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PARTIALLY-ELEMENTARY END EXTENSIONS OF COUNTABLE
MODELS OF SET THEORY

ZACHIRI MCKENZIE

Abstract. Let KP denote Kripke–Platek Set Theory and let M be the weak set theory obtained from ZF

by removing the collection scheme, restricting separation to Δ0-formulae and adding an axiom asserting
that every set is contained in a transitive set (TCo). A result due to Kaufmann [9] shows that every
countable model, M, of KP + Πn-Collection has a proper Σn+1-elementary end extension. We show that
for all n ≥ 1, there exists an Lα (where Lα is the αth approximation of the constructible universe L)
that satisfies Separation, Powerset and Πn-Collection, but that has no Σn+1-elementary end extension
satisfying either Πn-Collection or Πn+3-Foundation. Thus showing that there are limits to the amount of
the theory of M that can be transferred to the end extensions that are guaranteed by Kaufmann’s theorem.
Using admissible covers and the Barwise Compactness theorem, we show that if M is a countable model
KP + Πn-Collection + Σn+1-Foundation and T is a recursive theory that holds in M, then there exists
a proper Σn -elementary end extension of M that satisfies T. We use this result to show that the theory
M + Πn-Collection + Πn+1-Foundation proves Σn+1-Separation.

§1. Introduction. Keisler and Morley [10] prove that every countable model of
ZF has a proper elementary end extension. Kaufmann [9] refines this result showing
that if n ≥ 1 and M is a countable structure in the language of set theory that
satisfies KP + Πn-Collection, then M has proper Σn+1-elementary end extension.1

And, conversely, if n ≥ 1 and M is a structure in the language of set theory that
satisfies KP + V = L and has a proper Σn+1-elementary end extension, then M
satisfies Πn-Collection.2 Keisler and Morley’s result can be proved using the Omitting
Types theorem (see [3, Theorem 2.2.18]) and Kaufmann employs a refined version
of the Omitting Types theorem in [9]. A natural question to ask is how much of the
theory of M satisfying KP + Πn-Collection can be made to hold in a proper Σn+1-
elementary end extension whose existence is guaranteed by Kaufmann’s result? In
particular, is there a proper Σn+1-elementary end extension of M that also satisfies
KP + Πn-Collection? Or, if M is transitive, is there a proper Σn+1-elementary end
extension of M that satisfies full ∈-induction for all set-theoretic formulae3? In
Section 3 we show that the answers to the latter two of these questions is “no”.
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1This is a slightly strengthened statement of [9, Theorem 1: (ii)⇒(i)] obtained using the well-known

equivalence of Πn-Collection and Σn+1-Collection over KP.
2This is a weakening of [9, Theorem 1: (i)⇒(ii)] which only assumes that M is a resolvable model of

a subsystem of KP that does not include any collection or class foundation.
3Over the theory KP, Γ-Foundation is equivalent to ∈-induction for all formulae in ¬Γ = {¬� | � ∈

Γ}.
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2 ZACHIRI MCKENZIE

For n ≥ 1, there is an Lα (where Lα is the αth approximation of the constructible
universe L) satisfying Separation, Powerset and Πn-Collection that has no proper
Σn+1-elementary end extension satisfying either Πn-Collection or Πn+3-Foundation.
A key ingredient is a generalisation of a result due to Simpson (see [9, Remark 2])
showing that if n ≥ 1 and M is a structure in the language of set theory satisfying
KP + V = L that has Σn-elementary end extension satisfying enough set theory and
with a new ordinal but no least new ordinal, then M satisfies Πn-Collection. Here
“enough set theory” is either KP + Πn–1-Collection or KP + Πn+2-Foundation.

In Section 4, we use Barwise’s admissible cover machinery to build partially-
elementary end extensions that satisfy significant fragments of the theory of
the model being extended. In particular, we show that if T is a recursively
enumerable theory in the language of set theory that extends KP + Πn-Collection +
Σn+1-Foundation and M is a structure that satisfies T, then M has a proper Σn-
elementary end extension that satisfies T. That is, by settling for less elementarity we
can ensure that there exists an end extension that satisfies any recursively enumerable
theory that holds in the model being extended. The special case of this result that
applies only to countable transitive M is provable from the Barwise Compactness
theorem, and a sketch of this argument is provided as motivation in the introduction
of this section.

The end-extension result proved in Section 4 is used in Section 5 to shed light
on the relationship between subsystems of ZF that include the Powerset axiom.
We use M to denote the set theory that is axiomatised by: Extensionality, Emptyset,
Pair,Powerset,TCo, Infinity, Δ0-Separation, and Set-Foundation. We show that for all
n ≥ 1, M + Πn-Collection + Πn+1-Foundation proves Σn+1-Separation. In particular,
for all n ≥ 1, the theories M + Πn-Collection and M + Strong Πn-Collection have the
same well-founded models, settling a question about heights of minimum models of
subsystems of ZF including Powerset left open in Gostanian’s paper [8].

§2. Background. Let L be the language of set theory—the language whose only
non-logical symbol is the binary relation ∈. Let L′ be a language that contains L
and let Γ be a collection of L′-formulae.

• Γ-Separation is the scheme that consists of the sentences

∀�z∀w∃y∀x(x ∈ y ⇐⇒ (x ∈ w ∧ φ(x, �z)),

for all formulae φ(x, �z) in Γ. Separation is the scheme that consists of these
sentences for every formula φ(x, �z) in L.

• Γ-Collection is the scheme that consists of the sentences

∀�z∀w((∀x ∈ w)∃yφ(x, y, �z) ⇒ ∃c(∀x ∈ w)(∃y ∈ c)φ(x, y, �z)),

for all formulae φ(x, y, �z) in Γ. Collection is the scheme that consists of these
sentences for every formula φ(x, y, �z) in L.

• Strong Γ-Collection is the scheme that consists of the sentences

∀�z∀w∃c(∀x ∈ w)(∃yφ(x, y, �z) ⇒ (∃y ∈ c)φ(x, y, �z)),

for all formulae φ(x, y, �z) in Γ. Strong Collection is the scheme that consists of
these sentences for every formula φ(x, y, �z) in L.
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PARTIALLY-ELEMENTARY END EXTENSIONS OF COUNTABLE MODELS 3

• Γ-Foundation is the scheme that consists of the sentences

∀�z(∃xφ(x, �z) ⇒ ∃y(φ(y, �z) ∧ (∀w ∈ y)¬φ(w, �z))),

for all formulaeφ(x, �z) in Γ. If Γ = {x ∈ z}, then the resulting axiom is referred
to as Set-Foundation. Foundation is the scheme that consists of these sentences
for every formula φ(x, �z) in L.

In addition to the Lévy classes of L-formulae, Δ0, Σ1, Π1, ..., we will also make
reference to the class ΔP

0 , introduced by Takahashi [17], that consists of L-formulae
whose quantifiers are bounded either by the membership relation (∈) or the subset
relation (⊆), and the classes ΣP

1 , ΠP
1 , ΣP

2 , ...that are defined from ΔP
0 in the same way

that the classes Σ1, Π1, Σ2, ...are defined from Δ0. Let T be a theory in a language,
L′, that includes L. Let Γ be a class of L′-formulae. A formula is Γ in T or ΓT if it is
provably equivalent in T to a formula in Γ. A formula is Δn in T or ΔTn if it is both
ΣTn and ΠTn .

• Δn-Separation is the scheme that consists of the sentences

∀�z(∀v(φ(v, �z) ⇐⇒ �(v, �z)) ⇒ ∀w∃y∀x(x ∈ y ⇐⇒ (x ∈ w ∧ φ(x, �z))))

for all Σn-formulae φ(x, �z) and Πn-formulae �(x, �z).
• Δn-Foundation is the scheme that consists of the sentences

∀�z(∀v(φ(x, �z) ⇐⇒ �(x, �z)) ⇒ (∃xφ(x, �z) ⇒ ∃y(φ(y, �z) ∧ (∀w ∈ y)¬φ(w, �z))))

for all Σn-formulae φ(x, �z) and Πn-formulae �(x, �z).

We use S1 to denote the L-theory with axioms: Extensionality, Emptyset, Pair,
Union, Set Difference, and Powerset. Following [13], we take Kripke–Platek Set
Theory (KP) to be the theory obtained from S1 by removing Powerset and adding
Δ0-Separation, Δ0-Collection and Π1-Foundation. Note that this differs from [2, 6],
which defines Kripke–Platek Set Theory to include Foundation. The theory KPI is
obtained from KP by adding the axiom Infinity, which states that a superset of the
von Neumann ordinal� exists. We useM– to denote the theory that is obtained from
KPI by replacing Π1-Foundation with Set-Foundation and removing Δ0-Collection,
and adding an axiom TCo asserting that every set is contained in a transitive set. The
theory M is obtained from M– by adding Powerset. The theory MOST is obtained
from M by adding Strong Δ0-Collection and the Axiom of Choice (AC). Zermelo Set
Theory (Z) is obtained from M by removing TCo and adding Separation. The theory
KPP is obtained from M by adding ΔP

0 -Collection and ΠP
1 -Foundation.

The theory KP proves TCo (see, for example, [2, Theorem I.6.1]). Both KP and M
prove that every set x is contained in a least transitive set that is called the transitive
closure of x, and denoted TC(x). The following are some important relationships
between axiom schemes over the theory M–:

• In the theory M–, Γ-Separation implies Γ-Foundation.
• The proof of [2, Theorem I.4.4] generalises to show that, in the theory M–,

Πn-Collection implies Σn+1-Collection.
• [7, Lemma 4.13] shows that, over M–, Πn-Collection implies Δn+1-Separation.
• It is noted in [7, Proposition 2.4] that if T is M– + Πn-Collection, then the

classes ΣTn+1 and ΠTn+1 are closed under bounded quantification.
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4 ZACHIRI MCKENZIE

• [12, Lemma 2.4], for example, shows that, over M–, Strong Πn-Collection is
equivalent to Πn-Collection + Σn+1-Separation.

Let L′ be a language that contains L. Let M = 〈M,∈M, ...〉 be an L′-structure. If
a ∈M , then we will use a∗ to denote the set {x ∈M | M |= (x ∈ a)}, as long as M
is clear from the context. Let Γ be a collection of L′-formulae. We say X ⊆M is Γ
over M if there is a formula φ(x, �z) in Γ and �a ∈M such that X = {x ∈M | M |=
φ(x, �a)}. In the special case that Γ is all L′-formulae, we say that X is a definable
subclass of M. A set X ⊆M is Δn over M if it is both Σn over M and Πn over M.

A structureN = 〈N,∈N 〉 is an end extension ofM = 〈M,∈M〉, writtenM ⊆e N ,
if M is a substructure of N and for all x ∈M and for all y ∈ N , if N |= (y ∈ x),
theny ∈M . An end extensionN ofM is proper ifM �= N . IfN = 〈N,∈N 〉 is an end
extension of M = 〈M,∈M〉 and for all x ∈M and for all y ∈ N , if N |= (y ⊆ x),
then y ∈M , then we say that N is a powerset-preserving end extension of M and
write M ⊆P

e N . We say that N is a Σn-elementary end extension of M, and write
M ≺e,n N , if M ⊆e N and Σn properties are preserved between M and N .

We use Ord to denote the class of ordinals. The construction of Gödel’s
constructible universe (L) presented in [2, Chapter II] invokes no more than
Π1-Foundation and can therefore be carried out in the theory KP. For all sets X,

Def(X ) = {Y ⊆ X | Y is a definable subclass of 〈X,∈〉},

which can be seen to be a set in the theory KP using a formula for satisfaction in
set structures such as the one described in [2, Section III.1]. The levels of L are then
defined by the recursion:

L0 = ∅ and Lα =
⋃
�<α

L� if α is a limit ordinal,

Lα+1 = Lα ∪ Def(Lα), and

L =
⋃
α∈Ord

Lα.

The function α �→ Lα is total in KP and ΔKP
1 . The axiom V = L asserts that every

set is the member of some Lα . A transitive set M such that 〈M,∈〉 satisfies KP is
said to be an admissible set. An ordinal α is said to be an admissible ordinal if Lα is
an admissible set.

The theory KPP proves that the function α �→ Vα is total and ΔP
1 . Mathias

[13, Proposition Scheme 6.12] refines the relationships between the classes ΔP
0 , ΣP

1 ,
ΠP

1 , ..., and the Lévy classes by showing that Σ1 ⊆ (ΔP
1 )MOST and ΔP

0 ⊆ ΔS1
2 .

Therefore, the function α �→ Vα is ΔKPP
2 . It also follows from this analysis that

KPP is a subtheory of M + Π1-Collection + Π2-Foundation.
Let T be an L-theory. A transitive set M is said to be the minimum model of T

if 〈M,∈〉 |= T and for all transitive sets N with 〈N,∈〉 |= T ,M ⊆ N . For example,
L�CK

1
is the minimum model of KPI. For an L-theory T to have a minimum model

it is sufficient that the conjunction of the following conditions hold:

(I) There exists a transitive set M such that 〈M,∈〉 |= T ;
(II) for all transitive M with 〈M,∈〉 |= T , 〈LM,∈〉 |= T .
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Gostanian [8, Section 1] shows that all sufficiently strong subsystems of ZF and ZF–

obtained by restricting the separation and collection schemes to formulae in the
Lévy classes have minimum models. In particular:

Theorem 2.1 (Gostanian [8]). Let n,m ∈ �.

(I) The theory KPI + Πm-Separation + Πn-Collection has a minimum model.
Moreover, the minimum model of this theory satisfies V = L.

(II) If n ≥ 1 or m ≥ 1, then the theory KPI + Powerset + Πm-Separation +
Πn-Collection has a minimum model. Moreover, the minimum model of this
theory satisfies V = L.

Gostanian’s analysis also yields:

Theorem 2.2. Let n ∈ �. The theory Z + Πn-Collection has a minimum model.
Moreover, the minimum model of this theory satisfies V = L.

The fact that KP is able to define satisfaction in set structures also facilitates the
definition of formulae expressing satisfaction, in the universe, for formulae in any
given level of the Lévy hierarchy.

Definition 2.1. The formula SatΔ0(q, x) is defined as

(q ∈ �) ∧ (q = �φ(v1, ... , vm)� where φ is Δ0) ∧ (x = 〈x1, ... , xm〉)∧
∃N

(⋃
N ⊆ N ∧ (x1, ... , xm ∈ N ) ∧ (〈N,∈〉 |= φ[x1, ... , xm]))

.

We can now inductively define formulae SatΣn (q, x) and SatΠn (q, x) that express
satisfaction for formulae in the classes Σn and Πn.

Definition 2.2. The formulae SatΣn (q, x) and SatΠn (q, x) are defined recursively
for n > 0. SatΣn+1(q, x) is defined as the formula

∃�y∃k∃b
(

(q = �∃�uφ(�u, v1, ... , vl )� where φ is Πn) ∧ (x = 〈x1, ... , xl 〉)
∧(b = 〈�y, x1, ... , xl 〉) ∧ (k = �φ(�u, v1, ... , vl )�) ∧ SatΠn (k, b)

)
;

and SatΠn+1(q, x) is defined as the formula

∀�y∀k∀b
(

(q = �∀�uφ(�u, v1, ... , vl )� where φ is Σn) ∧ (x = 〈x1, ... , xl 〉)
∧((b = 〈�y, x1, ... , xl 〉) ∧ (k = �φ(�u, v1, ... , vl )�) ⇒ SatΣn (k, b))

)
.

Theorem 2.3. Suppose n ∈ � and m = max{1, n}. The formula SatΣn (q, x)
(respectively SatΠn (q, x)) is ΣKP

m (ΠKP
m , respectively). Moreover, SatΣn (q, x) (respec-

tively SatΠn (q, x)) expresses satisfaction for Σn-formulae (Πn-formulae, respectively)
in the theory KP, i.e., if M |= KP, φ(v1, ... , vk) is a Σn-formula, and x1, ... , xk are
in M, then for q = �φ(v1, ... , vk)�, M satisfies the universal generalisation of the
following formula:

x = 〈x1, ... , xk〉 ⇒
(
φ(x1, ... , xk) ⇐⇒ SatΣn (q, x)) .

Kaufmann [9] identifies necessary and sufficient conditions for models of KP to
have proper Σn-elementary end extensions.

Theorem 2.4 (Kaufmann [9, Theorem 1]). Let n ≥ 1. Let M = 〈M,∈M〉 be a
model of KP. Consider
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6 ZACHIRI MCKENZIE

(I) there exists N = 〈N,∈N 〉 such that M ≺e,n+1 N andM �= N ;
(II) M |= Πn-Collection.

If M |= V = L, then (I ) ⇒ (II ). If M is countable, then (II ) ⇒ (I ).

It should be noted that Kaufmann proves that (I) implies (II) in the above under
the weaker assumption that M is a resolvable model of M–. A model M = 〈M,∈M〉
of M– is resolvable if there is a function F that is Δ1 over M such that for all x ∈M ,
there exists α ∈ OrdM such that x ∈ F (α). The function α �→ Lα witnesses the fact
that every model of KP + V = L is resolvable.

§3. Limitations of Kaufmann’s theorem. In this section we show that there are
limitations on the amount of the theory of the base model that can be transferred
to the partially-elementary end extension guaranteed by Theorem 2.4. We utilise a
generalisation of a result, due to Simpson and that is mentioned in [9, Remark 2],
showing that if a M satisfies KP + V = L and has a Σn-elementary end extension
that satisfies enough set theory and contains no least new ordinal, then M must
satisfy Πn-Collection. The proof of this generalisation, Theorem 3.1, is based on
Enayat’s proof of a refinement of Simpson’s result (personal communication) that
corresponds to the specific case where n = 1 and M is transitive.

Theorem 3.1. Let n ≥ 1. Let M = 〈M,∈M〉 be a model of KP + V = L. Suppose
N = 〈N,∈N 〉 is such that M ≺e,n N , N |= KP and OrdN \OrdM is nonempty and
has no least element. If N |= Πn–1-Collection or N |= Πn+2-Foundation, then M |=
Πn-Collection.

Proof. Assume that N = 〈N,∈N 〉 is such that
(I) M ≺e,n N ;

(II) N |= KP;
(III) OrdN \OrdM is nonempty and has no least element.

Note that, since M ≺e,1 N and M |= V = L, for all � ∈ OrdN \OrdM,M ⊆ (LN
� )∗.

We need to show that if either Πn–1-Collection or Πn+2-Foundation hold in N , then
M |= Πn-Collection. Let φ(x, y, �z) be a Πn-formula. Let �a, b ∈M be such that

M |= (∀x ∈ b)∃yφ(x, y, �a).

So, for all x ∈ b∗, there exists y ∈M such that

M |= φ(x, y, �a).

Therefore, since M ≺e,n N , for all x ∈ b∗, there exists y ∈M such that

N |= φ(x, y, �a).

Now, φ(x, y, �z) can be written as ∀w�(w, x, y, �z) where �(w, x, y, �z) is Σn–1. Let
� ∈ OrdN \OrdM. So, for all � ∈ OrdN \OrdM and for all x ∈ b∗, there exists y ∈
(LN
� )∗ such that

N |= (∀w ∈ L�)�(w, x, y, �a).

Therefore, for all � ∈ OrdN \OrdM,

N |= (∀x ∈ b)(∃y ∈ L�)(∀w ∈ L�)�(w, x, y, �a). (1)
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Now, define 	(�, �, b, �a) to be the formula

(∀x ∈ b)(∃y ∈ L�)(∀w ∈ L�)�(w, x, y, �a).

If Πn–1-Collection holds in N , then 	(�, �, b, �a) is equivalent to a Σn–1-formula.
Without Πn–1-Collection, 	(�, �, b, �a) can be written as a Πn+2-formula. Therefore,
Πn–1-Collection or Πn+2-Foundation in N will ensure that there is a least �0 ∈ OrdN

such that N |= 	(�0, �, b, �a). Moreover, by (1), �0 ∈M . Therefore,

N |= (∀x ∈ b)(∃y ∈ L�0)(∀w ∈ L�)�(w, x, y, �a).

So, for all x ∈ b∗, there exists y ∈ (LM
�0

)∗, for all w ∈ (LN
� )∗,

N |= �(w, x, y, �a).

Which, since M ≺e,n N , implies that for all x ∈ b∗, there exists y ∈ (LM
�0

)∗, for all
w ∈M ,

M |= �(w, x, y, �a).

Therefore,M |= (∀x ∈ b)(∃y ∈ L�0)φ(x, y, �a). This shows that Πn-Collection holds
in M. �

Enayat (personal communication) uses a specific case of Theorem 3.1 to show
that the 〈L�CK

1
,∈〉 has no proper Σ1-elementary end extension that satisfies KP. We

now turn to generalising this result to show that for all n ≥ 1, the minimum model
of Z + Πn-Collection has no proper Σn+1-elementary end extension that satisfies
either KP + Πn+3-Foundation or KP + Πn-Collection. However, by Theorem 2.4,
for all n ≥ 1, the minimum model of Z + Πn-Collection does have a proper Σn+1-
elementary end extension.

The following result follows from [12, Theorem 4.4].

Theorem 3.2. Let n ≥ 1. The theory M + Πn+1-Collection + Πn+2-Foundation
proves that there exists a transitive model of Z + Πn-Collection.

Corollary 3.3. Let n ≥ 1. Let M be the minimum model of Z + Πn-Collection.
Then there is an instance of Πn+1-Collection that fails in 〈M,∈〉.

Theorem 3.4. Let n ≥ 1. Let M be the minimum model ofZ + Πn-Collection. Then
〈M,∈〉 has a proper Σn+1-elementary end extension N , but if such an end extension
satisfies KP, then both Πn+3-Foundation and Πn-Collection fail in N .

Proof. The fact that 〈M,∈〉 has a proper Σn+1-elementary end extension follows
from Theorem 2.4. Let N = 〈N,∈N 〉 be such that N |= KP, N �=M and 〈M,∈〉
≺e,n+1 N . Since M is the minimal model of Z + Πn-Collection, 〈M,∈〉 |= ¬
 where

 is the sentence

∃x(x is transitive ∧ 〈x,∈〉 |= Z + Πn-Collection).

Since 
 is ΣKP
1 and 〈M,∈〉 ≺e,1 N , N |= ¬
. Since N |= KP and M �= N ,

OrdN \Ord〈M,∈〉 is nonempty. If � is the least element of OrdN \Ord〈M,∈〉, then

N |= (〈L�,∈〉 |= Z + Πn-Collection),
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8 ZACHIRI MCKENZIE

which contradicts the fact that N |= ¬
. Therefore, OrdN \Ord〈M,∈〉 is nonempty
and contains no least element. Therefore, by Theorem 3.1 and Corollary 3.3, there
must be both an instance of Πn-Collection and an instance of Πn+3-Foundation that
fails in N . �

We can also obtain an analog of Theorem 3.4 for the minimum models of KPI +
Πn-Collection that allow us to recover Enayat’s result. [8, Theorem 2.3] yields the
following analog of Corollary 3.3.

Theorem 3.5 (Gostanian). Let n ∈ �. Let M be the minimum model of KPI +
Πn-Collection. Then there is an instance of Πn+1-Collection that fails in 〈M,∈〉.

Using Theorems 3.1 and 3.5, and the same argument used in the proof of
Theorem 3.4 now yields:

Theorem 3.6. Let n ∈ �. Let M be the minimum model of KPI + Πn-Collection.
If n = 0, then 〈M,∈〉 has no proper Σ1-elementary end extension that satisfies KP. If
n > 0, then 〈M,∈〉 has a proper Σn+1-elementary end extension N , but if such an end
extension satisfies KP, then both Πn+3-Foundation and Πn-Collection fail in N .

§4. Building partially-elementary end extensions. In this section we will show that
ifM is a countable model ofKP + Πn-Collection + Σn+1-Foundation and T is a recur-
sively enumerable theory that holds in M, then there exists a proper Σn-elementary
end extension N of M such that N satisfies T (Theorem 4.15). The special case of
this result for M transitive can be proved using the Barwise Compactness theorem.
The more general result is obtained using Barwise’s machinery of admissible covers
that facilitate the application of Barwise compactness arguments to nonstandard
models. In order to motivate the proof of Theorem 4.15, we begin by sketching the
proof of the special case that applies only to countable transitive models.

Theorem 4.1. Let T be a recursively enumerable L-theory such that

T � KP + Πn-Collection,

and let M be countable and transitive with 〈M,∈〉 |= T . Then there exists N =
〈N,∈N 〉 such that 〈M,∈〉 ≺e,n N |= T and there exists d ∈ N such that for allx ∈M ,
N |= (x ∈ d ).

Proof. (Sketch) Let L′ be the language obtained from L by constant symbols ā
for each a ∈M and a constant symbol c. Let LS be the language obtained from L
by adding a binary relation symbol S. Fix a sufficiently simple coding in set theory
of the infinitary language L′

∞� based on L′ that allows arbitrarily long conjunctions
and disjunction but only finite blocks of quantifiers. Let L′

M be the fragment of
L′
∞� that is coded in M. Let S ⊆M be a satisfaction class for Σn-formulae and note

that S is Σn definable over 〈M,∈〉. The fact that 〈M,∈〉 satisfies KP + Πn-Collection
ensures that the LS-structure 〈M,∈, S〉 is admissible. Now, let Q be that L′

M -theory
that contains:

• T ;
• for all a, b ∈M with a ∈ b, ā ∈ b̄;
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• for all a ∈M ,

∀x

⎛
⎝x ∈ a ⇐⇒

∨
b∈a

(x = b̄)

⎞
⎠ ;

• for all a ∈M , ā ∈ c;
• for all Πn-formulae, φ(x0, ... , xm–1), and for all a0, ... , am–1 ∈M such that
〈M,∈〉 |= φ(a0, ... , am–1),

φ(ā0, ... , ām–1).

Since S is a satisfaction class for Σn-formulae of 〈M,∈〉, Q is Σ1(LS)-definable over
〈M,∈, S〉. If Q0 ⊆ Q is such that (when thought of as a set of codes) Q0 ∈M , then
the structure 〈M,∈〉 can be expanded to a model of Q0. Therefore, by the Barwise
Compactness theorem, Q has a model, and the L-reduct of this model is the required
end extension of 〈M,∈〉. �

Barwise [1] and [2, Appendix] introduces the machinery of admissible covers to
apply infinitary compactness arguments, such as the one used in the proof sketch of
Theorem 4.1, to nonstandard countable models. The proof of [2, Theorem A.4.1]
shows that for any countable model M of KP + Foundation and for any recursively
enumerableL-theory T that holds inM,M has proper end extension that satisfies T.
By calibrating [2, Appendix], Ressayre [15, Theorem 2.15] shows that this result also
holds for countable models of KP + Σ1-Foundation.

Theorem 4.2 (Ressayre). Let M = 〈M,∈M〉 be a countable model of KP +
Σ1-Foundation. Let T be a recursively enumerable theory such that M |= T . Then
there exists N |= T such that M ⊆e N andM �= N .

In [15, 2.17 Remarks], Ressayre notes, without providing the details, that if
M satisfies KP + Πn-Collection + Πn+1 ∪ Σn+1-Foundation, then the end extension
obtained in Theorem 4.2 can be guaranteed to be Σn-elementary. In this section,
we work through the details of this result showing that the assumption that the
model M being extended satisfies Πn+1-Foundation is not necessary. Our main
result (Theorem 4.15) can be viewed as a generalisation of [5, Theorem 5.3], where
admissible covers are used to build powerset-preserving end extension of countable
models of set theory. Here we follow the presentation of admissible covers presented
in [5].

In order to present admissible covers of (not necessarily well-founded) models
of extensions of KP we need to describe extensions of Kripke–Platek Set Theory
that allow structures to appear as urelements in the domain of discourse. Let L∗

be obtained from L by adding a new unary predicate U, binary relation E and
unary function symbol F. Let L∗

S be obtained from L∗ by adding a new binary
predicate S. The intention is that U distinguishes objects that are urelements from
objects that are sets, the urelements together with E form an L-structure, and ∈
is a membership relation between sets or urelments and sets. That is, the L∗- and
L∗
S-structures we will consider will be structures in the form AM = 〈M;A,∈A,

FA〉 or AM = 〈M;A,∈A,FA,SA〉, where M = 〈M,EA〉, M is the extension of U,
EA ⊆M ×M , A is the extension of ¬U and ∈A⊆ (M ∪ A) × A.
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10 ZACHIRI MCKENZIE

Following [2] we simplify the presentation of L∗- and L∗
S-formulae by treating

these languages as two-sorted instead of one-sorted and using the following
conventions:

• The variables p, q, r, p1, ...range over elements of the domain that satisfy U;
• the variables a, b, c, a1, ...range over elements of the domain that satisfy ¬U;
• the variables x, y, z, w, x1, ...range over all elements of the domain.

So, ∀a(··· ) is an abbreviation of ∀x(¬U(x) ⇒ ··· ), ∃p(··· ) is an abbreviation of
∃x(U(x) ∧ ··· ), etc. These conventions are used in the following L∗

S-axioms and
-axiom schemes:

(Extensionality for sets) ∀a∀b(a = b ⇐⇒ ∀x(x ∈ a ⇐⇒ x ∈ b)).
(Pair) ∀x∀y∃a∀z(z ∈ a ⇐⇒ z = x ∨ z = y).
(Union) ∀a∃b(∀y ∈ b)(∀x ∈ y)(x ∈ b).

Let Γ be a class of L∗
S-formulae.

(Γ-Separation) For all φ(x, �z) in Γ,

∀�z∀a∃b∀x(x ∈ b ⇐⇒ (x ∈ a) ∧ φ(x, �z)).

(Γ-Collection) For all φ(x, y, �z) in Γ,

∀�z∀a((∀x ∈ a)∃yφ(x, y, �z) ⇒ ∃b(∀x ∈ a)(∃y ∈ b)φ(x, y, �z)).

(Γ-Foundation) For all φ(x, �z) in Γ,

∀�z(∃xφ(x, �z) ⇒ ∃y(φ(y, �z) ∧ (∀w ∈ y)¬φ(w, �z))).

The interpretation of the function symbol F will map urelements, p, to sets, a, such
that the E-extension of p is equal to the ∈-extension of a. This is captured by the
following axiom:

(†) ∀p∃a(a = F(p) ∧ ∀x(xEp ⇐⇒ x ∈ a)) ∧ ∀b(F(b) = ∅).
The following theory is the analog of KP in the language L∗:

• KPUCov is the L∗-theory with axioms: ∃a(a = a), ∀p∀x(x /∈ p), Extensionality
for sets, Pair, Union, Δ0(L∗)-Separation, Δ0(L∗)-Collection, Π1(L∗)-Foundation
and (†).

An order pair 〈x, y〉 is coded inKPUCov by the set {{x}, {x, y}}, and we writeOP(x)
for the usual Δ0-formula that says that z is an order pair and that also works in this
theory. We write fst for the function 〈x, y〉 �→ x and snd for the function 〈x, y〉 �→ y.
The usual Δ0 definitions of the graphs of these functions also work in KPUCov. The
rank function, �, and support function, sp, are defined in KPUCov by recursion:

�(p) = 0 for all urelements p, and �(a) = sup{�(x) + 1 | x ∈ a} for all sets a;

sp(p) = {p} for all urelements p, and sp(a) =
⋃
x∈a

sp(x) for all sets a.

The theory KPUCov proves that both sp and � are total functions and their graphs
are Δ1(L∗). We say that x is a pure set if sp(x) = ∅. The following Δ0(L∗)-formulae
assert that ‘x is transitive’ and ‘x is an ordinal (a hereditarily transitive pure set)’:

Transitive(x) ⇐⇒ ¬U(x) ∧ (∀y ∈ x)(∀z ∈ y)(z ∈ x);

Ord(x) ⇐⇒ (Transitive(x) ∧ (∀y ∈ x)Transitive(y)).
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We will consider L∗
S-structures in which the predicate S is a satisfaction class for

the Σn-formulae of the L-structure M. Let KPU′
Cov be obtained from KPUCov by

adding axioms asserting that the L-structure formed by the urelements and the
binary relation E satisfies KP. For n ∈ �, define

(n-Sat) S(m,x) if and only if U(m) and U(x) and SatΣn (m,x) holds in the
L-structure defined by U and E.

We can now define a family of L∗
S-theories extending KPUCov that assert that the

L-structure defined by U and E satisfies KP and S is a satisfaction class on this
structure for Σn-formulae, and S can be used in the separation, collection and
foundation schemes.

• For all n ∈ �, define KPUn
Cov to be the L∗

S-theory extending KPU′
Cov with

the axiom n-Sat and the schemes Δ0(L∗
S)-Separation, Δ0(L∗

S)-Collection and
Π1(L∗

S)-Foundation.

The arguments used in [2, Theorems I.4.4 and I.4.5] show that KPUCov proves the
schemes of Σ1(L∗)-Collection and Δ1(L∗)-Separation, and for all n ∈ �, KPUnCov
proves the schemes of Σ1(L∗

S)-Collection and Δ1(L∗
S)-Separation.

Definition 4.1. Let M = 〈M,EM〉 be an L-structure. An admissible set covering
M is an L∗-structure

AM = 〈M;A,∈A,FA〉 |= KPUCov

such that ∈A is well-founded. If M |= KP and n ∈ �, then an n-admissible set
covering M is an L∗

S-structure

AM = 〈M;A,∈A,FA,SA〉 |= KPUnCov

such that ∈A is well-founded. Note that if AM = 〈M;A,∈A,FA, ...〉 is an
(n-)admissible set covering M, then AM is isomorphic to a structure whose mem-
bership relation (∈) is the membership relation of the metatheory. The admissible
cover of M, denoted CovM = 〈M;AM,∈,FM〉, is the smallest admissible set
covering M whose membership relation (∈) coincides with the membership relation
of the metatheory. If M |= KP and n ∈ �, the n-admissible cover of M, denoted
CovnM = 〈M;AM,∈,FM,SM〉, is the smallest n-admissible set covering M whose
membership relation (∈) coincides with the membership relation of the metatheory.

Definition 4.2. Let M = 〈M,EM〉 be an L-structure, and let AM = 〈M;A,∈,
FA, ...〉 be an L∗- or L∗

S-structure. We use WF(A) to denote the largest B ⊆ A such
that 〈B,∈A〉 ⊆e 〈A,∈A〉 and 〈B,∈A〉 is well-founded. The well-founded part of AM
is the L∗- or L∗

S-structure

WF(AM) = 〈M; WF(A),∈A,FA, ...〉.
Note that WF(AM) is always isomorphic to a structure whose membership relation
∈ coincides with the membership relation of the metatheory.

Let M = 〈M,EM〉 be such that M |= KP. Let Lee be the language obtained from
L by adding new constant symbols ā for each a ∈M and a new constant symbol c.
Let AM = 〈M;A,∈,FA,SA〉 be an n-admissible set covering M. There is a coding
�·� of a fragment of the infinitary language Lee

∞� in AM with the property that
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12 ZACHIRI MCKENZIE

the classes of codes of atomic formulae, variables, constants, well-formed formulae,
sentences, etc. are all Δ1(L∗)-definable overAM (see [5, p. 9] for an explicit definition
of such a coding). We write Lee

AM
for the fragment of Lee

∞� whose codes appear in
AM. In order to apply compactness arguments to Lee

AM
-theories where AM is an n-

admissible set, we will use the following specific version of the Barwise Compactness
theorem ([2, Theorem III.5.6]):

Theorem 4.3 (Barwise Compactness theorem). Let AM = 〈M;A,∈ FA,SA〉 be
an n-admissible set covering M. Let T be an Lee

AM
-theory that is Σ1(L∗

S)-definable
over AM and such that for all T0 ⊆ T , if T0 ∈ A, then T0 has a model. Then T has a
model.

The work in [2, Appendix] and [15, Chapter 2] shows that if M satisfies KP +
Σ1-Foundation, then CovM exists. In particular, CovM can be obtained from M by
first defining a model of KPUCov inside M and then considering the well-founded
part of this model. We now turn to reviewing the construction of CovM from M
and showing that if M satisfies KP + Πn-Collection + Σn+1-Foundation, then CovM
can be expanded to an L∗

S-structure corresponding to CovnM.
Let n ≥ 1. Fix a model M = 〈M,EM〉 that satisfies KP + Πn-Collection +

Σn+1-Foundation. Working inside M, define unary relations N and Set, binary
relations E′, E and S̄, and unary function F̄ by:

N(x) iff ∃y(x = 〈0, y〉);

xE′y iff ∃w∃z(x = 〈0, w〉 ∧ y = 〈0, z〉 ∧ w ∈ z);

Set(x) = ∃y(x = 〈1, y〉 ∧ (∀z ∈ y)(N(z) ∨ Set(z)));

xEy iff ∃z(y = 〈1, z〉 ∧ x ∈ z);

F̄(x) = 〈1, X 〉 where X = {〈0, y〉 | ∃w(x = 〈0, w〉 ∧ y ∈ w)};

S̄(x, y) iff ∃z∃w(x = 〈0, w〉 ∧ y = 〈0, z〉 ∧ SatΣn (w, z)).

It is noted in [2, Appendix Section 3] that N, E′, E and F̄ are defined by Δ0-
formulae in M. The Second Recursion theorem ([2, Theorem V.2.3]), provable in
KP + Σ1-Foundation as note in [15], ensures thatSet can be expressed as a Σ1-formula
in M. Theorem 2.3 implies that S̄ is defined by a Σn-formula in M. These definitions
yield an interpretation, I, of anL∗

S-structureAN = 〈N ;SetM, EM, F̄M, S̄M〉, where
N = 〈NM, (E′)M〉. Table 1 extends the table on [2, p. 373] and summarises the
interpretation I:

If φ is an L∗
S-formula, then we write φI for the translation of φ into an L-

formula described in Table 1. By ignoring the interpretation S̄ of S we obtain,
instead, an interpretation, I–, of an L∗-structure in M and we write A–

N for this
reduct. Note that the map x �→ 〈0, x〉 defines an isomorphism between M and
N = 〈NM, (E′)M〉. Ressayre, refining [2, Appendix Lemma 3.2], shows that if M
satisfies KP + Σ1-Foundation, then interpretation I– yields a structure satisfying
KPUCov.

Theorem 4.4. A–
N |= KPUCov.
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L∗
S Symbol L expression under I
∀x ∀x(N(x) ∨ Set(x) ⇒ ··· )
= =

U(x) N(x)
xEy xE′y
x ∈ y xEy
F(x) F̄(x)
S(x, y) S̄(x, y)

Table 1. The interpretation I.

Lemma 4.5. Let φ( �x) be a Δ0(L∗
S)-formula. Then φI( �x) is equivalent to a Δn+1-

formula in M.

Proof. We prove this result by induction on the complexity of φ. Above, we
observed that N(x), xE′y, xEy and y = F̄(x) can be written as Δ0-formulae. And
S̄(x, y) can be written as a Σn-formula. Now, yEF̄ (x) if and only if

fst(y) = 0 ∧ snd(y) ∈ snd(x),

which is Δ0. Therefore, if φ( �x) is a quantifier-free L∗
S-formula, then φI( �x) is

equivalent to a Δn+1-formula in M. Now, suppose that φ(x0, ... , xm–1) is in
the form (∃y ∈ x0)�(x0, ... , xm–1, y) where �I(x0, ... , xm–1, y) is equivalent to a
Δn+1-formula in M. Therefore, φI(x0, ... , xm–1) = (∃yEx0)�I(x0, ... , xm–1, y), and
(∃yEx0)�I(x0, ... , xm–1, y) iff

(∃y ∈ snd(x0))�I(x0, ... , xm–1, y).

So, since M satisfies Πn-Collection, φI(x0, ... , xm–1) is equivalent to a Δn+1-
formula in M. Finally, suppose that φ(x0, ... , xm–1) is in the form (∃y ∈
F(x0))�(x0, ... , xm–1, y) where �I(x0, ... , xm–1, y) is equivalent to a Δn+1-
formula in M. Therefore, φI(x0, ... , xm–1) = (∃yE F̄(x0))�I(x0, ... , xm–1, y), and
(∃yE F̄(x0))�I(x0, ... , xm–1, y) iff

∃z(z = F̄(x0) ∧ (∃y ∈ snd(z))�I(x0, ... , xm–1, y))

iff ∀z(z = F̄(x0) ⇒ (∃y ∈ snd(z))�I(x0, ... , xm–1, y)).

Therefore, since M satisfies Πn-Collection, φI(x0, ... , xm–1) is equivalent to a Δn+1-
formula in M. The lemma now follows by induction. �

Lemma 4.6. AN |= Δ0(L∗
S)-Separation.

Proof. Let φ(x, �z) be a Δ0(L∗
S)-formula. Let �v be a finite sequence of sets and/or

urelements of AN and a a set of AN . Work inside M. Now, a = 〈1, a0〉. Let

b0 = {x ∈ a0 | φI(x, �v)},
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which is a set by Δn+1-Separation. Let b = 〈1, b0〉. Therefore, for all x such that
Set(x),

xEb if and only if xEa ∧ φI(x, �v).
This shows that AN satisfies Δ0(L∗

S)-Separation. �

Lemma 4.7. AN |= Δ0(L∗
S)-Collection.

Proof. Let φ(x, y, �z) be a Δ0(L∗
S)-formula. Let �v be a finite sequence of sets

and/or urelements of AN and let a be a set of AN such that

AN |= (∀x ∈ a)∃yφ(x, y, �v).
Work inside M. Now, a = 〈1, a0〉. And,

(∀xEa)∃y((N(y) ∨ Set(y)) ∧ φI(x, y, �v)).

So,

(∀x ∈ a0)∃y((N(y) ∨ Set(y)) ∧ φI(x, y, �v)).

Since (N(y) ∨ Set(y)) ∧ φI(x, y, �v) is equivalent to a Σn+1-formula, we can use
Πn-Collection to find b0 such that

(∀x ∈ a0)(∃y ∈ b0)((N(y) ∨ Set(y)) ∧ φI(x, y, �v)).

Let b1 = {y ∈ b0 | N(y) ∨ Set(y)}, which is a set by Σ1-Separation. Let b = 〈1, b1〉.
Therefore, Set(b) and

(∀xEa)(∃yEb)φI(x, y, �v).
So,

AN |= (∀x ∈ a)(∃y ∈ b)φ(x, y, �v).
This shows that AN satisfies Δ0(L∗

S)-Collection. �

Lemma 4.8. AN |= Σ1(L∗
S)-Foundation.

Proof. Let φ(x, �z) be a Σ1(L∗
S)-formula. Let �v be a sequence of sets and/or

urelements such that

{x ∈ AN | AN |= φ(x, �v)} is nonempty.

Work inside M. Consider 	(α, �z) defined by

(α is an ordinal) ∧ ∃x((N(x) ∨ Set(x)) ∧ �(x) = α ∧ φI(x, �z)).

Note that 	(α, �z) is equivalent to a Σn+1-formula and ∃α	(α, �v). Therefore, using
Σn+1-Foundation, let � be a ∈-least element of

{α ∈M | M |= 	(α, �v)}.
Let y be such that (N(y) ∨ Set(y)), �(y) = � and φI(y, �v). Note that if xEy, then
�(x) < �(y). Therefore y is an E-least element of

{x ∈ AN | AN |= φ(x, �v)}. �
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The results of [2, Appendix Section 3] show that CovM is the L∗-reduct of the
well-founded part of AN .

Theorem 4.9 (Barwise). The L∗-reduct of WF(AN ), WF–(AN ) = 〈N ;
WF(SetM), EM, F̄M〉, is an admissible set covering N that is isomorphic to CovM.

We can extend this result to show that WF(AN ) is an n-admissible cover of N
and, therefore, isomorphic to CovnM.

Theorem 4.10. The structure WF(AN ) = 〈N ; WF(SetM), EM, F̄M, S̄M〉 is an
n-admissible set covering N . Moreover, WF(AN ) is isomorphic to CovnM.

Proof. Theorem 4.9, the fact that M |= KP, and the fact that WF(AN ) is well-
founded imply that WF(AN ) satisfies KPU′

Cov + L∗
S-Foundation. The definition of

S̄ in M ensures that WF(AN ) satisfies n-Sat. If a is a set WF(AN ) and b is a set
in AN with AN |= (b ⊆ a), then b ∈ WF(SetM). Therefore, since Δ0(L∗

S)-formulae
are absolute between WF(AN ) and AN , WF(AN ) satisfies Δ0(L∗

S)-Separation. To
show that WF(AN ) satisfies Δ0(L∗

S)-Collection, let φ(x, y, �z) be a Δ0(L∗
S)-formula.

Let �v be sets and/or urelements in WF(AN ) and let a be a set of WF(AN ) such that

WF(AN ) |= (∀x ∈ a)∃yφ(x, y, �v).
Consider the formula 	(�, �z) defined by

(� is an ordinal) ∧ (∀x ∈ a)(∃α ∈ �)∃y(�(y) = α ∧ φ(x, y, �z)).

Note that if � is a nonstandard ordinal of AN , then AN |= 	(�, �v). Using
Δ0(L∗

S)-Collection, 	(�, �z) is equivalent to a Σ1(L∗
S)-formula in AN . Therefore, by

Σ1(L∗
S)-Foundation in AN , {� | AN |= 	(�, �v)} has a least element �. Note that

� must be an ordinal in WF(AN ). Consider the formula �(x, y, �z, �) defined by
φ(x, y, �z) ∧ (�(y) < �). Then,

AN |= (∀x ∈ a)∃y�(x, y, �v, �).
By Δ0(L∗

S)-Collection in AN , there is a set b of AN such that

AN |= (∀x ∈ a)(∃y ∈ b)�(x, y, �v, �).
Let c = {y ∈ b | �(y) < �}, which is a set in AN by Δ1(L∗

S)-Separation. Now, c is a
set of WF(AN ) and

WF(AN ) |= (∀x ∈ a)(∃y ∈ c)φ(x, y, �v).
Therefore, WF(AN ) satisfies Δ0(L∗

S)-Collection, and so is an n-admissible set
covering N . Since the L∗-reduct of WF(AN ) is isomorphic to CovM, WF(AN )
is isomorphic to CovnM. �

To summarise, we have proved the following.

Theorem 4.11. If M |= KP + Πn-Collection + Σn+1-Foundation, then then there
is an interpretation of S in CovM that yields the n-admissible cover CovnM.

Our analysis also yields the following version of [2, Appendix Corollary 2.4],
which plays an important role on compactness arguments.
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Theorem 4.12. Let M = 〈M,EM〉 be such that M |= KP + Πn-Collection +
Σn+1-Foundation. For all A ⊆M , there exists a ∈M such that a∗ = A if and only if
A ∈ CovnM.

In particular, we obtain:

Lemma 4.13. Let M = 〈M,EM〉 be such that M |= KP + Πn-Collection +
Σn+1-Foundation. Let T0 be an Lee

CovnM
-theory. If T0 ∈ CovnM, then there exists

b ∈M such that

b∗ = {a ∈M | ā is mentioned in T0}.
The next result connects definability in M with definability in CovnM.

Lemma 4.14. Let M = 〈M,EM〉 be such that M |= KP + Πn-Collection +
Σn+1-Foundation. Let φ(�z) be a Σn+1-formula. Then there exists a Σ1(L∗

S)-formula
φ̂(�z) such that for all �z ∈M ,

M |= φ(�z) if and only if CovnM |= φ̂(�z).
Proof. Let 	(x, �z) be Πn such that φ(�z) is ∃x	(x, �z). Let q ∈ � be such that

q = �¬	(�z)�. Let z0, ... , zm–1 ∈M . Then

M |= φ(z0, ... , zm–1) if and only if CovnM |= ∃x∃z(z = 〈x, z0, ... , zm–1〉 ∧ ¬S(q, z)).

�
Theorem 4.15. Let S be a recursively enumerable L-theory such that

S � KP + Πn-Collection + Σn+1-Foundation,

and let M = 〈M,EM〉 be a countable model of S. Then there exists an L-structure
N = 〈N,EN 〉 such that M ≺e,n N |= S and there exists d ∈ N such that for all
x ∈M , N |= (x ∈ d ).

Proof. Let T be the Lee
CovnM

-theory that contains:

• S;
• for all a, b ∈M with M |= (a ∈ b), ā ∈ b̄;
• for all a ∈M ,

∀x

⎛
⎝x ∈ a ⇐⇒

∨
b∈a

(x = b̄)

⎞
⎠ ;

• for all a ∈M , ā ∈ c;
• for all Πn-formulae, φ(x0, ... , xm–1), and for all a0, ... , am–1 ∈M such that
M |= φ(a0, ... , am–1),

φ(ā0, ... , ām–1).

Since S is a satisfaction class for Σn-formulae (and hence Πn-formula) of M in
CovnM, T ⊆ CovnM is Σ1(L∗

S) over CovnM. Let T0 ⊆ T be such that T0 ∈ CovnM.
Using Lemma 4.13, let c ∈M be such that

c∗ = {a ∈M | ā is mentioned in T0}.
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Interpreting each ā that is mentioned in T0 by a ∈M and interpreting c by c, we
expand M to a model of T0. Therefore, by the Barwise Compactness theorem, there
exists N |= T . The L-reduct of N is the desired extension of M. �

§5. Well-founded models of collection. In this section we use Theorem 4.15
to show that for all n ≥ 1, M + Πn-Collection + Πn+1-Foundation proves
Σn+1-Separation. In particular, the theories M + Πn-Collection and M +
Strong Πn-Collection have the same well-founded models.

In order to be able to apply Theorem 4.15 to countable models of M +
Πn-Collection + Πn+1-Foundation, we first need to show that M + Πn-Collection +
Πn+1-Foundation proves Σn+1-Foundation. The proof presented here generalises the
argument presented in [5, Section 3] showing that KPP proves ΣP

1 -Foundation.

Definition 5.1. Let φ(x, y, �z) be an L-formula. Define �φ(a, b, f) to be the L-
formula:

(a ∈ �) ∧ (f is a function) ∧ dom(f) = a + 1 ∧ f(0) = {b}∧
(∀u ∈ �)

(
(∀x ∈ f(u))(∃y ∈ f(u + 1))φ(x, y, �z)
(∀y ∈ f(u + 1))(∃x ∈ f(u))φ(x, y, �z)

)
.

Define �φ�(b, f, �z) to be the L-formula:

(f is a function) ∧ dom(f) = � ∧ f(0) = {b}∧
(∀u ∈ �)

(
(∀x ∈ f(u))(∃y ∈ f(u + 1))φ(x, y, �z)
(∀y ∈ f(u + 1))(∃x ∈ f(u))φ(x, y, �z)

)
.

Viewing �z as parameters and letting a ∈ �, �φ(a, b, f, �z) says that f describes a
family of directed paths of length a + 1 starting at b through the directed graph
defined by φ(x, y, �z). Similarly, viewing �z as parameters, �φ�(b, f, �z) says that f
describes a family of directed paths of length � starting at b through the directed
graph defined by φ(x, y, �z). Note that if φ(x, y, �z) is Δ0, then, in the theory M–,
both �φ(a, b, f �z) and �φ�(b, f, �z) can be written as a Δ0-formulae with parameter
�. Moreover, if n ≥ 1 and φ(x, y, �z) is a Σn-formula (Πn-formula), then, in the
theory M– + Πn–1-Collection, both �φ(a, b, f �z) and �φ�(b, f, �z) can be written as a
Σn-formulae (Πn-formulae, respectively) with parameter �.

The following generalises Rathjen’s Δ0-weak dependent choices scheme from [14]:
(Δ0-WDC�) For all Δ0-formulae, φ(x, y, �z),

∀�z(∀x∃yφ(x, y, �z) ⇒ ∀w∃f�φ�(w,f, �z));

and for all n ≥ 1,
(Δn-WDC�) for all Πn-formulae, φ(x, y, �z), and for all Σn-formulae, �(x, y, �z),

∀�z(∀x∀y(φ(x, y, �z) ⇐⇒ �(x, y, �z)) ⇒ (∀x∃yφ(x, y, �z) ⇒ ∀w∃f�φ�(w,f, �z))).

The following is based on the proof of [14, Proposition 3.2].

Theorem 5.1. Let n ∈ � with n ≥ 1. The theory KP + Πn–1-Collection +
Σn-Foundation + Δn+1-WDC� proves Σn+1-Foundation.

Proof. Let T be the theory KP + Πn–1-Collection + Σn-Foundation + Δn+1-
WDC� . Assume, for a contradiction, that M = 〈M,∈M〉 is such that M |= T and
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18 ZACHIRI MCKENZIE

there is an instance of Σn+1-Foundation that is false in M. Let φ(x, y, �z) be a Πn-
formula and let �a ∈M be such that

{x | M |= ∃yφ(x, y, �a)}
is nonempty and has no ∈-minimal element. Let b, d ∈M be such that M |=
φ(b, d, �a). Now,

M |= ∀x∀u∃y∃v(φ(x, u, �a) ⇒ (y ∈ x) ∧ φ(y, v, �a)).

Therefore, M |= ∀x∃y	(x, y, �a) where 	(x, y, �a) is the formula

x = 〈x0, x1〉 ∧ y = 〈y0, y1〉 ∧ (φ(x0, x1, �a) ⇒ (y0 ∈ x0) ∧ φ(y0, y1, �a)).

So, 	(x, y, �a) is ΔTn+1. Work inside M. Using Δn+1-WDC� , let f be such that
�	�(〈b, d 〉, f, �a). Note that Σn-Foundation implies that for all n ∈ �,

(i) f(n) �= ∅;
(ii) for all x ∈ f(n), x = 〈x0, x1〉 and φ(x0, x1, �a).

Therefore, for all n ∈ �,

(∀x ∈ f(n))(∃y ∈ f(n + 1))(x = 〈x0, x1〉 ∧ y = 〈y0, y1〉 ∧ y0 ∈ x0)∧
(∀y ∈ f(n + 1))(∃x ∈ f(n))(x = 〈x0, x1〉 ∧ y = 〈y0, y1〉 ∧ y0 ∈ x0)

.

Let B = TC({b}). Set-Foundation implies that for all n ∈ �,

(∀x ∈ f(n))(x = 〈x0, x1〉 ∧ x0 ∈ B).

Let

A =
{
x ∈ B

∣∣∣(∃n ∈ �)(∃z ∈ f(n))
(
∃y ∈

⋃
z
)

(z = 〈x, y〉)
}
,

which is a set by Δ0-Separation. Now, let x ∈ A. Therefore, there exists n ∈ � and
z ∈ f(n) such that z = 〈x, x0〉. And, there existsw ∈ f(n + 1) such thatw = 〈y, y0〉
and y ∈ x. But y ∈ A. So A is a set with no ∈-minimal element, which is the desired
contradiction. �

The following refinement of Definition 5.1 will allow us to show that for n ≥ 1,
M + Πn-Collection + Πn+1-Foundation proves Δn+1-WDC� .

Definition 5.2. Let φ(x, y, �z) be an L-formula. Define 
φ(a, b, f, �z) to the
L-formula:

�φ(a, b, f, �z)∧

(∀u ∈ a)∃α∃X

⎛
⎜⎜⎜⎜⎝

(α is an ordinal) ∧ (X = Vα)∧
(∀x ∈ f(u + 1))(x ∈ X )

(∀y ∈ X )(∀x ∈ f(u))(φ(x, y, �z) ⇒ y ∈ f(u + 1))∧
(∀� ∈ α)(∀Y ∈ X )

(
Y = V� ⇒

(∃x ∈ f(u))(∀y ∈ Y )¬φ(x, y, �z)
)

⎞
⎟⎟⎟⎟⎠ .

The formula 
φ(a, b, f, �z) says that f is a function with domain a + 1 and for all
u ∈ a, f(u + 1) is the set of y ∈ Vα such that there exists x ∈ f(u) with φ(x, y, �z)
and α is least such that for all x ∈ f(u), there exists y ∈ Vα such that φ(x, y, �z). In
the theory M + Π1-Collection + Π2-Foundation, ‘X = Vα ’ can be expressed as both
a Σ2-formula and a Π2-formula. If n ≥ 1 and, for given parameters �c, φ(x, y, �c) is
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equivalent to both a Σn+1-formula and a Πn+1-formula, then, in the theory M +
Πn-Collection + Π2-Foundation, 
φ(a, b, f, �z) is equivalent to a Σn+1-formula.

Theorem 5.2. Let n ∈ � with n ≥ 1. The theory M + Πn-Collection +
Πn+1-Foundation proves Δn+1-WDC� .

Proof. Work in the theory M + Πn-Collection + Πn+1-Foundation. Let φ(x, y, �z)
be a Πn+1-formula. Let �a, b be sets and let 	(x, y, �z) be a Σn+1-formula such that

∀x∀y(φ(x, y, �a) ⇐⇒ 	(x, y, �a)).

We begin by claiming that for all m ∈ �, ∃f
φ(m, b, f, �a). Assume, for a
contradiction, that this does not hold. Using Πn+1-Foundation, let k ∈ � be least
such that ¬∃f
φ(k, b, f, �a). Since k �= 0, there exists a function g with dom(g) = k
and 
φ(k – 1, b, g, �a). Consider the class

A = {α ∈ Ord | ∀X (X = Vα ⇒ (∀x ∈ g(k – 1))(∃y ∈ X )φ(x, y, �a))}
= {α ∈ Ord | ∃X (X = Vα ∧ (∀x ∈ g(k – 1))(∃y ∈ X )	(x, y, �a))}.

Applying Σn+1-Collection to the formula 	(x, y, �a) shows that A is nonempty.
Moreover, Δn+1-Foundation ensures that there is a least element � ∈ A. Now, let

C = {y ∈ V� | (∃x ∈ g(k – 1))φ(x, y, �a)},

which is a set by Δn+1-Separation. Let f = g ∪ {〈k,C 〉}. Then f is such that

φ(k, b, f, �a), which contradicts our assumption that no such f exists. Therefore,
for all m ∈ �, ∃f
φ(m, b, f, �a). Using Σn+1-Collection, let D be such that (∀m ∈
�)(∃f ∈ D)
φ(m, b, f, �a). Note that for all m ∈ � and for all functions f and g, if

φ(m, b, f, �a) and 
φ(m, b, g, �a), then f = g. Now, let

h = {〈m,X 〉 ∈ � × TC(D) | (∃f ∈ D)(
φ(m, b, f, �a) ∧ f(m) = X )}.

Since

h = {〈m,X 〉 ∈ � × TC(D) | (∀f ∈ D)(
φ(m, b, f, �a) ⇒ f(m) = X )},

h is a set by Δn+1-Separation. Now, h is the function required by Δn+1-WDC� . �

Note Πn+1-Foundation is only used in the proof of Theorem 5.2 to find the least
element of a Πn+1-definable subclass of naturals numbers. Therefore, the proof of
Theorem 5.2 also yields the following result.

Theorem 5.3. Let n ∈ � with n ≥ 1. Let M be an �-standard model of M +
Πn-Collection + Π2-Foundation. Then

M |= Δn+1-WDC�.

Note that Π2-Foundation coupled with Π1-Collection ensures that the function
α �→ Vα is total.

Combining Theorem 5.1 with Theorems 5.2 and 5.3 yields:

Corollary 5.4. Let n ∈ � with n ≥ 1. The theory M + Πn-Collection +
Πn+1-Foundation proves Σn+1-Foundation.
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Corollary 5.5. Let n ∈ � with n ≥ 2. Let M be an �-standard model of M +
Πn-Collection. Then

M |= Σn+1-Foundation.

The proof of [5, Theorem 3.11] shows how the use of the cumulative hierarchy
can be avoided in the argument used in the proof of Theorem 5.2. The following
is [5, Corollary 3.12] combined with [13, Proposition Scheme 6.12] and provides a
version of Corollary 5.5 when n = 1.

Theorem 5.6. Let M be an �-standard model of MOST + Π1-Collection. Then

M |= Σ2-Foundation.

Equipped with these results, we are now able to show that, in the theory M +
Πn-Collection, Πn+1-Foundation implies Σn+1-Separation.

Lemma 5.7. Let M = 〈M,∈M〉 and N = 〈N,∈N 〉 be such that M,N |= M. If
M ≺e,1 N , then M ⊆P

e N .

Proof. Assume that M ≺e,1 N . Let x ∈M and let y ∈ N with N |= (y ⊆ x).
We need to show that y ∈M . Let a ∈M be such that M |= (a = P(x)). Therefore,
M |= 	(x, a) where 	(x, a) is the Π1-formula

∀z(z ⊆ x ⇐⇒ z ∈ a).

So, N |= 	(x, a). Therefore, N |= (y ∈ a) and so y ∈M . �
As alluded to in [13, Remark 3.21], the theory KP + Σ1-Separation is capable of

endowing any well-founded partial order with a ranking function.

Lemma 5.8. The theory KP + Σ1-Separation proves that if 〈X,R〉 is a well-founded
strict partial order, then there exists an ordinal � and a function h : X −→ � such that
for all x, y ∈ X , if 〈x, y〉 ∈ R, then h(x) < h(y).

Proof. Work in the theory KP + Σ1-Separation. Let X be a set and R ⊆ X × X
be such that 〈X,R〉 is a well-founded strict partial order. Let 	(x, g, X,R) be the
conjunction of the following clauses:

(i) g is a function;
(ii) rng(g) is a set of ordinals;
(iii)dom(g) = {y ∈ X | 〈y, x〉 ∈ R ∨ y = x};
(iv) (∀y, z ∈ dom(g))(〈y, z〉 ∈ R⇒ g(y) < g(z));
(v) (∀y ∈ dom(g))(∀α ∈ g(y))(∃z ∈ X )(〈z, y〉 ∈ R ∧ g(z) ≥ α).

Note that 	(x, g, X,R) can be written as a Δ0-formula. Moreover, for all x ∈ X
and functions g0 and g1, if 	(x, g0, X,R) and 	(x, g1, X,R), then g0 = g1. And,
if x, y ∈ X with 〈x, y〉 ∈ R and g0 and g1 are functions with 	(y, g0, X,R) and
	(x, g1, X,R), then g0 = g1 � dom(g0). Now, consider

A = {x ∈ X | ¬∃g	(x, g, X,R)},
which is a set by Π1-Separation. Assume, for a contradiction, thatA �= ∅. Let x0 ∈ A
be R-minimal. Let B = {y ∈ X | 〈y, x0〉 ∈ R}. Using Δ0-Collection, let C0 be such
that (∀y ∈ B)(∃g ∈ C0)	(y, g, X,R). Let

D = {g ∈ C0 | (∃y ∈ B)	(y, g, X,R)}.
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Let

� = sup{g(y) + 1 | y ∈ B and g ∈ D with y ∈ dom(g)}.

Thenf =
⋃
D ∪ {〈x0, �〉} is such that 	(x0, f,X,R), which contradicts the fact that

x0 ∈ A. Therefore, A = ∅. Using Δ0-Collection, let C1 be such that (∀x ∈ X )(∃g ∈
C1)	(x, g, X,R). Let

F = {g ∈ C1 | (∃x ∈ X )	(x, g, X,R)}.

Then h =
⋃
F is the function we require. �

Theorem 5.9. Let n ∈ � with n ≥ 1. The theory M + Πn-Collection +
Πn+1-Foundation proves Σn+1-Separation.

Proof. Let M = 〈M,∈M〉 be such that M |= M + Πn-Collection + Πn+1-
Foundation. Let 	(x, y, �z) be a Πn-formula and let b, �a ∈M . We need to
show that A = {x ∈ b | ∃y	(x, y, �a)} is a set in M. By Corollary 5.4, M |=
Σn+1-Foundation. Using Theorem 4.15, let N = 〈N,∈N 〉 be such that M ≺e,n N ,
N |= M + Πn-Collection + Πn+1-Foundation and there exists d ∈ N such that for all
x ∈M , N |= (x ∈ d ). Let α ∈ OrdN be such that for all x ∈M , M |= (x ∈ Vα).

Work inside N . Let

D = {x ∈ b | (∃y ∈ Vα)	(x, y, �a)},

which is a set by Πn-Separation. Let

g =
{
〈x, �〉 ∈ D × α

∣∣∣∣ (∃y ∈ Vα)(�(y) = � ∧ 	(x, y, �a))∧
(∀z ∈ Vα)(φ(x, z, �a) ⇒ � ≤ �(z))

}
,

which is a set by Δn+1-Separation. Moreover, g is a function. Let � = {〈x0, x1〉 ∈
D ×D | g(x0) < g(x1)}. Note that � is a well-founded strict partial order on D.

Since M ⊆P
e N , D,� ∈M . Moreover,

M |= (� is a well-founded strict partial order on D).

Work inside M. Since M ≺e,n N , for all x ∈ b, if ∃y	(x, y, �a), then x ∈ D.
And, for all x0, x1 ∈ D, if ∃y	(x0, y, �a) and ¬∃y	(x1, y, �a), then x0 � x1. Using
Lemma 5.8, let � be an ordinal and let h : D −→ � be such that for all x0, x1 ∈ D,
if 〈x0, x1〉 ∈ D, then h(x0) < h(x1). Consider the class

B = {� ∈ � | (∃x ∈ D)(h(x) = � ∧ ¬∃y	(x, y, �a))}.

If B is empty, then D = {x ∈ b | ∃yφ(x, y, �a)} and we are done. Therefore, assume
that B is nonempty. So, by Πn+1-Foundation, B has a least element �. Let D� =
{x ∈ D | h(x) < �}. Let x ∈ D� . Since � is the least element of B and h(x) < �,
∃y	(x, y, �a). Conversely, let x ∈ b be such that ∃y	(x, y, �a). Let x0 ∈ D be such
h(x0) = � and ¬∃y	(x0, y, �a). Since ∃y	(x, y, �a), it must be the case that h(x) <
h(x0) = �. So, x ∈ D� . This shows that D� = {x ∈ b | ∃y	(x, y, �a)}. Therefore,
Σn+1-Separation holds in M. �

Gostanian [8] notes that the techniques he uses to compare the heights of
minimum models of subsystems of ZF without the powerset axiom do not apply
to subsystems that include the powerset axiom. Theorem 5.9 settles the relationship
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between the heights of the minimum models of the theories M + Πn-Collection and
M + Strong Πn-Collection for all n ≥ 1.

Corollary 5.10. Let n ∈ � with n ≥ 1. The theories M + Πn-Collection and M +
Strong Πn-Collection have the same transitive models. In particular, the minimum
models M + Πn-Collection and M + Strong Πn-Collection coincide.

The results of [12] show that for all n ≥ 1, M + Strong Πn-Collection proves the
consistency of M + Πn-Collection. Theorem 5.9 yields the following.

Corollary 5.11. Let n ∈ � with n ≥ 1. The theory M + Strong Πn-Collection
does not prove the existence of a transitive model of M + Πn-Collection.

The following example shows that the statement of Theorem 5.9 with n = 0 does
not hold.

Example 5.1. Let M = 〈M,∈M〉 be an �-standard model of ZFC in which there
is a countable ordinal that is nonstandard. Note that such a model can built from a
transitive model of ZFC using, for example, [10, Theorem 2.4], or using the Barwise
Compactness theorem as in [11, Lemma 7.2]. Let W be the transitive set that is
isomorphic to the well-founded part ofM. Then, by [6, Theorem 2.3], 〈W,∈〉 satisfies
KPP + Foundation. However, there are well-orderings of � in 〈W,∈〉 that are not
isormorphic to any ordinal in 〈W,∈〉, so 〈W,∈〉 does not satisfy Σ1-Separation.

The following is a consequence of [8, Theorems 2.1 and 2.2] and shows that the
presence of Powerset is essential in Theorem 5.9.

Theorem 5.12 (Gostanian). Let n ∈ �. Let α be the least ordinal such that
〈Lα,∈〉 |= KP + Πn-Collection. Then 〈Lα,∈〉 does not satisfy Σn+1-Separation.

In [15, Theorem 4.6] (see also [7, Theorem 4.15]), Ressayre shows that for all
n ∈ �, the theory KP + V = L + Πn-Collection + Σn+1-Foundation does not prove
Πn+1-Foundation. Ressayre’s construction can be adapted (as noted in [15, Theorem
4.15]) to show that for all n ≥ 1, M + Πn-Collection + Σn+1-Foundation does not
prove Πn+1-Foundation. Since M + Σn+1-Separation proves, Πn+1-Foundation, this
shows that M + Πn-Collection + Σn+1-Foundation does not prove Σn+1-Separation.

Theorem 5.13 (Ressayre). Let n ∈ � with n ≥ 1. The theoryM + Πn-Collection +
Σn+1-Foundation does not prove Πn+1-Foundation.

Proof. Let M = 〈M,∈M〉 be a nonstandard �-standard model of ZF + V = L.
Let � ∈ OrdM be nonstandard. Let I ⊆ (� + �)∗ be an initial segment of (� + �)∗

such that � ∈ I and (� + �)∗\I has no least element.
Work inside M. Define a function f with domain � + � such that

f(0) = V� where � is least such that V� is a Σn-elementary
substructure of the universe;

f(α + 1) = V� where � is least such that f(α) ∈ V� and
V� is a Σn-elementary substructure of the universe;

f(�) =
⋃
α∈� f(α) if � is a limit ordinal.

Now, working in the metatheory again, define N = 〈N,∈N 〉 by:

N =
⋃
α∈I
f(α)∗ and ∈N is the restriction of ∈M to N.
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Therefore, N ≺e,n M and OrdM\OrdN has no least element. It is clear that N is
�-standard and satisfiesM + AC. We claim thatN satisfies Strong Δ0-Collection. Let
φ(x, y, �z) be a Δ0-formula, and let b, �a ∈ N . Let α ∈ OrdN be such that VM

α ∈ N ,
b, �a ∈ (VM

α )∗ and 〈(VM
α )∗,∈N 〉 ≺e,1 N . But then

N |= (∀x ∈ b)(∃yφ(x, y, �a) ⇒ (∃y ∈ Vα)φ(x, y, �a)).

This shows that N satisfies Strong Δ0-Collection. So, N |= MOST + V = L. There-
fore, by Theorem 3.1,

N |= MOST + Πn-Collection.

And, by Theorem 5.6 (n = 1) and Corollary 5.5 (n > 1),

N |= Σn+1-Foundation.

Note that ‘X is Σn-elementary submodel of the universe’, which we abbreviate
X ≺n V, can be expressed as

(∀x ∈ X<�)(∀m ∈ �)(SatΣn (m,x) ⇒ 〈X,∈〉 |= SatΣn (m,x)),

and is equivalent to a Πn-formula. Now, consider the formula 	(α) defined by

∃f

⎛
⎜⎜⎜⎜⎜⎝

(f is a function) ∧ dom(f) = α∧
∃X∃�(X = V� ∧ X ≺n V ∧ f(0) = X ∧ (∀Y, � ∈ X )(Y = V� ⇒ ¬(Y ≺n V)))∧

(∀
 ∈ α)
(

 = � + 1 ⇒ ∃X∃�

(
X = V� ∧ X ≺n V ∧ f(
) = X ∧ f(�) ∈ X∧

(∀Y, � ∈ X )(Y 
= V� ∨ ¬(Y ≺n V) ∨ f(�) /∈ Y )

) )

∧(∀
 ∈ α)
(

(
 is a limit ordinal) ⇒ f(
) =
⋃
�∈
 f(�)

)

⎞
⎟⎟⎟⎟⎟⎠
.

Note that 	(α) can be expressed as a Σn+1-formula and says that there exists a
function that enumerates the first α levels of the cumulative hierarchy that are Σn-
elementary submodels of the universe. Since � ∈ I and I ⊆ (� + �)∗, OrdN �= I .
Therefore, the class

A = {α ∈ OrdN | ¬	(α)} = OrdN \I

is nonempty and has no least element, so Πn+1-Foundation fails in N . �

§6. Questions. The use of Theorem 4.15 to prove Theorem 5.9 raises the
following.

Question 6.1. Is there a direct argument thatM + Πn-Collection + Πn+1-Foundation
proves Σn+1-Separation that does not go via an end extensions?

Kaufmann [9, p. 102] asks:

Question 6.2. If Lα has a Σ2-elementary end extension, does it necessarily have a
Σ2-elementary end extension that satisfies Δ0-Collection?

A more general form of Question 6.2 is asked by Clote [4, p. 39] in the context of
arithmetic. The following is the set-theoretic analog of Clote’s question:

Question 6.3. Let n ≥ 1. Does every countable model of KP + Πn-Collection have
a Σn+1-elementary end extension that satisfies KP + Πn–1-Collection?
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Sun [16] has recently provided a positive answer to Clote’s original question about
end extensions of subsystems of arithmetic.

One wonders if the requirement thatM satisfies Σn+1-Foundation in Theorem 4.15
is necessary. In particular:

Question 6.4. Let n ≥ 1. Does every countable model of KP + Πn-Collection have
a Σn-elementary end extension that satisfies KP + Πn-Collection?

And, if Question 6.4 has a negative answer, then:

Question 6.5. Let n ≥ 1. Does every countable model of M + Πn-Collection have
a Σn-elementary end extension that satisfies M + Πn-Collection?
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