishonest behavior (Fischbacher &
Föllmi-Heusi, 2013; Gibson et al., 2013; Balasubramanian et al., 2017) and distributional choices (El
Harbi et al., 2015), on behavior in social dilemmas (Amir et al., 2012; Rousu et al., 2015; Yamagishi
et al., 2016; Mengel, 2017; Leibbrandt and Lynham, 2018) and coordination games (Parravano and
Poulsen, 2015), on behavior in dictator (Schier et al., 2016; Larney et al., 2019) and trust (Thielmann
et al., 2016) games, on behavior in psychological games (Bellemare et al., 2018) and generic normal-
form games (Pulford et al., 2018), on risk preferences (Holt and Laury, 2002), auctions (Smith
and Walker, 1993), preference reversals (Grether and Plott, 1979; Cox and Grether, 1996), finance
experiments (Kleinlercher and Stöckl, 2018), and performance on various tasks (Araujo et al., 2016;
Brañas-Garza et al., 2019; Enke et al., 2023; Alekseev, 2022).

To fix the terms, by (monetary) incentives I understand monetary payments to subjects that are
expected to affect their behavior or outcomes. A classic example of that would be experiments where
subjects receive a piece rate for completing a real-effort task and the question is whether a higher piece
rate induces more effort. My framework also applies to cases when money is a treatment variable, but
not an incentive. An example of that would be an experiment that studies the effect of money on
happiness and the question is whether a higher monetary transfer leads to greater happiness.

A key factor that enables studying the optimal level of incentives is that researchers are often inter-
ested in testing qualitative hypotheses. A typical research question is whether a treatment variable
affects subjects’ behavior while the specific values of the treatment variable are nuisance parameters.
For example, a researcher studying performance pay ismore likely to be interested inwhether a higher
piece rate increases effort rather than whether a specific 2-cent bump in a piece rate increases effort.2
The qualitative nature of hypotheses creates a degree of freedom that I exploit to pick an “optimal,” in
a sense precisely defined below, level of incentives.

I introduce a Budget Minimization problem in which a researcher chooses the level of monetary
incentives that allows her to find a predicted treatment effect for some conventional levels of signif-
icance and power while minimizing the total expected budget. The Budget Minimization problem
follows from a researcher’s utility function and relies on two key ingredients. First, it relies on the
power analysis to compute the required sample size for a predicted effect size. Second, it relies on a
model (structural or reduced-form) to predict the outcomes in the treatment and control groups for
a given level of incentives. The outcome of the Budget Minimization problem is the optimal level of
incentives in the treatment group relative to the control, a variable I refer to as the treatment strength.
The treatment strength pins down the required sample size, expected payoffs per subject, and the
total expected budget.

The key tension in the Budget Minimization problem is between a required sample size and
expected per-subject payoffs. On the one hand, increasing incentives leads to a higher expected effect
size, which in turn drives down the required sample size and hence the expected total budget (the
sample-size effect). On the other hand, increasing incentives leads to higher expected per-subject
payoffs, which, in turn, lead to a higher expected total budget (the payoff effect). My main theoreti-
cal result is that, under fairly mild assumptions, the Budget Minimization problem has a non-trivial
solution where the two effects are in the exact balance. I illustrate the properties of a solution using

2Setting the appropriate level of a piece rate in performance pay experiments is notoriously difficult (Lazear, 2018; Carpenter
and Huet-Vaughn, 2019).
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existing experiments, sketch a practical guide for setting up the problem and solving it for one’s own
design, and provide a sample R code (see Appendix C).

My main contribution is to offer a disciplined economic approach to the problem of choosing
an optimal level of monetary incentives in experiments where incentives are a treatment variable.
Experimental budgets are rarely explicitly discussed by researchers. Money, however, is a scarce
resource, which makes it natural to ask what is an optimal way to use it. This question is of particular
concern to junior scholars and PhD students, whose budgets are usually quite small while the pressure
to produce significant results is high, as well as to researchers running expensive large-scale interven-
tions in the field. This question is relevant both for new experiments3 and replications.4 Finally, the
calculations from the Budget Minimization problem can serve as a convincing justification of the
grant money requested from a funding agency.

The Budget Minimization problem is an alternative approach to an optimal experimental design
that expands experimental economists’ toolkit. The main point of departure from the traditional
approach to an optimal design is the explicit inclusion of budget considerations. As an alterna-
tive approach, the Budget Minimization problem challenges some received wisdom in experimental
design. For example, a common recommendation is to follow the maximum separation principle: to
set the values of a treatment variable as far apart as possible to ensure amaximum separation between
predictions or a maximum variation in the treatment (Friedman and Sunder, 1994; List et al., 2011;
Holt, 2019).5 My approach shows that it may not be optimal to do this if separating the treatment val-
ues as much as possible leads to prohibitively high payoffs. Maximizing treatment strength, in other
words, is not equivalent to maximizing a researcher’s utility.

2. Related literature
Thepresent work ismost closely connected to the literature that exploits structural modeling to guide
experimental design. This literature shows how to use theoretical models to optimize the design of
an experiment, typically in terms of statistical power or precision of parameter estimates. Harrison
1989 brought the connection between incentives and power analysis into experimental discourse and
showed that subjects’ deviations from optimal behavior in auctions lead to small utility losses (a flat-
maximumproblem).6 Harrison (1994) extends the flat-maximumcritique to experimental tests of the
expected utility theory. Moffatt (2007) uses results from the statistical optimal experimental design
literature and previous estimates from structural models to optimize (in the sense of maximizing
the precision of parameter estimates) experiments that elicit willingness to pay and risk preferences.
Rutström and Wilcox 2009 use two different structural models of learning along with previous esti-
mates of their structural parameters to optimize their experiment. Woods (2020) proposes the use of
structural (quantal response)model simulations to improve the accuracy of an ex-ante power analysis
and to guide optimal design decisions. Monroe 2020 uses simulations to conduct the power analyses
of two sets of binary lottery choices designed to classify subjects according to one of two risk prefer-
ence models. The approach I take is similar to these works in that I also advocate for, and show the
benefits of, using theoretical models to guide experimental design. The main difference is that I use
a different objective function in the analysis. While the previous work, following the classic optimal
experimental design literature (Ford et al., 2018; Atkinson, 2018; Fedorov, 1972; Silvey, 1980), focuses
mainly on the statistical properties of a design, I use experimental budget as an objective function.My

3Even if a study is not a replication per se, it is common to replicate existing findings to establish a baseline before introducing
a new treatment.

4An important qualification is that the replication will necessarily be conceptual, rather than direct (Camerer et al., 2019),
in this case since the Budget Minimization problem will likely yield treatment values that are different from the ones in an
original study.

5While this is true in many cases, there are some important exceptions, such as non-linear models (Moffatt, 2015).
6Also see the subsequent discussion in Cox et al. 1992, Friedman 1992, Merlo and Schotter 1992, Harrison 1992.

https://doi.org/10.1017/esa.2025.10019 Published online by Cambridge University Press

https://doi.org/10.1017/esa.2025.10019


4 Aleksandr Alekseev

approach calls for balancing statistical considerations (required sample size) with cost considerations
(expected payoff per subject) to find an optimal level of incentives.

This work also contributes to a series of papers that provide tools and guidance for conducting
economic experiments. These papers offer general statistical considerations for running an exper-
iment. List et al. 2011 is a concise yet comprehensive guide to experimental design covering the
issues of randomization and optimal sample arrangement. Bellemare et al. 2016 develop a statisti-
cal package to simulate the power of experiments for parametric and nonparametric statistical tests,
different estimationmethods, and treatment variables. Vasilaky and Brock 2020 focus on power anal-
ysis and provide code examples and tools needed in power calculations.The present work is similar to
these papers in that it is also motivated by statistical considerations for running an experiment. The
main differences are that I focus on a special, although important, class of experiments in which the
treatment variable is monetary incentives and that I supplement statistical considerations with cost
considerations in a novel way. Both List et al. 2011 and Bellemare et al. 2016 feature cost and budget
considerations: List et al. 2011 provide guidance for sample arrangement in case the sampling costs
differ by treatment and Bellemare et al. 2016’s package can predict the maximal power an experiment
can reach given a specified budget constraint. The present work differs from these papers in that
it provides empirical guidance on, and theoretical justification for, how a researcher can optimally
choose a level of incentives, in case they are a treatment variable, to minimize the budget.

More broadly, this work connects to the literature that studies the use of incentives in economic
experiments. This literature studies the theoretical properties of common payoff mechanisms or
proposes new payoff mechanisms that improve upon the existing ones. Cox et al. 2014 discuss the
theoretical properties of popular payoff mechanisms, explain which mechanisms are incentive com-
patible for which theories, and empirically show that different payoff mechanisms significantly affect
subjects’ revealed risk preferences. Harrison and Swarthout 2014 empirically show that risk prefer-
ence models that assume violations of the independence axiom cannot be reliably estimated when an
experiment assumes the validity of this axiom via the random lottery incentive mechanism. Azrieli
et al. 2018, Azrieli et al. 2020 introduce a theoretical framework for analyzing the incentive com-
patibility of different payoff mechanisms and identify assumptions needed to guarantee the incentive
compatibility of the randomproblem selectionmechanism and paying for every period. Li 2021 iden-
tifies necessary and sufficient conditions for a payoff mechanism to be incentive-compatible for all
risk preferencemodelswith complete and transitive preferences and proves that her newpayoffmech-
anism, the Accumulative Best Choice, is the only incentive compatible mechanism in a multiple-task
setting. Johnson et al. 2021 introduce the Prince payoffmechanism, which they show to be a transpar-
ent and incentive-compatible method for measuring preferences that improves upon popular payoff
mechanisms, such as the random incentivemechanism.Themain difference of the present work from
these papers is that it studies theoretically the optimal level of incentives, or howmuch to pay subjects,
in case when incentives are a treatment variable.

3. Budget minimization problem
Consider a researcher planning a budget for an experiment. The expected total experimental bud-
get, b, depends on the number of subjects in the experiment and expected per-subject payoffs. The
researcher plans to use a standard between-subject designwith two groups: control (C) and treatment
(T). Let G = {C,T} denote the set of experimental groups and g ∈ G be its generic element. For
simplicity, assume that the researcher plans to use an equal number of participants, n, in each group.7

7Using an equal number of participants in the treatment and control groups is optimal when the variances of outcomes are
equal in the two groups. When the variances are unequal it is optimal to allocate different numbers of participants to each
group. For example, for a t-test, the ratio of the participants in each group is equal to the ratio of the standard deviations in
these groups (List et al., 2011). There could be other reasons for choosing an unequal allocation between the groups, such as
different sampling costs. In all of these cases, one could simply fix n to be the number of participants in the control group and
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The researcher uses monetary incentives as single treatment variable. Depending on the nature of the
choice variable in the experiment, the researcher could use, for example, the difference in means or
the difference in proportions as the effect of interest.

Let τg denote the value of the treatment variable in group g. I denote the difference between the
values of the treatment variable in the treatment and control groups as 𝜏 ≡ 𝜏T −𝜏C, 𝜏 ∈ ℝ+ and refer
to it as the treatment strength. In some cases it can be of interest to have the treatment strength as a
multiplicative factor rather than a difference. The above definition of the treatment strength accom-
modates these cases by defining the values of the treatment variable on a logarithmic scale. If one
defines 𝜏 ≡ ln ̃𝜏 , 𝜏g ≡ ln ̃𝜏g , then ̃𝜏 = exp(𝜏) = exp(𝜏T)/ exp(𝜏C) is the multiplicative treatment
strength. I assume that the treatment strength is the only lever the researcher uses to optimize the
budget.8

Theresearcher uses the power analysis to determine the required number of subjects in each group.
This number will depend on the statistical parameters (significance α and power 1 − 𝛽) and on the
expected outcomes in each group, µg.The researcher sets significance and power at some conventional
levels.9 The expected outcomes can be, for example, themean choices in each group in case the choice
variable is continuous or the proportions of subjects choosing a given alternative in case the outcome
is discrete.10 The expected effect size is then typically a difference in expected outcomes between the
treatment and control groups, 𝜇T − 𝜇C, which depends on, although not identical to, the chosen
treatment strength τ. To predict the expected effect size, the researcher uses a model parameterized
by a vector of parameters γ.Themodel can be a structural one, in which case the vector of parameters
can include, for example, risk aversion, time preferences parameters, social preferences parameters,
the curvature of the cost-of-effort function, etc. Alternatively, the model can be a reduced-form one,
in which case the parameters will be regression coefficients. The researcher takes the parameters as
given based on prior estimates. The expected outcomes will then depend on the treatment strength,
behavioral parameters, as well as any other potential parameters of the experiment lumped in a vector
δ: 𝜇g = 𝜇g(𝜏 ∣ 𝛾, 𝛿). Vector δ includes things that are not explicitlymodeled but that can nevertheless
affect behavior, for example, subject pool, number of rounds, framing of the instructions, whether a
study is done in the lab or in the field, etc. To make everything a function of τ only, I use a convention
that the level of incentives in the control group, τC, is included in vector δ. To summarize, the required
number of subjects in each group depends on the parameters as follows: n = n(𝜏 ∣ 𝛼, 𝛽, 𝛾, 𝛿). It is
worth emphasizing that the researcher does not pick n, as is the case in a typical power analysis.
Instead, she picks τ that affects expected outcomes that in turn pin down n, conditional on other
parameters.

The expected per-subject payoffs in each group, πg, will depend on expected outcomes and on the
way the outcomes are translated into payoffs. For example, when the outcome is the mean number
of problems solved in a real-effort task and the treatment variable is a piece rate, the relationship
between outcomes and payoffs takes a separable form: 𝜋g(𝜏 ∣ 𝛾, 𝛿) = 𝜏g𝜇g(𝜏 ∣ 𝛾, 𝛿). In addition to
the payoffs πg, subjects in each treatment group receive a participation paymentw.The total expected
per-subject payoff across two groups is then 2w + 𝜋C + 𝜋T .

Assume the researcher is risk-neutral and places a prior probability of 𝜒 ∈ (0, 1) on the existence
of the effect she is trying to find. For the sake of illustration, I assume that mneg is her benefit from
finding a true negative result, mpos is her benefit from finding a true positive result, and that she

then use the desired factor k, often called an allocation ratio, (computed based on the variance considerations or others), to
compute the number of participants in the treatment group as kn.

8The researcher can exploit other design parameters to optimize the budget. However, those parameters are likely to be
specific to each experiment. Hence, it would be difficult to obtain general results in that case.

9While relying on standards of significance thresholds is commonplace, the practice is not without issues (Brodeur et al.,
2020; Brodeur et al., 2016).

10To be precise, I am calling a choice variable continuous if in the theoretical model it is a continuous function of the
treatment variable, and the experiment allows subjects to make their choices among a large set of alternatives.
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Effect

H0

H0

Yes (χ)

No (1 − χ)

mpos − b(τ)

−b(τ)

−b(τ)

mneg −b(τ)

Reject (1 − β)

Do not reject (β)

Reject (α)

Do not reject (1 − α)

Fig. 1 Possible outcomes and probabilities

receives zero benefits from making either a Type I or Type II errors. The researcher’s budget is b(𝜏),
which is a function of the treatment strength. In Appendix A, I show that the results hold under
arbitrary benefits and arbitrary utility function (as long as it is strictly increasing), including the case
of risk aversion. Figure 1 shows all four possible outcomes for the researcher that are contingent on
whether the effect exists or not and whether the researcher rejects the null hypothesis or not.

Using Figure 1, it is easy to derive the researcher’s expected utility function from conducting the
experiment:

U(𝜏 ∣ 𝛼, 𝛽, 𝜒, 𝛾, 𝛿) = 𝜒(1 − 𝛽)mpos + (1 − 𝜒)(1 − 𝛼)mneg − b(𝜏 ∣ 𝛼, 𝛽, 𝛾, 𝛿). (1)

Since the researcher’s utility as a function of τ equals to the negative of the budget, which is also a
function of τ, plus a term that does not depend on τ, maximizing the utility function is equivalent to
minimizing the budget:

min
𝜏

b(𝜏 ∣ 𝛼, 𝛽, 𝛾, 𝛿) = n(𝜏 ∣ 𝛼, 𝛽, 𝛾, 𝛿) (2w + 𝜋C(𝛾, 𝛿) + 𝜋T(𝜏 ∣ 𝛾, 𝛿)) . (2)

I refer to this dual problem as the Budget Minimization problem. I formulate this problem without
any constraints for simplicity. I discuss constraints in Section 6.

The intuition for why the Budget Minimization problem is well defined is the following. The
response of the budget to a change in the treatment strength depends on two effects: the sample-size
effect and the payoff effect. Increasing τ is expected to increase the difference in outcomes between the
treatment and control groups. The predicted effect size will increase, which in turn will drive down
the required number of subjects (the sample-size effect). On the other hand, increasing τ will increase
the expected per-subject payoff in the treatment group due to the direct effect of higher incentives
and the indirect effect of higher outcomes due to higher incentives (the payoff effect).11 For example,
if the expected per-subject payoff in the treatment group is 𝜋T(𝜏 ∣ 𝛾, 𝛿) = 𝜏T𝜇T(𝜏 ∣ 𝛾, 𝛿), then the
increase in τT is the direct effect of increasing τ, the increase in 𝜇T(𝜏 ∣ 𝛾, 𝛿) is the indirect effect of
increasing τ, and the total increase in πT is the payoff effect. These two opposing effects—the sample-
size effect and the payoff effect—can potentially lead to a point 𝜏* where the expected total budget is
minimized.

Formally, the following first-order necessary conditionmust hold at the optimal point 𝜏* (to avoid
notational clutter, I drop the dependence on the parameters 𝛼, 𝛽, 𝛾, 𝛿):

−
n′(𝜏)
n(𝜏)⏟

sample-size effect

=
𝜋′
T(𝜏)

2w + 𝜋C(𝜏) + 𝜋T(𝜏)⏟⏟⏟⏟⏟⏟⏟⏟⏟
payoff effect

. (3)

11The indirect, however, will not be present if behavior is insensitive to incentives.
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The condition states, intuitively, that at the optimum the percentage decrease in the required number
of subjects due to the higher treatment strength (the sample-size effect) exactly offsets the percentage
increase in the per-subject payoffs (the payoff effect). The theoretical question is under what condi-
tions the BudgetMinimization problemhas a non-trivial solution. Before I turn to the formal analysis
of this question, I present two examples of the Budget Minimization problem at work.

4. Budget minimization in practice
I illustrate the Budget Minimization problem in two common cases. In the first case, subjects’ choice
variable is continuous and the effect of interest is the difference in mean choices. In the second case,
subjects’ choice variable is discrete. In this case, the effect of interest can be either the difference in
proportions of subjects choosing a given alternative (binary choice) or the difference inmean choices
(more than two alternatives). I focus on the former case when the choice is binary, although a similar
logic would apply to the latter case.

4.1. Continuous case
To illustrate the Budget Minimization problem in the continuous case, I use the experiment of
DellaVigna and Pope 2018. In the experiment, subjects perform a real-effort task in which they have
to repeatedly press two buttons for ten minutes. Subjects receive w = $1 for their participation. A
subject’s choice variable is the number of button presses, a proxy for a subject’s effort. The outcome
variable is the average number of button presses.

Suppose that the researcher is interested in testing whether introducing a piece rate in the treat-
ment group increases effort relative to the control group that receives no piece rate, 𝜏C = 0. The
expected per-subject payoff in group g is 𝜋g = 𝜏g𝜇g . Subjects receive a piece rate for each 100 button
presses.The goal is to determine the treatment strength τ that allows one to detect an increase in effort
for the conventional levels of significance (α= 0.05) and power (1 − 𝛽 = 0.8) while minimizing the
required budget.

DellaVigna and Pope (2018; P. 1063) propose a model of effort choice that gives the following
closed-form solution for the mean effort:12

𝜇g(𝜏 ∣ 𝛾, 𝛿) = 1
𝜂 [ln(s + 𝜏g) − ln k]. (4)

where η and k are the curvature and scale parameters of the cost-of-effort function, respectively, s is
an intrinsic reward for performing the task, and τg is a piece rate in group g.

One can find the required number of subjects per group conditional on τ and other parameters
using the standard formula for computing the sample size in a two-sided t-test for the difference in
means:

n(𝜏 ∣ 𝛼, 𝛽, 𝛾, 𝛿) = 2 (z1−𝛼/2 + z1−𝛽)2 ( 𝜎
𝜇T(𝜏 ∣ 𝛾, 𝛿) − 𝜇C(𝛾, 𝛿)

)
2

, (5)

where z1−𝛼/2 and z1−𝛽 are the quantiles of the standard normal distribution, µC and µT are the pre-
dicted mean efforts in the control and treatment groups, which can be computed using (4), and σ is
the standard deviation of effort.13

Figure 2 shows how the total number of subjects, the expected payoff per subject, and the total
budget change with τ. I compute the total number of subjects across both groups, 2n, using (5).

12Specifically, I use the version of their model with the exponential cost of effort. I make several changes to the authors’
original notation to make it consistent with the notation adopted in my paper. In their formula (13), I use η instead of γ and
τg instead of p.

13The implicit assumption in the formula, which follows the original model in the paper, is that the standard deviation
parameter σ does not vary with τ. In Section 6 I consider the case when σ also varies with τ.
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Total Number of Subjects Payoff per Subject ($) Total Budget ($)
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Fig. 2 Variables of the DellaVigna and Pope 2018 Experiment as a Function of τ
Note: The figure shows how the three parameters of the experiment change with the treatment strength 𝜏. The left panel shows the total
number of subjects across both treatment groups (2n), which is computed using (5) and (4) and the authors’ parameter estimates η =
0.015641071, k = 1.70926702 × 10−16, s = 3.72225938 × 10−6, σ = 653.578104. The middle panel shows the expected per-subject payoff in
$ across both treatment groups (w + (πC + πT )/2), which is computed by plugging inw = 1, πC = τC μC = 0, and πT = τ μT , and where µT is
computedusing (4). The right panel shows the expected total budget in $ (b), which is the product of 2n andw+ (πC +πT )/2. The horizontal
axis shows the treatment strength τ(in $) on a logarithmic scale. The vertical solid line shows the budget-minimizing level of τ.

I plug in the values of the quantiles of the standard normal distribution using the conven-
tional levels of α= 0.05 and β= 0.2. I use the authors’ estimate of σ = 653.578104 (Supplementary
Material “NLS_results_Table5_EXPON.csv:”). I use (4) to compute the predicted mean effort
in the control group µC by plugging in the authors’ estimates of behavioral parameters: 𝜂 =
0.015641071, k = 1.70926702 × 10−16, s = 3.72225938 × 10−6 (Supplementary Material
“NLS_results_Table5_EXPON.csv:”) and using 𝜏C = 0. Finally, I use (4) to compute the predicted
mean effort in the treatment group µT using the same estimates of behavioral parameters as for µC
but for different values of 𝜏T = 𝜏C +𝜏 = 𝜏. As Figure 2 shows, the total number of subjects decreases
in τ since higher incentives increase the expected effect size.

To compute the expected payoff per subject across both groups,w+(𝜋C +𝜋T)/2, I first plug in the
value of the fixed payment used in the experiment, w= 1. I compute the expected payoff per subject
in the control group as 𝜋C = 𝜏C𝜇C = 0 (since 𝜏C = 0). I compute the expected payoff per subject
in the treatment group as 𝜋T = 𝜏T𝜇T = 𝜏𝜇T for different values of treatment strength τ, where µT
is computed as before. The expected payoff per subject increases in τ since higher incentives increase
expected effort, as well as the payoff per unit of effort.

I compute the expected total budget for different values of τ using (2), which is simply the product
of the two previously computed quantities: the total number of subjects, 2n, and the expected payoff
per subject,w+(𝜋C+𝜋T)/2.The expected total budget b has a convex shape and reaches aminimum
at 𝜏* = 2.7 cents.

Conducting an experiment with the optimized parameters would be extremely cheap: the exper-
iment would require a total of 42 subjects with an expected per-subject payoff across both groups of
$1.28 and an expected total budget of just $53. For comparison, the original experiment has 0 and
4 cents treatments, although the total number of subjects in both groups is more than 1000. While
the optimal numbers appear small, they are not unreasonable given the large treatment effects found
in the data. For instance, the mean effort levels in the 0 and 4 cents treatments are 1521 and 2132,
respectively (DellaVigna and Pope, 2018; P. 1045, Table 3). Assuming a common standard deviation
of 650, the traditional power analysis would yield 18 subjects per treatment group for the levels of
significance (0.05) and power (0.8) assumed in my calculation.
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4.2. Discrete choice
To illustrate the BudgetMinimization problem in the discrete-choice setting, I use the classicHolt and
Laury 2002 experiment on risk aversion. In this experiment, which popularized the multiple-price-
list elicitation method, subjects make a series of binary choices between a safe and a risky lottery. The
alternatives are ordered such that a risky lottery gradually becomes more attractive. Experimental
treatments involve changing the level of incentives by large factors to see whether this affects the
proportion of subjects choosing a safe lottery.

For illustrative purposes, suppose that the researcher is interested in testing whether scaling the
payoffs of each lottery up affects the proportion of subjects choosing a safe lottery in just one pair.14
Suppose the researcher picks pair 5 (Holt and Laury, 2002; P. 1645, Table 1) in which the safe lottery
pays $2 or $1.6 with equal chances and the risky lottery pays $3.85 or $0.1 with equal chances in the
control group, and in which the safe lottery pays $2×𝜏 or $1.6×𝜏 with equal chances and the risky
lottery pays $3.85×𝜏 or $0.1×𝜏 with equal chances in the treatment group. Here τ is themultiplicative
treatment strength. The expected per-subject payoff in group g is 𝜋g = 𝜏g(𝜇gEVA + (1 − 𝜇g)EVB),
where EVA and EVB are the expected values of the safe and risky lotteries, respectively, in the control
group (𝜏C = 1) and µg is the proportion of subjects choosing the safe lottery in group g. The goal is
to determine the treatment strength that allows the researcher to detect a change in the proportion
of subjects choosing the safe lottery for the conventional levels of significance (α= 0.05) and power
(1 − 𝛽 = 0.8) while minimizing the required budget.

Holt and Laury 2002 use the stochastic choice model that specifies the probability of choosing the
safe lottery in group g as follows:

𝜇g(𝜏 ∣ 𝛾, 𝛿) ≡ ℙ(A)g =
U1/𝜆

Ag

U1/𝜆
Ag

+ U1/𝜆
Bg

, (6)

where UAg
,UBg

are the expected utilities of the safe and risky lotteries, respectively, in group g and
λ is the noise parameter. The expected utility uses an expo-power utility-of-money function of the
form15

u(x) =
1 − exp(−ax1−r)

a , (7)

where x is a monetary outcome, a is the constant risk aversion parameter, and r is the relative risk
aversion parameter.

One can find the required number of subjects per group conditional on τ and other parameters
using the standard formula for computing the sample size in a test for the difference in proportions:16

n(𝜏 ∣ 𝛼, 𝛽, 𝛾, 𝛿) = (z1−𝛼/2 + z1−𝛽)2
𝜇T(1 − 𝜇T) + 𝜇C(1 − 𝜇C)

(𝜇T − 𝜇C)2 , (8)

where z1−𝛼/2 and z1−𝛽 are the quantiles of the standard normal distribution, and µC and µT are
the predicted proportions of subjects choosing the safe lottery in the control and treatment groups,
computed as in (6).

Figure 3 shows how the total number of subjects, the expected payoff per subject, and the total
budget change with τ. I compute the total number of subjects across both groups, 2n, using (8). I

14Discrete choice does not necessarily imply that the relevant outcome is the proportion of subjects choosing a given alter-
native. While it is true in the binary choice, in case when there is more than two alternatives a researcher might consider the
difference in mean choices. In the context of Holt and Laury 2002, this could be, for example, the mean switching point. The
models of stochastic discrete choice, such as the one considered here, can still be used to derive the expected outcomes in the
case of more than two alternatives.

15I use a instead of α in the authors’ original specification ((Holt and Laury, 2002; P. 1653, formula (2))) to avoid confusion
with the significance level α. I also use λ instead of µ in their formula (1).

16To avoid notational clutter, I drop the dependence of µT and µC on 𝜏, 𝛾, 𝛿.
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Fig. 3 Variables of the Holt and Laury 2002 Experiment as a Function of τ
Note: The figure shows how the three parameters of the experiment change with the treatment strength τ. The left panel shows the total
number of subjects across both treatment groups (2n), which is computed using (8), (6), (7) and the authors’ parameter estimates a =
0.029, r = 0.269, λ = 0.134. The middle panel shows the expected per-subject payoff in $ across both treatment groups (w + (πC + πT )/2),
which is computed by plugging inw = 5, πC = μCEVA + (1 - μC) EVB, πT = τ(μT EVA + (1 - μT ) EVB), EVA = 2 × 0.5+ 1.6 × 0.5= 1.8, EVB = 3.85 ×
0.5+ 0.1 × 0.5= 1.975, and where µC and µT are computed using (6). The right panel shows the expected total budget in $ (b), which is the
product of 2n and w +(πC + πT )/2. The horizontal axis shows the multiplicative treatment strength τ on a logarithmic scale. The vertical
solid line shows the budget-minimizing level of τ.

plug in the values of the quantiles of the standard normal distribution using the conventional levels
of α= 0.05 and β= 0.2. In the control group, I compute the expected utility of the safe lottery as
UAC

= u(2)0.5 + u(1.6)0.5 and the expected utility of the risky lottery as UBC
= u(3.85)0.5 +

u(0.1)0.5, where the utility function u is given by (7) and the estimates of behavioral parameters are
a = 0.029, r = 0.269 (Holt and Laury, 2002; P. 1653). I then plug in the resulting expected utilities,
along with the authors’ estimate of λ= 0.134 (Holt and Laury, 2002; P. 1653), into (6) to compute the
predicted proportions of subjects choosing the safe lottery in the control group, µC. In the treatment
group, I compute the expected utility of the safe lottery as UAT

= u(2𝜏)0.5 + u(1.6𝜏)0.5 and the
expected utility of the risky lottery as UBT

= u(3.85𝜏)0.5 + u(0.1𝜏)0.5 for different values of τ. The
utility function u is computed as in the control group. I then plug in the resulting expected utilities
into (6) to compute the predicted proportions of subjects choosing the safe lottery in the treatment
group, µT, for different values of τ. Finally, I plug in the resulting values for µC and µT into (8) to get
the total number of subjects as a function of τ. As Figure 3 shows, the total number of subjects across
both groups decreases in τ.

I compute the expected payoff per subject across both groups as w + (𝜋C + 𝜋T)/2. While the
participation payment is not explicitly mentioned in the text, I assume w = $5, which is a typical
amount for laboratory experiments. I compute the expected payoff per subject in the control group
as 𝜋C = 𝜏C(𝜇CEVA + (1 − 𝜇C)EVB) = 𝜇CEVA + (1 − 𝜇C)EVB, since 𝜏C = 1. The proportion of
subjects choosing the safe lottery, µC, is computed as above, and the expected values are computed as
EVA = 2×0.5+1.6×0.5 = 1.8 and EVB = 3.85×0.5+0.1×0.5 = 1.975. I compute the expected
payoff per subject in the treatment group as 𝜋T = 𝜏(𝜇TEVA + (1 − 𝜇T)EVB) for different values of
treatment strength τ, where µT and the expected values are computed as before. As Figure 3 shows,
the expected payoff per subject increases in τ.

I compute the expected total budget for different values of τ using (2), which is simply the product
of the two previously computed quantities: the total number of subjects, 2n, and the expected payoff
per subject,w+(𝜋C+𝜋T)/2.The expected total budget has a convex shape, as in the previous example,
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and reaches a minimum at 𝜏* = 54 (rounded to the nearest digit). This means that the payoffs need
to be scaled by more than 50 times.

For the optimized parameters, the experimentwould require a total of 99 subjects with an expected
per-subject payoff across both groups of $ 55.1 and an expected total budget of $ 5439. For compari-
son, the original experiment does have a 50x treatment, although the number of subjects in this group
is only 19.

5. Budget minimization in theory
I make two assumptions about the outcome function 𝜇T(𝜏) to establish a theoretical result.

Assumption 1 (Continuous Differentiability). 𝜇T ∈ C1.

Assumption 2 (Regularity). lim𝜏→𝜏 low |𝜇′
T | < ∞ and lim𝜏→∞ d ln𝜇T/d ln 𝜏 < 1.17

The first assumption is a technical one. The second assumption takes care of the case when µT is
unbounded. In this case, it has to satisfy regularity conditions that require the outcome function (a)
not to change too quickly when treatment increases from the lowest value and (b) that the elasticity
of the outcome with respect to τ is small as the treatment strength gets large. Assumption 2 is satisfied
automatically if µT is bounded.

Proposition 5.1. If µT satisfies Assumptions 1 and 2 the Budget Minimization problem has an interior
solution.

Proof. See Appendix B. □

The idea of the proof relies on the Intermediate ValueTheorem and the properties of the two com-
ponents of the total budget: the sample size and expected payoffs.18 I consider the limiting behavior
of the derivative of the logarithm of the total budget with respect to τ. At the lower limit, when the
treatment strength approaches the lower bound, the derivative of the budget goes to negative infin-
ity. The driver behind this result is the required sample size. When the treatment strength is zero
(additive case) or one (multiplicative case) the outcomes in the treatment and control groups are
identical, which makes the required sample size infinite. Even the smallest increase in the treatment
strength is enough to produce an infinitely large decrease in the required sample size. At the lower
limit, therefore, the negative sample-size effect dominates the positive payoff effect.19 When the treat-
ment strength is infinitely large, neither the required sample size nor the expected payoffs change.The
derivative of the total budget in the limit is zero. However, one can always find a large enough value of
the treatment strength at which the derivative of the total budget is positive. At the upper limit, there-
fore, the positive payoff effect dominates the negative sample-size effect.20 The derivative of the total
budget is thus negative at the left endpoint and positive at the right endpoint. Since µT is continuously
differentiable by Assumption 1, the Intermediate Value Theorem implies that the derivative of the
total budget must cross zero. Since the first crossing will occur from below, the First Order Sufficient

17Here τlow denotes the lowest possible value of τ. It is 0 for additive treatment strength and 1 for multiplicative treatment
strength.

18Onemight wonder if theWeierstrass theoremwould suffice instead. It would not: even if one is willing to impose an upper
bound on τ (which is a priori unclear), the Weierstrass theorem cannot say anything about an interior solution, which is the
interesting case.

19If the outcome function is unbounded, the first part of Assumption 2 guarantees that.
20If the outcome function is unbounded, the second part of Assumption 2 guarantees that.
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Condition for a Minimum implies that the point 𝜏* at which this happens must be a minimum
point.

The result in Proposition 5.1 is surprisingly general. It applies both in the continuous and dis-
crete cases. The assumptions required for the result are fairly weak. The discrete case effectively
only requires Assumption 1, since the outcome is a proportion bounded between zero and one. The
continuous case would in addition require Assumption 2 only if the outcome function is unbounded.

Proposition 5.1 explains why the motivating examples work. In the discrete case example, only
Assumption 1 needs to be checked. Indeed, since the utility-of-money function (7) is continuously
differentiable, so are the expected utility and outcome (6) functions. Proposition 5.1 immediately
applies. In the continuous case example, the outcome function (4) is continuously differentiable but
unbounded, hence we need to check Assumption 2, as well. First, consider

lim
𝜏→0+

|𝜇′
T | = lim

𝜏→0+

1
𝜂(s + 𝜏) = 1

𝜂s .

The limit is finite, since the estimates of s and η are strictly positive. On the other hand,

lim
𝜏→∞

𝜏(ln𝜇T)′ = lim
𝜏→∞

𝜏

(s + 𝜏) ln( s+𝜏
k

)
= lim

𝜏→∞

1

( s

𝜏
+ 1) ln( s+𝜏

k
)

= 0 < 1,

provided that k> 0, which is indeed the case given the model estimates. Hence, Proposition 5.1 also
applies.

A few remarks about the theoretical result are in order. The first remark is that Assumptions 1
and 2 are sufficient but not necessary. It might as well be that they are not satisfied but the Budget
Minimization problem has an interior solution.The second, and related, remark is that Assumption 1
can have a bite in some cases. It might fail to hold in reference-dependent models, which feature a
discontinuity around a reference point. The budget, however, is still likely to have a minimum. The
third, and final, remark is that Proposition 5.1 guarantees the existence but not the uniqueness of
a solution. It is safe to assume that it should not cause any issues in practice. If there are several
minimum points, one can simply compute the budget at each of the candidate solutions and pick the
one giving the smallest budget.

6. Discussion
In this section, I propose some extensions of the Budget Minimization problem and show that
its applicability goes beyond the examples analyzed so far. I also discuss some of the limits of its
applicability.

6.1. Qualitative hypotheses
A key assumption that enables studying the optimal level of incentives in the present framework
is that a researcher is interested in testing qualitative hypotheses, for example, whether increasing
incentives increases a certain behavior or outcomes. The qualitative nature of a hypothesis creates
a degree of freedom in the level of incentives that I exploit in the Budget Minimization problem.
However, sometimes researchers are interested in specific values of a treatment variable, inwhich case
the present framework is not applicable. For example, researchers might need to use several specific
levels of incentives to estimate a structural model or identify a non-linear effect over that range of
levels. In these cases, the levels of incentives are determined by identification concerns and cannot
be used to optimize the budget. Instead, researchers should use the guidelines for how to optimally
arrange their sample across those different levels of the treatment variable (McClelland, 1997; List
et al., 2011).
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6.2. Continuous treatment variable
Another key assumption is that a researcher can vary the level of incentives in a continuous manner,
which enables the use of calculus to optimize the budget.While incentives can be typically varied that
way, sometimes researchers might consider a few discrete levels, for example, for procedural reasons.
Budget minimization is still possible in this case. A researcher can find the budget-minimizing level
of incentives by simply evaluating the expected budget at those few discrete levels and picking the one
that minimizes the budget. On the other hand, if a researcher cannot vary the level of incentives at all,
the Budget Minimization problem is not applicable. What makes the Budget Minimization problem
possible is the trade-off that incentives create between the sample-size effect and the payoff effect.
Changing statistical parameters, for example, the power, only affects the sample-size effect but not
the payoff effect, hence there will be no optimal level of power.

6.3. Strategic settings
Even though the examples I considered are from individual-choice settings, the logic of the Budget
Minimization problem carries over to strategic settings. The natural counterpart to the theoretical
outcome function µT, such as (6), in game theory is the Quantal Response Function (McKelvey and
Palfrey, 1995; Goeree et al., 2005). By combining, for instance, the framework developed by Woods
(2020) for the quantal response model with the present approach, one can pose and solve the Budget
Minimization problem in game-theoretic experiments.

6.4. Parameter uncertainty
The solution to the BudgetMinimization problem relies on the estimates of the structural parameters
of a model. These estimates will have standard errors. The analysis conducted in motivating exam-
ples ignores this parameter uncertainty for simplicity. However, the budget-minimizing treatment
strength is a function of parameters and hence inherits the uncertainty in their estimates. The opti-
mal treatment strength is unlikely to have a closed-form solution inmost cases, hence, using theDelta
method would be impossible. A practical solution to deriving the standard errors of the treatment
strength would be to use the bootstrap.

6.5. Parameter estimates
A related point about parameter estimates is that they have to exist in order to take advantage of the
Budget Minimization problem.21 In the best-case scenario, these estimates could be readily available
from the literature. This is likely to be the case for the models of risk and time preferences (Harrison
and Rutström, 2008b), lying aversion (Abeler et al., 2019), social preferences (Goeree et al., 2002;
Cox et al., 2007; Bellemare et al., 2008), and real-effort tasks (DellaVigna and Pope, 2018). But what
should a researcher do when those estimates are not available or cannot be used?

One possibility is that a researcher can use an existing structural model but does not want
to use existing parameter estimates. Using existing estimates might not be reliable if, for exam-
ple, they are derived from a subject pool that is very different from a researcher’s subject pool. In
other words, a researcher might worry about the portability of the existing estimates. A solution
in this case is to run pilot sessions on the subject pool of interest and estimate the parameters
of the model using the pilot data. Using pilots to conduct the power analysis is a standard prac-
tice in experimental economics, and the only modification to that practice would be the way the
data are used. An alternative solution is to exploit an auxiliary variation in the control group that

21This is an issue not just for the Budget Minimization problem but for optimal experimental design in general (List et al.,
2011; Moffatt, 2015).
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is not related to the treatment variation of interest. For example, experiments on risk and uncer-
tainty preferences involve variation in prospects that allows one to estimate behavioral parameters.
A researcher then can use these estimated parameters to optimize the design of the treatment of
interest.

6.6. Structural model
A more fundamental issue is that an off-the-shelf structural model simply might not exist. In this
case, researchers have two possibilities. They can come up with their own model and run pilot
experiments, as suggested above, to get initial parameter estimates needed for calculations. Another
option would be to use a reduced-form approach instead of a structural approach. The Budget
Minimization problem, at its core, relies on knowing how the outcome variable changes with the
treatment strength, 𝜇T(𝜏). Nothing in the logic of the problem requires that this relation comes
from a structural model. If there are previous observations on τ and µT, a researcher can use a
reduced-form, predictive approach to recover 𝜇T(𝜏) and then use it in the Budget Minimization
problem.

6.7. Expected outcomes
The analysis of the Budget Minimization problem has so far focused on the case when the treatment
strength affects only expected outcomes. The researcher, however, can also use information on how
the treatment strength affects other moments of the distribution of outcomes, or even the whole dis-
tribution itself.22 Using this additional informationwillmake the analysismore efficient. For example,
the formula for computing the sample size in a two-sided t-test for the difference in means (5) relies
on knowing the standard deviation σ. If the researcher knows how the standard deviation changes
with the treatment strength, 𝜎(𝜏), she can use this information to derive better predictions about
how the treatment strength affects the sample size.

A common finding is that higher incentives reduce the standard deviation of outcomes, that is,
𝜎(𝜏) is likely to be a decreasing function (Camerer and Hogarth, 1999). The sample-size effect will
become stronger relative to the case when σ does not change with τ. The standardized effect size

( 𝜇T(𝜏∣𝛾,𝛿)−𝜇C(𝛾,𝛿)
𝜎(𝜏)

) will increase faster in τ, which will cause the required sample size to decrease
faster. In other words, the same increase in τ will now result in a bigger reduction in the required
sample size. The sample-size effect will be present even if the treatment strength affects only the stan-
dard deviation and has no effect on the difference expected outcomes, as long as this difference is
non-zero: the standardized effect size will still increase in τ.

As an illustration, let us revisit the continuous example from Section 4.1 but now assume that σ
in the formula (5) is linearly decreasing in τ: 𝜎(𝜏) = 653.578104 − 500𝜏. Conducting an experiment
with the re-optimized parameters would now require a total of 37 subjects (a decrease from 42
in case of constant σ) with an expected per-subject payoff across both groups of $ 1.36 (a slight
increase from $ 1.28) and an expected total budget of $ 51 (a slight decrease from $ 53). The budget-
minimizing treatment strength would be 𝜏* = 3.4 cents, which is slightly higher than 2.7 in case of
constant σ.

6.8. Constraints
I have presented and analyzed the Budget Minimization problem as an unconstrained problem. In
reality, a researcher might face constraints on subjects’ payoffs and/or a sample size. Suppose the

22Woods (2020) shows, in particular, that the skewness of the distribution of outcomes can have an impact on power analysis.
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sample size at 𝜏* is too low to be acceptable (the constraint binds), as we saw in the continuous case
example. A researcher can simply tweak the statistical parameters: decreasing α or β increases the
optimal sample size without changing the optimal treatment strength. Suppose now that the expected
per-subject payoffs are too low at 𝜏*. In this case the optimal treatment strength will have to change.
There are several possibilities to satisfy the constraint in that case. One possibility is to change the level
of the treatment variable in the control group, re-optimize, and check if the constraint is satisfied.The
benefit of this approach is that one can both satisfy the constraint and get an optimal level of τ. Another
possibility is to keep increasing τ until the constraint is satisfied. This approach will distort τ away
from the budget-minimizing level. However, it can be more cost-effective than increasing τC. One
might also consider changing the participation payment w, which will change 𝜏*. The participation
payment, however, is typically set by lab policies and rarely tweaked for the purposes of a particular
experiment.23 On the other end of the spectrum is the case when the expected per-subject payoffs
are too high. No simple solution exists in this case, since 𝜏* already minimizes the budget and any
deviation will only increase it. A researcher would likely have to reconsider other parameters of the
design to bring down the budget.

6.9. Non-parametric tests
In practice, researchers often use non-parametric tests, such as the Wilcoxon-Mann-Whitney test,
to analyze treatment effects. The reason for relying on parametric tests in my analysis is that they
have simple analytical formulas for power calculations and require only minimal predictions about
outcomes, such as averages. Power analysis for non-parametric tests, on the other hand, is based either
on simulations in which case deriving theoretical results is impossible, or on explicit formulas that
require rich predictions about outcomes, such as the entire distribution of outcomes (Rahardja et al.,
2009; Happ et al., 2019). One can still pose a practical question about the optimal level of incentives
for a non-parametric test, or other more complicated designs, in a given experiment and combine
simulations (Bellemare et al., 2016) with the present framework to solve the Budget Minimization
problem.

7. Conclusion
I study an optimal design of incentives in experiments where incentives are a treatment variable.
Using a utility-based framework, I formulate a Budget Minimization problem. In the problem, a
researcher chooses a treatment strength that minimizes the expected budget while allowing for the
detection of an effect at the given levels of statistical significance and power. The effect of the treat-
ment strength on the budget can be decomposed into two channels: the sample-size effect and the
payoff effect. Increasing the treatment strength decreases the required budget via the sample-size
effect but increases it via the payoff effect. At a minimum point, the two effects must be in the
exact balance. I show theoretically that such a point exists under fairly mild conditions, and thus the
BudgetMinimization problem is guaranteed to have a non-trivial solution. I illustrate how the Budget
Minimization problem applies in practice using existing experiments. The Budget Minimization
problem also applies, under certain conditions, to designs where a treatment variable is notmonetary
incentives.

The main challenge in taking advantage of my approach is having a model of how the outcomes
respond to incentives and reliable prior estimates of the model, in other words, good prior data,
albeit this is true in general for any optimal design. The main contribution of my analysis is that
it takes the guesswork out of the design of the level of incentives and replaces it with a disciplined
economic approach. I believe that my approach to the design of incentives will enrich experimental
economists’ toolkit and help guide future designs. Young researchers on tight budgets and researchers

23A notable exception is when the participation payment is the treatment variable (Harrison et al., 2009).
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running expensive field interventions will particularly benefit from using the Budget Minimization
problem.

Supplementary material. The supplementary material for this article can be found at https://10.1017/esa.2025.10019.
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